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Linearly normal curves with degenerate general

hyperplane section

Edoardo Ballico, Nadia Chiarli, Silvio Greco

Abstract. We study linearly normal projective curves with degenerate general

hyperplane section, in terms of the ‘‘amount of degeneracy’’ of it, giving a charac-

terization and/or a description of such curves.

1. Introduction

We work over an algebraically closed field K of arbitrary characteristic.

By ‘‘curve’’ we always mean a locally Cohen-Macaulay purely one-

dimensional projective scheme.

Recall that a non-degenerate curve Y JPn is called linearly normal if

the natural map H 0ðPn;OP nð1ÞÞ ! H 0ðY ;OY ð1ÞÞ is bijective, or equivalently

if H 1ðPn;IY ð1ÞÞ ¼ 0.

Linearly normal curves occur in a very natural setting. Indeed if we start

with an abstract projective scheme Y and a line bundle L A PicðYÞ, with L

very ample, it is very natural to consider the complete embedding of Y in the

projective space PðH 0ðY ;LÞÞ induced by H 0ðY ;LÞ.
The aim of the paper is to give a description and, whenever possible, to

characterize linearly normal curves in terms of the ‘‘amount of degeneracy’’ of

the general hyperplane section.

We fix some notation. Let Y JPn be a non-degenerate curve and

let C :¼ Yred . Set d :¼ degðYÞ, d :¼ degðCÞ and s ¼ sðYÞ :¼ dimðhY VHiÞ,
where H is a general hyperplane.

Our first result is the following characterization of linearly normal curves

with maximally degenerate general hyperplane section (i.e. s ¼ 1).

Theorem A. Let Y JPn ðnb 3Þ be a non-degenerate curve. Then the

following are equivalent:

( i ) s ¼ 1 and Y is linearly normal;

(ii) degðYÞ ¼ 2 and paðY Þ ¼ �nþ 2.
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A complete classification and a description of such curves is given in

Example 5.1.

Our next theorem deals with curves in P5.

Recall that if Y JP5 is a non-degenerate curve, with degenerate general

hyperplane section having C irreducible, not a line, then hCi is a plane and

s ¼ 3 (see [1], Th. 2.1 and [2], Th. 2.5).

Theorem B. Let Y JP5 be a linearly normal curve, with degenerate

general hyperplane section and assume C irreducible of degree d > 1.

Let Y 00 be the maximal locally Cohen-Macaulay subcurve of Y contained in

the plane p :¼ hCi and set d 00 :¼ degðY 00Þ. Then:

d 00 þ da d a 2d 00

A description of many such curves is given in Example 5.2 and Lemma

5.11; in particular we show that for any given C and Y 00 all the degrees d ’s

compatible with Theorem B are really attained (see Remark 5.12).

The content of the paper is organized as follows: after Section 2, where we

introduce some preliminaries, Section 3 is devoted to prove Theorem A and

Theorem B.

Next, in Section 4, we discuss the case s ¼ 2 and we give a complete

classification, in characteristic zero, of the linearly normal multiple lines Y with

sðY Þ ¼ 2 and degðYÞb 5.

Finally in Section 5 we show examples and make further remarks.

2. Preliminaries

Let Y JPn be a linearly normal curve, and let BJPn be the scheme-

theoretic base locus of all quadric hypersurfaces containing Y.

Remark 2.1. If HJPn is a general hyperplane, then H contains no

irreducible components of Yred . Thus its equation is not a zero-divisor of OY

and we have the exact sequence:

0 ! IY ð1Þ ! IY ð2Þ ! IYVH;Hð2Þ ! 0:

Since h1ðIY ð1ÞÞ ¼ 0, every quadric hypersurface of H containing Y VH is

the intersection with H of a quadric hypersurface of Pn containing Y.

Thus BVH is the scheme-theoretic base locus of all quadric hypersurfaces

of H containing Y VH. In particular BVHJ hY VHi.

