On the second radical elements of lattice modules

Narayan Phadatare and Vilas Kharat
Department of Mathematics, Savitribai Phule Pune University, Pune-411007, India
E-mail: a9999phadatare@gmail.com, laddoo1@yahoo.com

Abstract

Let L be a C-lattice and M be a lattice module over L. For a non-zero element $N \in M$, join of all second elements X of M with $X \leq N$ is called the second radical of N, and it is denoted by $\sqrt[s]{N}$. In this paper, we study some properties of second radical of elements of M and obtain some related results.

2010 Mathematics Subject Classification. 06B23. 06B75
Keywords. Minimal element; Second element; Second radical element.

1 Introduction

A lattice L is said to be complete, if for any subset S of L, we have $\vee S, \wedge S \in L$. A complete lattice L with least element 0_{L} and greatest element 1_{L} is said to be a multiplicative lattice, if there is defined a binary operation " ." called multiplication on L satisfying the following conditions:

1. $a \cdot b=b \cdot a$, for all $a, b \in L$,
2. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$, for all $a, b, c \in L$,
3. $a \cdot\left(\vee_{\alpha} b_{\alpha}\right)=\vee_{\alpha}\left(a \cdot b_{\alpha}\right)$, for all $a, b_{\alpha} \in L$,
4. $a \cdot 1_{L}=a$, for all $a \in L$.

Henceforth, $a \cdot b$ will be simply denoted by $a b$.
An element a in L is called compact, if $a \leq \bigvee_{\alpha \in I} b_{\alpha}$ (I is an indexed set) implies $a \leq b_{\alpha_{1}} \vee b_{\alpha_{2}} \vee$ $\cdots \vee b_{\alpha_{n}}$ for some subset $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ of I. By a C-lattice, we mean a multiplicative lattice L with greatest element 1_{L} which is compact as well as multiplicative identity, that is generated under joins by a multiplicatively closed subset C of compact elements of L.

An element $m \in L$ said to be proper, if $m<1_{L}$. A proper element m of L is said to be maximal, if for every $x \in L$ with $m<x \leq 1_{L}$ implies $x=1_{L}$.

In [3], Alarcon et. al., defined the concept of the radical of an element $a \in L$ as, $\sqrt{a}=\vee\{x \in L$: $x^{n} \leq a$ for some natural number n$\}$. If $\sqrt{a}=a$, then an element a is called radical or semiprime. A proper element p of L is said to be prime, if $a b \leq p$ implies $a \leq p$ or $b \leq p$.

Thakare et.al.([12], [13]), studied the properties of radical of an element of multiplicative lattices and proved that, for $a \in L, \sqrt{a}=\wedge\{p \in L: p$ is prime and $a \leq p\}$.

A complete lattice M with smallest element 0_{M} and greatest element 1_{M} is said to be a lattice module over the multiplicative lattice L or L-module if there is a multiplication between elements of M and L, denoted by $a N$ for $a \in L$ and $N \in M$, which satisfies the following properties:

1. $(a b) N=a(b N)$;
2. $\left(\vee_{\alpha} a_{\alpha}\right)\left(\vee_{\beta} N_{\beta}\right)=\vee_{\alpha, \beta}\left(a_{\alpha} N_{\beta}\right) ;$
3. $1_{L} N=N$;
4. $0_{L} N=0_{M}$; for $a, b, a_{\alpha} \in L$ and for $N, N_{\beta} \in M$.

Let M be a lattice module over a multiplicative lattice L. For $N \in M$ and $b \in L$, denote (N : $b)=\vee\{X \in M: a X \leq N\}$. If $a, b \in L$, we write $(a: b)=\vee\{x \in L: b x \leq a\}$. If $A, B \in M$, then $(A: B)=\vee\{x \in L: x B \leq A\}$.

An element $N \in M$ is said to be meet principal (respectively join principal) if it satisfies the identity $A \wedge a N=(a \wedge(A: N)) N$ (respectively $((a N \vee A): N)=(a \vee(A: N))$ for all $a \in L$ and for all $A \in M$. Also, N is said to be principal if it is both join as well as meet principal. If each element of M is a join of principal elements of M, then M is called principally generated.

An element $N<1_{M}$ of M is said to be maximal element if $N \leq B$ implies either $N=B$ or $B=1_{M}, B \in M$.

