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Abstract

Let L be a C-lattice and M be a lattice module over L. For a non-zero element N ∈ M , join
of all second elements X of M with X ≤ N is called the second radical of N , and it is denoted
by s
√
N . In this paper, we study some properties of second radical of elements of M and obtain

some related results.
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1 Introduction

A lattice L is said to be complete, if for any subset S of L, we have ∨S, ∧S ∈ L. A complete lattice
L with least element 0L and greatest element 1L is said to be a multiplicative lattice, if there is
defined a binary operation ” · ” called multiplication on L satisfying the following conditions:

1. a · b = b · a, for all a, b ∈ L,

2. a · (b · c) = (a · b) · c, for all a, b, c ∈ L,

3. a · (∨αbα) = ∨α(a · bα), for all a, bα ∈ L,

4. a · 1L = a, for all a ∈ L.

Henceforth, a · b will be simply denoted by ab.
An element a in L is called compact, if a ≤

∨
α∈I bα (I is an indexed set) implies a ≤ bα1 ∨ bα2 ∨

· · · ∨ bαn for some subset {α1, α2, · · · , αn} of I. By a C-lattice, we mean a multiplicative lattice
L with greatest element 1L which is compact as well as multiplicative identity, that is generated
under joins by a multiplicatively closed subset C of compact elements of L.

An element m ∈ L said to be proper, if m < 1L. A proper element m of L is said to be maximal,
if for every x ∈ L with m < x ≤ 1L implies x = 1L.

In [3], Alarcon et. al., defined the concept of the radical of an element a ∈ L as,
√
a = ∨{x ∈ L :

xn ≤ a for some natural number n}. If
√
a = a, then an element a is called radical or semiprime.

A proper element p of L is said to be prime, if ab ≤ p implies a ≤ p or b ≤ p.
Thakare et.al.([12], [13]), studied the properties of radical of an element of multiplicative lattices

and proved that, for a ∈ L,
√
a = ∧{p ∈ L : p is prime and a ≤ p}.

A complete lattice M with smallest element 0M and greatest element 1M is said to be a lattice
module over the multiplicative lattice L or L-module if there is a multiplication between elements
of M and L, denoted by aN for a ∈ L and N ∈M , which satisfies the following properties:

1. (ab)N = a(bN);
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2. (∨αaα)(∨βNβ) = ∨α,β (aαNβ);

3. 1LN = N ;

4. 0LN = 0M ; for a, b, aα ∈ L and for N,Nβ ∈M .

Let M be a lattice module over a multiplicative lattice L. For N ∈ M and b ∈ L, denote (N :
b) = ∨{X ∈ M : aX ≤ N}. If a, b ∈ L, we write (a : b) = ∨{x ∈ L : bx ≤ a}. If A,B ∈ M , then
(A : B) = ∨{x ∈ L : xB ≤ A}.

An element N ∈ M is said to be meet principal (respectively join principal) if it satisfies the
identity A ∧ aN = (a ∧ (A : N))N (respectively ((aN ∨ A) : N) = (a ∨ (A : N)) for all a ∈ L and
for all A ∈ M . Also, N is said to be principal if it is both join as well as meet principal. If each
element of M is a join of principal elements of M , then M is called principally generated.

An element N < 1M of M is said to be maximal element if N ≤ B implies either N = B or
B = 1M , B ∈M .

In [2], Eaman A. Al-Khouja, defined the concept of Jacobson radical of a lattice module M as
the intersection of the maximal elements of a lattice module M and denoted it by J(M). An ele-
ment N < 1M of M is said to be prime if aX ≤ N implies X ≤ N or a1M ≤ N , i.e., a ≤ (N : 1M )
for every a ∈ L and X ∈M .
Ballal and Kharat [5], unified various generalizations of prime and primary elements in multiplica-
tive lattices and lattice modules as ϕ-absorbing elements and ϕ-absorbing primary elements.
Phadatare et. al. [10], introduced the concept of second elements of a lattice module as a general-
ization of second submodules of a module (see [14]). A non-zero element N of a lattice module M
is said to be second, if for a ∈ L either aN = N or aN = 0M .
In [1], Ansari-Toroghy and Farshadifar studied the dual notion of the concept of the prime radical
of a submodule of a module and obtain some related results.

