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ABSTRACT. We study reaction-diffusion systems of propagator-controller type in the
one-dimensional unit interval. When propagator diffuses slowly, we establish the
existence of transition layer equilibria by using singular perturbation expansions and a
Lyapunov-Schmidt reduction method. Our approach to the existence also enables us to
simultaneously obtain a stability criterion for the layer equilibria.

1. Introduction and main results

1.1. Reaction-diffusion system. We study the following one-dimensional sys-
tem of reaction-diffusion equations

_ 2 -
(L1) {”f—”“*f(”’”) (xe(0,1),1>0),
v, = Duyy + g(u,v)
under the homogeneous Neumann boundary conditions
(12) ”x(ov [) :”x(lvt) :Ozvx(():t) :Ux(lat)'

Systems like (1.1) have been employed in many fields [4, 5, 9, 12, 15, 21] to
study pattern formation phenomena from a mathematical viewpoint.

When ¢ > 0 is small and the ODE u, = f(u,v) is bistable for each v fixed
in some interval, we expect that solutions of (1.1)—(1.2) will develop transition
layers. To see this, let us consider a specific example of reaction Kkinetics

(f,9);

(1.3) {f(u,v) = (1 —u®)(u—h"(v)) with h°(v) = g tanh(v — ),

g(u,v) =2u—v,
with |¢| < 1. Formally setting ¢ =0 in (1.1), we obtain

up=(1—u?)(u—h0
(1.4) {U(Dlv.+>2(u:()) (xe(0,1),7>0).
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Notice that u = +1 (to be called A% (v) later) are asymptotically stable equilibria
for the ordinary differential equation u, = (1 — u?)(u — h°(v)) with each v be-
ing fixed. This suggests that solutions (u(z,x),v(¢,x)) of (1.4) will generically
behave as lim,o u(f,x) = £1 for most x€[0,1]. For large 7, u(z,x) is
expected to exhibit a sharp transition behavior, from u(¢,-)~—1 to
u(t,-) @ +1, in a neighborhood of some points x* € [0, 1].

Our objective in this paper is to show that, for a general class of func-
tions f, g, there are equilibria of (1.1), (1.2) which exhibit transition layers for
0 <e« 1. The equilibria of (1.1) and (1.2) satisfy the equations

(1.5) {0 = U+ f(,v), 0=Dug+g(u,v) (xe(0,1)),

uy(x) =0=uy(x) at x=0,1,

for 0 < e« 1. Stability properties of these solutions also will be determined.
Our approach is based on a singular perturbation method, namely, we first
examine reduced solutions of (1.5) for “e =0, and then construct solutions for
small ¢ > 0 by a perturbation argument.

Let us outline the construction of transition layer equilibria with a single
transition, by using the nonlinearity (f,¢g) of (1.3). We first consider a reduced
problem

0= (1—u?)(u—hv)
(1.6) 0=Dv+2u—v
uy(x) =0=v0y(x) at x=0,1.

xe(0,1)

As a solution of the first equation in (1.6), we choose

-1 xe€][0,x*]
+1 xe(x*1]

u=U"(x):= { ;
where x* € (0,1) is the location of transition layer, which is to be determined.

This solution has a jump discontinuity at x = x*. To obtain a smooth
solution for small ¢ > 0, we will need to have a sharp transition layer near

x*.  To accomplish this, we introduce a stretched variable z = (x — x*)/¢ near
the transition point, and rewrite the first equation of (1.5) in terms of z;

0 =u.. + (1 — u*)(u — ¢ tanh(v — 7)).

We now seek a solution satisfying lim._,4., u(z) = +1. Such a solution exists
only if v =7y when |g| < 1, ¢ # 0. Therefore, at the transition point, we should
require that v(x*) = y.

Using the above definition of U* in the second equation of (1.6) and
using the boundary conditions for v, it is natural to consider the following
problem:
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0=Dvy—2—v xe(0,x%),
0=Dv+2—v xe(x*1),
0,(0) =0 =0y (1), v(x*)=1.

For each x* € (0,1), there is the following solution

cosh(x/v/D)

O+ 2) ot D)
. cosh((x—1)/v/D)

(y 2) cosh((x*—1)/vD)

-2 0<x<x®
(1.7) v=V"*(x):= .
+2 x*<x<l

It is evident that V* e C°([0,1]). If we impose the additional condition V* €
C!([0,1]) (C'-matching condition), then x* € (0,1) is uniquely given by

2 1
18 x =10 (é \/yz (2P 1) 4 4e2 VP — 2(e2VP U),

2
which follows immediately from (1.7). For this choice of x*, V* also belongs
to C'([0, 1) N C*([0, 1\ {x"}).
The main result in this paper, when applied to the specific example (1.3), is
the following one.

MAIN RESULT FOR (1.3). There exist an ¢, > 0 and a family of solutions
(u,v%) of (1.5) for ¢ (0,&] with the following properties.

(1) Iin(l) vé(x) = V*(x) uniformly on [0,1], where V* is defined by (1.7).

(ii) For each &> 0, 6 < min{x*,1 —x*}

. , -1 0<x<x*—
lim u®(x) = j ) -
lim u®(x) {—H uniformly on {x*+53x<1’

where x* is given in (1.8).
(iii) The solution (u*,v*) is asymptotically stable if 0 < q < 1, and unstable
if —1<¢g<0.

Results of this type have appeared in a series of articles [3, 11, 8, 14] between
1976 and 1987. One purpose of our article is to show that the method of
Lyapunov-Schmidt used in [6] (see also [22]) for a scalar equation can be
extended to apply to systems of equations. Furthermore, it will be shown
elsewhere (cf. [16, 17]) that this method can be adapted to deal with internal
layers for a multi-space-dimensional version of (1.1). Recently, Lin [10] devel-
oped a geometric-dynamical system appoach, combined with asymptotic ex-
pansions, to successfully discuss one-space-dimensional and multi-component
systems including (1.1).

The method presented in this article also can be extended to apply to the
evolution of internal layers for the parabolic system (1.1), (1.2). This problem
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was discussed in [2, 1] when f, g have some specific types of monotonicity.
With the extension of our method to parabolic systems, it is possible to have
more general f, g which include the specific example (1.3). A preliminary
version of such an extension is presented in [18, 19, 20].

1.2. Transition layer equilibria. We now state conditions and results in
general terms. Throughout the paper, we let the nonlinear functions f and
g satisfy the condtions listed below.
(A1) The function f is smooth on R?, and the ordinary differential
equation # = f(u,v) is bistable in u for each fixed v e (v,7) =: I.
Namely, f(u,v) = 0 has exactly three zeros u = h*(v), h°(v) for each
v e Iy safisfying

h=(v) < h°(v) < " (v), Sfu(h*(v),v) < 0.
(A2) 1If, for vel, we define the function J(v) by
It (v)
J(v) := J f(s,v)ds,
h=(v)
then there exists a v* € I, such that
Jw)=0 and  J'(v*) #0.

(A3) The function g is smooth on R?. If we define g*(v) := g(h*(v),v)
for v e Iy, then we have

g (v) <0< gt(v), gfw) :==—g*(v) <0  for vel.

(A4) The inequalities
Sulu,0) + go(u,v) <0 at u=h*(v)

hold for v e I.
Under these conditions, our main result is stated as follows.

THEOREM 1.1. If the conditions (Al), (A2), (A3) and (A4) are satisfied,
then
(i) there exist a constant Dy > 0, determined solely by (f,g), a constant
x* =x*(D) e (0,1) and a family of C'-functions V*P defined for
D > Dy, satisfying

0 — DV*’,D + {g(h(V*D)’ V*D) for {0 <x < X*

g(ht (VD) yp) x*<x<1
and

ViPO) =0= Vi), VP =
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(ii) there exist &, > 0 and a family of solutions (u®?(x),v%P(x)) of (1.5),
defined for (¢,D) € (0,&,] x [Dy, ), satisfying
(a) lirré 08P (x) = V*P(x) uniformly on [0,1];
(b) };r each 6 > 0,

. ) O=x=x' =0
& D _
im0 = oy oy on {Q5TT 00

(iii) the solution (u®P(x),v*P(x)) is exponentially asymptotically stable if
J'(v*) <0, and it is unstable if J'(v*) > 0.

In [11] the existence part of Theorem 1.1 was first proved by modifying a
method developed in [3]. This was later improved in [§8]. In these articles, the
authors construct two boundary layer solutions and glue them smoothly across
the transition point x* (C'-matching). In our approach, we do this matching
while we construct approximate solutions. The stability result, Theorem 1.1
(iii), was proved much later in [14]. With our method, the stability result
comes simultaneously with the existence result.

Theorem 1.1 is slightly more general than those of [11, 8, 14]. In our
result, a situation g,(u,v) >0 at u=h*(v) is allowed to the extent that (A4)
is satisfied, while g,(u,v) <0 at u=h*(v) was required in [11, 8, 14]. For
example, our theory applies to the situation where f(u,v)=u—u>—v and
g(u,v) = u—+ yv, as long as y < 1/2. This improvement comes from our deri-
vation and treatment of SLEP (cf. §§5.2, 5.3).

In Theorem 1.1 (i), the function V*? is similar to the one given in (1.7).
Statement (ii)(b) clearly shows that our solutions exhibit a sharp transition
layer at x = x*. It is of interest to observe from Theorem 1.1 (iii) that the
stability properties of the transition layer solutions are determined by a single
quantity J'(v*), if J'(v*) #0. When J'(v*) =0, Theorem 1.1 is no longer
valid. However, even if J'(v*) = 0, our method of proof extends to establish a
result similar to Theorem 1.1, if we assume an additional condition J”(v*) # 0.
Such problems will be treated elsewhere.

The proof of Theorem 1.1 consists of three steps;

construction of approximate solutions with high degree of accuracy
(52.2, §4);
spectral analysis of linearization around the approximate solutions
(§2.3, §5);

a perturbation argument: Lyapunov-Schmidt Reduction (§2.4).

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using several propositions. The
proofs of some of these propositions are postponed to §§4 and 5.
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2.1. Preliminaries. For each v° € I = (v, b), we consider the reduced problem,

0=DV,+g (V) 0<x<x% VP, (0)=0, V(% =1°
(2.1) 0=DV,+gt(V) xX<x<1, V(1)=0, V(% ="

V() e C'([o,1]),
where x” € (0,1) is a quantity to be determined so that the last condition
V(-)e C'([0,1]), called a C'-matching condition, is fulfilled.