In [2], Eaman A. Al-Khouja, defined the concept of Jacobson radical of a lattice module M as the intersection of the maximal elements of a lattice module M and denoted it by $J(M)$. An element $N<1_{M}$ of M is said to be prime if $a X \leq N$ implies $X \leq N$ or $a 1_{M} \leq N$, i.e., $a \leq\left(N: 1_{M}\right)$ for every $a \in L$ and $X \in M$.
Ballal and Kharat [5], unified various generalizations of prime and primary elements in multiplicative lattices and lattice modules as φ-absorbing elements and φ-absorbing primary elements.
Phadatare et. al. [10], introduced the concept of second elements of a lattice module as a generalization of second submodules of a module (see [14]). A non-zero element N of a lattice module M is said to be second, if for $a \in L$ either $a N=N$ or $a N=0_{M}$.
In [1], Ansari-Toroghy and Farshadifar studied the dual notion of the concept of the prime radical of a submodule of a module and obtain some related results.

In this paper, we introduce second radical of an element of a lattice module M and study some properties of it as a generalization of the dual notion of the prime radical of a submodule.

Further all these concepts and for more information on multiplicative lattices and lattice modules, the reader may refer ([2], [4]-[13]).

2 The second radical

We begin this section with the definition of second element for a lattice module M over a C-lattice L due to Phadatare et. al.[10].

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero element $N \in M$ is said to be second, if for $a \in L$ either $a N=N$ or $a N=0_{M}$.

Lemma 2.2. [10] Let M be a lattice module over a C-lattice L and $N \in M$. If N is second then $\left(0_{M}: N\right)$ is a prime element of L.

If a non-zero element $S \in M$ is second and $\left(0_{M}: S\right)=p$ is a prime element of L then S is said to be $p-\operatorname{second}$ (see [10]).
Following is the result due to Johnson [9] which has been used in sequel.
Lemma 2.3. [9] Let M be a lattice module over a C-lattice L. Then for $x \in L$ and $A, B, C \in M$, following holds:

1. $x \leq\left(0_{M}:\left(0_{M}: x\right)\right)$.
2. $A \leq\left(0_{M}:\left(0_{M}: A\right)\right)$.
3. If $A \leq B$ then $(C: B) \leq(C: A)$.
4. $\left(0_{M}: A\right)=\left(0_{M}:\left(0_{M}:\left(0_{M}: A\right)\right)\right)$.
5. $(A: B \vee C)=(A: B) \wedge(A: C)$.
6. $(A: B) B \leq A$.

Lemma 2.4. Let M be a lattice module over a C-lattice L and S be a p-second element of M. If for $N, K \in M, S \leq N \vee K$ and $\left(0_{M}: N\right) \not \leq p$, then $S \leq K$.

Proof. Suppose that for $N, K \in M, S \leq N \vee K$, where S is a p-second element of M and $\left(0_{M}\right.$: $N) \not \leq p$. Then by Lemma $2.3(3),\left(0_{M}: N \vee K\right) \leq\left(0_{M}: S\right)$. Therefore by Lemma 2.3(5), $\left(0_{M}: N\right)\left(0_{M}: K\right) \leq\left(0_{M}: N\right) \wedge\left(0_{M}: K\right) \leq\left(0_{M}: N \vee K\right) \leq\left(0_{M}: S\right)=p$. Since S is p-second, $\left(0_{M}: S\right)=p$ is prime, this implies $\left(0_{M}: N\right) \leq p$ or $\left(0_{M}: K\right) \leq p$. Note that, $\left(0_{M}: N\right) \not \leq p$ therefore $\left(0_{M}: K\right) \leq p=\left(0_{M}: S\right)$ and so $S \leq K$ by Lemma 2.3(3).
Q.E.D.

Theorem 2.5. Let M be a lattice module over a C-lattice L and $S \in M$. If S is a p-second element of M with $S \leq\left(0_{M}: a\right) \vee N$, then $S \leq\left(0_{M}: a\right)$ or $S \leq N$, where $a \in L$ and $N \in M$.

