Narayan Phadatare and Vilas Kharat

Department of Mathematics, Savitribai Phule Pune University, Pune-411007, India E-mail: a9999phadatare@gmail.com, laddoo1@yahoo.com

#### Abstract

Let L be a C-lattice and M be a lattice module over L. For a non-zero element  $N \in M$ , join of all second elements X of M with  $X \leq N$  is called the second radical of N, and it is denoted by  $\sqrt[s]{N}$ . In this paper, we study some properties of second radical of elements of M and obtain some related results.

2010 Mathematics Subject Classification. **06B23**. 06B75 Keywords. Minimal element; Second element; Second radical element.

## 1 Introduction

A lattice L is said to be complete, if for any subset S of L, we have  $\forall S, \land S \in L$ . A complete lattice L with least element  $0_L$  and greatest element  $1_L$  is said to be a *multiplicative lattice*, if there is defined a binary operation " $\cdot$ " called multiplication on L satisfying the following conditions:

1.  $a \cdot b = b \cdot a$ , for all  $a, b \in L$ ,

2.  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ , for all  $a, b, c \in L$ ,

3. 
$$a \cdot (\vee_{\alpha} b_{\alpha}) = \vee_{\alpha} (a \cdot b_{\alpha})$$
, for all  $a, b_{\alpha} \in L$ ,

4.  $a \cdot 1_L = a$ , for all  $a \in L$ .

Henceforth,  $a \cdot b$  will be simply denoted by ab.

An element *a* in *L* is called *compact*, if  $a \leq \bigvee_{\alpha \in I} b_{\alpha}$  (*I* is an indexed set) implies  $a \leq b_{\alpha_1} \lor b_{\alpha_2} \lor \cdots \lor b_{\alpha_n}$  for some subset  $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$  of *I*. By a *C*-lattice, we mean a multiplicative lattice *L* with greatest element  $1_L$  which is compact as well as multiplicative identity, that is generated under joins by a multiplicatively closed subset *C* of compact elements of *L*.

An element  $m \in L$  said to be proper, if  $m < 1_L$ . A proper element m of L is said to be maximal, if for every  $x \in L$  with  $m < x \le 1_L$  implies  $x = 1_L$ .

In [3], Alarcon et. al., defined the concept of the *radical* of an element  $a \in L$  as,  $\sqrt{a} = \forall \{x \in L : x^n \leq a \text{ for some natural number n}\}$ . If  $\sqrt{a} = a$ , then an element a is called *radical* or *semiprime*. A proper element p of L is said to be *prime*, if  $ab \leq p$  implies  $a \leq p$  or  $b \leq p$ .

Thakare et.al.([12], [13]), studied the properties of radical of an element of multiplicative lattices and proved that, for  $a \in L$ ,  $\sqrt{a} = \wedge \{p \in L : p \text{ is prime and } a \leq p\}$ .

A complete lattice M with smallest element  $0_M$  and greatest element  $1_M$  is said to be a *lattice* module over the multiplicative lattice L or L-module if there is a multiplication between elements of M and L, denoted by aN for  $a \in L$  and  $N \in M$ , which satisfies the following properties:

1. (ab)N = a(bN);

Tbilisi Mathematical Journal 11(4) (2018), pp. 165–173.

Tbilisi Centre for Mathematical Sciences.

Received by the editors: 09 November 2017 . Accepted for publication: 10 November 2018

- 2.  $(\vee_{\alpha} a_{\alpha})(\vee_{\beta} N_{\beta}) = \vee_{\alpha,\beta} (a_{\alpha} N_{\beta});$
- 3.  $1_L N = N;$
- 4.  $0_L N = 0_M$ ; for  $a, b, a_\alpha \in L$  and for  $N, N_\beta \in M$ .

Let M be a lattice module over a multiplicative lattice L. For  $N \in M$  and  $b \in L$ , denote  $(N : b) = \bigvee \{X \in M : aX \leq N\}$ . If  $a, b \in L$ , we write  $(a : b) = \bigvee \{x \in L : bx \leq a\}$ . If  $A, B \in M$ , then  $(A : B) = \bigvee \{x \in L : xB \leq A\}$ .

An element  $N \in M$  is said to be *meet principal* (respectively *join principal*) if it satisfies the identity  $A \wedge aN = (a \wedge (A : N))N$  (respectively  $((aN \vee A) : N) = (a \vee (A : N))$  for all  $a \in L$  and for all  $A \in M$ . Also, N is said to be *principal* if it is both join as well as meet principal. If each element of M is a join of principal elements of M, then M is called *principally generated*.