In multi-dimensional spaces, the problem (2.1) corresponds to a free-
boundary problem (in which x° is replaced by a hypersurface). It is not so
easy to find a solution of such problems. In the one-dimensional case, it has
an easy solution.

ProposITION 2.1.  If conditions (A1) and (A3) are satisfied, then for each
v € Iy, there exists a Dy > 0, which depends only on (f,g) and v°, so that the
problem (2.1) has a unique solution pair (V'"-P(x),x°(D,v°)) for D > D,
satisfying

0<x"D,0") <1, VIP(x)>0,  xe(0,1).

ProoF. In (2.1), rescaling x € [0,1] by x — x* = /Dy and defining v(y) :=

V(x), we obtain the equivalent problem,
0 0

X
0=v,+g (v), ——=<y<O0, v ——=]=0, 0v(0)=1°
e @~ <y (-25) =0 w0
1—x° 1—x°
0=0,,+g (v), 0<y<—n, v ()—0, v(0) = 0.
Yy g ( ) y \/E y \/l_) ( )
We use the shooting method to find the desired C'-matched solution. For
v e [v,0°], Be[v? 0], there are solutions of the problems
0=v,+g (v7), —I"<y<O,
v (=) =a, v (~)=0, v (0)=20",

y

yy

0=v),+g ("), 0<y</t,
vty =B, v (M) =0, v*(0)=1"

where I~ >0 and It > 0 are given by

)= WJ; I (o 5 7

0 — a)s + o)ds

I (p) = WJI a

0 I g (B~ s + 0)ds
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It is easy to verify

dr*(p)

(2.2) - i

>0,

by using g* < 0 (cf. (A3)). Rescaling back to the original x-variable will yield
a solution of (2.1) if « and S are chosen so that

rmqum:§3

Moreover, the third condition in (2.1) (C!-matching condition) requires that

v, (0) = v, (0), in addition to the condition v~ (0) = v? =v"(0). Let us define

p (2) >0 and p™(f) >0 by

and p by
D= min{ max p (o), max Pﬂﬁ)}'
v<a<pl W<p<i

In order to fulfill v;(0) = vy (0), it is necessary to have

O<p(=<p.  0<p(f<p
satisfied. We immediately find that

dp () dp* ()
dx O dp

(2.3) >0,

by using g~ (v) < 0 < gt (v) for v e [v, 9] (cf. (A3)). Therefore, we can express o
and £ as a function of p €0, p]; « = a(p), f = f(p). By using (2.2) and (2.3),
we find that

I(p) = 1" (a(p)) + 1" (B(p))

is monotone increasing in pe|0,p] and satisfies /(0) =0. Therefore, if
Dy :=[(p) %, then, for each D e[Dy, o), there exists a unique p(D) € [0, 7]
so that
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As remarked earlier, scaling back to the original x € [0, 1], we obtain the
desired solution of (2.1) as follows:

(2.4) x*(D,v") := VDI (a(p(D)))

0 v (-1 @pD)) 0= x<x(D,0),
(2.5) VeP(x) =

v (g5 1 (@(p(D)) (D) <x <. O
We now linearize (2.1) at (V,0°) = (V"2 0).

PROPOSITION 2.2.  Assume that conditions (Al) and (A3) are satisfied.
(1) The boundary value problems

) 0=D¥_ +g,(V"Px)¥", 0<x<x°
Wo(0)=0, ¥ (x) =1,
(2.6)
+) 0=D¥ +gr (V" Px)Y", x*<x<l,
vil)=0, ¥ =1,

have unique solutions satisfying
P (x) >0 (0<x<x?), Prx) >0 xX"<x<1),
Po(x) >0 (0<x<x"), Prx) <0 X"<x<1).
(ii) If we define a constant ro(v°) by
(2.7) 7(1°) = P (x0) — PHR) >0,

then we have

28) 0< V() <) () = g () — g (%) > ).
¥ Dﬂo(vo) B
ProOF. Since g*(v) <0 from (A3), the problems (2.6)(4+) have unique
solutions.
The solution ¥~ satisfies ¥, (x°) > 0. If not, ¥_(x%) <0, then

DY (x°) = —g; (V" PP (x) = —g; (VP (x) > 0

implies ¥ (x) <0 for x near x° (x < x°), and hence this is true for all x e
[0,x%. This makes it impossible to fufill the boundary condition ¥ (0) = 0.
Hence ¥_(x°) >0. The same reasoning shows that for any x e (0,x°],
¥~ (x) >0 implies ¥ (x) > 0.

Now, we will show that ¥ (x) >0 for all xe[0,x°. If not, there
exists x; € [0,x%) such that ¥ (x;) =0, ¥ (x) >0 for all xe (x;,x°] and
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Po(x1)=0. If P (x1)=0, then ¥ (x) =0 follows from the uniqueness of
solutions for the initial value problem. Therefore, we have ¥ (x;) > 0, and
hence

P (x) <0 and  D¥_(x)=—g; (V" P(x)¥ (x) <0

XX

for x near x; with x < x'.  This yields ¥ (x) > 0 for x near x; (x < x;), and
hence for all x € [0,x;]. This contradicts the boundary condition ¥ (0) = 0.
We have thus established the statements in (i) for ¥~.

Similar arguments apply to Y. This completes the proof of Proposition

2.2 (i).
To prove the statement (ii), let us define 9(x) by
s(x) e Vo200
U(x) = W .
Vit (x0)

This function satisfies the differential equations in (2.6) on 0 < x < x° and
x? < x < 1, together with the boundary conditions

(x) =1,  80)=0=4n(1).

If w(x) := ¥ (x) — 6(x) for x €[0,x°], then w satisfies (2.6)(—) and w(0) > 0,
w(x%) =0. Since g, <0, the maximum principle implies w(x) >0 for xe
[0,x°), and hence w.(x?) < 0. Therefore, we have

(2.9) 0< ¥ (x°) < (x"—0).
Similar arguments apply to W%, giving rise to

(2.10) 0> ¥ (x") > d,(x"+0).

From (2.9) and (2.10), we obtain

2.11)  0< P (x") — ?I(x%) < ,(x° = 0) — 6,(x° +0)

_ 1 "D/ 0 9. D/ 0
—W[Vm (X" =0) = V7 (x" + 0)]

which is equivalent to (2.8). O

For our discussion below, the solution of (2.1) with v° = v*, where v* € Iy
is as in (A2), is of particular importance. We denote this solution by

x* = x"(D,v")

V*"D(x) = V”*"D(x)
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We also introduce simplified expressions 7y := 7y(v*) and [g]" := [g]" (v*). The
relations (2.7) and (2.8) are expressed as

(2.12) Mo =W (x%) — WS (x*) >0,
*, D% @
(2.13) 0<Vi7(x") < Dy’

The pair of functions (V*?(x), U~P(x)), where U*? is defined by

UP () = {h_(V*’Dbc)) 0<x<x

K (r=P(x)) x*<x<l1’

is a building block to construct transition layer solutions of (1.5).
For each vel):= (v,0), let us consider the determination of eigenpair
(Q(z,v),c(v)) of the problem

{QZ:+C(U)Qz+f(QaU)—O z€eR,
O(+o050) = h*(v),  Q(0;0) = h°(v).

PROPOSITION 2.3.  Under the condition (Al), the problem (2.14) has a
unique solution pair (Q(z;v),c(v)) for each v e Iy with the following properties.
(i) The function Q(z;v) (respectively, Q.(z;v)) approaches the limit h*(v)
(respectively, zero) at an exponential rate as z — +oo, and Q.(z;v)
>0 for zeR.
(ii) If we define m(v) = [, 0-(z:v)*dz > 0 for vely, then the function
c(v) is explicitly given by

(2.14)

__J
c(v) = )’
(i) 1If, in addition, (A2) is satisfied, then we have
. J'(v*)
(0% _
= =)

Proor. For each fixed v € I, we write the differential equation in (2.14)
as a first order system;

(2.15) {QZ:P

Pz:_f(QaU)_CP7

where ceR is a free parameter. In the Q-P phase plane for (2.15), one
recognizes immediately that (Q, P) = (h*(v),v) are hyperbolic equilibria for all
ceR. Let us consider the unstable manifold of (4~ (v),v), expressed as the
graph of a function P = P~(Q,¢,v) > 0. We also consider the stable manifold
of (h"(v),0), expressed as P = PT(Q,c,v) >0. We need to find ¢ € R so that
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(2.16) P~ (h°(v),c,v) = PT(h°(v), ¢, v).

One can then verify that P~(h°(v),c,v) is monotone decreasing in ¢ and that
P*(h°(v),c,v) is monotone increasing in c;

{limH+OC P~ (h°(v),c,v) =0, lim.._,, P~(h°(v),c,v) = +o0,
lim._ o, PH(h°(v),c,0) = +oo, lim.,_ o, PT(h°(v),c,v) =0.

This ensures that there exists a unique value ¢ = ¢(v) so that (2.16) holds.
Now, for this value of ¢, our solution Q(z;v) is the function representing the
heteroclinic orbit connecting (4 (v),0) at z= —co to (h"(v),0) at z = +oo0.
We have thus completed the proof of statement (i).

To prove statement (ii), multiply the differential equation in (2.14) by Q.
and integrate over R. It then follows that

me)e(e) = - | £(0(),0)Q-()z = ~J(0),
To prove (iii), we simply differentiate the relation in (ii) with respect to v at
v=1v" and use the fact J(v*) =0 if (A2) is satisfied. O

2.2. Approximate solutions. We state the existence of approximate solutions
which solve (1.5) with an arbitrarily high degree of accuracy. The degree of
the accurarcy is measured by ¢* for a > 0.

