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ABSTRACT. We consider the relations wy = 0 € A, and show that if wa = 0 then o = yf

for some . These relations give the acyclic chain complex A 5 A% A, We consider
various cases, €.g. = 4, and y = Ay,1. Especially, we consider the case w = w,, = d/,
for n=2¢"+42¢—1, where y = (hey,)".

1. Introduction

Consider the stable homotopy groups of the sphere 7,(S°) localized at
prime 2. We have the 2-local Adams spectral sequence converging to 7, (S°)
with E,-term Ext}'(Z/2,Z/2) = H*'(4) by [2]. Moreover, A contains a
subcomplex /A(n) whose cohomology is the E,-term of the unstable Adams
spectral sequence converging to the 2-component of the unstable homotopy
groups of S”. There are corresponding p-local versions of A algebra that we
will not consider.

The lambda algebra A (at the prime p = 2) is a bigraded Z/2-algebra with
generators 4, € A" (n>0) and relations

, n—1-j\, ) .
(1) Aid2is1on = Z( j ]>/“i+nj/“2i+l+j (i,n>0)
j=0
with differential
(2) i —Z(”;/>znjxj1 (n=0).
j=1

We refer to [9] for these relations and [2, 5] for that d is a well-defined
endomorphism of A. For a sequence I = (ny,n,...,n,) of non-negative in-
tegers, a monomial A; = 4,4y, ... 4,, is said to be admissible if 2n; > n;y; for
1 <i<s—1. The admissible monomials form an additive basis of 4 by [2,
5]. A(n) = 4 is the subcomplex spanned by the admissible monomials with
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n < n (cf. [2, 9]). By [9], there is a unique differential algebra endomorphism
0:4— A with 0(4,) = Zo,1. This 0 is usually called Sq°. See [6] for a
recent treatment of the lambda algebra.

The Adem relation 7,,45,,+1 = 0 gives a chain complex of right 4 modules,
using left-multiplication by 4, and Aj,.;. This complex, and an unstable
analogue, are acyclic:

THEOREM 1.1. The following chain complexes are acyclic:

=~
5 A7

A2n+1~
—_—

A A

2n+1~

Ap+2n+3) 295 A(p+ 1) L A(p—n),  for p=2n+ 1.
For p <2n+1, the composite A(p+1) A Ais injective.

The unstable maps above are defined in Lemma 2.2. The unstable A
composition formulas in §2 (of Wang, Mahowald and Singer) are crucial to our
proofs. Furthermore, in Theorem 1.3 below, we prove the following chain
complex of right 4 modules is acyclic:

(23)*— (41, 20)—

A 4

A 4.

This implies that the following chain complex, defined by Proposition 2.3, is
acyclic:

Zv
A(15) 2

A(7)

where h; = yi_y, w, =dJ, (cf. Theorem 1.5). The unstable maps above are
well-defined by Singer’s result (Proposition 2.3 below which extends Wang’s
earlier result), which we use heavily. We have many other, more complicated,
acyclic chain complexes, e.g. (cf. 1.4 and 1.6):

y (hip2)*— A (hiy1,hi)— A A
AL . Wait2 ni |~ . .

A 1y B g ) R g2 g i)
y A5A3— y (A2, 40)— A®A

Asdz— We—

A(20) 257 4(10) 2= 4(6)

Now we collect some acyclic chain complexes systematically. For integers
ny > --->n, >0, we denote

y(ng, .o ) = 0(4y) ... 0 (Ay,)-

THEOREM 1.2. If A.y(ni,...,m) =0 for 1 <i<r, then the following
chain complexes are acyclic:
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~ - PRI W) SO
y P(11 ey y (%my ) @izl/l,
Y=~ (A s Ay )= r
A(p+1+1t) (P+1) @i:l/l(p_nz)7
Jor p=2n +1, where t, =3[ 2'(n; + 1).
In the case nm; =2¢""—1 (e>0,1<i<r), we have p(ny,...,n)=