In this paper, we introduce second radical of an element of a lattice module M and study some
properties of it as a generalization of the dual notion of the prime radical of a submodule.

Further all these concepts and for more information on multiplicative lattices and lattice mod-
ules, the reader may refer ([2], [4]-[13]).

2 The second radical

We begin this section with the definition of second element for a lattice module M over a C-lattice
L due to Phadatare et. al.[10].

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero element N ∈M is said
to be second, if for a ∈ L either aN = N or aN = 0M .

Lemma 2.2. [10] Let M be a lattice module over a C-lattice L and N ∈ M . If N is second then
(0M : N) is a prime element of L.

If a non-zero element S ∈M is second and (0M : S) = p is a prime element of L then S is said
to be p−second(see [10]).
Following is the result due to Johnson [9] which has been used in sequel.

Lemma 2.3. [9] Let M be a lattice module over a C-lattice L. Then for x ∈ L and A,B,C ∈M ,
following holds:
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1. x ≤ (0M : (0M : x)).

2. A ≤ (0M : (0M : A)).

3. If A ≤ B then (C : B) ≤ (C : A).

4. (0M : A) = (0M : (0M : (0M : A))).

5. (A : B ∨ C) = (A : B) ∧ (A : C).

6. (A : B)B ≤ A.

Lemma 2.4. Let M be a lattice module over a C-lattice L and S be a p-second element of M . If
for N,K ∈M , S ≤ N ∨K and (0M : N) � p, then S ≤ K.

Proof. Suppose that for N,K ∈ M , S ≤ N ∨ K, where S is a p-second element of M and (0M :
N) � p. Then by Lemma 2.3(3), (0M : N ∨ K) ≤ (0M : S). Therefore by Lemma 2.3(5),
(0M : N)(0M : K) ≤ (0M : N) ∧ (0M : K) ≤ (0M : N ∨K) ≤ (0M : S) = p. Since S is p-second,
(0M : S) = p is prime, this implies (0M : N) ≤ p or (0M : K) ≤ p. Note that, (0M : N) � p
therefore (0M : K) ≤ p = (0M : S) and so S ≤ K by Lemma 2.3(3). q.e.d.

Theorem 2.5. Let M be a lattice module over a C-lattice L and S ∈M . If S is a p-second element
of M with S ≤ (0M : a) ∨N , then S ≤ (0M : a) or S ≤ N , where a ∈ L and N ∈M .

Proof. Suppose that for a ∈ L and N ∈ M , S ≤ (0M : a) ∨ N , where S is a p-second element of
M . If (0M : (0M : a)) � p, then S ≤ N by Lemma 2.4. Now, if (0M : (0M : a)) ≤ p, then by
Lemma 2.3(1), a ≤ (0M : (0M : a)) ≤ p therefore (0M : p) ≤ (0M : a) by Lemma 2.3(3). Since
S is p−second, (0M : S) = p therefore by Lemma 2.3(2), S ≤ (0M : (0M : S)) = (0M : p) and so
S ≤ (0M : p) ≤ (0M : a), consequently, S ≤ (0M : a). q.e.d.

Callialp et. al.[8] introduced the concept of comultiplication lattice modules and also, investi-
gated some properties of comultiplication lattice modules.

Definition 2.6. [8] Let M be a lattice module over a C-lattice L. Then M is said to be a
comultiplication lattice module, if for each N ∈ M there exists an element a ∈ L such that
N = (0M : a).

Lemma 2.7. [8] Let M be a lattice module over a C-lattice L. Then M is a comultiplication lattice
module if and only if N = (0M : (0M : N)) for each N ∈M .

Converse of Lemma 2.2 is true for comultiplication lattice module.

Lemma 2.8. [8] Let M be a comultiplication lattice module over a C-lattice L and N ∈M . Then
N is second if and only if (0M : N) is a prime element of L.

Lemma 2.9. [8] Let M be a comultiplication lattice module over a C-lattice L. Then for a ∈ L
and N ∈M , (N : a) = ((0M : a) : (0M : N)).