An element  $N < 1_M$  of M is said to be *maximal* element if  $N \leq B$  implies either N = B or  $B = 1_M, B \in M$ .

In [2], Eaman A. Al-Khouja, defined the concept of *Jacobson radical* of a lattice module M as the intersection of the maximal elements of a lattice module M and denoted it by J(M). An element  $N < 1_M$  of M is said to be prime if  $aX \leq N$  implies  $X \leq N$  or  $a1_M \leq N$ , i.e.,  $a \leq (N : 1_M)$  for every  $a \in L$  and  $X \in M$ .

Ballal and Kharat [5], unified various generalizations of prime and primary elements in multiplicative lattices and lattice modules as  $\varphi$ -absorbing elements and  $\varphi$ -absorbing primary elements.

Phadatare et. al. [10], introduced the concept of *second* elements of a lattice module as a generalization of second submodules of a module (see [14]). A non-zero element N of a lattice module M is said to be *second*, if for  $a \in L$  either aN = N or  $aN = 0_M$ .

In [1], Ansari-Toroghy and Farshadifar studied the dual notion of the concept of the prime radical of a submodule of a module and obtain some related results.

In this paper, we introduce second radical of an element of a lattice module M and study some properties of it as a generalization of the dual notion of the prime radical of a submodule.

Further all these concepts and for more information on multiplicative lattices and lattice modules, the reader may refer ([2], [4]-[13]).

## 2 The second radical

We begin this section with the definition of second element for a lattice module M over a C-lattice L due to Phadatare et. al.[10].

**Definition 2.1.** Let M be a lattice module over a C-lattice L. A non-zero element  $N \in M$  is said to be *second*, if for  $a \in L$  either aN = N or  $aN = 0_M$ .

**Lemma 2.2.** [10] Let M be a lattice module over a C-lattice L and  $N \in M$ . If N is second then  $(0_M : N)$  is a prime element of L.

If a non-zero element  $S \in M$  is second and  $(0_M : S) = p$  is a prime element of L then S is said to be p-second(see [10]).

Following is the result due to Johnson [9] which has been used in sequel.

**Lemma 2.3.** [9] Let M be a lattice module over a C-lattice L. Then for  $x \in L$  and  $A, B, C \in M$ , following holds:

1.  $x \leq (0_M : (0_M : x)).$ 2.  $A \leq (0_M : (0_M : A)).$ 3. If  $A \leq B$  then  $(C : B) \leq (C : A).$ 4.  $(0_M : A) = (0_M : (0_M : (0_M : A))).$ 5.  $(A : B \lor C) = (A : B) \land (A : C).$ 6.  $(A : B)B \leq A.$ 

**Lemma 2.4.** Let M be a lattice module over a C-lattice L and S be a p-second element of M. If for  $N, K \in M, S \leq N \lor K$  and  $(0_M : N) \nleq p$ , then  $S \leq K$ .

Proof. Suppose that for  $N, K \in M$ ,  $S \leq N \lor K$ , where S is a p-second element of M and  $(0_M : N) \not\leq p$ . Then by Lemma 2.3(3),  $(0_M : N \lor K) \leq (0_M : S)$ . Therefore by Lemma 2.3(5),  $(0_M : N)(0_M : K) \leq (0_M : N) \land (0_M : K) \leq (0_M : N \lor K) \leq (0_M : S) = p$ . Since S is p-second,  $(0_M : S) = p$  is prime, this implies  $(0_M : N) \leq p$  or  $(0_M : K) \leq p$ . Note that,  $(0_M : N) \not\leq p$  therefore  $(0_M : K) \leq p = (0_M : S)$  and so  $S \leq K$  by Lemma 2.3(3). Q.E.D.

**Theorem 2.5.** Let M be a lattice module over a C-lattice L and  $S \in M$ . If S is a p-second element of M with  $S \leq (0_M : a) \lor N$ , then  $S \leq (0_M : a)$  or  $S \leq N$ , where  $a \in L$  and  $N \in M$ .

Proof. Suppose that for  $a \in L$  and  $N \in M$ ,  $S \leq (0_M : a) \vee N$ , where S is a p-second element of M. If  $(0_M : (0_M : a)) \nleq p$ , then  $S \leq N$  by Lemma 2.4. Now, if  $(0_M : (0_M : a)) \leq p$ , then by Lemma 2.3(1),  $a \leq (0_M : (0_M : a)) \leq p$  therefore  $(0_M : p) \leq (0_M : a)$  by Lemma 2.3(3). Since S is p-second,  $(0_M : S) = p$  therefore by Lemma 2.3(2),  $S \leq (0_M : (0_M : S)) = (0_M : p)$  and so  $S \leq (0_M : p) \leq (0_M : a)$ , consequently,  $S \leq (0_M : a)$ .