Remark 2.2. If sa n� 2 we have:

( i ) BVH0hY VHi, whence dimðhBVHiÞ < s;

(ii) BVH is cut out by the quadrics of hY VHi containing Y VH.
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Indeed, we already observed that BVHJ hY VHi (see Remark 2.1). If

equality holds, then by Remark 2.1 we have that B is the scheme-theoretical

union of a linear space L of dimension sþ 1 a n� 1 and, possibly, a zero-

dimensional scheme.

Since Y has no zero-dimensional components, it follows that Y JL, a

contradiction. This proves (i), and (ii) immediately follows.

Remark 2.3. Assume that Y is linearly normal with degenerate general

hyperplane section. Then BVH cannot be arithmetically Cohen-Macaulay of

dimension r > 0. Indeed, if this is the case, then B is the scheme-theoretic

union of a zero-dimensional scheme and of a scheme B 0 of pure dimension

rþ 1 such that B 0 VH ¼ BVH. Then B 0 is arithmetically Cohen-Macaulay

and, in particular, the restriction map H 0ðIB 0 ð1ÞÞ ! H 0ðIB 0VH;Hð1ÞÞ is sur-

jective, whence B 0 is degenerate since B 0 VH is. Since Y JB 0, this is a con-

tradiction.

Remark 2.4. Let Y JPn be a linearly normal curve and HJPn be

a general hyperplane. Then from the exact sequences 0 ! IY ! IY ð1Þ !
IYVH;Hð1Þ ! 0 and 0 ! IY ! OPn ! OY ! 0 it is easy to see that sðY Þ ¼
n� 1 � h1ðIY Þ ¼ n� h0ðOY Þ.

Remark 2.5. If Y is a projective abstract curve and we fix a very

ample line bundle L, we obtain the embedding of Y in the projective space

PðH 0ðY ;LÞÞ, say of dimension n; the same Y, by choosing a di¤erent very

ample line bundle L 0, can be embedded by the linear system H 0ðY ;L 0Þ in

the projective space PðH 0ðY ;L 0ÞÞ, say of dimension n 0. Hence by Remark

2.4 we have that the classification of linearly normal curves isomorphic to Y

with large s is equivalent to the classification very ample line bundles, which

seems very di‰cult.

3. Proofs of Theorems A and B

Proof of Theorem A

Proof. Assume (i) holds. If degðY Þb 3 the scheme BVH is a line for

a general hyperplane H. But this is impossible by Remark 2.3. Thus

degðYÞ ¼ 2.

Hence h1ðIYVH;Hð jÞÞ ¼ 0 for all jb 1. Then from the exact sequence

0 ! IY ! IY ð1Þ ! IYVH;Hð1Þ ! 0;

and Serre’ vanishing it follows that h1ðOY Þ ¼ h2ðIY Þ ¼ 0.

Since h0ðOY Þ ¼ n� 1, by Remark 2.4 it follows paðYÞ ¼ �nþ 2.

This shows that (i) ) (ii). Reversing the argument it is easy to prove the

opposite implication. r
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Remark 3.1. (i) Notice that, when n ¼ 3, with the assumption ‘‘linearly

normal’’ we exclude from the classification given in [8] all positive characteristic

multiple lines which are not double lines and almost all double lines.

(ii) Notice also that, if n ¼ 3, Y is either the union of two skew lines or a

double line (as a Cartier divisor) on a smooth quadric surface. If nb 4, Y is

a unique double line (up to projective equivalence) described in Example 5.1.

Proof of Theorem B

Proof. First of all we show that d 00 þ da d. Since C is irreducible and

Y 0C, there are integers eb 2, e 00 b 1 such that d ¼ de and d 00 ¼ de 00. Since

Y 0Y 00 we have also e > e 00, whence our claim.

To prove the other inequality we proceed in several steps.

Step 1. Let’s recall first the definition of generic spanning increasing given

in [2].

