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Abstract

Let L be a C-lattice and M be a lattice module over L. For a non-zero element N € M, join
of all second elements X of M with X < N is called the second radical of N, and it is denoted
by +/N. In this paper, we study some properties of second radical of elements of M and obtain
some related results.
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1 Introduction

A lattice L is said to be complete, if for any subset S of L, we have VS, AS € L. A complete lattice
L with least element 0 and greatest element 1 is said to be a multiplicative lattice, if there is
defined a binary operation ” -7 called multiplication on L satisfying the following conditions:

1. a-b=b-a, forall a,b € L,
2.a-(b-¢c)=(a-b) ¢ forall a,bce L,
3. a-(Vaby) = Vala-by), for all a,b, € L,
4. a-1p =a, for all a € L.

Henceforth, a - b will be simply denoted by ab.

An element @ in L is called compact, if a </} bo (I is an indexed set) implies a < by, V ba, V
-+ V by, for some subset {aq,q9, -+ ,an} of I. By a C-lattice, we mean a multiplicative lattice
L with greatest element 1; which is compact as well as multiplicative identity, that is generated
under joins by a multiplicatively closed subset C of compact elements of L.

An element m € L said to be proper, if m < 1p. A proper element m of L is said to be mazimal,
if for every x € L with m < x <1, implies x = 1.

In [3], Alarcon et. al., defined the concept of the radical of an element a € L as, /Ja =V{x € L:
z™ < g for some natural number n}. If \/a = a, then an element a is called radical or semiprime.
A proper element p of L is said to be prime, if ab < p implies a < p or b < p.

Thakare et.al.([12], [13]), studied the properties of radical of an element of multiplicative lattices
and proved that, for a € L, \/Ja = A{p € L : p is prime and a < p}.

A complete lattice M with smallest element 0y, and greatest element 1,; is said to be a lattice
module over the multiplicative lattice L or L-module if there is a multiplication between elements
of M and L, denoted by aN for a € L and N € M, which satisfies the following properties:

1. (ab)N = a(bN);
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2. (Va@a)(VgNg) = Va,5 (aaNp);
3. 1,N = N;
4. 0N = 0py; for a,b,a, € L and for N, Ng € M.

Let M be a lattice module over a multiplicative lattice L. For N € M and b € L, denote (N :
b)=Vv{X € M:aX <N} Ifabe L, wewrite (a:b) =V{z € L:bx<a}. If A,B € M, then
(A:B)=Vv{reL:a2B < A}.

An element N € M is said to be meet principal (respectively join principal) if it satisfies the
identity AAaN = (a A (A: N))N (respectively (aNV A): N)=(aV (A: N)) for all a € L and
for all A € M. Also, N is said to be principal if it is both join as well as meet principal. If each
element of M is a join of principal elements of M, then M is called principally generated.

An element N < 1, of M is said to be mazimal element if N < B implies either N = B or
B=1y,Be M.

In [2], Eaman A. Al-Khouja, defined the concept of Jacobson radical of a lattice module M as
the intersection of the maximal elements of a lattice module M and denoted it by J(M). An ele-
ment N < 1y of M is said to be prime if aX < N implies X < N or aly; < N, ie,a < (N :1y)
for every a € L and X € M.

Ballal and Kharat [5], unified various generalizations of prime and primary elements in multiplica-
tive lattices and lattice modules as ¢-absorbing elements and y-absorbing primary elements.
Phadatare et. al. [10], introduced the concept of second elements of a lattice module as a general-
ization of second submodules of a module (see [14]). A non-zero element N of a lattice module M
is said to be second, if for a € L either alN = N or aN = 0y,.

In [1], Ansari-Toroghy and Farshadifar studied the dual notion of the concept of the prime radical
of a submodule of a module and obtain some related results.

In this paper, we introduce second radical of an element of a lattice module M and study some
properties of it as a generalization of the dual notion of the prime radical of a submodule.

Further all these concepts and for more information on multiplicative lattices and lattice mod-
ules, the reader may refer ([2], [4]-[13]).

2 The second radical

We begin this section with the definition of second element for a lattice module M over a C-lattice
L due to Phadatare et. al.[10].

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero element N € M is said
to be second, if for a € L either aN = N or aN = 0.

Lemma 2.2. [10] Let M be a lattice module over a C-lattice L and N € M. If N is second then
(Ops : N) is a prime element of L.

If a non-zero element S € M is second and (057 : S) = p is a prime element of L then S is said
to be p—second(see [10]).
Following is the result due to Johnson [9] which has been used in sequel.

Lemma 2.3. [9] Let M be a lattice module over a C-lattice L. Then for x € L and A, B,C € M,
following holds:
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Low < (On: (Ons: 7).