PROPOSITION 2.4.  Assume that the conditions (Al), (A2) and (A3) are
satisfied.  For each integer k > 0, there exists a family of smooth (C*) functions
(up P (x), 08P (x)), defined for ¢ >0, D> Dy, that satisfies;

(1) Iin(l) vpP(x) = V=P (x) uniformly on [0,1];

(i) }‘Zr each 0 >0, 6 < min{x*,1 — x*},

{h(V*’D(X))
(V=P (x))

0<x<x*—9¢

& D .
X*+o<x<l’

i (5 =

uniformly on {

(i) for each B e (0,1] there exists a constant Cip > 0, independent of
small ¢ >0, such that
||%[§||L’*(0,1) < Ck‘ﬂ6k+17ﬁ as &€ — 0 (l = 1,2),
where
1= 00+ S0P,
#5 = D(vp ") o+ 9”0 7).

This will be proved in §4.
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REMARK 2.1. In the statement of Proposition 2.4 (iii), we could choose
B =0, if we were only content with the approximation being C°-matched at
x = x*. By making the approximate solutions smooth across x = x*, we slightly
lose the degree of approximation. Compare Remark 4.1 at the end of §4.

In order to prove Theorem 1.1, we will need Proposition 2.4 only for
k =2. The reason why we present the proposition for general k € N is that
we do not know in advance how accurate our approximations should be for
successfully establishing the existence of true solutions nearby. The degree of
accuracy of approximation has to be determined accroding to the magnitude
of linear part. In fact, the reason why it suffices to use Proposition 2.4 with
k = 2 for the proof of Theorem 1.1 comes from the fact that small eigenvalues
of the linearization of (1.5) around our approximation behaves like O(e) as
& — 0. The latter fact will be established in the next subsection.

2.3. Spectral analysis. The proof of Theorem 1.1 (iii) will follow from a
spectral analysis of the linearization of (1.1) around the transition layer solu-
tions (u®?,v%P). This involves an analysis of the eigenvalue problem

) [¢ f;‘a >
2.17 M= LD, D= . Pr=
(217) ( W > ( gt M*

where f:= f,f(us’D,vs’D), gi = g,j‘(uE’D,UE’D),

£ 2d2 e(,,6D & D & dZ er,eD e D
LE = S SR 0 P), M= DS i, 00 P)

and the Neumann boundary conditions are imposed.

However, the desired family of solutions (u®?(x),v*?(x)) is not yet
available. Therefore, we linearize (1.1) around the approximate solutions
(u,i’D (x), vZ’D (x)) given in Proposition 2.4, and consider an eigenvalue problem

(2.18) I = LD

with Neumann boundary conditions, where % has the same form as %7,
except that (u%”(x),v5?(x)) is replaced by the approximation (1" (x),vi"(x))
of order k > 0. We then show that the information obtained for (2.18) can be
used to prove Theorem 1.1 (iii), as well as Theorem 1.1 (ii).

PROPOSITION 2.5.  Assume that the conditions (Al), (A2), (A3) and (A4) are
satisfied. Let k, the order of approximation in Proposition 2.4, satisfy k > 1.
(1) There exists . >0 so that there is only one eigenvalue (called a
critical eigenvalue) of (2.18) in C;, :={Ae C;Re 1 > —1,}.
(ii) The critical eigenvalue A5 e C,), of (2.18) is real, simple and has the
following behavior as ¢ — 0:
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3 7 X i D [g]+

Ao = ¢edo +o(e), Ao == ()| VP (x") —==|.
: D77.'0

(ii) An L*-normalized eigenfunction ®f of L¢ associated with 2 enjoys
the following property:

P P 1
||¢0||L1(0,1) = 0(\/E)a ||¢0||L‘”(0,1) = 0<\/5)

(iv) Let % be the L*-adjoint of PE. An L*-normalized eigenfunction q38
of &¢ associated with A; can be chosen so that the following conditions

are fulfilled.
Fe € e Fe 1
Dy, Dy = 1, 19621 (0,1) = O(Ve), 15l - 0,1) = 0(7;)7

where {-.-> stands for the L*-inner product.

The proof of Proposition 2.5 is given in §5.
We now introduce function spaces.

X:=[H2(0,1)])%,  Y:=[L*0,1)7
where
HE(0,1) := {ue H*(0,1) | u,(0) = 0 = u,(1)}.

By using Proposition 2.5, we decompose Y as

(2.19) Y= [0 ®N, N:=[df]" =range( L — i),
and X as
(2.20) X=[®]*®M, M:=XNN.

Then ¢ : M — N is not only an isomorphism, but also satisfies the following
property.

PrROPOSITION 2.6. Let k > 1. There exists a C > 0, independent of 0 <
e << 1, such that

IPllr=0,1) < ClLPl 0,1y YPEM, 0<Ve«xl.
This will be proved in §5.

2.4. Lyapunov-Schmidt Reduction. In this subsection, we choose the order of
approximation k > 2 and look for solutions of (1.5) in the following form.

¢, D
<u> =P +p  with w0 = uifD and p= (p1>.
v vy P2
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In terms of p, (1.5) is equivalent to

(2.21) Lip+ F(p) = 4",
where
Fo(p) = FIEP ) = (W) = £ P o1 = 1o (5P pa — o(lpl?)
g 5P+ ) — g5 = gu(WE PV o1 — 9o(W ) pa
and

pE
R — 1
(+)

with 7, j=1,2, being defined in Proposition 2.4 (ii).

According to the decompositions in (2.19) and (2.20), we further look for
solutions of (2.21) in the form p = p®; + w, where p € R and we M. Equation
(2.21) becomes

(2.22) 25D + PG, T (pf + W)y = (B, A%,
’ Liw+ (I = EF (p®s+w) = (I — &R,

where & : Y — [@§] is the projection defined by
Ep = (DL, p)DE.

By using Proposition 2.4 (iii) with f=1/2 and the estimates on qﬁg from
Proposition 2.5 (iv), we have

1R e = KD, R - 1B o < 127 L[PG, 1] O(1/ V&)
= 0(8k+1/2)0(\/5_:)0(1/\/5) _ 0(6k+1/2)7
(I = &)%) .. = O, KB, REY| = O(FH).

It also follows, from ||&g||,. = O(1//¢), that

2
17 (05 + Wl = 0<<%+ ol ) )

which suggests us to introduce p via p =+/ep. From (2.22), (p,w) satisfy

(2.23) { b+ e VU DG, T (epDy + W) = & VKD, A,

Liw+ (I = E)F (VepDi+w) = (I — E)R°.
We then have

(7 = &) 7 “(Vep®§ + W)l = O] + [IWl|)*)-
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Applying the implicit function theorem to the second equation in (2.23), and
using Proposition 2.6, we obtain

(2.24) w=w(pe)  where |[w(p,e)l|,. = O(|p|* +&"1/?).

Substituting this into the first equation in (2.23), we finally arrive at:

(2:25) 2ip+ Ba(p,e) = Bo(e)
where
Ba(p;e) == \}5@877’8(\/513@8 + W)
Bol) = - (5, 2.
Ve
It 1s now evident that
|B,(p,e)| = O(|p|* + e+, IBo(e)| = O(eF+112).

From Proposition 2.5 (ii), A :8;10+o(5) with Ay # 0. By scaling p = ep,
(2.25) reduces to

A 1 1
(2.26) (Ao +o(1))p + g—sz(ep, &) = 8—230(8).
If we choose k > 2, then we have
1 _ _
S5 Baepe) = O(p +26DH), S Bue) = 04 ) as =0,

For k > 2, applying the Implicit Function Theorem to (2.26), we obtain a
constant ¢, > 0 and a unique family of solutions p = p* defined for 0 < ¢ <¢,.
This immediately gives rise to a family of solutions of (2.25)

Pt =ep® = e0(F737) = 0(F1/7).
By using (2.24), we have the estimate
Iw(p.o)ll = O+,
Therefore, we obtain a unique family of solutions p® to (2.21) with
(2.27) 1D, = 0172,
This, together with Proposition 2.4, completes the proof of Theorem 1.1 (i) and

(ii).

The estimate (2.27) also implies that the critical eigenvalue of % and
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that of #¢ are O(¢~1/?) away from each other. Since we have chosen k > 2,
by making & >0 smaller if necessary, O(ef7!/2) < ¢ holds for &€ (0,e.].
Therefore the statements (i), (ii), (i) and (iv) of Proposition 2.5 are valid
for #°. Because of (2.13) and Proposition 2.3 (iii), the sign of Ay in Proposi-
tion 2.5 (ii) is the same as that of J'(v*). This implies Theorem 1.1 (iii).

We emphasize again that to prove Theorem 1.1 we need Proposition 2.4
only for k =2. However, as a merit of Proposition 2.4 for general k € N, the
proof of Theorem 1.1 above gives the following.

THEOREM 2.1.  For each k = 2 there exists a constant Cy > 0, independent
of small ¢ > 0, so that the solution (u®? v®®) in Theorem 1.1 is approximated by

the pair of functions (u,‘:’D,v,‘Z’D) in Proposition 2.4 as follows.

e, D &,D
<u > B (uk >
e, D &, D

v Uk

< Ck&'kil/z.

L=(0,1)

3. Solvability theory

In this section, we establish some technical results to be used in §4.
Let us denote by L° the linear operator defined by

(3.1) L(2) = u.. + £,(0O(z;v%), v")u(z).

In the sequel, we simply write Q(z;v*) as u°(z) := Q(z;v*). We also employ
a constant dy > 0, dy < /f,(h*(v*),v*), which measures the exponential decay
rate of u(z) — h*(v*) and u?(z) as z — +oo:

[u®(z) — hE(v*)| = O(e~ D), u(z) = O(e™®Fl) as |z — oo.
LeEMMA 3.1. Consider the linear inhomogeneous equations
(3.2) 0=L"@+p(z), zeR,
(3.2%) 0= L%* + p*(2), +z e (0, 0).
If p and p* are of polynomial order in z; that is,
P& =005, p) =00, palz) = 00 as || —
P = 0(),  pEE) =0, pEE) = 0" as z— oo,
and satisfy
p(2) = p*(2)| = O(e™ ™) as z— Lo,

then, the following statements hold:
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(1) The problem (3.2) has a solution satisfying
(3.3) lu(z) —ut(z)| = O™y as z — +0

if and only if
(3.4) J u(z)p(z)dz = 0.
R

(ii)  When (3.4) holds, solutions of (3.2), satisfying (3.3), are expressed for
an arbitrary constant a € R as

(3.5) u(z) = anl(2) + 2),

where i is given by

-

- - 7u02 ZL ) u() N (z"dz"
(3.6) ile) o= () | (u?(z,))zjiw 0(=")p(=")d:".
(i) When the condition (3.4) is satisfied, the solution u(z) of (3.2) satisfies
1
(3.7) JR Ul (2)u(z)dz = 3 JR zu’(2)p(2)dz,
and
u(z) (- 1 u:(z) [ 1
oo G- Crmmel ho Crmee)

_ <_ !
p=(2) Julh=(v7),v%)

ProoF. (i)—(ii) The difference ¢¥(z) := u(z) — u*(z) satisfies

>‘ = O(e"”("z‘) as z — +oo.