If HJPn is a general hyperplane, let P A H VYred and let ZðPÞ be the

largest subscheme of Y VH supported by P. It turns out that the integer

dimhYred UZðPÞi� dimhYredi does not depend on the choice of P and H; it

is called generic spanning increasing of Y, and denoted by zY or simply by z

whenever no explicit reference to Y is needed.

By [2], Theorem 2.5, we have zþ 2 dimðhYrediÞa sþ 2, whence s ¼ 3 by

our assumption; we also have that z > 0 (loc. cit.), and this implies z ¼ 1.

Step 2. If d 00 ¼ d (i.e. Y 00 ¼ C), then d ¼ 2d ¼ 2d 00 (i.e. Y is a double

structure on C ).

Proof of Step 2. By contradiction, assume that d ¼ ed, with eb 3. Set

l :¼ H V p and let P be a point of H VC ¼ lVC. By definition of z we have:

dimhZðPÞi� dimhZðPÞV pi ¼ z ¼ 1

and since ZðPÞV p ¼ P (with reduced structure), we have dimhZðPÞi ¼ 1.

Let fP1; . . . ;Pdg ¼ C VH, and for each i ¼ 1; . . . ; d denote by li the line

hZðPiÞi.

Let Q1; . . . ;Qr be a basis of the linear system of quadrics in hY VHi
containing Y VH (note that rb 1 by Remark 2.2).

By our assumption it follows that degðZðPiÞV liÞb 3, whence Qi K
l1 U � � �U ld for all i ¼ 1; . . . ; r.

Observe that hH VYiK l1 U � � �U ld KH VY , whence hl1 U � � �U ldi ¼
hH VYi, which means that at least two of the lines are skew.

If d ¼ 2 this readily implies that BVH ¼ l1 U l2, whence B is the union of

two distinct planes and a zero-dimensional scheme.

Since C is irreducible, this implies that Y is contained in one of the two

planes, absurd.
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If db 3, then Qi K lU l1 U � � �U ld for all i ¼ 1; . . . ; r.

If r ¼ 1, then BVH ¼ Q1, a contradiction by Remark 2.4.

If r > 1 we show that BVH is a plane (whence a contradiction by the

above argument). This is clear by Bézout if db 4. If d ¼ 3, let D :¼
lU l1 U l2 U l3. Then either paðDÞ ¼ 0 (and D cannot be a complete inter-

section of two quadrics), or three of the four lines are coplanar. In either case

we have the conclusion.

Step 3. If d 00 > d, then d a 2d 00.

Proof of Step 3. Since d 00 > d, we have dimhZðPiÞV pi ¼ 1 and

degðZðPiÞV lÞb 2 ði ¼ 1; . . . ; dÞ whence, in particular, degðZVH V lÞb 4 and

lJQi for all i ¼ 1; . . . ; r.

Moreover pi :¼ hZðPiÞi is a plane (use the same argument as in Step 1)

which contains l, because Y 00 0C.

If BVH ¼ pi for some i, then we get a contradiction as above.

If not, then Qi V pj is a conic supported by l, hence it is a double line

in pj.

This means that the zero-dimensional scheme ZðPiÞ is contained in a

double line, and an easy calculation shows that

degðZðPiÞÞa 2 degðZðPiÞV lÞ.
But degðZðPiÞÞ ¼ e and degðZðPiÞV lÞ ¼ d 00, whence our conclusion. r

4. The case s ¼ 2

We recall the following result (see [5], Step 3 in the proof of Prop. 1.4):

Proposition 4.1. Assume charðKÞ ¼ 0. Let Y A Pn be a non-degenerate

curve with sa n� 2. Then a general hyperplane section H VY is contained in

at least s independent quadrics of the linear space hH VYi.

Proposition 4.2. Assume charðKÞ ¼ 0. Let Y A Pn be a non-degenerate

curve of degree d b 5, with s ¼ 2 and let H be a general hyperplane. Then:

( i ) H VY contains a collinear subscheme of degree d � 1;

(ii) Y contains a planar subcurve of degree d � 1.