Callialp et. al.[8] introduced the concept of *comultiplication* lattice modules and also, investigated some properties of comultiplication lattice modules.

**Definition 2.6.** [8] Let M be a lattice module over a C-lattice L. Then M is said to be a *comultiplication* lattice module, if for each  $N \in M$  there exists an element  $a \in L$  such that  $N = (0_M : a)$ .

**Lemma 2.7.** [8] Let M be a lattice module over a C-lattice L. Then M is a comultiplication lattice module if and only if  $N = (0_M : (0_M : N))$  for each  $N \in M$ .

Converse of Lemma 2.2 is true for comultiplication lattice module.

**Lemma 2.8.** [8] Let M be a comultiplication lattice module over a C-lattice L and  $N \in M$ . Then N is second if and only if  $(0_M : N)$  is a prime element of L.

**Lemma 2.9.** [8] Let M be a comultiplication lattice module over a C-lattice L. Then for  $a \in L$  and  $N \in M$ ,  $(N : a) = ((0_M : a) : (0_M : N))$ .

**Theorem 2.10.** Let M be a comultiplication lattice module over a C-lattice L and p be a prime element of L with  $(0_M : 1_M) \leq p$ , then  $(0_M : p)$  is a second element of M.

*Proof.* Suppose that M is a comultiplication lattice module over a C-lattice L and p is a prime element of L with  $(0_M : 1_M) \le p$ . By Lemma 2.3(1), we have  $p \le (0_M : (0_M : p))$ .

Now, suppose that  $r \leq (0_M : (0_M : p))$ , where  $r \in L$ . Then  $(0_M : p) \leq (0_M : r)$  therefore  $((0_M : p) : (0_M : p1_M)) \leq ((0_M : r) : (0_M : p1_M))$  and so  $(p1_M : p) \leq (p1_M : r)$  by Lemma 2.9. Since  $(p1_M : p) = 1_M$ , we have  $1_M = (p1_M : r)$  therefore  $r1_M \leq p1_M$  and hence  $r \leq p$ , consequently,  $(0_M : (0_M : p)) = p$ . But p is prime, therefore by Lemma 2.8,  $(0_M : p)$  is second. Q.E.D.

Denote the set of all second elements of M by  $Spec^{s}(M)$ . For  $N \in M$ , the second radical of N is denoted by  $\sqrt[s]{N}$  and defined as,  $\sqrt[s]{N} = \vee \{K \in Spec^{s}(M) | K \leq N\}$ . If N does not contain any second element of M, then  $\sqrt[s]{N} = 0_{M}$  and also, if  $\sqrt[s]{N} = N$  then N is said to be second radical element of M.

**Lemma 2.11.** Let M be a lattice module over a C-lattice L and  $N, K \in M$ . Then the following statements hold:

1.  $\sqrt[8]{N} \leq N$ . 2. If  $N \leq K$  then  $\sqrt[6]{N} \leq \sqrt[6]{K}$ . 3.  $\sqrt[6]{\sqrt[6]{N}} \leq \sqrt[6]{N}$ . 4.  $\sqrt[6]{N} \vee \sqrt[6]{K} \leq \sqrt[6]{N} \vee K$ . 5.  $\sqrt[6]{N} \vee \sqrt[6]{K} \leq \sqrt[6]{N} \vee K$ . 5.  $\sqrt[6]{N} \wedge K = \sqrt[6]{\sqrt[6]{N}} \sqrt{\sqrt[6]{N}} \sqrt{\sqrt[6]{K}}$ . 6.  $\sqrt[6]{(0_M : a)} = \sqrt[6]{(0_M : \sqrt{a})} \text{ for } a \in L$ . 7.  $\sqrt[6]{N} \leq (0_M : \sqrt{(0_M : N)})$ . 8. If  $N \vee K = \sqrt[6]{N} \vee \sqrt[6]{K}$ , then  $\sqrt[6]{N} \vee K = N \vee K$ . Proof. 1) By definition,  $\sqrt[6]{N} = \vee \{K \in Spec^s(M) | K \leq N\} \leq N$ . 2) Follows from (1).

3) By definition  $\sqrt[s]{\sqrt[s]{N}} = \sqrt[s]{(\vee\{K \in Spec^s(M) | K \le N\})} =$ 

 $\vee \{P \in Spec^{s}(M) | P \leq \vee \{K \in Spec^{s}(M) | K \leq N\}\} \leq \sqrt[s]{N}.$ 

4) Note that  $\sqrt[s]{N}, \sqrt[s]{K} \leq \vee \{X \in Spec^{s}(M) | X \leq N \vee K\} = \sqrt[s]{N \vee K}$ . Therefore  $\sqrt[s]{N} \vee \sqrt[s]{K} \leq \sqrt[s]{N \vee K}$ .