Theorem 2.10. Let M be a comultiplication lattice module over a C-lattice L and p be a prime
element of L with (0M : 1M ) ≤ p, then (0M : p) is a second element of M .
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Proof. Suppose that M is a comultiplication lattice module over a C-lattice L and p is a prime
element of L with (0M : 1M ) ≤ p. By Lemma 2.3(1), we have p ≤ (0M : (0M : p)).
Now, suppose that r ≤ (0M : (0M : p)), where r ∈ L. Then (0M : p) ≤ (0M : r) therefore
((0M : p) : (0M : p1M )) ≤ ((0M : r) : (0M : p1M )) and so (p1M : p) ≤ (p1M : r) by Lemma 2.9.
Since (p1M : p) = 1M , we have 1M = (p1M : r) therefore r1M ≤ p1M and hence r ≤ p, consequently,
(0M : (0M : p)) = p. But p is prime, therefore by Lemma 2.8, (0M : p) is second. q.e.d.

Denote the set of all second elements of M by Specs(M). For N ∈M , the second radical of N
is denoted by s

√
N and defined as, s

√
N = ∨{K ∈ Specs(M)|K ≤ N}. If N does not contain any

second element of M , then s
√
N = 0M and also, if s

√
N = N then N is said to be second radical

element of M .

Lemma 2.11. Let M be a lattice module over a C-lattice L and N,K ∈ M . Then the following
statements hold:

1. s
√
N ≤ N .

2. If N ≤ K then s
√
N ≤ s

√
K.

3.
s
√

s
√
N ≤ s

√
N .

4. s
√
N ∨ s

√
K ≤ s

√
N ∨K.

5. s
√
N ∧K =

s
√

s
√
N ∧ s

√
K.

6. s
√

(0M : a) = s
√

(0M :
√
a) for a ∈ L.

7. s
√
N ≤ (0M :

√
(0M : N)).

8. If N ∨K = s
√
N ∨ s

√
K, then s

√
N ∨K = N ∨K.

Proof. 1) By definition, s
√
N = ∨{K ∈ Specs(M)|K ≤ N} ≤ N .

2) Follows from (1).

3) By definition
s
√

s
√
N = s

√
(∨{K ∈ Specs(M)|K ≤ N}) =

∨ {P ∈ Specs(M)|P ≤ ∨{K ∈ Specs(M)|K ≤ N}} ≤ s
√
N .

4) Note that s
√
N, s
√
K ≤ ∨{X ∈ Specs(M)|X ≤ N ∨ K} = s

√
N ∨K. Therefore s

√
N ∨ s

√
K ≤

s
√
N ∨K.

5) s
√
N ∧K = ∨{X ∈ Specs(M)|X ≤ N ∧K} = ∨{X ∈ Specs(M)|(X ≤ N) ∧ (X ≤ K)}. Since X

is second, X = s
√
X therefore by (2), s

√
N ∧K = ∨{X ∈ Specs(M)|(X ≤ N)∧ (X ≤ K)} = ∨{X ∈

Specs(M)|(X ≤ s
√
N) ∧ (X ≤ s

√
K)} = ∨{X ∈ Specs(M)|X ≤ s

√
N ∧ s

√
K} =

s
√

s
√
N ∧ s

√
K.

6) Suppose that S ≤ (0M : a) for S ∈ Specs(M). Then a ≤ (0M : S). Since (0M : S) is prime, we

have
√
a ≤ (0M : S) therefore S ≤ s

√
(0M :

√
a) and so s

√
(0M : a) ≤ s

√
(0M :

√
a).

Conversely, suppose that P ≤ (0M :
√
a) for P ∈ Specs(M).

Then a ≤
√
a ≤ (0M : P ) therefore P ≤ (0M : a). This implies that s

√
(0M :

√
a) ≤ s

√
(0M : a),

consequently, s
√

(0M : a) = s
√

(0M :
√
a).

7) By Lemma 2.3(2), we have N ≤ (0M : (0M : N)) therefore by (1), s
√
N ≤ s

√
(0M : (0M : N))

and so by (6), s
√
N ≤ s

√
(0M :

√
(0M : N)). Again by (2), s

√
N ≤ s

√
(0M :

√
(0M : N)) ≤ (0M :
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√
(0M : N)), consequently, s

√
N ≤ (0M :

√
(0M : N)).

8) Suppose that for N,K ∈ M , N ∨ K = s
√
N ∨ s

√
K. Since s

√
N ∨K ≤ N ∨ K by (1) and

s
√
N ∨ s

√
K ≤ s

√
N ∨K by (4), we have s

√
N ∨K ≤ N ∨K = s

√
N ∨ s

√
K ≤ s

√
N ∨K, consequently,

s
√
N ∨K = N ∨K. q.e.d.