O:L0¢i(z) +pi(z)v iZE(()?OO):

where p*(z) := p(z) — p*(z). The variation of constants formula gives

0 z dz' z'

70 = 05T -l [ ES [ weptene, e 0.0
z 0 (u2(z"))" a0

Since p*(z) = O(e V) as z — 400, we can readily verify ¢*(z) = O(e~l7).
On the other hand, representations similar to (3.5)—(3.6) hold for u*(z). Upon
subtraction, we obtain

!

0 z z Z, z
u(z) = u(0) ‘= )—ug(z)Lwo‘({WL W p(")d", tze (0, ).

To ensure the smoothness of this u across z =0, we impose the matching
condition
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lim w.(2) = lim u.
lim u,(z) 21{1% u.(z),
which immediately gives rise to (3.4).

(iii) Since p(z) is of polynomial growth in z satisfying (3.4) and u?(z) =
O(e~®l), we have, by I'Hospital’s rule,

Z—w

Jim ZJZ W) p(2)dz = — lim Z2[ul(2)p(2) + ul(~Z) p(~Z)] = 0.
— 0 -z

By using the representation (3.5)—(3.6), integrating by parts and exchanging
orders of integration, we have

=2 JR 20 (2) p(2)dz,

which proves (3.7). To prove the first of (3.8), we apply I'Hospital’s rule
repeatedly. To prove the second and third of (3.8), we apply the same rule
to the equation for u, and u.., respectively. O

LemMma 3.2.  Consider the linear inhomogeneous equations
(3.9) 0=v.+¢q(z), zeR,
(3.9%) 0=vi+q"(2), +z€(0,0).
If q and q* are of polynomial order in z; that is,
4(2) = 0(|2) as |2 = o0, ¢*(z) = O(|z") as z— too,
and satisfy
l4(z) = ¢*(z)] = O(e ) as z — +oo,

then the following statements hold true.
(1) The problem (3.9) has a solution satisfying

(3.10) lo(z) — vE(2)] = O(e ™) as z — 4+
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if and only if

0 z
(3.11) o0 =~ @] @) -g @

0

312 O -0 =] @@= @] (@0 -a @

+0o0
(ii) The difference v(z) — vE(z) depends only on q(z) — q%(z).

Proor. The difference v — v is given by

!

v(z)—vi(z):BiﬂAi_r dj (4(=") — q*(=")d=",

+oo +oo

for some constants 4% and B*. In this expression, the third term on the
right hand side behaves like O(e~%I) as z — + 0. As a consequence, if 4+ =
0 = B*, the conditions in (3.10) are fulfilled. This proves the first part of the
lemma. The second part immediately follows. O

4. Approximate solutions

In this section, we will prove Proposition 2.4 by using asymptotic expan-
sions. Let us denote by Q% the subintervals Q~ := (0,x*), Q% := (x*1).
Here and in the sequel, we use x* in place of x*(D) to simplify notation.

4.1. Outer Expansion. We will determine (V*+/, U*/) (j=0,1,...) in formal
e-power series

A1) w0 ~ > PUR(), B ~ YV (), xe@'
j=0 j=0
in such a way that they asymptotically satisfy (1.5) on the respective domain
Q*. By substituting (4.1) into (1.5) and equating coefficients of like powers of ¢
in the equation, one obtains two sets of equations, one coming from u-
component and the other from v-component.
The equations coming from the u-component are given by

(1) ():f(Ui,O’Vi,O)’
(4.2) (i) 0= fro0Us! 4 frop=l
(iii) 0= fFEOUR + fEOVE 4 fy; (j22),

where f30:= f (U0 y£0) (0= f(U0 V+0) and fi; (j=2) are
given by
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foj = UL [fFO0US 4 fEO0p 5]

Ginlr(greger)

k>0 k>0

e=0

Note that f. ; depends only on (U** V+K) with 0 <k < j— 1.
In accordance with the condition (Al), as a solution of (4.2)-(i), we choose
0 = pt(V+%). For j>1, U/ is given by

L= pE(rEO) !
US = hz(VEO V= — (59 ey (G22).

Therefore U*/ (j > 0) is determined by VK (0 <k < ).
The equations coming from the v-component give rise to a series of
boundary value problems:

— +,0 1+ +,0 +
(4 3) OjOvax +Dg (V() )7 Xf? ’ 0
Vo0(0) = 0= Vo), Vo0t = ot = Vo),

X

(4.4) 0—V+1+ng(V "))yt xeQ?,
Vol0)=0=vri(), vole) =bmh vRlee) = bt

X

and for j > 2,

sy [0=VE A 5gE(VEN )V 4 5gx ) re (OR),
VI0) =02 V), VI oty V) = b

In the above,

and

— g (VRO
e=0

S

k>0

Note that g ; depends only on V** (0 <k < j—1) and hence one can
determine V' */ successively, starting from j =0. The boundary values b*/ at
x = x* are to be determined later, when we impose C'-matching conditions at
x=x" (cf. §4.3).

As a solution of (4.3), we choose the function V*? given in Proposition
2.1, namely,

V=0%x) = ¥"P(x) for xe[0,x"], yH9(x) .= r"P(x) for xex*1].



Lyapunov-Schmidt for layers 225

Throughout the remainder of this paper, we denote this function simply by

V0(x) (note that ¥ e C![0, 1], but its second derivative has a jump at x = x*).

We also understand that V~—/(x) is defined for xe[0,x*] and V*™/(x) for
€ [x*, 1].

Since we have from (A3) that g=(V°(x)) < 0 for x € [0,1], (4.4) and (4.5)
have a unique solution for arbitrarily given boundary data b*/. From now
on, we denote these unique solutions by V*/(x), keeping in mind that they
depend upon h*+* (0 < k < j). In this way, U™/ and V*/ in (4.1) have been
determined. We refer to this as the outer expansion of the desired solution.

It is now easy to see that the outer expansion satisfies the following
estimates.

ProposITION 4.1.  For each k >0, the outer approximation satisfies

k k k
&2 (Z s-/Ui’-/(x)> +f (Z e UL (x), Z g.iyi,./(x)> < Cpektt,
Jj=0 v Jj=0 Jj=0

k k k
D (Z & V*’f(x)> +g (Z U (x),> e/ V*’«’(x)) < Cre™!
Jj=0 xx Jj=0 J=0

uniformly on QF, where Cy > 0 is a constant independent of ¢ € (0, &) for some
g > 0.

4.2. Inner Expansion. In order to discuss the sharp transition behavior in u
near x*, let us introduce a stretched variable z = (x — x*)/e. In terms of the
new variable z, the differential equations in (1.5) are recast as follows:

46 (0 it

R.
0 =ve + &> S g(u, v°), €

Note that we consider the equations in (4.6) for z € R and impose the boundary
conditions

(47) u(z) = THe(2) = O(e ) as z— +oo,
(4.8) 0%(z) — VHE(z)| = O(e Fly  as z — +o0
for some constant dy > 0, dy < \/f,(h*(v*),v*), where
Uté(z ZSJU+1 Z£JU+]x +ez),
70 j=0

Zs VEi(z Ze VEI(x* 4 ez)

j=0 j=0
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are an expression of the outer expansion (4.1) in terms of the stretched z-
coordinate system. Let us define our inner expansion by

(4.9) u(z) = Zejuj(z), v¥(z) := Zsjvj(z)
7=0 >0

Notice that our outer expansion is constructed so that it satisfies (1.5) and
that (4.6) is an expression of (1.5) in the z-coordinate system. Therefore, we
immediately obtain the following.

ProPOSITION 4.2. (i) The pairs of functions (U™%, V™"%) and (U¢, V¥)
satisfy the equations in (4.6), respectively, on (—00,0) and (0, c0).

(i) For j=0,1,..., the boundary conditions (4.7) and (4.8) are equivalent
to

(4.10) lu/(z) — U/ (2)| = O(e™®Fly  as z — +o0,
(4.11) [v/(2) — VI (2)| = O(e™®Fl)y  as z — +o0.

Substituting (4.9) into (4.6) and equatin coefficients of powers of & we
obtain equations for (u/,v/), which are valid on R. They are given for
j=0,1,2 and j >3 by

0= ng’
(4.12) { 0 =u’ + f(u0?),
1
(4.13) _ L[_,+fu (0, 00 + £, (u®, )",

0=v2 +5gu’, "),
0= uZ + fu(u®,0")u® + f2(2),

O*UJJFDQ/ z),
0=ul + fu(u°, ")/ + fi(2).

In these equations, g; (j =2) and f; (j = 1) are lower order terms defined by

j—2
(4.16) g;(2) ::ﬁi/ 2g<2£ )7Z£kvk(z)>

k=0

(4.15)

e
(4.14) {
t

)

e=0

— ful®, o) (2).

e=0

(4.17)  fi(2) := ]| dgj (Za ),Z,gkvk(z))

k>0

We also define g, ;(z) (j =0) and ﬂ_n i(z) (j=1), respectively, by the same
formulae as (4.16) and (4.17) with (U*/, V+/) replacing (u/,v/). We then
find from Proposition 4.2 (i) that
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PrOPOSITION 4.3. (UH/, VE/) (j=1) satisfies (4.13), (4.14) and (4.15)
with (gi’j(z),fi,‘,(z)) replacing (g;(z), f;(z)) on (—o0,0) and (0, c0), respectively.

Let us find the solutions of (4.12)-(4.15) satisfying the conditions (4.10)-
(4.11).