Proof. By Proposition 4.1 H VY is contained in two independent conics

of the plane hH VYi. Since d b 5 this easily implies (i). We can get (ii)

from (i) and [6], Cor. 4.4. r

Remark 4.3. If Yred is irreducible and sðY Þ ¼ 2, then Yred is a line.

Indeed from [2], Th. 2.5 we have 2 dimhYredia sðYÞ þ 1. If the characteristic

is zero these multiple lines of degree b 5 are characterized as the ones con-

taining a planar multiple line of degree d � 1.

Now we want to show how the above multiple lines can be constructed
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and we want to characterize the linearly normal ones among them. This can

be done in arbitrary characteristic.

Remark 4.4. (i) Let Y JPn be a multiple line of degree d, containing a

planar subcurve Z of degree d � 1 and let C :¼ Yred . Let L be the kernel of

the natural map OY ! OZ.

Then it is easy to see that NL ¼ 0, where N is the nilradical of OY ;

therefore L is in a natural way an OC-module. Moreover one can easily show

that L is torsion free, hence invertible.

Then we have exact sequences

0 ! IY ! IZ ! OCðaÞ ! 0

and
0 ! L ! OY ! OZ ! 0

for some integer a.

(ii) From the above cohomology sequences we get that the following

conditions are equivalent:

(a) Y is linearly normal;

(b) the natural map H 0ðIZð1ÞÞ ! H 0ðOCðaÞÞ is an isomorphism;

(c) a ¼ n� 4 and Y is non-degenerate;

(d) Y is non-degenerate and paðY Þ ¼ 1
2
ðd � 2Þðd � 3Þ þ 2 � n.

(iii) One can construct all the curves described above by using a well-

known contruction (for details see e.g. [5], proof of Prop. 1.11; here the case

n ¼ 4 is treated, but the extension to arbitrary n is straightforward).

Let CJPn be a line and let Z be a planar curve of degree d � 1 b 2 with

Zred ¼ C. Then for every line bundle L :¼ OCðaÞ with ab n� 4, one can

construct many non-degenerate curves Y of degree d whose ideal sheaf fits into

the exact sequences seen in (i). If a ¼ n� 4, then Y is linearly normal by (ii).

5. Examples and further remarks

5.1. Ribbons. Here we consider linearly normal structures corresponding to

double lines and double conics, using the notion of ribbon introduced in [3].

Let X be a locally Cohen-Macaulay projective scheme such that T :¼
Xred GP1 and the nilpotent sheaf I of OX has I2 ¼ 0. Thus I may be seen

as a coherent OT -module.

Here we assume I A PicðTÞ and call X a rational ribbon or, just, a ribbon.

Set x :¼ degðIÞ as a line bundle on T.

We have an exact sequence:

0 ! I ! OX ! OT ! 0:

Thus wðOX Þ ¼ 2 þ x and paðXÞ ¼ �x� 1.
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The ribbon is said to be split if the quotient map OX ! OT has a re-

traction.

For any fixed integer x there is a unique split ribbon with degðIÞ ¼ x

(see [3], pp. 724–725). If xb�3 every ribbon with invariant x is split ([3],

Cor. 1.4), while if xa�4 the set of all isomorphic classes of non-split ribbons

with invariant x is parametrized by a projective space of dimension �x� 4.

Here we will need only split ribbons.

We have the exact sequence of sheaves of groups

0 ! I ! O�
X ! O�

T ! 0

and, since H 0ðT ;O�
TÞGK�, the natural map H 0ðX ;O�

X Þ ! H 0ðT ;O�
TÞ is sur-

jective.

Hence we obtain kerðrÞGH 1ðT ;IÞ, where r is the natural surjective map

PicðX Þ ! PicðTÞGZ.

Example 5.1. We want to show that for every nb 3 there is exactly one

double line Y JPn of genus �nþ 2, up to projective equivalence.

First we prove the uniqueness of Y as a complete embedding of a ribbon

X by some very ample line bundle L A PicðX Þ such that LjT has degree 1.