Definition 2.12. Let M be a lattice module over a C−lattice L. A non-zero element K 6= 1M of
M is said to be minimal, whenever 0M ≤ N < K implies N = 0M , N ∈M .

Note that, every minimal element of M is second. But the converse is not true in general.

Example 2.13. The lattice depicted in Fig.(a) is a multiplicative lattice L and the lattice depicted
in Fig.(b) is a lattice module M over L. Note that, X is minimal and hence second but Y,Z and P
are second but not minimal.

0L

a b

c d

1L

. 0L a b c d 1L
0L 0L 0L 0L 0L 0L 0L
a 0L a 0L a 0L a
b 0L 0L 0L 0L b b
c 0L a 0L a b c
d 0L 0L b b d d
1L 0L a b c d 1L

Fig.(a) Multiplicative lattice L
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0M

X

ZY

P

1M

. 0M X Y Z P 1M
0L 0M 0M 0M 0M 0M 0M
a 0M X Y Z P 1M
b 0M 0M 0M 0M 0M 0M
c 0M X Y Z P 1M
d 0M 0M 0M 0M 0M 0M
1L 0M X Y Z P 1M

Fig.(b) Lattice module M over L

Theorem 2.14. Let M be a lattice module over a C-lattice L with each non-zero element of M
contains a minimal element. Then following statements hold.

1. s
√

1M 6= 0M ,i.e., for N ∈M , s
√
N = 0M if and only if N = 0M .

2. For N,K ∈M , s
√
N ∧ s

√
K = 0M if and only if N ∧K = 0M .

Proof. 1) Since every minimal element is second and each non-zero element of M contains a minimal
element, we have s

√
1M 6= 0M .

2) Suppose that for N,K ∈ M , s
√
N ∧ s

√
K = 0M . Then by Lemma 2.11(5), we have s

√
N ∧K =

s
√

s
√
N ∧ s

√
K = s

√
0M = 0M , consequently, N ∧K = 0M by (1). Conversely, suppose that N ∧K =

0M for N,K ∈ M . Then by (1), 0M = s
√
N ∧K. Therefore by Lemma 2.11(5), s

√
N ∧K =

s
√

s
√
N ∧ s

√
K = 0M and so s

√
N ∧ s

√
K = 0M by (1). q.e.d.

Theorem 2.15. Let M be a lattice module over a C-lattice L with each non-zero element of M
contains a minimal element. If m is a maximal element of L and

√
(0M : Q) = m for non-zero

Q ∈M , then s
√
Q is m-second.

Proof. Suppose that for 0M 6= Q ∈ M ,
√

(0M : Q) = m, where m is a maximal element of L. By

Lemma 2.11(7), we have s
√
Q ≤ (0M :

√
(0M : Q)),

therefore m =
√

(0M : Q) ≤ (0M : s
√
Q). Since m is maximal, either (0M : s

√
Q) = m or (0M :

s
√
Q) = 1L. If (0M : s

√
Q) = 1L, then s

√
Q = 0M and so by Theorem 2.14(1), Q = 0M , a

contradiction, consequently, (0M : s
√
Q) = m. Since m is maximal, s

√
Q is minimal, indeed if s

√
Q is

not minimal, then there exists a minimal element K such that K ≤ s
√
Q and so by Lemma 2.3(3),
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m = (0M : s
√
Q) ≤ (0M : K), a contradiction to maximality of m, consequently, s

√
Q is minimal

and hence is a second element of M . q.e.d.

Lemma 2.16. Let M be a comultiplication lattice module over a C-lattice L. Then for N,K ∈M ,
s
√
N ∨K = s

√
N ∨ s

√
K.

Proof. By Lemma 2.11(4), s
√
N ∨ s

√
K ≤ s

√
N ∨K. Now, suppose that S is a second element of

M with S ≤ N ∨ K, where N,K ∈ M . Since M is comultiplication, by Lemma 2.7 we have,
N = (0M : (0M : N)), therefore S ≤ N ∨K = (0M : (0M : N)) ∨K and so by Theorem 2.5, either
S ≤ (0M : (0M : N)) = N or S ≤ K, consequently, s

√
N ∨K ≤ s

√
N ∨ s

√
K. q.e.d.