From the definition, V*°(z) = v*. Therefore, the equation v?, =0 in
(4.12) and the condition (4.11) with j =0 imply that v°(z) = v*. Then, the
second equation in (4.12) and (2.14) give rise to
(4.18) u’(z) = O(z + ap;v*), where ayp € R is an arbitrary constant.

The parameter ay is to be determined so that the second equation in (4.13) has
a solution satisfying (4.10) with j = 1.

PrOPOSITION 4.4. (i) The problem (4.13) has a solution pair (u',v') sat-
isfying (4.10)—(4.11) with j =1, if and only if b=' =b' =b*! for
some b' e R and

(4.19) v (0) = b",
(420) PO (6%)ap — I (6 )b! = JR £i(0(2), %) 0-(2)d= =: Co,

Moreover, v'(z) and u'(z) are explicitly expressed as
ol(z) = b + VI (x)z, u'(z) = a2 (z) + a'(2),

where @' is a solution of (4.13) satisfying (4.10), as well as @' (0) = 0.

(il) The problem (4.14) and (4.15) have a solution pair (uw/,v’) (j =?2)
satisfying (4.10)—(4.11), if and only if the following conditions are
satisfied for some b’ a; € R:

(421> U/(O) = bj = biJ + A,]‘i;Z(aO? e )aj*27b17 N 7bj72)a
[9]" - 1 »
(422) _?aj72+n0b/ :Bj,z(a07...,a]~,3,b ’...7b/ )’

(4.23)  VI(x)'(0")aj 1 —J (0B = Ci(ap, ... a;2,b", ... b7,

X

where Aﬁz, Bi_», Cj_1 are smooth functions of the variables indi-
cated, and my is given in (2.12). We also used expressions a_; =0

and b° = v*.

PrOOF. (i) From the definition, we have V*!(z) = & ! + V' (x*)z, while
(4.13) implies that v'(z) = v'(0) + v!(0)z. Then the condition (4.11) with j =1
immediately yields b*! = v(0) = b! for some b! € R and v'(z) = b' + V(x*)z.
Since b™! = b!, Proposition 2.2 implies
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(4.24) VEl(x) = b PE(x).

In order to deal with the second equation of (4.13), let us apply Lemma
3.1 to (u,u®) = (u', U") with

p(z) = fu(’(2), 00 (2),  pE(2) = fulhF ("), ) VE(2).

The solvability condition (3.4) now reads as:

0= Lﬁ’(@(” a0), o) (B + Vi (x")2) Q0. + ao)d=
- ijv<Q<z>,v*><b1 V)= — ) 0-(2)dz

= T N)b! = V() (0 )ao + j £,(0(2),0)0-(2)dz,

which is the same as (4.20). Now (3.5) gives the expression of u!.
(i) Let us first exhibit the proof for j=2.
We apply Lemma 3.2 to (v,0%) = (02, V+2) with

4(2) = 59’ (2),07),  q* () = %g(hi(v*),v*)-

From the definition, V+2(z) =pt2 4 V! ( )z 4 0(z%). If we introduce
v?(0) = b?, then (3.11) gives (4.21) (j =2)
ap

Aa) = - |

Since (4.24) implies V_!'(x*) — VI 1(x*) = mob!, (3.12) gives rise to (4.22)
(j =2) with

& o)) - ot @0

+oo

0
——j 9(0(2), v") — g(h* (v°), v°))d-.

We now apply Lemma 3.1 to (u,u®) = (u?, UT?). The solvability con-
dition (3.4) now reads 0 = [, f>(z)ul(z)dz, where f5, by definition, is as follows.

) = S0+ 3 fu) )+ Sl 43 ful A,

in which a short hand expression (#) = (u°(z),v*) is used. Note that

v*(z) = b* 4 terms depending only on ag,
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and that u'(z) = qju’(z) + @' (z) with @' depending only on @ and b'.
Therefore, the solvalibity condition now reads

0= J fr(2)ul(2)dz
R
2
=0 [ pr+ [ ) e
R R

ta j i) + fuo#)0 a0 dz — C(ap, bY).
R

We easily find that the coefficient of A is equal to J'(v*). Integrating by
parts, we also find that the coefficient of (a;)* is 0 and that of @, is equal to
—Vi(x*)J'(v*). We do not give an explicit formula for C;. We therefore
established (4.23) with j=2.

The proof is similar for j > 3. O

COROLLARY 4.1. For each k > 0, there exists a constant Cy > 0 such that
the following estimates hold for z € R.

(i) @< Gl +12%), Wf ()] < G(1+ |21,

Jj=

k
(i) ( eul( ) +f<Zs u’ Ze v/(z ) < (1 + |2z,
0 zz

k+2 k k
(iii) D(nguf(z)> +ée%g (Zs"u"(Z),Ze"vf(Z)>
=0 oz =0 Jj=0

S8k+3Ck(1 + |Z|k+1 +8|Z‘k+2+82|2|k+3).

Moreover, the conditions (4.10) and (4.11) are valid for derivatives;
() ) - U] = 0@ ) = l() - O] as ==+,

V) [ol(z) = VE(2)] = O(e™®F) =
for j>0.

L(z) = VEI(2)| as z — +o

ProoF. From the definition, ¥*7/(z) and U*/ are polynomials in z of
order j for each j>0. Note that u/(z) and v/ ) satisfy (4.10) and (4.11),
respectively. Therefore, the estimates (i) on vf and u* immediately follow.

To prove the second part, notice that u/ and v/ are chosen, via (4.12)-
(4.15), so that
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Py koo koo koo
P (Z gfu/(z)> + f<z u'(z), Zs-/v/(z))
7=0 - =0 =0

for i=0,...,k. Therefore, for some 0 <7 <1, we have

If
o

e=0

ekl gkt Lo PN

k
= gh+l Z cii(z,e)u' (z)v!(2),
(i,))
where Zé/) stands for summation over integers 1 < i, j < k satisfying i + j =
k41, and c;(z,¢) are bounded functions. Therefore, using the estimates (i) on
v/ and u/, the estimate in (ii) follows.
Similar arguments apply to establish (iii).
The estimates (iv) and (v) easily follow from the proof of Lemmas 3.1
and 3.2. O

4.3. C'-matching conditions. The equations (4.20), (4.22) and (4.23) are
called C'-matching conditions. We will show now that these conditions are
satisfied by adequately choosing the parameters a; (j > 0) and b/ (j >1). In
this process, the following non-degeneracy condition

(4.25) det( :gl])f’/‘D) ;01) . (V;,o(x*) _ %) £0

plays an important role. The inequality in (4.25) follows from (2.12) and
(2.13).
Let us first couple (4.20) and (4.22) with j =2, which is equivalent to

(note: V0 = p*P)
(S ) =),

Thanks to (4.25), this has a unique solution.
For j > 2, we couple (4.23) and (4.22) (with j being replaced by j+ 1).
This gives rise to

VeP(e) -1 ") c;-l(ao,---,af-z,b%-.-,b-f*)/f(v*))
—[q}f/D ) b/ - Bj,](ao,...,aj,z,bl,...,bj_l) '
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Note that the right hand side of the last equation involves only (a;,b’) with
lower indices i. Thanks to (4.25), we obtain a unique solution (a;_i,b7).
Therefore, one can inductively determine (a;,b/™") for all j > 0. Then, from
(4.21) one can also determine b*/ for all j > 1.

We are now ready to define the approximate solutions (u,‘;D vy b ) stated
in Proposition 2.4. Let us introduce short hand expressions:

UH*(x) = Y06/ URI(x), VE(x) =3 &/ VEI(x),
(4.26) JE9z) =20 U (2),  ViE(2) = Yy e/ VI (2),

- k ~e k ..
B(2) = Yleel(), () = Y e (2).
We choose a smooth cut-off fucntion 0(z) satisfying
0<0(z)<1, zeR, 0z)=1, |z] <1, 0(z) =0, |z| =2.

For x € Q% the desired approximate solutions are given by

D do(  f? 7
up(x) = U2 () + 0t [ (05 - U],
e, D do( _ +,¢
o P(x) = Vs (o) + 9(#1;1) 502 (55) = Vs ()]

It remains to verify that these apporximate solutions satisfy the statements
in Proposition 2.4.

™ |

(4.27)

4.4. Proof of Proposition 2.4. One can easily verify that the following
estimates are valid for —x*/e <z <0 (with superscript “—"") and for 0 <z <
(1 — x*)/e (with superscript “+”).

(4.28) jT—[i(Uki-rs(x* +ez) — f]kiS( ))| < Ck8k+1(1 + |Z|k+1) ol
%(Vkivﬁ(x* —|-SZ) —_ I}ki‘[‘(z)” < Ck8k+1( 4 |Z|k+]) s 1y

The smoothness of the functions defined in (4.27) is obvious.
We now introduce a short hand expression

—dy

(429) p(x, 8) = m

(x —x™).

From the definition, it immediately follows that

}1£n|VkJ;;( x) = V*P(x))=0  uniformly on Q.

Therefore, to prove Proposition 2.4 (i), it suffices to show that

(4.30) lin8|v,‘i’D(x) VE5(x) =0 uniformly on Q.

For |p(x,¢)| > 2, the left hand side of (4.30) is identically zero. Hence, we deal
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with the case |p(x,¢)| <2 which is the same thing as |z| < —2(k + 1) log ¢/d).
In the sequel, we use the fact that vi(z) = V+/(z) for i =0, 1.

it (T - Vi)
k+2
> - 7)

= I{(2) + K (2).

By using (4.11), Corollary 4.1 (i), (4.28) and v/(z) — V*/(z) is bounded
uniformly in +z € [0, c0), we obtain

g2 (x) = Vi (%) = 0(p)

IA

+|I7/:_1§() Vk+2( + &z)]

fi £ { ST S G (E12 s Do ord)
! Ce? (2] < —(k+1) log &/dy),

Ii(z) < Ce"3(—log )" < Cek*?,

which establishes the validity of (4.30).

We now prove the statement (ii) of Proposition 2.4. For each J > 0 with
0 < min{x*,1 — x*}, the condition |x — x*| > ¢ implies |p(x,¢)| > 2, if ¢ >0 is
small. Therefore, we obtain

lim [u ® (x) = 1 (VP (x))| = lim

&—0

ZEJU+]

uniformly for x with |x —x*| >¢. This proves Proposition 2.4 (ii).
Before we proceed, let us establish the following estimates.

sy 1) - UER < G (log !
T ) = V) < €t (—log )

1 <|p(x,e)] <2.