2. A< (Oar: (Ons : A)).

3. IfA<B then (C:B) < (C: A).
4- (0ar + A) = (Oar = (Oar = (Oar = A))).
5. (A:BVC)=(A: B)A(A: C).

6. (A: B)B < A.

Lemma 2.4. Let M be a lattice module over a C-lattice L and S be a p-second element of M. If
for NNK € M, S<NVK and (0pr : N) £ p, then S < K.

Proof. Suppose that for N K € M, S < NV K, where S is a p-second element of M and (0y; :
N) ¢ p. Then by Lemma 2.3(3), (0Ops : NV K) < (0p : S). Therefore by Lemma 2.3(5),
(Opr : N)(Opr - K) < (0ps : N)A(Opr 2 K) < (0pr : NV K) < (0pr:S) =p. Since S is p-second,
(Oar = S) = p is prime, this implies (0pr : N) < p or (Opr : K) < p. Note that, (Opr : N) £ p
therefore (0ps : K) < p = (0pr: S) and so S < K by Lemma 2.3(3). Q.E.D.

Theorem 2.5. Let M be a lattice module over a C-lattice L and S € M. If S is a p-second element
of M with S < (0p; :a) VN, then S < (0pr:a) or S < N, wherea € L and N € M.

Proof. Suppose that for a € L and N € M, S < (0p : a) V N, where S is a p-second element of
M. If (Opr : (Oas : a)) £ p, then S < N by Lemma 2.4. Now, if (Oas : (Oa : a)) < p, then by
Lemma 2.3(1), a < (0pr : (Oas : a)) < p therefore (Ops : p) < (Opr : a) by Lemma 2.3(3). Since
S is p—second, (057 : S) = p therefore by Lemma 2.3(2), S < (Opr : (0Opr = S)) = (Ops : p) and so
S < (0p:p) < (0ps: a), consequently, S < (0af : a). Q.E.D.

Callialp et. al.[8] introduced the concept of comultiplication lattice modules and also, investi-
gated some properties of comultiplication lattice modules.

Definition 2.6. [8] Let M be a lattice module over a C-lattice L. Then M is said to be a
comultiplication lattice module, if for each N € M there exists an element a € L such that
N = (OM : a).

Lemma 2.7. [8] Let M be a lattice module over a C-lattice L. Then M is a comultiplication lattice
module if and only if N = (0pr : (Opr = N)) for each N € M.

Converse of Lemma 2.2 is true for comultiplication lattice module.

Lemma 2.8. [8] Let M be a comultiplication lattice module over a C-lattice L and N € M. Then
N is second if and only if (Ops @ N) is a prime element of L.

Lemma 2.9. [8] Let M be a comultiplication lattice module over a C-lattice L. Then for a € L
and N € M, (N :a) = ((0p7 : a) : (Opr : N)).

Theorem 2.10. Let M be a comultiplication lattice module over a C-lattice L and p be a prime
element of L with (Opr : 1p7) < p, then (Ops : p) is a second element of M.
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Proof. Suppose that M is a comultiplication lattice module over a C-lattice L and p is a prime
element of L with (Ops : 1p7) < p. By Lemma 2.3(1), we have p < (0ps : (Oas : p)).

Now, suppose that » < (0pr : (Opr : p)), where r € L. Then (Op @ p) < (0pr @ r) therefore
((0pr :p) = (Oar = p1ag)) < ((Opg :7) = (Opg 2 plag)) and so (plas : p) < (pla : ) by Lemma 2.9.
Since (plas : p) = 1ar, we have 13, = (plys : r) therefore r1;; < plps and hence r < p, consequently,
(Ops : (Op7 : p)) = p. But p is prime, therefore by Lemma 2.8, (05 : p) is second. Q.E.D.

Denote the set of all second elements of M by Spec®(M). For N € M, the second radical of N
is denoted by v/N and defined as, VN = V{K € Spec*(M)|K < N}. If N does not contain any
second element of M, then /N = 0y, and also, if ¥/N = N then N is said to be second radical
element of M.