(hetr)" and the assumption of Theorem above is satisfied.
THEOREM 1.3. The following chain complexes are acyclic:

(h(”rr)rv @lr:l /17

A A (Mesr—15eees o)~
Georteb)=, etr—i
A(P+1)—>@i:1/1(p72 ),

A(p+1+1r2¢7) (Batr) ™~

for p=2¢t—1.
In the case nm; =2¢7 =1 —2¢ 1 (e>0,1 <i<r), we have
j/(l/ll, ceey n,.) = }.2@+r+1,20+171 N }.2@+r+1,2r»+i,1 ce. )\.2«+r+1,2e+r,l.

We denote this element by k,,. By Lemma 3.5, dk,, =0 and the assumption
of Theorem 1.2 is satisfied.

THEOREM 1.4. The following chain complexes are acyclic:

ke, r— o 1-"7;-n1- ~ r
A X A ( 1 ) E"—)izl A7

Sor my=2¢t"Hl_2¢ 1 (¢>0,1<i<r),

ke, [/
Alp+141) —— 5 A(p+1) 2

@11/1

Sor p=2¢ttl _2etl 9 where t, = (r — 1)2¢+ 1 4 2etL

Using these acyclic chain complexes, we get the main theorems in this
paper.

THEOREM 1.5. For n=2¢"42¢—1 (e>0,r > 1), the following is an
acyclic chain complex.
AR+ 1 +u) L f 1= 2 T A= 28 4 1),
where u = (r — 1)2¢+" 4 2¢t-1,

THEOREM 1.6. For n=2¢"*1 _2¢ 1 (e>0,r > 1), the following is an
acyclic chain complex.

A0+ 14 1u) 2 AQn 41 =2 12 2 f(n—2¢ + 1),
where u = (r —2)2¢tr+l 4 petr 4 perl 4 ge
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Note that if » =1 then Theorems 1.5 and 1.6 gives the same complexes,
because

26+1 420 1= 2e+1+1 e _ 17 he+1 _ ke717 2€+171 _ 2e+1 _ e,

Since we can calculate w, = Ej(n ;])ln_/),,-_] for n=2"+2°—1
explicitly, we can conclude Theorems 1.5-6. In fact, if w,a =0 and « is low-
dimensional, then we get A, _ja«=0 for each j with (n;]) =1, and we

can apply Theorems 1.2-3. In the case n # 2¢"" +2¢ — 1, we can calculate
w, partially, and get only a “partial acyclicity” result, which is too technical to
state in this paper.

Before closing the introduction we compare with the possible acyclic
relations in the Steenrod algebra .o/ (cf. [5]). The sequence of left .o7-modules

2n—1 n
A Ly
is exact for n=1 and 2 (as is well-known from .oZ-module resolutions of
the spectra KZ and bo), but not exact for any odd n > 1, as Sg' is in the
homology. The sequence of right .o7-modules

Sq“ SqZH—l
A —— A —— A

is not exact for n =3, because S¢*Sq>Sq' is in the homology:
Sq’Sq*Sq*Sq" = Sq’Sq*Sq*Sq" = Sq’Sq*Sq'Sq" =0,

but S¢*Sq* = Sq’, and S¢>Sq>Sq' = Sq¢°Sq'Sq' = 0.
Adams and Margolis [1] proved there are exact sequences of right .o7-
modules

P’ P’
A — oA — oA

for 0 < s < ¢, where P/ € o/ is the Milnor-basis dual of étzx, but their proof are
quite different from ours.
I conjecture that the sequences of left .o/-modules

1 n
sq2" ! Sq?
JZ{

o o

are exact. [ wish to thank Mark Mahowald for verifying the case n =2 of
my conjecture, and pointing out that a proof follows from his paper with
Gorbounov [4]. I wish to thank the referee for many useful comments, and
explained how Singer’s results streamline my proofs.
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2. The lambda algebra EHP sequences
By [8, Lemma 2.6], if a =Y a2, b=>b2" (0 <a;b; <?2), then