The second line has been established in the above. Similarly, the first line is
obtained as follows. We have

+ |U+ f(z) — Uki'g(x* + &z)|.

ZS’{M’ =/(2)}

By using (4.10), Corollary 4.1 (i) and (4.28), this yields the first line of (4.31).
To prove Proposition 2.4 (iii), we only need to deal with the case
|p(x,€)| <2, thanks to Proposition 4.1.




Lyapunov-Schmidt for layers 233

When |p(x,e)] <1, we have uf”(x)=ai((x—x*)/e) and ovf”(x)=
Ui »((x —x*)/e). Therefore, applying Corollary 4.1, we obtain for each

pe(0,1]

6 (u7 2 (3)) g+ f (1P (), 0P (%)

(Z g/uj(z)> + f (Z elul(z), Z 8@/@) |
j=0 j=0

j=0 zz

<

+

k . . k+2 . . k . . k . .
(OSSN ELE) VIO SRS wERE |
=0 7=0 j=0

=0
< Ce** (1 + |log ) < Cpekt! .
We also obtain

ID(0g P (3)) o + 9P (), 07 ()

D ko LI ko
2 (Z efv/(z)> —|—g(z sju/(z),Z£/v~’(z)>
=0 =0

<
=0
+ g (Z el (2), Z 811,./(2)) —yg (Z e/ (2), Zg,lv./(z)> ‘
J=0 Jj=0 Jj=0 j=0

c k1 -
< 8—2£k+3(1 + |log &)ty < CpeftIF.

Next, we treat the case 1 < |p(x,¢)| <2. We introduce a short hand
expression

—dp
(k+1)loge’

& .

Note that 0 < /¢ <1 for small ¢ >0. By using Proposition 4.1, we have
62 (P (%)) o + f (1 P (), 057 ()]
< [E(UF X)) o + S (UE (), VE ()]
+FUE (), VE (%) =S (UE (), ViES)]
+ {00 2) [ (2) = UF* (" + e2)]}..] (= K{(2))
+ 1 (P (x), 0P () = f(US (), V) (= K5 ()

< CeM 4 KP(2) + Ki(x).
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By using Corollary 4.1 (iv) and (4.28), it follows that
Ki(z) < |0"(2) (] (2) — ()| + |1 0246) — U +e2)}
+ 200 )l () — TEE)L]+ 1T546) - UEA (e + e}
+ {1l () — TEH )]l + [TE() — UE(x" +e2)].1)
< CeM 4 Cef log ¢ T < Cpek 1P,

By using (4.31), we also obtain K3(x) < Cge“*!#.  Similar arguments apply to

v,i’D (x). This completes the proof of Proposition 2.4.

REMARK 4.1.  If we were only to deal with boundary layers either on Q~ or
on Qt, we could choose

) = U100 +0(258) [ 059 - B (59
k() = Vis() + 0(55) ot o (59) = 7 (0599,

as our approximation, where ry > 0 is a constant given by

(4.32)

ro ::% min{x*(D),1 — x*(D)}.

Indeed, the functions in (4.32) are better approximations to the solution of
(1.5) on Q= and QF, in the sense that Proposition 2.4 (iii) holds with = 0.
Moreover, the entire proof of Proposition 2.4 for (4.32) is easier than that for
(4.27).  However, the functions in (4.32) have a fatal defect for our purpose
here. Namely, they are not smooth across the interface x = x*. They are C°-
matched at x = x*, but not C'-matched. The difference in the derivatives at
x=x*is O(eFt).

On the other hand, when we deal with boundary layers, it is better to employ
the approximations in (4.32), as clearly described in [7].

5. Eigenvalue problems

In this section, we will prove Propositions 2.5 and 2.6. We stress that the
proof below works for any k > 1, where k € N is the order of approximation
in Proposition 2.4.

5.1. Linearized operator of Allen-Cahn type. Let us define a linear operator
L} by

(51) { Lip(x) 1= e, + E(x)0(x). 0:(0) = 0= p,(D),

where f#(x) = fu(u,i'D(x),vz’D(x)).
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We denote by x/ (j=0,1,...) the eigenvalues of Lj;

o(Ly) = {3} e Mg >pi > > — —0 (j— o0).
PROPOSITION 5.1.  There exists an & > 0 so that the following items are
valid for &€ (0,¢).
(1) If ¢¢(x) is the L*-normalized, positive, principal eigenfunction of L
corresponding to g, then

(5.2) 0<pu§ for ee(0,&), uy—0 as e—0,
. 1

(5.3) lim edy(x* + ¢ez) = u’(z) in C2.(R),
e—0 m(v*)

where m(v) is defined in Proposition 2.3 (ii).
(ii) Let [¢3]L be the orthogonal complement of ¢ in L*(0,1). There exist
constants u, >0 and Cgr >0 for each R >0 such that

(5-4) (L% = )wll e = Crlwl[ -

holds for we H*(0,1)N[4i]" and ueC, Re u> —pu,, |u| <R.
(iii) There exists a fi> u, such that

(5.5) wi<—p  and  ui=ec'W)VIP(x*) +o(e) as e—0

where ¢'(v*) is defined in Proposition 2.3 (iii).
(iv) Let P?: L?*(0,1) — L*(0,1) be the orthogonal projection operator onto
[¢3]l. The following estimate holds true for ue C, Re u > —pu,.

& - & 1
I(L; =) Poglle < —lgll,2 for g L2(0,1),
|t = ul
where p is a constant satisfying pu, < u < ji, say, u= (u, + fi)/2.
(v) For qe L*(0,1) and neC, Reu> —pu,,

(5.6) }%[(LZ — ] P = MOE])E;C)_# strongly in L*(0,1),
where f0(x) = fu,(h*(V*P(x)), V*P(x)) for xe Q*. Moreover, the
convergence in (5.6) is uniform with respect to pe{ueC|Reu>
—u.} and q on H'-bounded sets.

Statement (ii) was also proved in [22] for £ = 0. Our proof for (ii) below
is very similar to that of [22].

Proor. (i) By the variational characterization of the principal eigenvalue
for Lj, we readily find that 4§ > 0. It is also obvious that x; is bounded
above.



236 Jack K. HALE and Kunimochi SAKAMOTO

Let us express L; in terms of the stretched variable z = (x — x*)/e.

i,ip(z) = p=(2) —‘,—f;(z)p(z),
where f%(z) == f(x* + ez).

There exists b > 0, independent of &€ (0,¢)], so that
(5.7) fiz) < —(do)*  for |z| = b,

where dy > 0 is the constant appearing in (4.7) and (4.8). We choose a positive
eigenfunction p*(z) of I:,‘i associated with 4§, normalized as max. p(z) = 1. By
using comparison arguments and (5.7), we find that there exists a constant
C >0 so that

(58) pi(z) < Ce"O(”*Vl), \p;’(z)| < Cedo(bf\-’I)j |p2_(2)| < CedO(”’VD, |z| > b.

The equation for p* is

(59) PL+ 1/ (@)p" = w5p”.

For any sequence {&,} with lim,_,, & = 0, there exists a subsequence (which
we still denote by &,) such that lim, .., ' =p; >0. Since |p*(z)] <1, by
using (5.9), we find |p%| is bounded uniformly in ¢, € (0,&)]. Therefore, there

exists a subsequence (still denoted by &,) such that p™ is convergent in G (R)
as n — oo. Differentiating (5.9), we obtain

(5.10) Pz + JI@)PE + (7(2)).0" = wpt.

Since (f(z)). is of polynomial order in z and p%(z) decays at an exponen-
tial order (cf. (5.8)), (5.10) says that |p? | is bounded uniformly in ¢ > 0.
Therefore, there exists a subsequence (still denoted by &,) so that p® converges
in C2.(R) as n— co. We consider (5.9) with ¢=¢,. Passing to the limit

n — oo, we obtain

(5.11) PL(D) + fulu’(2),0")p"(2) = 5p*(2),  zeR,

where p* e C?(R) is bounded (since max|p?(z)| = 1 = max|p*(z)|) and p*(z) > 0.
On the other hand, (5.11) has a bounded solution if and only if

| pa—o.

However, the integral | pu’ dz >0, because p®(z) attains its positive max-
imum for some z with |z| < b and hence so does p*(z). This implies x5 = 0.
Therefore p*(z) = k;'u’(z) where k., = max u°(z). Since the original sequence

&, could be chosen arbitrarily, we conclude that

(5.12) lim =0, lim p(z) =k 'u() in C.(R).
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Now expressing @¢(x* + ¢z) = a,p*(z), where a, >0 is a constant which L>-
normalizes ¢;(x), (5.2) and (5.3) follow from (5.12).

(i) We prove this statement by means of contradiction

Let us recall the definition £°(x) := f,(h*(V*P(x)), V*P(x)) for x e Q.
If (5.4) were to fail for any constant Cg >0, we could find sequences
w" e H*N[§e]", u, € C with Re p, > maxyepo,1{/y (x)}, |u,] <R and &, such
that max|w”| =1, lim,., & =0 and |gu|l;- — 0 as n— co, where ¢" =
(L — w,)w". We express the last relation in terms of a stretched variable
z=(x—x,)/¢, where x, is such that |w"(x,)] =1. We may assume, without
loss of generality, that x, and u, converge to x, € [0,1] and u° with Re u° >
maXxe[O,l]{fuo(x)}’ |iu0| <R

We assume, for the moment, that x,, € (0,1). (The cases x,, = 0,1 will
be treated similarly.) The equation for w"(z) := w"(x, + &,z), with §"(z) :=
q"(x, + &yz), is

(5.13) q"(2) = wL(2) + (/" (n + a2) — 4, )W"(2)-

Applying to (5.13) arguments similar to the proof of (i), we find that w”
(possibly, a subsequence) is convergent in C\ (R) to w*(z) as n — co. Passing
to the limit n — co in the weak version (H!-formulation) of (5.13), and
using regularity arguments, we obtain w* € C>(R) which is bounded, satisfies
w*(0) =1, w(0) =0 and

(a) ww

In (5.14)(b), z. :=1lim,_(x, — x*)/e, € R (if z, = + o0, then x, # x*).
Recall from (A1) that £(x) < 0 for x € [0,1]. In case (5.14)(a), if Re x° >
max,cj,1]{/(x)}, then the only bounded solution to the differential equation is
identically equal to 0, and hence contradicting [w*(0)| =1. In case (5.14)(b),

we recall that the principal eigenvalue of Lg is 0 which is isolated in the
specturm o(L?) of L?. Therefore, there exists a constant i >0 so that

w

L

N R

A S(xo )W, i X # X
W= wh 4 f,(u0(z + z), o)W, if x, = x*

No

(5.15) o(L2)N{ueC|Re i > i} = {0}.