Definition 2.17. Let M be a lattice module over a C-lattice L. Then the map ψs : Specs(M)→
Spec(L/(0M : 1M )) defined by ψs(N) = (0M : N) is called the natural map of Specs(M).

The following remark is immediate from Theorem 2.10.

Remark 2.18. Let M be a comultiplication lattice module over a C-lattice L. Then the natural
map ψs is surjective.

Lemma 2.19. Let M be a lattice module over a C-lattice L and the natural map ψs be surjective.
Then (0M : (0M :

√
a)) =

√
a, for a ∈ L with (0M : 1M ) ≤ a.

Proof. Suppose that the natural map ψs of Specs(M) is surjective and (0M : 1M ) ≤ a for a ∈ L.
Then (0M : 1M ) ≤ a ≤

√
a = ∧p, where p is prime element of L with a ≤ p. Since ψs is surjective

and (0M : 1M ) ≤ p, p = (0M : S) for S ∈ Specs(M). Therefore
√
a ≤ (0M : (0M :

√
a)) ≤ (0M :

(0M : ∧p)) ≤ ∧(0M : (0M : p)) = (0M : (0M : (0M : S))) by Lemma 2.3(1) and Lemma 2.3(3). But
by Lemma 2.3(4), (0M : (0M : (0M : S))) = (0M : S), therefore

√
a ≤ (0M : (0M :

√
a)) ≤ (0M :

(0M : ∧a)) ≤ ∧(0M : (0M : a)) = (0M : (0M : (0M : S))) = ∧(0M : S) = ∧a =
√
a. Consequently,

(0M : (0M :
√
a)) =

√
a. q.e.d.

A lattice module M over a multiplicative lattice L is said to be faithful, if (0M : 1M ) = 0L (see
[6]).

Theorem 2.20. Let M be a faithful comultiplication lattice module over a C-lattice L and a ∈ L.
Then s

√
(0M : a) = (0M :

√
a) if and only if (0M : s

√
(0M : a)) =

√
a.

Proof. Suppose that s
√

(0M : a) = (0M :
√
a) where a ∈ L. Since M is faithful, we have (0M :

1M ) = 0L ≤ a. Also, since M is comultiplication, by Remark 2.18, the natural map ψs is surjective,
therefore by Lemma 2.19, (0M : (0M :

√
a)) =

√
a and hence (0M : s

√
(0M : a)) =

√
a. Conversely,

suppose that (0M : s
√

(0M : a)) =
√
a. Since M is comultiplication, by Lemma 2.7, s

√
(0M : a) =

(0M : (0M : s
√

(0M : a)) therefore s
√

(0M : a) = (0M : (0M : s
√

(0M : a))) = (0M :
√
a). q.e.d.

Theorem 2.21. Let M be a faithful comultiplication lattice module over a C-lattice L. Then the
following statements are equivalent.

1. s
√

(0M : a) = (0M :
√
a) for a ∈ L.

2. s
√
N = (0M :

√
(0M : N)) for N ∈M .

3. (0M : s
√
N) =

√
(0M : N) for N ∈M .
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4. (0M : s
√

(0M : a)) =
√
a for a ∈ L.

Proof. 1) ⇒ 2) Since M is comultiplication, by Lemma 2.7, for N ∈ M , N = (0M : (0M : N))
therefore s

√
N = s

√
(0M : (0M : N)) and hence s

√
N = s

√
(0M : (0M : N)) = (0M :

√
(0M : N)) by

(1).
2)⇒ 3) Follows from Theorem 2.20.

3) ⇒ 4) By Lemma 2.3(6), for a ∈ L, (0M : s
√

(0M : a)) = (0M : s
√

(0M :
√
a)) therefore by (3),

(0M : s
√

(0M : a)) =
√

(0M : (0M :
√
a)) and hence (0M : s

√
(0M : a)) =

√
(0M : (0M :

√
a)) =√√

a =
√
a by Lemma 2.19.

4)⇒ 1) Suppose that (0M : s
√

(0M : a)) =
√
a, where a ∈ L. Since M is comultiplication, then by

Lemma 2.7,
s
√

(0M : a) = (0M : (0M : s
√

(0M : a)), consequently, by (4) s
√

(0M : a) = (0M : (0M : s
√

(0M : a))) =
(0M :

√
a). q.e.d.
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