(£)=N(2) s

By this formula,

o (@)t 62

Consider a map 0:Z—7Z by taking On)=2n+1=2(n+1)-1.
0(n) — 27 o
Then 0°(n) =2¢(n+1)—1=n2°+2¢—1 and ((m.]>5(n]>

om-2-1\_, 2 J
2j+1 o

For n>0, let F(n) = {j: (n—]) =1,0<j< g} It is well-known
J

that /i, = Aar_; is a cycle for r > 0. This is equivalent to F(2" — 1) = {0} by
Equation (3). By Equations (3) and (4), we have F(2") ={0}11{2?:0<a <
r}, F2"=2)={2-1:0<a<r} and
(5) FO°2N)) ={0} I {2 :0<a<r}
(6) FO°(2" =2))={2°""-2°:0<a<r}.
They are used to get acyclic chain complexes for w,, where n = 0°(b) for
b=2"2"-2.

By [9], there is a unique differential algebra endomorphism 6: A4 — A,

A%(n) — A% (2n) with 0(4;) = Jip1. This 0 is usually called Sq°, and it
commutes with Adem relations.

Lemma 2.1 ([9, ProposiTiON 1.7.3]). (i) @ is injective.
(i) If d(6(x)) =0 then d(x) =0.

Now we explain the lambda algebra EHP sequence. We refer to [6] for
recent proofs.

Lemma 2.2 ([3, LemMA 3.5])). AuAd(n+m+1) < A(n) for m < n.

In [3], this is proved by a double induction argument and it is similar to
the proof of the dual result [9, Proposition 1.8.1]:

A% (n)dy = A(n)  for k<n+t.

By Lemma 2.2 (or Wang’s dual) and induction on s, we have the following
proposition which is due to Singer.
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ProposITION 2.3 ([7, ProrosITION 5.1]). A (n)A(n+ 1) = A(n).

This proposition and di, € 4> (n) give Wang’s result:

LemMA 2.4 (|9, ProprosiTioN 1.8.3]). (di,)x e A(n) for xe A(2n+1).
Following Wang [9], we see that this lemma implies the result of [2]:

ProrosiTiION 2.5 (|9, ProrosiTioN 1.8.4]). A(n) is a subcomplex of the
chain complex A, i.e. dA(n) < A(n), d: A%'(n) — A* 1 (n).

Now we define a map (Hopf invariant)
H:A‘Y’t(n—‘rl) —>/1‘Y71’[71171(2n—‘,— 1)

by H(Z, 1) = A, H(A;A;) =0 for the admissible sequences (n,1),(i,I) with
i <n. Lemma 2.4 also implies the following.

PrOPOSITION 2.6. H:A(n+1)— A(2n+1) is a chain map.
CoroLLARY 2.7 (|9, THEOREM 1.8.5]). If doo=0 then dH(x) =0.

We define unstable composition product o — f=of € A(n) for ae
A%'(n), pe A(n+1). Then we can define a chain map (Whitehead product)
P:A%(2n+ 1) — A2 () by P(a) = w, — o, where w, = dA, € A>""(n).
Moreover, we have a chain map (suspension) E : A%'(n) — A%'(n+ 1) which is
inclusion.

Then we have short exact sequences

0 — A% (n) 5 A% (n+ 1) L 45 20 4 1) — 0.
ProposITION 2.8 ([7, PROPOSITION 5.3]).
EH(o.— ) = EH(0) — f+ 0(a) — EH(f) € A2n+2)
for ae A% (n+1), fe An+1+1).

Since E is injective, E(x — ) = Eox — Ef and 0(Ex) = E*0(x). We have
two special cases and the second case is [7, Proposition 5.2]:

COROLLARY 2.9. Let o€ A*'(n), fe A(n+1t+1). Then
H(E(2) — f) = EO(z) — H(B) € A(2n + 1).
Also, if we A% (n+1), feA(n+1), then
H(x— E(B) = H(x) — feA2n+1).