Proof. Suppose that for $a \in L$ and $N \in M, S \leq\left(0_{M}: a\right) \vee N$, where S is a p-second element of M. If $\left(0_{M}:\left(0_{M}: a\right)\right) \not \leq p$, then $S \leq N$ by Lemma 2.4. Now, if $\left(0_{M}:\left(0_{M}: a\right)\right) \leq p$, then by Lemma 2.3(1), $a \leq\left(0_{M}:\left(0_{M}: a\right)\right) \leq p$ therefore $\left(0_{M}: p\right) \leq\left(0_{M}: a\right)$ by Lemma 2.3(3). Since S is p-second, $\left(0_{M}: S\right)=p$ therefore by Lemma 2.3(2), $S \leq\left(0_{M}:\left(0_{M}: S\right)\right)=\left(0_{M}: p\right)$ and so $S \leq\left(0_{M}: p\right) \leq\left(0_{M}: a\right)$, consequently, $S \leq\left(0_{M}: a\right)$.
Q.E.D.

Callialp et. al.[8] introduced the concept of comultiplication lattice modules and also, investigated some properties of comultiplication lattice modules.

Definition 2.6. [8] Let M be a lattice module over a C-lattice L. Then M is said to be a comultiplication lattice module, if for each $N \in M$ there exists an element $a \in L$ such that $N=\left(0_{M}: a\right)$.

Lemma 2.7. [8] Let M be a lattice module over a C-lattice L. Then M is a comultiplication lattice module if and only if $N=\left(0_{M}:\left(0_{M}: N\right)\right)$ for each $N \in M$.

Converse of Lemma 2.2 is true for comultiplication lattice module.
Lemma 2.8. [8] Let M be a comultiplication lattice module over a C-lattice L and $N \in M$. Then N is second if and only if $\left(0_{M}: N\right)$ is a prime element of L.

Lemma 2.9. [8] Let M be a comultiplication lattice module over a C-lattice L. Then for $a \in L$ and $N \in M,(N: a)=\left(\left(0_{M}: a\right):\left(0_{M}: N\right)\right)$.

Theorem 2.10. Let M be a comultiplication lattice module over a C-lattice L and p be a prime element of L with $\left(0_{M}: 1_{M}\right) \leq p$, then $\left(0_{M}: p\right)$ is a second element of M.

Proof. Suppose that M is a comultiplication lattice module over a C-lattice L and p is a prime element of L with $\left(0_{M}: 1_{M}\right) \leq p$. By Lemma 2.3(1), we have $p \leq\left(0_{M}:\left(0_{M}: p\right)\right)$.
Now, suppose that $r \leq\left(0_{M}:\left(0_{M}: p\right)\right)$, where $r \in L$. Then $\left(0_{M}: p\right) \leq\left(0_{M}: r\right)$ therefore $\left(\left(0_{M}: p\right):\left(0_{M}: p 1_{M}\right)\right) \leq\left(\left(0_{M}: r\right):\left(0_{M}: p 1_{M}\right)\right)$ and so $\left(p 1_{M}: p\right) \leq\left(p 1_{M}: r\right)$ by Lemma 2.9. Since $\left(p 1_{M}: p\right)=1_{M}$, we have $1_{M}=\left(p 1_{M}: r\right)$ therefore $r 1_{M} \leq p 1_{M}$ and hence $r \leq p$, consequently, $\left(0_{M}:\left(0_{M}: p\right)\right)=p$. But p is prime, therefore by Lemma 2.8, $\left(0_{M}: p\right)$ is second.
Q.E.D.

Denote the set of all second elements of M by $\operatorname{Spec}^{s}(M)$. For $N \in M$, the second radical of N is denoted by $\sqrt[s]{N}$ and defined as, $\sqrt[s]{N}=\vee\left\{K \in \operatorname{Spec}^{s}(M) \mid K \leq N\right\}$. If N does not contain any second element of M, then $\sqrt[s]{N}=0_{M}$ and also, if $\sqrt[s]{N}=N$ then N is said to be second radical element of M.

Lemma 2.11. Let M be a lattice module over a C-lattice L and $N, K \in M$. Then the following statements hold:

1. $\sqrt[s]{N} \leq N$.
2. If $N \leq K$ then $\sqrt[s]{N} \leq \sqrt[s]{K}$.
3. $\sqrt[s]{\sqrt[s]{N}} \leq \sqrt[s]{N}$.
4. $\sqrt[s]{N} \vee \sqrt[s]{K} \leq \sqrt[s]{N \vee K}$.
5. $\sqrt[s]{N \wedge K}=\sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}}$.
6. $\sqrt[s]{\left(0_{M}: a\right)}=\sqrt[s]{\left(0_{M}: \sqrt{a}\right)}$ for $a \in L$.
7. $\sqrt[s]{N} \leq\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)$.
8. If $N \vee K=\sqrt[s]{N} \vee \sqrt[s]{K}$, then $\sqrt[s]{N \vee K}=N \vee K$.