By the previous exact sequence we also have x ¼ n� 3 b�3, whence X

is unique, because it is a split ribbon.

Since H 1ðT ;IÞ ¼ 0, for any nb 3 there is at most one such pair ðX ;LÞ.
It is easy to see the existence of such pair ðX ;LÞ in the following way.

Let Sn�3 JPn be the minimal degree smooth rational normal surface scroll

with Sn�3 isomorphic to the Hirzebruch surface Fn�3.

We have PicðSn�3ÞGZl2 and we take as a basis of PicðSn�3Þ a fiber, f ,

of the ruling of Sn�3 and a minimal degree section, h, of the ruling of Sn�3.

Hence h2 ¼ 3 � n, h � f ¼ 1, f 2 ¼ 0 and Sn�3 is embedded by the very

ample complete linear system jhþ ðn� 2Þ f j; in particular Sn�3 is unique up to

a projective transformation and h is embedded as a line.

We take as Y the Cartier divisor 2h of Sn�3 and as L the restriction of

OSs�3
ðhþ ðn� 2Þ f Þ to Y.

Since oSn�3
@�2h� ðn� 1Þ f by the adjunction formula we get paðY Þ ¼

�nþ 2.

Example 5.2. We want to show that for every nb 5 there is a unique

linearly normal double conic Y JPn with sðYÞ ¼ 3 (up to projective equiv-

alence).

We proceed as in Example 5.1.

By Remark 2.4 we must have h0ðOX Þ ¼ n� 3, whence x ¼ n� 5 b 0.

Whence, as before, there is at most one pair ðX ;LÞ with degðLjT Þ ¼ 2. This

shows uniqueness.
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To show the existence, let SJPn be the embedding of the Hirzebruch

surface Fn�5 by the very ample complete linear system jhþ ðn� 3Þ f j; in par-

ticular S is unique up to a projective transformation and h is embedded as a

conic.

We take as Y the Cartier divisor 2h of S and as L the restriction of

OSðhþ ðn� 3Þ f Þ to Y.

Denote by D a general hyperplane section of S.

From the exact sequence

0 ! IS ! IY ! OSð�YÞ ! 0

we get h0ðIY ð1ÞÞ ¼ h0ðOSðD� Y ÞÞ ¼ 0 and h1ðIY ð1ÞÞ ¼ h1ðOSðD� YÞÞ.
By duality it is easy to see that h2ðOSðD� YÞÞ ¼ 0, hence by Riemann-

Roch we get

�h1ðOSðD� YÞÞ ¼ 1

2
ðD� YÞ � ðD� Y � oSÞ þ 1 ¼ 0

In conclusion Y is linearly normal.

Let now H be a general hyperplane. Then H VY is the union of

two disjoint 0-dimensional subschemes, each spanning a fiber of S. Hence

sðY Þ ¼ 3.

5.2. Doublings. Here we produce examples of linearly normal locally Gor-

enstein curves Y JP5 with s ¼ 3 and dimhYredi ¼ 2.

We recall first some facts from [4].

Definition 5.3. Let X JZJPn be closed subschemes. Then Z is said

to be a doubling of X if IZ KI2
X and the following holds: if T 0 is an ir-

reducible component of Xred ¼ Zred and X 0 (resp. Z 0) is the largest subscheme

of X (resp. of Z) supported by T 0, then degðZ 0Þ ¼ 2 degðX 0Þ.

Remark 5.4. (i) Let Z be a doubling of X. We have an exact sequence

0 ! L ! OZ ! OX ! 0

where L is an OX -module, canonically isomorphic to IX=IZ.

(ii) If L is an invertible OX -module and f : IX=I
2
X ! L is a surjective

map, then the scheme Z such that IZ=I
2
X ¼ ker f is a doubling of X.

(iii) If Z is a doubling of X corresponding to L :¼ IX=IZ, then L is

invertible in the following two cases:

(a) X and Z are locally Gorenstein;

(b) X is smooth and Z is S2.