Singer gave proofs of Propositions 2.3, 2.6 and 2.8 in the preprint version
of his paper [7], but unfortunately omitted them from the published version.
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Proposition 2.8 is proved by generalizing the proof of [3, Lemma 3.1] which is
the case of o = d(y,) and f e A(4n+1). This is essentially Singer’s preprint
proof. We prove Proposition 2.3 by double induction. Note that our proof
does not use Lemma 2.2.

ProOF oF ProprosiTION 2.3. We shall show that
A () A (n 4+ 1) = A(n)

by double induction on s =s; + s, and n. Consider o = 4,,x, for m < n and
xe A B 2 4 1), and fe A (n+1). Since m <n, xe AN B (4
m+ 1), and so we have y = xf e A "*(n+m+1) by induction on s. We
shall show that A,y € A(n).

If m=n—1 then this is trivial since A(2n) = A2n — 1) + Ayy_14(4n —1).

If m<n—1 then we take the admissible form y = 4,,,x + y with x €
A(2n+2m+1) and ye A(n+m). By induction on n, 1,ye A(n—1). We
have an Adem relation 2,24 m = An_1dami1 + z with ze A22"42( — 1), By
induction on s, Aymi1x€ A2n—1) and zxe A(n—1). Thus A,y e A(n). O

The case s =1 for the first part of Corollary 2.9 is proved by a similar
argument, and induction proves the case s > 1. The second part of Corollary
2.9 follows easily by Proposition 2.3. Proposition 2.8 requires in addition
some tricky cancellation, which we leave to the reader, since we do not use
Proposition 2.8, but only Corollary 2.9.

3. Some relations on the lambda algebra
Consider elements o,o; € 4. We define
o—:Ad—A and  (og,...,%)—Ad—PD_ 4

by taking o — (x) = ax, (o1,...,0) — (x) = (01x,...,0%X).
If off =0 then we have a chain complex

(7) a4
If 0;f=0 for 1 <i <r then we have a chain complex

B— (00 yeuey O ) —
(8) A A P, 4.

For o€ A%'(n) and m <n+t, we define the map
o —: A(m) — A(n)

by Proposition 2.3.  Sometimes we will suspend alpha without mentioning it to
give a larger n, but this is clear from context. For instance, in Theorem 1.3,
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we use (hesr) i A(p+1+127) = A(p+1), where (hey,) € A" (267),
and 27" < p+1. So we suspended to think of (/) € A" (p+1).

Proor oF THEOREM 1.1. By the Adem relation, (4, —)o (dy41 —) =0.

Consider an element e A% (p+1) with 4, —a=0. For p<2n+1,
Anoe 18 admissible, and so « = 0.

For p=2n+1, a = Ayr1x+ y€ A(2n+2), where x = H(a) € A(4n+ 1)
and ye A(2n+1). So 4, —a=2,y, and so y =0 by the case p<2n—+1
above. Thus o= Ay, — H(a).

For p>2n+1, we have a commutative diagram by Corollary 2.9:

Alp+2m+3) 25 A(p+1) = A(p—n)

| | |

AQp+an+5) 225 A0p+1) 295 Ap—2n— 1)

Then 0 = H(4, — a) = Aypy1 — H(o). By induction on s, H(ot) = dapy3z — y
for some ye A(2p+4n+5). Since H is surjective, we have an element
feA(p+2n+3) with H(f)=7y. Then H(luy1 — f) = Aans3 — H(f) =
Janss —y=H(a). Hence o' = o+ A1 — feA(p+1) has H(a') =0, and
so o' € A(p) and A, — o’ =0. By induction on p, &' = Ay, | — B’ for some
B ed(p+2n+2). Thus a =iy —f for f=f+p edlp+2n+3). [

Lemma 3.1. For integers ny > --->n, >0, if s<r then a composite

(Zny seees ﬂr')v r Lo .
A (p+1) £ i @i:l/l is injective.