Proof. 1) By definition, $\sqrt[s]{N}=\vee\left\{K \in \operatorname{Spec}^{s}(M) \mid K \leq N\right\} \leq N$.
2) Follows from (1).
3) By definition $\sqrt[s]{\sqrt[s]{N}}=\sqrt[s]{\left(\vee\left\{K \in \operatorname{Spec}^{s}(M) \mid K \leq N\right\}\right)}=$
$\vee\left\{P \in \operatorname{Spec}^{s}(M) \mid P \leq \vee\left\{K \in \operatorname{Spec}^{s}(M) \mid K \leq N\right\}\right\} \leq \sqrt[s]{N}$.
4) Note that $\sqrt[s]{N}, \sqrt[s]{K} \leq \vee\left\{X \in \operatorname{Spec}^{s}(M) \mid X \leq N \vee K\right\}=\sqrt[s]{N \vee K}$. Therefore $\sqrt[s]{N} \vee \sqrt[s]{K} \leq$ $\sqrt[s]{N \vee K}$.
5) $\sqrt[s]{N \wedge K}=\vee\left\{X \in \operatorname{Spec}^{s}(M) \mid X \leq N \wedge K\right\}=\vee\left\{X \in \operatorname{Spec}^{s}(M) \mid(X \leq N) \wedge(X \leq K)\right\}$. Since X is second, $X=\sqrt[s]{X}$ therefore by $(2), \sqrt[s]{N \wedge K}=\vee\left\{X \in \operatorname{Spec}^{s}(M) \mid(X \leq N) \wedge(X \leq K)\right\}=\vee\{X \in$ $\left.\operatorname{Spec}^{s}(M) \mid(X \leq \sqrt[s]{N}) \wedge(X \leq \sqrt[s]{K})\right\}=\vee\left\{X \in \operatorname{Spec}^{s}(M) \mid X \leq \sqrt[s]{N} \wedge \sqrt[s]{K}\right\}=\sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}}$.
6) Suppose that $S \leq\left(0_{M}: a\right)$ for $S \in \operatorname{Spec}^{s}(M)$. Then $a \leq\left(0_{M}: S\right)$. Since $\left(0_{M}: S\right)$ is prime, we have $\sqrt{a} \leq\left(0_{M}: S\right)$ therefore $S \leq \sqrt[s]{\left(0_{M}: \sqrt{a}\right)}$ and so $\sqrt[s]{\left(0_{M}: a\right)} \leq \sqrt[s]{\left(0_{M}: \sqrt{a}\right)}$.
Conversely, suppose that $P \leq\left(0_{M}: \sqrt{a}\right)$ for $P \in \operatorname{Spec}^{s}(M)$.
Then $a \leq \sqrt{a} \leq\left(0_{M}: P\right)$ therefore $P \leq\left(0_{M}: a\right)$. This implies that $\sqrt[s]{\left(0_{M}: \sqrt{a}\right)} \leq \sqrt[s]{\left(0_{M}: a\right)}$, consequently, $\sqrt[s]{\left(0_{M}: a\right)}=\sqrt[s]{\left(0_{M}: \sqrt{a}\right)}$.
7) By Lemma $2.3(2)$, we have $N \leq\left(0_{M}:\left(0_{M}: N\right)\right.$) therefore by $(1), \sqrt[s]{N} \leq \sqrt[s]{\left(0_{M}:\left(0_{M}: N\right)\right)}$ and so by $(6), \sqrt[s]{N} \leq \sqrt[s]{\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)}$. Again by $(2), \sqrt[s]{N} \leq \sqrt[s]{\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)} \leq\left(0_{M}\right.$:
$\left.\sqrt{\left(0_{M}: N\right)}\right)$, consequently, $\sqrt[s]{N} \leq\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)$.
8) Suppose that for $N, K \in M, N \vee K=\sqrt[s]{N} \vee \sqrt[s]{K}$. Since $\sqrt[s]{N \vee K} \leq N \vee K$ by (1) and $\sqrt[s]{N} \vee \sqrt[s]{K} \leq \sqrt[s]{N \vee K}$ by (4), we have $\sqrt[s]{N \vee K} \leq N \vee K=\sqrt[s]{N} \vee \sqrt[s]{K} \leq \sqrt[s]{N \vee K}$, consequently, $\sqrt[s]{N \vee K}=N \vee K$.
Q.E.D.