Then (5.14)(b) implies that w* =0, if 0 # x°, Re x° > —fi. This is a contra-
diction, since max|w*| =1. If x°=0, then w* must be a multiple of the
principal eigenfunction u?(z + z,) of L?, namely, w*(z) = au?(z + z,) for some

a. However, since we have chosen " e [¢]", (5.3) implies

0= JR Wi (2)ud(z 4 z,)dz = a J(uo(z))zdz.

Therefore, @« =0 and w*(z) =0, which is a contradiction.
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When x,, =0 or x,, = 1, we obtain (5.14)(a) with the differential equation
being posed on half intervals {z >0} or {z<0}. However, for x° with
Re 1 > max,cpo 1 {/;)(x)}, |u°| < R, these problems have no bounded solution
satisfying |w*(0)] =1 and w;(0) =0, arriving at a contradiction.

By choosing u, > 0 so that

H, < fi:= min{ﬂ, —max {fuo(x)}},
xe(0,1]
we complete the proof of (ii).

(iif) The first statement uf < —i follows from part (ii), since eigen-
functions associated to uf belong to [¢8]L. To prove the second statement, we
use the following elementary result whose proof is omitted.

LemMmA 5.1. Let L be a self-adjoint operator on a Hilbert space H.
Assume that L has an isolated eigenvalue [i of multiplicity one which is bounded
away from the other part of the spectrum by a constant 6 > 0.

If we can find p* e H, |pfly=1 and A° € R such that

\Lp® — 2°p*ly = O(&")
for some i > 1, and
dist(*, o(L) — {ii}) = 5,
then the eigenpair (i, $) of L, with |¢§\H =1 and {p*, >y > 0, is approximated
as
=2 = 0@, 16— ply = O().

We now apply Lemma 5.1 to L =L{ and H= L*(0,1) with =4 and

0 =g. We will find an expansion

25 =¢l +0(e) and  p*(x) = p’(x) +&p' (x) + o(e)
so that

[1Lip® = A°pfll 2 = o(e)

is valid. The normalization ||p?||;» = 1 will be done afterwards. To find the
coefficients 41, p° and p', we follow the same line of arguments as in §4 (and
if fact, procedures here are less complicated). Let us write down the equation
to deal with.

ea(p’ +ep') = (" +ep) o + L) (0 +eph) + o(e).
We immediately find that outer solutions for this equation are identically equal

to 0, reflecting the fact that ¢ = O(e~%="/2).  To find inner solutions, let us
rewrite the last equation in terms of the stretched variable z;

e21(p"(2) +¢p'(2) = (B°(2) +¢5' (). + f7(2)(°(2) + 65" (2)) + 0(e)-
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0

z

The equation for p° reads: 0 = L°p°. This has a unique solution p° = cou
for some constant ¢y # 0. The equation for p! reads

Acoul = pL+ fu#)P' + U#)u' + fur(#)0" |cous?,

where (#) = (u°(z),v*). Applying the solvability condition (3.4) and using
co #0, we find Ay = ¢/(v*) VP (x*) and p'(z) = O(e~%Fl). Therefore our ap-
proximate solution p¢ is now defined, with ¢, being a normalizing constant, by

P = atlpta) |3 (F ) et (P50,

where p is as in (4.29) and 0 is the cut-off function introduced at the end of
§4.3. We can now verify that p® and A° = ec’(v*) VP (x*) satisfy the con-
ditions in Lemma 5.1, establishing the second statement in (5.5).

(iv) This follows immediately from Proposition 5.1 (iii) and the eigen-
function expansion of (L} — W

We refer the proof of (v) to the proof of Lemma 2.2 in [14].

This completes the proof of Proposition 5.1. O

COROLLARY 5.1.  For each pe H'(0,1), we have

(i) lijré<p, (%)gf,>=p(x*> Ei];*)’

i tim( (o)) = pe) L

where m(v) is as defined in Proposition 2.3 (ii).

Proor. It suffices to prove (i) and (ii) for p e C![0,1]. For pe C![0,1],
by using (5.3), we have

(p (%)at) = [} poson;

(1-x")/e
- j PO+ e2) (Vg (5" + ) gt (v + e2)dz

—x*/e
— *}p(x*) OOuoz uo(z),v")dz
@se=0) ~ LI @) v
e 9B ), o) =gl (), 0t) L (gl
= p(x7) ) = p(x7) o)

establishing (i). The proof of (ii) is similar. O
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5.2. Proof of Proposition 2.5. Let us now deal with the eigenvalue of &
with the largest real part. We call this the principal eigenvalue of %/ and
denote its principal eigenfunction? by

= (%)

1 :
PIREES mm{,u, -3 xr?[%ﬁ](fl?(x) + g,?(x))} > 0,

Let A, > 0 be defined by

where ¢°(x) := g,(h*(V°(x), V°(x))) for x € 2 and f is the same as in Prop-
osition 5.1 (ii). The positivity of A, follows from g4 > 0 and the condition in
(A4). Let us define

C, ={1eC|Reil>—A}.

We characterize the eigenvalues of % contained in C;, to establish Proposition
2.5. In the sequel, we always consider A€ C,,.

By decomposing the first component of the eigenfunction of ¥ as ¢° =
agg + we, the eigenvalue problem (2.18) is recast as

(5.16) (L — Ww* = —P*(f)¥)
—(Mj; = WY — gow® = ag,d;

where (4, ¢;(x)) is the principal eigenpair of L{, a € C, w* satisfies {<w*, ¢5)> = 0
and P¢ is the orthogonal projection onto the orthogonal complement of .
Thanks to Proposition 5.1 (iv) and the fact that A € C;_, the second equation in
(5.16) is solved in w* as

wé = —(L{ — )" PP(fo).

By using this relation, the third equation in (5.16) becomes

(5.17) NEAW = agég,
where
(5.18) NN = —(ME = W)+ gi(LE — )7 PP(f1).

The following summarizes the properties of A47°(1).

2In the sequel we use the symbol ¢ only for this first component of @, and distinguish it from
another similar symbol ¢.
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PROPOSITION 5.2.  There exists an & > 0 such that the following statements
hold.
(1) For AeC,,, the operator N*(1) is invertible and

[A4)] L2(0,1) — H?(0,1)

is bounded uniformly in (e, 1) € (0,¢&] x C;,.
(i) Denoting by [H'(0,1)]" the dual space of H'(0,1), the inverse operator
[N extends to [H'(0,1)]" and

@) N0, D) = HY(0, 1)
is bounded uniformly in (e, 1) € (0,¢&] x C;,.

We prove this result later in §5.3.

We now resume the proof of Proposition 2.5.

If @ =0, then Proposition 5.2 (i) and (5.17) imply ¥ = 0, which in turn
implies w® = 0 and hence ¢ = 0 =y. Therefore, in order for 1€ C,, to be an
eigenvalue of %/, a # 0 must be satisfied. Therefore, an eigenvalue 1 e C,,
has to satisfy

5,19 18 s

N = gud-

LemMA 5.2.  Eigenvalues of £ in C,, are bounded uniformly in ¢ € (0, &
for some g > 0.

Proor. From (5.19) and Proposition 5.2 (i), the -component of the
eigenfunction is non-zero. We normalize it as |y|/,» =1. Multiply the
second equation in (5.19) by ¥, the complex conjugate of , and integrate over
[0,1]. We separate the Re- and Im-parts and use |[{|;» =1 to obtain

Re 2= DIy I7. + <giw, > — Re{<gi(Li — A) 7 PE(f2), 0>} + Regidi, >
< gt > — Re{<gi(LE — )7 PE(SA) )} + Redgldh, v,
Im 2 = —Im{<{gi(Lf — 2) 7" PE(f2), >} + Im{gidg, ).

Since f?, g: and ¢° are L*-bounded, by using |[y|,.=1, Reli> -4,
and Proposition 5.1 (iv), we immediately find that |Re A| and |Im | are
bounded. O

Thanks to Corollary 5.1 (i) and Proposition 5.2 (ii), we deduce from the
second equation in (5.19) that

b=Vt with Y = (2] (9id5/VE) e H'(O,1),
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where y° is bounded in H' uniformly with respect to (¢, 1) € (0,&)] x C,.. On
the other hand, it also follows from Corollary 5.1 (ii) that

1 &
= %4’50 (x).
Putting these facts together and using the fact that u§ = O(¢) (cf. (5.5)), we find
from (5.19) that A = O(e), and hence we may set

Qb fE9E = e, f295> = O(e),  where ¢i(x) :

i=¢h and i =enl  with g& = (v)VEP(x*) +o(1).
It is now easy to see that (5.19) is equivalent to

(5.20) 5 — 4= =[N (&h)]) (gihh), 146>

This equation, called a SLEP-equation in [14] (SLEP = singular limit eigen-
value problem), determines the eigenvalues of % in C; . Let us now examine
the right hand side of (5.20).

PROPOSITION 5.3. If /. is a solution of the SLEP-equation (5.20), then it is
real and the right hand side of (5.20) is characterized as follows.

(5.21) —<[J1/”(8f1)]_1(95¢;3)aJ[vg<1;8>=%+0(1)eR as & — 0,

where
mo = ¥ (x*) — P (x%) (¢f. (2.12) in §2).