Lemma 2.11. Let M be a lattice module over a C-lattice L and N, K € M. Then the following
statements hold:

1. VN <N.
2. If N < K then VN < VK.
VNV VK <VNVK.
VNANK =+/VNAVK.
3/ (0ar - a) = /(0ar : Va) fora e L.
8 IfNVK =NV VK, then YNVK =NV K.
Proof. 1) By definition, VN = V{K € Spec*(M)|K < N} < N.
2) Follows from (1).
3) By definition /v/N = {/(V{K € Specs(M)|K < N}) =
V{P € Spec*(M)|P < V{K € Spec*(M)|K < N}} < ~/N.
4) Note that VN, VK < V{X € Spec*(M)|X < NV K} = VNV K. Therefore VNV VK <
vNVK.
5) VN AK =V{X € Spec®*(M)|X < NAK}=V{X € Spec®*(M)|(X < N)A (X < K)}. Since X
is second, X = v/X therefore by (2), VN A K = V{X € Spec*(M)|(X < N)A(X < K)}=V{X €
Spect(M)|(X < V/N)A (X < VEK)} = V{X € Spec*(M)|X < VN AVEK} =/ V/NAVK.
6) Suppose that S < (0ps : a) for S € Spec®*(M). Then a < (0p7 : S). Since (0ps : S) is prime, we
have v/a < (0p7 : S) therefore S < {/(0as : v/a) and so /(0as : a) < /(0ar : Va).
Conversely, suppose that P < (05 : v/a) for P € Spec®(M).
Then a < v/a < (0ps @ P) therefore P < (0a7 : a). This implies that /(0 : va) < {/(0Oa : a),
consequently, 3/(0ar : @) = ¢/(0ar : Va).
7) By Lemma 2.3(2), we have N < (057 : (Oas : N)) therefore by (1), VN < /(0ar : (Oar : N))

and 50 by (6), VN < {/(0ar: /(O V). Again by (2), VN < {/(0ar : v/[0ar : ) < (Or :

S
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(0a7 = N)), consequently, VN < (057 : /(057 : N)).
8) Suppose that for NJK € M, NVK = v/NV VK. Since VNVK < NV K by (1) and
VNV VK </NVK by (4), we have VNVK < NVK = VNV /K < /N V K, consequently,
vVNVK=NVK. Q.E.D.

Definition 2.12. Let M be a lattice module over a C'—lattice L. A non-zero element K # 15; of
M is said to be minimal, whenever Op; < N < K implies N =03, N € M.

Note that, every minimal element of M is second. But the converse is not true in general.

Example 2.13. The lattice depicted in Fig.(a) is a multiplicative lattice L and the lattice depicted
in Fig.(b) is a lattice module M over L. Note that, X is minimal and hence second but Y, Z and P
are second but not minimal.

1r
c d
a b
or
. OL a b C d lL
Or | O | O | O | O | O | Of
a | 0L | a |0] a |0 ]| a
Or [ O |0z [ O | b
c |0 | a |0 | a b ¢
d [0, |0 | b d d
1L OL a b C d lL

Fig.(a) Multiplicative lattice L
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Om

O] X | Y| Z | P |1um
OL OM OM OM OJVI OZM 0M
b Oju’ OM OM OM OM 0M
C OJW X Y Z P 1M
d O]y[ OM OM OM OM OM
1 |0y | X Y y/ P | 1y

Fig.(b) Lattice module M over L

Theorem 2.14. Let M be a lattice module over a C-lattice L with each non-zero element of M
contains a minimal element. Then following statements hold.

1. /Tar # Opgsice., for N € M, /N = 0y if and only if N = 0.
2. For NJK € M, /N ANK =0y if and only if N AN K = 0y.

Proof. 1) Since every minimal element is second and each non-zero element of M contains a minimal

element, we have /157 # Opy.
2) Suppose that for N, K € M, /N A VK = 03;. Then by Lemma 2.11(5), we have VN A K =

V' VN AVK = /0y = 0y, consequently, N A K = 0y by (1). Conversely, suppose that N A K =
0ps for N,K € M. Then by (1), 0py = VN A K. Therefore by Lemma 2.11(5), VN AK =

V/ VN AK =03 and so VN A VK =0y by (1). Q.E.D.

Theorem 2.15. Let M be a lattice module over a C-lattice L with each non-zero element of M
contains a minimal element. If m is a maximal element of L and \/(0p : Q) = m for non-zero
Q € M, then /Q is m-second.

Proof. Suppose that for 0y # Q € M, 1/(0p : Q) = m, where m is a maximal element of L. By

Lemma 2.11(7), we have v/Q < (0a : /(0ar : Q)),

therefore m = /(0pr : Q) < (Ops : v/Q). Since m is maximal, either (057 : /@) = m or (0p :
VQ) = 1p. TIf (0p - \5/@) = 1p, then ¢/Q = 0O and so by Theorem 2.14(1), Q@ = O, a
contradiction, consequently, (0ps : v/@Q) = m. Since m is maximal, /@ is minimal, indeed if /Q is
not minimal, then there exists a minimal element K such that K < /@ and so by Lemma 2.3(3),
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m = (0p : v/Q) < (0pr : K), a contradiction to maximality of m, consequently, /@ is minimal
and hence is a second element of M. Q.E.D.