Definition 2.12. Let M be a lattice module over a C-lattice L. A non-zero element $K \neq 1_{M}$ of M is said to be minimal, whenever $0_{M} \leq N<K$ implies $N=0_{M}, N \in M$.

Note that, every minimal element of M is second. But the converse is not true in general.
Example 2.13. The lattice depicted in Fig. (a) is a multiplicative lattice L and the lattice depicted in Fig. (b) is a lattice module M over L. Note that, X is minimal and hence second but Y, Z and P are second but not minimal.

\cdot	0_{L}	a	b	c	d	1_{L}
0_{L}						
a	0_{L}	a	0_{L}	a	0_{L}	a
b	0_{L}	0_{L}	0_{L}	0_{L}	b	b
c	0_{L}	a	0_{L}	a	b	c
d	0_{L}	0_{L}	b	b	d	d
1_{L}	0_{L}	a	b	c	d	1_{L}

Fig.(a) Multiplicative lattice L

Fig.(b) Lattice module M over L

Theorem 2.14. Let M be a lattice module over a C-lattice L with each non-zero element of M contains a minimal element. Then following statements hold.

1. $\sqrt[s]{1_{M}} \neq 0_{M}$, i.e., for $N \in M, \sqrt[s]{N}=0_{M}$ if and only if $N=0_{M}$.
2. For $N, K \in M, \sqrt[s]{N} \wedge \sqrt[s]{K}=0_{M}$ if and only if $N \wedge K=0_{M}$.

Proof. 1) Since every minimal element is second and each non-zero element of M contains a minimal element, we have $\sqrt[s]{1_{M}} \neq 0_{M}$.
2) Suppose that for $N, K \in M, \sqrt[s]{N} \wedge \sqrt[s]{K}=0_{M}$. Then by Lemma 2.11(5), we have $\sqrt[s]{N \wedge K}=$ $\sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}}=\sqrt[s]{0_{M}}=0_{M}$, consequently, $N \wedge K=0_{M}$ by (1). Conversely, suppose that $N \wedge K=$ 0_{M} for $N, K \in M$. Then by (1), $0_{M}=\sqrt[s]{N \wedge K}$. Therefore by Lemma 2.11(5), $\sqrt[s]{N \wedge K}=$ $\sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}}=0_{M}$ and so $\sqrt[s]{N} \wedge \sqrt[s]{K}=0_{M}$ by (1).
Q.E.D.

Theorem 2.15. Let M be a lattice module over a C-lattice L with each non-zero element of M contains a minimal element. If m is a maximal element of L and $\sqrt{\left(0_{M}: Q\right)}=m$ for non-zero $Q \in M$, then $\sqrt[s]{Q}$ is m-second.

Proof. Suppose that for $0_{M} \neq Q \in M, \sqrt{\left(0_{M}: Q\right)}=m$, where m is a maximal element of L. By Lemma 2.11(7), we have $\sqrt[s]{Q} \leq\left(0_{M}: \sqrt{\left(0_{M}: Q\right)}\right)$,
therefore $m=\sqrt{\left(0_{M}: Q\right)} \leq\left(0_{M}: \sqrt[s]{Q}\right)$. Since m is maximal, either $\left(0_{M}: \sqrt[s]{Q}\right)=m$ or $\left(0_{M}\right.$: $\sqrt[s]{Q})=1_{L}$. If $\left(0_{M}: \sqrt[s]{Q}\right)=1_{L}$, then $\sqrt[s]{Q}=0_{M}$ and so by Theorem 2.14(1), $Q=0_{M}$, a contradiction, consequently, $\left(0_{M}: \sqrt[s]{Q}\right)=m$. Since m is maximal, $\sqrt[s]{Q}$ is minimal, indeed if $\sqrt[s]{Q}$ is not minimal, then there exists a minimal element K such that $K \leq \sqrt[s]{Q}$ and so by Lemma 2.3(3),
$m=\left(0_{M}: \sqrt[s]{Q}\right) \leq\left(0_{M}: K\right)$, a contradiction to maximality of m, consequently, $\sqrt[s]{Q}$ is minimal and hence is a second element of M.
Q.E.D.