Proor. Consider o € A*'(p+ 1) with 4,, — =0 (1 <i<r). We prove
this lemma by induction on r,s,p. For r=1 or p =0 or s =0, this is trivial.

If p <2n; + 1 then « =0 by 4,, — o =0 and Theorem 1.1. If p =2n; +1
then o =4, — H(a) by the proof of Theorem 1.1 for the case p=2n+1.
Now 0= H(4,, — o) =0(4,,) — H(a) for 2 <i<r, and so H(x) =0 by in-
duction on r and o =4, — H(x) =0. If p>2n+1 then 0 = H(4,, — a) =
O(A,) — H(a) for 1 <i<r, and so H(x) = 0 by induction on s, and o € A(p).
By induction on p, « =0. O

For integers ny >--->mn; >--->n, >0, we denote #, =>.1 2/(n;+ 1)
and

(9) y,.om) = 0) . 01(Ay) ... 0 (Ay) € A7 (2ny +2).

The proof of Theorem 1.2 is very similar to the proof of Theorem 1.1,
which is the case r=1.
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ProoF oF THEOREM 1.2. By the assumption,
((’1’117 e vlm) —)o(y(m,...,n) —)=0.

Consider an element o€ A% (p+1) with 4, —a=0 for | <i<r. If
r =1 then this is Theorem 1.1. If s =0 then « = 0, because the generator is
the identity element % € 4%°(p + 1) = Z/2 where * is the monomial of length
0. But * is not in the kernel since 4, — x = 4, # 0.

For p=2n;+ 1, o = 0(4,,) — H(x) by the proof of Theorem 1.1 for the
case p=2n+1. Now 0= H(A, — a) =0(L,) — H(a) for 2 <i<r, and

0=H(y, — y(n1,...,n))
=0(Ay,) — H(y(my,...,n,))
= 0(hn) — 0((m2,..,my)).

By induction on r, H(a)=0(y(n2,...,n)) —f, where feA(2p+1+
S ,272ni 4+ 1+ 1)) = A(p+1t,). Then a=yp(ny,...,n) — p.
For p > 2n; + 1, we have a commutative diagram by Corollary 2.9:

(/lnl 3eeny ;"ﬂr )V

y—

Ap+1+14) ———— A(p+1)

I |

Ap+1+26) — 7 A@p+1)

H

@ A(p —m)
|

P, 42p —2n; - 1),

where  y=y(ny,...,n) e A" (2n +2) = A»"(p). Then 0= H(i, — a)=
0(in,) — H(x) for 1 <i<r. By induction on s, H(x) = 0(y) — ' for some
B e A2p +1+2t,). Since H is surjective, we have an element f e A(p+
L+1) with H(f) = Then H(y — f) = 0(;) — H(f) = 0(;) — f' = H(x).
Hence o' =o+y— fed(p+1)has H(a') =0. So o’ € A(p), and 4,, — o’ =
0 for 1 <i<r by the assumption. By induction on p, o’ =y — B” for some
p"ed(p+t). Thus a=y—p for f=f+p"edlp+1+t). ]

Lemma 3.2. If Apy(ni,...,n;) =0 then Ayy(ny,...,n)=0.

Two examples where the hypotheses of Theorem 1.2 are satisfied are given
in Lemmas 3.3 and 3.5 below. By [9], hi(hi,)" =0 for h; = J5i_1, and so we
have the following.

LEMMA 3.3. Let n;=2¢"""—1 (e>0,1 <i<r) be integers. Then

y(ny, .. n) = (12”"71)" = (he+r)r

and y(nj,...,n;) = (he+r—_/+1)i_'/+l. Moreover Zyy(nj,...,n;) =0 for 1<j<

i<r.
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This lemma and Theorem 1.2 imply Theorem 1.3.