Lemma 2.16. Let M be a comultiplication lattice module over a C-lattice L. Then for N, K € M,

VNVEK =+vVNVVK.

Proof. By Lemma 2.11(4), v/N V v/K < /N V K. Now, suppose that S is a second element of
M with S < NV K, where N, K € M. Since M is comultiplication, by Lemma 2.7 we have,
N = (0ps : (0ps = N)), therefore S < NV K = (057 : (0Opr : N)) V K and so by Theorem 2.5, either
S <(0p:(0p:N))=N or S <K, consequently, VNV K < VNV VK. Q.E.D.

Definition 2.17. Let M be a lattice module over a C-lattice L. Then the map v¢*° : Spec®(M) —
Spec(L/(0pr : 1p7)) defined by ¢°(N) = (057 : N) is called the natural map of Spec®(M).

The following remark is immediate from Theorem 2.10.

Remark 2.18. Let M be a comultiplication lattice module over a C-lattice L. Then the natural
map ° is surjective.

Lemma 2.19. Let M be a lattice module over a C-lattice L and the natural map ¥° be surjective.
Then (0ar : (Oar : V/a)) = /a, for a € L with (0pr : 1) < a.

Proof. Suppose that the natural map ° of Spec®(M) is surjective and (Opr : 137) < a for a € L.
Then (07 : 1) < a < /a = Ap, where p is prime element of L with a < p. Since ¢*® is surjective
and (Op7 : 1p7) < p, p=(0pr : S) for S € Spec®(M). Therefore \/a < (0pr : (Opr 1 va)) < (0py :
(Oar : AP)) < A(Opr 2 (Oar :p)) = (0 : (Opz 2 (Opr = S))) by Lemma 2.3(1) and Lemma 2.3(3). But
by Lemma 2.3(4), (Oar : (Oaz = (Opz = S))) = (0ps : S), therefore v/a < (0pr : (Opr = va)) < (0p :
(Oar : Aa)) < A(Opr 2 (Opr @) = (Oar 2 (Ops 2 (Oag = S))) = A(Opr = S) = Aa = +/a. Consequently,
(0ar : (O : v/@)) = Va. Q.E.D.
A lattice module M over a multiplicative lattice L is said to be faithful, if (057 : 157) = Or, (see
6))-
Theorem 2.20. Let M be a faithful comultiplication lattice module over a C-lattice L and a € L.
Then {/(0ar = a) = (0ar : v/a) if and only if (Opr 2 3/ (0ps 2 @) = Va.

Proof. Suppose that </(0p :a) = (0pr : v/a) where a € L. Since M is faithful, we have (0y/ :
1p) =01 < a. Also, since M is comultiplication, by Remark 2.18; the natural map ¢® is surjective,
therefore by Lemma 2.19, (0a7 : (Opz : v/a)) = v/a and hence (0ps : 3/(0as : a)) = v/a. Conversely,

suppose that (0p7 : </(0ps : a)) = v/a. Since M is comultiplication, by Lemma 2.7, {/(0as : a) =
(Oar : (Opr = </(Ops : @) therefore §/(0pr : @) = (Ops : (Opr 2 3/ (0pz : @) = (Ops = Va). Q.E.D.

Theorem 2.21. Let M be a faithful comultiplication lattice module over a C-lattice L. Then the
following statements are equivalent.

1. S(0]\4ZCL):(O]V[Z\/&)_]CO’I”CLEL.
2. /N = (0pr : \/(Opr : N)) for N € M.
3. (Opr: VN) = \/(0pr : N) for N € M.
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4. (0pr: §/(0pr : @) = /a fora € L.

Proof. 1) = 2) Since M is comultiplication, by Lemma 2.7, for N € M, N = (0p; : (Opr : N))
therefore /N = /(057 : (Opr : N)) and hence ¥N = {/(0ar : (Oar : N)) = (0ar : /(0ar : N)) by
(1).

2) = 3) Follows from Theorem 2.20.

3) = 4) By Lemma 2.3(6), for a € L, (Opr : 3/(0ar : a)) = (Oar = 3/(0as : v/a)) therefore by (3),
(OM : \S/(OM : (l)) = \/(OM : (OM : \/(E)) and hence (OM Y (OM : CL)) = \/(OM : (OM : \/6)) =
v/+v/a = v/a by Lemma 2.19.

4) = 1) Suppose that (0as : /(0ps : @)) = v/a, where a € L. Since M is comultiplication, then by
Lemma 2.7,

(\:)/ (OM\:fa)) = (0a7 : (Opz = </(0ps : a)), consequently, by (4) </(0ar : a) = (Opar : (Ops : /(0 : @))) =
M : a). Q.E.D.
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