Now we consider the following situation: pJP5 is a plane and DJ p is

a curve of degree d > 1. We have:
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Lemma 5.5. Let D be as above, Y a locally Gorenstein doubling of D and

put L :¼ ID=IY . Then the following are equivalent:

( i ) Y is linearly normal and sðYÞ ¼ 3;

(ii) h0ðLÞ ¼ 1 and the map H 0ðIDð1ÞÞ ! H 0ðLð1ÞÞ is an isomorphism (in

particular h0ðLð1ÞÞ ¼ 3).

Proof. (i) ) (ii) We have the exact sequence

0 ! L ! OY ! OD ! 0

and H 0ðOY Þ ! H 0ðODÞ is obviously surjective.

Since h0ðODÞ ¼ 1 and h0ðOY Þ ¼ 2 (see Remark 2.4) we have h0ðLÞ ¼ 1.

The conclusion follows from the exact sequence

0 ! IY ! ID ! L ! 0;

since H 0ðIY ð1ÞÞ ¼ H 1ðIY ð1ÞÞ ¼ 0.

For the converse, reverse the above argument. r

Now we discuss the existence of doublings as above.

Lemma 5.6. Let L be an invertible OD-module such that h0ðLÞ ¼ 1,

h0ðLð1ÞÞ ¼ 3 and L is generically generated.

Then there is a linearly normal curve Y, which is a doubling of D associated

to L and with sðYÞ ¼ 3.

Proof. By Remark 5.4(ii) we have to find a surjective map of OD-modules

f : ID=I
2
D ! L.

Since ID=I
2
D ¼ 3ODð�1ÞlODð�dÞ, f is determined by three sections

f1; f2; f3 A H 0ðLð1ÞÞ and one section f4 A H 0ðLðdÞÞ.
Choose f1; f2; f3 linearly independent.

By assumption there is an exact sequence

0 ! ODðd� 1Þ ! Lðd� 1Þ ! F ! 0;

where F has 0-dimensional support.

Then H 1ðLðd� 1ÞÞ ¼ H 1ðODðd� 1ÞÞ ¼ 0, whence LðdÞ is generated by

global sections ([9], Th. 2, p. 41).

Then it is easy to see that there is f4 such that the map f defined by

f1; . . . ; f4 is surjective.

The doubling Y of D determined in this way has the required property by

Lemma 5.5(i). r

Finally we give a characterization of the line bundles L corresponding to

linearly normal doublings of Y with sðYÞ ¼ 3.
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Proposition 5.7. Let DJP2 be a curve, E an e¤ective Cartier divisor on

D and put L :¼ ODðEÞ. Then the following are equivalent:

( i ) h0ðLÞ ¼ 1 and h0ðLð1ÞÞ ¼ 3;

( ii ) h1ðLð1ÞÞ ¼ 1
2
ðd� 2Þðd� 3Þ � degðEÞ;

(iii) If da 3 then E ¼ 0; if db 4 E (considered as a subscheme of P2)

imposes independent conditions to the curves of degree d� 4 (i.e.

H 1ðIEðd� 4ÞÞ ¼ 0).

Proof. The equivalence of (i) and (ii) follows easily from the exact

sequence

0 ! OD ! L ! OE ! 0

and the equivalence of (ii) and (iii) follows from Serre’s duality and the exact

sequence

0 ! ID ! IE ! ODð�EÞ ! 0: r

Remark 5.8. It is clear that if (iii) of the above Proposition is satisfied,

then

0 a degðEÞa
1

2
ðd� 2Þðd� 3Þ

Conversely, if D ¼ C is an integral curve and 0 a ta 1
2
ðd� 2Þðd� 3Þ, then

there are reduced divisors E of degree t satisfying h1ðIEðd� 4ÞÞ ¼ 0 (easy

induction on t).