Our next example leads to Theorem 1.4, and the proof is similar to Wang’s
calculation A;(h;,)" = 0, so let’s recall Wang’s proof. It suffices by 0 to prove
that hph! = 0. An Adem relation writes /soh, as a sum of terms A,,/;, and by
induction, kA~ = 0.

Next we consider integers n, =2¢—2. Then we shall show that
y(np,...,n,) satisfies the conditions in Theorem 1.2. We write f(b,a) =
y(np,...,n,) for b >a.

Lemma 3.4. (i) A fla+r,a)=0 for a+r>x=>a.
(i) d(p(r, 1)) =0.

ProOF. (i) Because fi(a + r,a) = fla+r,x)0“7" " (f(x — 1,a)) for x > a,
it suffices to prove that A, f(a+r,a) =0.

For r =0, this is the Adem relation. We assume r > 0 and induction on
r. Then

Bla+r,a) = 00, )0(Bla+r—1,a).

The Adem relations imply

Ipkipyiaen = D Apracn k)R p)r2ck-
keF(n—1)

Now F(2"'—2)={2-1:0<bh <r} by (6), and
O(nasr) = 0(ng) + 2(nayr — na) = 0(ny) + 297127 = 1).
By substituting b for r, we have 6(n,) +2t1(2 — 1) = 0(n,.»). Hence

A’na 0(}'17L/+r' ) =

r—1

}“na(a, r,b) 0(/111«% )

b=0

for some m(a,r,b) we are not concerned with. This implies

—_

r—

)mt,ﬁ(a + 7, a) = im(a., r,b)e(lnwbﬁ(a +r— l, a)) =0
0

S
I

by induction on r.
(i) For r>1, p(r,1) = 0(4,)0(p(r — 1,1)), so it by induction, it suffices
to show that d(4,)B(r—1,1) =0. Then

r—1

d(Ay,) = Z Apy—kcAe—1 = Zln,-fZIUrlll’lh
b1

0<keF(n,)

since F(n,) = {2 —1:0 < b < r} as above. Hence (i) implies d(4, )B(r —1,1)
=0. U
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We write &k, =p(r,1) and k., =2y e A" Q2 —2¢H) for ¢, =
(r—1)2¢t+1 4 2¢t1 and an admissible sequence
J = (26+1'+1 _ 2e+1 _ 17 o ,2e+r+1 _ 26+i _ 1’ o 7zeJrrJrl _petr _ 1)

Then k., = 0°k,) =y(0°(n,),...,0°n;)), and this lemma implies A,k =
In,f(ry1) =0 for 1 <a<r and d(k,) =0.

LemMA 3.5. If n,=2%—2 then 0°(n,) =29 —2¢ — 1,
JO (), 0 (m) = 0°(ks) = by
and d(k.,,) = d(0°(k;)) =0. Moreover
By 1O () -, 0°(1)) = 0 ) = O
for 1<ac<r.

This lemma and Theorem 1.2 imply Theorem 1.4.

4. Proofs of the main theorems
2n+1

!

For integers 0< ji< jp<---<j, < and an element w'e

A" (n— j.), we take an element

w=w+ Z neala—1-

ae{ji,...Jjr}

We shall use the direct sum decomposition

An)=An—j)+ Y AR +1).
n—j, < f<n
Suppose o € A(x) for some x <2n+ 1. We want w— o to be expressed in
terms of this decomposition. That is,

we—oa=w — o+ Z In—a(Aa—1 — )

06{]‘1.“.,_/}.}

and we want w' — ae A(n—j,) and A, — o€ A(2(n—a) +1).