Lemma 2.16. Let M be a comultiplication lattice module over a C-lattice L. Then for $N, K \in M$, $\sqrt[s]{N \vee K}=\sqrt[s]{N} \vee \sqrt[s]{K}$.

Proof. By Lemma 2.11(4), $\sqrt[s]{N} \vee \sqrt[s]{K} \leq \sqrt[s]{N \vee K}$. Now, suppose that S is a second element of M with $S \leq N \vee K$, where $N, K \in M$. Since M is comultiplication, by Lemma 2.7 we have, $N=\left(0_{M}:\left(0_{M}: N\right)\right)$, therefore $S \leq N \vee K=\left(0_{M}:\left(0_{M}: N\right)\right) \vee K$ and so by Theorem 2.5, either $S \leq\left(0_{M}:\left(0_{M}: N\right)\right)=N$ or $S \leq K$, consequently, $\sqrt[s]{N \vee K} \leq \sqrt[s]{N} \vee \sqrt[s]{K}$.
Q.E.D.

Definition 2.17. Let M be a lattice module over a C-lattice L. Then the map $\psi^{s}: \operatorname{Spec}^{s}(M) \rightarrow$ $\operatorname{Spec}\left(L /\left(0_{M}: 1_{M}\right)\right)$ defined by $\psi^{s}(N)=\overline{\left(0_{M}: N\right)}$ is called the natural map of $\operatorname{Spec}^{s}(M)$.

The following remark is immediate from Theorem 2.10.
Remark 2.18. Let M be a comultiplication lattice module over a C-lattice L. Then the natural map ψ^{s} is surjective.

Lemma 2.19. Let M be a lattice module over a C-lattice L and the natural map ψ^{s} be surjective. Then $\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right)=\sqrt{a}$, for $a \in L$ with $\left(0_{M}: 1_{M}\right) \leq a$.
Proof. Suppose that the natural map ψ^{s} of $\operatorname{Spec}^{s}(M)$ is surjective and $\left(0_{M}: 1_{M}\right) \leq a$ for $a \in L$. Then $\left(0_{M}: 1_{M}\right) \leq a \leq \sqrt{a}=\wedge p$, where p is prime element of L with $a \leq p$. Since ψ^{s} is surjective and $\left(0_{M}: 1_{M}\right) \leq p, p=\left(0_{M}: S\right)$ for $S \in \operatorname{Spec}^{s}(M)$. Therefore $\sqrt{a} \leq\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right) \leq\left(0_{M}:\right.$ $\left.\left(0_{M}: \wedge p\right)\right) \leq \wedge\left(0_{M}:\left(0_{M}: p\right)\right)=\left(0_{M}:\left(0_{M}:\left(0_{M}: S\right)\right)\right)$ by Lemma 2.3(1) and Lemma 2.3(3). But by Lemma 2.3(4), $\left(0_{M}:\left(0_{M}:\left(0_{M}: S\right)\right)\right)=\left(0_{M}: S\right)$, therefore $\sqrt{a} \leq\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right) \leq\left(0_{M}:\right.$ $\left.\left(0_{M}: \wedge a\right)\right) \leq \wedge\left(0_{M}:\left(0_{M}: a\right)\right)=\left(0_{M}:\left(0_{M}:\left(0_{M}: S\right)\right)\right)=\wedge\left(0_{M}: S\right)=\wedge a=\sqrt{a}$. Consequently, $\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right)=\sqrt{a}$.
Q.E.D.

A lattice module M over a multiplicative lattice L is said to be faithful, if $\left(0_{M}: 1_{M}\right)=0_{L}$ (see [6]).
Theorem 2.20. Let M be a faithful comultiplication lattice module over a C-lattice L and $a \in L$. Then $\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}: \sqrt{a}\right)$ if and only if $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{a}$.