Proposition 5.9. Let CJP5 be an integral plane curve of degree d > 1

and let Y be a locally Gorenstein doubling of C. Then we have:

(i) if Y is linearly normal and sðYÞ ¼ 3, then:

2g� 1 � 1

2
ðd� 2Þðd� 3Þa paðYÞa 2g� 1

where g ¼ paðCÞ ¼ 1
2
ðd� 1Þðd� 2Þ;

(ii) every values for paðY Þ as in (i) can be attained.

Proof. Let L be the invertible sheaf associated with Y.

Then paðYÞ can be computed from the exact sequence

0 ! L ! OY ! OC ! 0:

Moreover L ¼ OCðEÞ and 0 a degðEÞa
1
2
ðd� 2Þðd� 3Þ.

An easy calculation shows that (i) holds. Finally (ii) follows from Remark

5.8. r

5.3. All integers prescribed by Theorem B can occur.

Remark 5.10. Let pJP5 be a plane. We recall (see [2], Ex. 13) that

Edoardo Ballico et al.226



there is a non-degenerate double structure X on p such that sðX Þ ¼ 3, defined

by the exact sequences:

0 ! IX ! Ip ! Op ! 0

0 ! Op ! OX ! Op ! 0

From the cohomology sequences of the above sequences it is easy to see

that h1ðIX ð1ÞÞ ¼ 0 and h1ðOX ð jÞÞ ¼ 0 for all negative j’s.

Now we can prove the following:

Lemma 5.11. Let X be as above and let F be a hypersurface of degree

r > 1 not containing p. Let W :¼ F VX and let Y 0 J p be a curve such that

hW VY 0i ¼ p.

Then Y :¼ W UY 0 is linearly normal and sðYÞ ¼ 3.

Proof. From the exact sequence 0 ! IW ! IF lIX we get

h0ðIW ð1ÞÞ ¼ 0, whence h0ðIY ð1ÞÞ ¼ 0.

Moreover, from the exact sequence 0 ! IW ! IX ! OX ð�rÞ ! 0 and

Remark 5.10, we get h1ðIW ð1ÞÞ ¼ 0.

The Mayer-Vietoris sequence gives:

0 ! H 0ðIW ð1ÞÞlH 0ðIY 0 ð1ÞÞ ! H 0ðIWVY 0 ð1ÞÞ

! H 1ðIY ð1ÞÞ ! H 1ðIW ð1ÞÞlH 1ðIY 0 ð1ÞÞ ! 0:

By assumption we have h0ðIWVY 0 ð1ÞÞ ¼ 3 ¼ h0ðIY 0 ð1ÞÞ and obviously

h1ðIY 0 ð1ÞÞ ¼ 0.

Since h1ðIW ð1ÞÞ ¼ 0 ¼ h0ðIW Þð1ÞÞ we get h1ðIY ð1ÞÞ ¼ 0.

This shows that Y is linearly normal.

Finally we have 3 ¼ sðXÞb sðY Þb sðWÞb 3 and the conclusion fol-

lows. r

Now we are ready to show that all integers prescribed by Theorem B

can occur.

Remark 5.12. Let pJX JP5 be as before.

Let CJ p be an integral curve of degree d > 1 and choose a homogeneous

polynomial G such that C ¼ VðGÞV p.

Fix integers e; f > 0 and put d 00 :¼ ed, d ¼ f d and assume d 00 þ da

d a 2d 00 (i.e. eþ 1 a f a 2e) (see Theorem B).

Put Y 0 :¼ VðGeÞV p, W :¼ VðG f�eÞVX and Y :¼ W UY 0.

Since 1 a f � ea e it is clear that Y 0 VW is a 1-dimensional scheme of

degree dð f � eÞb 2, whence hY 0 VWi ¼ p. Then we can apply Lemma 5.11

to show that Y is linearly normal and sðYÞ ¼ 3.

Linearly normal 227



Since f � ea e it is clear that Y 0 is the largest subcurve of Y contained

in p (hence Y 0 ¼ Y 00, with the notation of Theorem B).

Finally, by restricting to a general hyperplane we see that

degðY Þ ¼ degðY 0Þ þ degðWÞ � degðY 0 VWÞ ¼ d:
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