Lemma 2.2 tells us that this last condition is achieved for x < 2(n—a)+
l+(@—1)+1=2n—a+1since a—1<2(n—a)+1 by 3a<2n+1. Prop-
osition 2.3 tells us that w' —aed(mn—j,) if x<n—j,+n+1=2n—j +1.
We have now proved:

Lemma 4.1. If w—a=0 for a € A2n— j,+1) then Ay —a=0 for
I<i<r.
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For any integer n >0, let F(n) = {jo =0, j1,j2,.- -, jr---} With jo=0<
2n+1

Jj1 < j»<---. We notice that > j; since 2n+1—3j;>ji+1>0 by

n—ji>ji. Then w,=dly=31 1 njlj1+w €A™ (n—j+1), where
w' € A(n— j,). The lemma above and Theorem 1.2 imply the following.

Lemma 4.2, If w,a=0 for oe A2n+1—j.), then A, j0=0 for 1<
i<r.

Moreover, if Jiy(jr—1,...,0—1)=0 for 1<i<r then o=
vUr — 1, ji = DB for some fe A2n+1— j.+1t,), where t, = 2%ii1.

PROOF OF THEOREM 1.5. Let n =2¢"" +2¢—1=0°2"). Then j; = 2¢"!
for 1 <i<r by Equation (5), and so

pUr = 1ot = 1) = (heyy) €A™ Q24)  and 1, = 1267

Hence wy(heir)” =311 Anejiij—1(hesr)” =0 by Lemma 3.3.
If w,—a=0 for e A2n+1—2¢""1) then o= (h.,)" — B for some
BeA2n+ 1+ (r—1)2¢7" +2¢7-1) by Lemma 3.3 and 4.2. m

PROOF OF THEOREM 1.6. Let n=2¢"+l —2¢_1=0°2"*" ~2). Then
Ji=2¢"—2¢ for 1 <i<r by Equation (6), and so

=1, i =) =k, and = (r—1)2¢" 1 42,

Hence wyke, = > i_| An—jAj—1ke, =0 by Lemma 3.5.
If wy—~a=0 for «e A2n+1—2¢"" +2¢) then o=k, , — f for some
BeA2n+ 1+ (r—2)2¢t+ 4264 1 ¢+l L 2¢) by Lemma 3.5 and 4.2. [

For a general n, we do not get chain complexes. That is, our methods
produce necessary but not sufficient conditions. If w,o =0, we can conclude
that o = yf for some S, but it’s not generally true that w,y = 0, and we have
“partial acyclicity” result. Consider n = 10,12:

By F(10) ={0,1,3,4,5}, F(12) ={0,1,2,5,6},

Wio = A9Ao + A7Ads + AeAz + Asha = w' + dodo + A,
y(4a 33 23 O) = }v9j~15j~231157
Wiz = A1Ao + oA + A7ha + Aehs = w' + Ao + Ao,

y(5,4, 1,0) = }vllﬂvlg(}vw)z,

in which w’ e A>'(7), w"” e 4%'3(10).
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Now Zj—1y(jk —1,...,ji—1) =0 except for
207(3,2,0) = oAz di1h7 = Aa(0a),
207(4,3,2,0) = dodoisiasias = islo(has)’,
My(8,1) = Jadoly = (J5)*2s,
29(5,4,1) = Adndiodis = do(An) s,
207(5,4,1,0) = Joindio(Ais)* = A(An)> (us)*.

Moreover 417(4,1,0) = (4s)*(47)%. Hence 7(2,0) and y(1,0) satisfy the con-
dition of Theorem 1.2, but the other y(j, —1,...,/; — 1) don’t satisfy this
condition. So we apply Lemma 4.2 to p(2,0) = A543 and (1,0) = (h)” as
follows:

If «e A(18) and wyp — o =0 then o = y(2,0)f for some S € A(28).

If e A(23) and wi; — o =0 then « = y(1,0)f for some f e A(31).

However, we don’t have chain complexes

A(28) 2227 4(18) 0=, 4(10),

A1) Y5 423) 222 4(12)

because
wi0Y(2,0) = wioAsAs = AgA3AsA3 + AsAalsis,

wiy(1,0) = wia(A3)? = A7da(A3)* + AeAs(43)2
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