Proof. Suppose that $\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}: \sqrt{a}\right)$ where $a \in L$. Since M is faithful, we have $\left(0_{M}\right.$: $\left.1_{M}\right)=0_{L} \leq a$. Also, since M is comultiplication, by Remark 2.18, the natural map ψ^{s} is surjective, therefore by Lemma $2.19,\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right)=\sqrt{a}$ and hence $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{a}$. Conversely, suppose that $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{a}$. Since M is comultiplication, by Lemma 2.7, $\sqrt[s]{\left(0_{M}: a\right)}=$ $\left(0_{M}:\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)\right.$ therefore $\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}:\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)\right)=\left(0_{M}: \sqrt{a}\right) . \quad \quad$ Q.E.D.

Theorem 2.21. Let M be a faithful comultiplication lattice module over a C-lattice L. Then the following statements are equivalent.

1. $\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}: \sqrt{a}\right)$ for $a \in L$.
2. $\sqrt[s]{N}=\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)$ for $N \in M$.
3. $\left(0_{M}: \sqrt[s]{N}\right)=\sqrt{\left(0_{M}: N\right)}$ for $N \in M$.
4. $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{a}$ for $a \in L$.

Proof. 1) $\Rightarrow 2$) Since M is comultiplication, by Lemma 2.7, for $N \in M, N=\left(0_{M}:\left(0_{M}: N\right)\right)$ therefore $\sqrt[s]{N}=\sqrt[s]{\left(0_{M}:\left(0_{M}: N\right)\right)}$ and hence $\sqrt[s]{N}=\sqrt[s]{\left(0_{M}:\left(0_{M}: N\right)\right)}=\left(0_{M}: \sqrt{\left(0_{M}: N\right)}\right)$ by (1).
2) \Rightarrow 3) Follows from Theorem 2.20 .
$3) \Rightarrow 4)$ By Lemma 2.3(6), for $a \in L,\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\left(0_{M}: \sqrt[s]{\left(0_{M}: \sqrt{a}\right)}\right)$ therefore by (3), $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right)}$ and hence $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{\left(0_{M}:\left(0_{M}: \sqrt{a}\right)\right)}=$ $\sqrt{\sqrt{a}}=\sqrt{a}$ by Lemma 2.19.
4) $\Rightarrow 1)$ Suppose that $\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)=\sqrt{a}$, where $a \in L$. Since M is comultiplication, then by Lemma 2.7,
$\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}:\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)\right.$, consequently, by (4) $\sqrt[s]{\left(0_{M}: a\right)}=\left(0_{M}:\left(0_{M}: \sqrt[s]{\left(0_{M}: a\right)}\right)\right)=$ $\left(0_{M}: \sqrt{a}\right)$.

References

[1] H. Ansari-Toroghy and F. Farshadifar On the dual notion of prime radicals of submodules, Asian-Eur. J. Math., 6(2)(2013) 1350024(11 pages). doi: 10.1142/S1793557113500241.
[2] E. A. AL-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci., 19(2003), 9-20.
[3] A. Francisco, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1)(1995), 1-26.
[4] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Eur. J. Math., 8(2015), 1550066(10 pages). doi: 10.1142/S1793557115500667.
[5] S. Ballal and V. Kharat, On φ-absorbing primary elements in lattice modules, Algebra, (2015), 183930(6 pages). doi: 10.1155/ 2015/183930.
[6] F. Callialp and U. Tekir, Multiplication lattice modules, Iran. J. Sci. Technol., A4(2011), 309313.
[7] F. Callialp, U. Tekir and E. Aslan Karayigit, On multiplication lattice modules, Hacet. J. Math. Stat., 43(4) (2014), 571-579.
[8] F. Callialp, U. Tekir and G. Ulucak, Comultiplication lattice modules, Iran. J. Sci. Technol., 39(A2) (2015), 213-220.
[9] J. A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math., 66(1970), 341371.
[10] N. Phadatare, S. Ballal and V. Kharat, On the second spectrum of lattice modules, Discuss. Math. Gen. Algebra Appl, 37(2017), 59-74. doi:10.7151/dmgaa.1266.
[11] N. Phadatare, S. Ballal and V. Kharat, Semi-complement graph of lattice modules, Soft Computing. doi: 10.1007/s00500-018-3347-y.
[12] N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory-II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52(1988), 53-67.
[13] N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Lecture Notes in Pure and Appl.Math., 91(1984), Dekker(New York).
[14] S. Yassemi, The dual notion of prime submodules, Arch. Math.(Brno), 37(2001), 273-278.