We will prove this result in §5.3.
Recall from (5.5) that a5 = ¢ (v*)ViP(x*)+o(l). By using this and
(5.21), we find that (5.20) is equivalent to
+
i”:c’(v*)[V;’D(x*)—[‘q]_]—i—o(l)eR as ¢ — 0.
D77.'0
This completes the proof of Proposition 2.5 (i)(ii). The simplicity of the
eigenvalue /; is an implication of Proposition 2.5 (iii), which will be proved
below.
In order to prove Proposition 2.5 (iii), we recall from the line of arguments
above that the principal eigenfunction @; = :Z(Z) of ¥} is of the following
form:

P = i) ),
(522) V) = Vb (x) = VAL @) s VR )
W) = = VA(LE — o) PO )
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From Corollary 5.1 (i), we find that g?¢//c € [H'(0,1)]" is bounded uniformly
in ¢€(0,&]. Therefore Proposition 5.2 (i) implies ° e H'(0,1) is bounded
uniformly in ¢ > 0. By using the Sobolev embedding H'(0,1) = L*(0,1), we
find that |y/°||,, and ||y*||,. are bounded uniformly in ¢ > 0. This imme-
diately implies

(523) Wil = O0We), WGl = OWe), gl = O(Ve).

On the other hand, (5.3) implies ||¢;l|,- = O(1/v/¢). Hence, (5.4) and Cor-
ollary 5.1 (ii) give rise to

I(LE = ed") " PO e < CUPE (0

< ClISA Il + CVe

<wff57>\ 166l = 0(1)  as o0,

where we used the definition of P*; P%y := — {, ¢ >4;. From this estimate
and the third line of (5.22), we obtain

(5:24)  |w'll - = O(We), Wl =O0We),  [Iw'll = O(Ve).
Using ||¢gll,2 =1, (5.23) and (5.24), we find from (5.22) that

14

Therefore, multiplying (5.22) by a normalization constant 1+ O(y/¢) (and still
denoting the resulting function by @), we find

(iv) The proof of this part is accomplished by applying the same line of
reasoning as in the proof of statements (i), (i) and (iii) to %¢. The only
change one needs to make is to exchange the roles of f and g;. We then

=14 0(\Ve).

L2

126l = O(Ve), @]

establishing Proposition 2.5 (iii).

obtain an expression for the principal eigenfunction @ := (Zj“), similar to
0
(5.22), as follows.

95°(x) = ¢ (x) +w(x),
(5.25) 0'(%) = VA (x) == Vel (6] (S5 Ve (%),
w(x) 1= = Va(Lf — ed”) " P (gil ) (),
where /¢ is the operator defined by (5.18) with g2 and f;’ being interchanged.

We also note that ;° and w* satisfy estimates in (5.23) and (5.24).
This completes the proof of Proposition 2.5.
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5.3. Proof of Propositions 5.2 and 5.3. We first deal with Proposition 5.2.
We only need to prove (ii) since (i) follows immediately from (ii) and the
elliptic regularity theory. The proof of (ii) depends on an application of the
Lax-Milgram Theorem ([13], Theorem 5.21.2).

Let us consider a sesquilinear form 25 associated with 4"¢(4):

2% H'(0,1) x H'(0,1) — C
defined by

BE,¢) = D, by> — (g8 — W, by + <gi(Li — 2) " PE(fo), b,

where ¢ stands for the complex conjugate of ¢. Our aim is to show that %:
is bounded and coercive for (g, 4) € [0, &) x C,,, where & > 0 is an appropriate
constant. It is easy to see that % is bounded. Moreover, it depends con-
tinuously on ¢ € [0,¢]. Therefore, to show the coercivity of %5 for Ae C; , we
only need to do so for the limit %) := lim, .o %:.

By using Proposition 5.1 (v) (5.6), the operator %) is given by

Y0 — (il =Mg) =4, -
o9 (fo_/l)(g )‘//,¢>.

u

(526) B P) = DY fi> + <

It follows from this that

P02 — %+ det®
B0, 0| = D17 + L Re </1—f0 | dx,

where
trl =04+ <0 (cf. (A4)) and det’:= 0% — %% >0 (cf. (A3)).

By the choice of 4, > 0 at the beginning of §5.2, there exists a constant Cy > 0
such that for x€[0,1] and A€ C,,, the inequality

22—t )+ det”
Re|————— | > C
e( ) —fuo = 0
holds true. Therefore, we have

|7, ¥)| = min{D, Co} |7

This establishes, on account of the continuity of #; in ¢, the coercivity of %4
for AeC;,. Now the Lax-Milgram Theorem ([13], Theorem 5.21.2) proves
Proposition 5.2 (ii) with

& -1 1
(A gy = < 2 min{D, Co} for (e,2) € [0, x C;,,
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where ¢y > 0 is an adequate constant. This concludes the proof of Proposition
5.2.

Next, we prove Proposition 5.3.

We first split A4"%(ed) and §* = [ ”(si)]flg;gﬁg into real and imaginary
parts.

WD) = N +ie(m A)NF P = b + i,

where

N = —(M} — e Re A + gle*|Im A|* + (L — e Re 4)*] "' P*(f;")

AW =g Pm A+ (L] — e Re 2)°] P(£79)
are real operators and l/;;, 1/}}3 are real valued functions. Then, the relation
NE(EAY® = gidi translates into

Ny — e(Im DANP] = gidhs, A+ e(m A)A 7 = 0.

From the proof of Proposition 5.2 above, the conclusions of Proposition 5.2
are valid for 4. Therefore, the relations above yield

Nl + 2 (Im )2 NN T NS = gl

Evidently, /5 : L?(0,1) — L2(0,1) is a bounded operator uniformly in small
¢>0. From Proposition 5.1 (ii), the same is true for A4}°:L%(0,1) —
L*(0,1). Therefore, we have

Vi = (V) g+ 0E),  dj = —e(lm D)) N
with /%, (E/Vlf)fl,/tfflﬁR e H'(0,1) uniformlay bounded for small ¢ > 0. Sub-
stituting these into (5.20), we have
As —Re L= —J*, £45>
—Im A = e(Im A)(ANE) " N g, 1265
The last equation is equivalent to
(1 () N w, £45) Im 2= 0,

which implies Im A =0 when &> 0 is small. This establishes the first part of
Proposition 5.3.

Let us now prove (5.21). If y* = [A74(ed)] ' (gi4¢), then §* = lim, ¢ y*
satisfies

B)W*, p) = lim for all pe H'(0,1).

e—0

) :
J, gic0 22 2P



246 Jack K. HALE and Kunimochi SAKAMOTO

This is equivalent, via (5.26) with 1 =0, to

. ! - g
(527) D L §2 () pa () dx — J g (" (x) p(x)dx = )

0 m(v*)

for all pe H'(0,1), where g*(x) := g*(V*P(x)) for x e QF, and we used the
fact det’(x)/f(x) = g7(x) (cf. (A3)). Taking as a test function

pl)=¥*x)  xeQ,

in (5.27), where ¥* is the solution of (2.6) with v° = v*, and integrating by
parts, we find
Fo o

(5.28) xp*(x*):%—ﬂ; mmt Yi(x) = Y (x)PE(x) for x e Q.

Therefore, using Corollary 5.1 (ii), the left hand side of (5.21) is

i <)) (gid) Sy = —i () L - WL

m(v*) D

establishing Proposition 5.3.
Let us also find an expression of lim,_,o w®(x)/v/e. From (5.22) and (5.6),

(5.29) W (x) = lim W;? - —}(28 U (x) = hE(V P ()W (x) for xeQ*

although we do not use it in this paper.

5.4. Proof of Proposition 2.6. This is proved by means of contradiction.
If the statement of the proposition'we_re to fail, there would exist sequences
{¢;} with lim;_,, ¢ =0 and {p’/ = (p{, p5)} =M such that

Wl = max (o0 A =1, im | %], —0.
xel0,1] J=®©

Let us consider the equation

(5.30) a’ =<'y, lim [lg/] . = 0.

We denote as q/ = (¢], ).

We will apply to (5.30) the same procedures as appeared in the proof of
Proposition 2.5 with 2 =0. In the sequel, we use ¢ for ¢ and treat the limits
j — oo and ¢ — 0 interchangeably.

Decomposing p/ as p] = a.¢¢ + p],, and inserting it into (5.30), we obtain
an inhomogeneous version of (5.16). Following the same line of arguments as
above, we find
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Hia + <A0) ph, 005> = Lai, 46>,
p3 = aA(0) " (gid) + A °(0) (gl Li) ™ Poa] — 4,
Pl =L~ P(Lip — q)).
Substituting the second equation into the first equation, we have
a{p§ + <A (0) " (gidh), £}
= (N0) g, 176> — <A O0) (L) Pl £ 5> + <al 65

in which the coefficient of a, is equal to Aj+ o(¢). Therefore, we obtain

(5 31) a. = <°/Vé( ) qzvf ¢0> <</1/6< ) ng(L]i) ql7f ¢0>—|—<q17¢0>
' . i+ o(e)

(5.32) Py = a /0) " (gigs) — A 2(0) " qf + AE(0) gi(LE) T Pg]
(5.33)  pf,=—(L) PSP — g).

Since [|¢¢]l, = O(v/&) and A&+ o(e) = e(do + o(1)) as e — 0 with iy # 0 (cf.
Proposition 2.5 (ii)), (5.31) implies

0 O(llgill - +llgallz=)
= .
N

Using this, ||¢/||;.. = o(1) as ¢ — 0 for i =1,2 and that ¢;/\ee [H'(0,1)] is
bounded, we immediately find from (5.32) and Proposition 5.2 that

3l =o(1)  as & =0,
and hence
(5.34) 1Pl =o(1),  as &— 0.
Thanks to this and Proposition 5.1 (ii), (5.33) implies that
(5.35) Ipl |- =o(1)  as &—0.

Therefore, the normalization

1= max (1p](9] + 4D = lal 1] + o(1).
16l = O(1/v/&) and (5.3) imply that
m(v*)

a, = \/a, with lir% a; = a, = > 0.
E—

max.cg u’(z)
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Let us now show that this is a contradiction. Note that p/ e M < [433}{
Therefore, by using (5.25), estimates similar to (5.23)—(5.24) for y;" and w* and
(5.34)—(5.35), we have

0= (B, p'> = /5(a.{gq, ¢g > + o(1)) = \/5(a. + o(1)) > 0

for j sufficiently large, arriving at a contradiction. This concludes the proof
of Proposition 2.6.
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