5)  $\sqrt[s]{N \wedge K} = \vee \{X \in Spec^s(M) | X \le N \wedge K\} = \vee \{X \in Spec^s(M) | (X \le N) \wedge (X \le K)\}.$  Since X is second,  $X = \sqrt[s]{X}$  therefore by (2),  $\sqrt[s]{N \wedge K} = \vee \{X \in Spec^s(M) | (X \le N) \wedge (X \le K)\} = \vee \{X \in Spec^s(M) | (X \le \sqrt[s]{N}) \wedge (X \le \sqrt[s]{K})\} = \vee \{X \in Spec^s(M) | X \le \sqrt[s]{N} \wedge \sqrt[s]{K}\} = \sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}}.$ 

6) Suppose that  $S \leq (0_M : a)$  for  $S \in Spec^s(M)$ . Then  $a \leq (0_M : S)$ . Since  $(0_M : S)$  is prime, we have  $\sqrt{a} \leq (0_M : S)$  therefore  $S \leq \sqrt[s]{(0_M : \sqrt{a})}$  and so  $\sqrt[s]{(0_M : a)} \leq \sqrt[s]{(0_M : \sqrt{a})}$ . Conversely, suppose that  $P \leq (0_M : \sqrt{a})$  for  $P \in Spec^s(M)$ .

Then  $a \leq \sqrt{a} \leq (0_M : P)$  therefore  $P \leq (0_M : a)$ . This implies that  $\sqrt[s]{(0_M : \sqrt{a})} \leq \sqrt[s]{(0_M : a)}$ , consequently,  $\sqrt[s]{(0_M : a)} = \sqrt[s]{(0_M : \sqrt{a})}$ .

7) By Lemma 2.3(2), we have  $N \leq (0_M : (0_M : N))$  therefore by (1),  $\sqrt[s]{N} \leq \sqrt[s]{(0_M : (0_M : N))}$ and so by (6),  $\sqrt[s]{N} \leq \sqrt[s]{(0_M : \sqrt{(0_M : N)})}$ . Again by (2),  $\sqrt[s]{N} \leq \sqrt[s]{(0_M : \sqrt{(0_M : N)})} \leq (0_M : \sqrt{(0_M : N)})$ 

 $\sqrt{(0_M:N)}$ , consequently,  $\sqrt[s]{N} \leq (0_M:\sqrt{(0_M:N)})$ .

8) Suppose that for  $N, K \in M$ ,  $N \vee K = \sqrt[8]{N} \vee \sqrt[8]{K}$ . Since  $\sqrt[8]{N \vee K} \leq N \vee K$  by (1) and  $\sqrt[8]{N \vee \sqrt[8]{K}} \leq \sqrt[8]{N \vee K}$  by (4), we have  $\sqrt[6]{N \vee K} \leq N \vee K = \sqrt[6]{N} \vee \sqrt[6]{K} \leq \sqrt[6]{N \vee K}$ , consequently,  $\sqrt[6]{N \vee K} = N \vee K$ .

**Definition 2.12.** Let M be a lattice module over a C-lattice L. A non-zero element  $K \neq 1_M$  of M is said to be *minimal*, whenever  $0_M \leq N < K$  implies  $N = 0_M$ ,  $N \in M$ .

Note that, every minimal element of M is second. But the converse is not true in general.

**Example 2.13.** The lattice depicted in Fig.(a) is a multiplicative lattice L and the lattice depicted in Fig.(b) is a lattice module M over L. Note that, X is minimal and hence second but Y, Z and P are second but not minimal.



Fig.(a) Multiplicative lattice L



Fig.(b) Lattice module M over L

**Theorem 2.14.** Let M be a lattice module over a C-lattice L with each non-zero element of M contains a minimal element. Then following statements hold.

- 1.  $\sqrt[s]{1_M} \neq 0_M$ , *i.e.*, for  $N \in M$ ,  $\sqrt[s]{N} = 0_M$  if and only if  $N = 0_M$ .
- 2. For  $N, K \in M$ ,  $\sqrt[s]{N} \land \sqrt[s]{K} = 0_M$  if and only if  $N \land K = 0_M$ .

*Proof.* 1) Since every minimal element is second and each non-zero element of M contains a minimal element, we have  $\sqrt[s]{1_M} \neq 0_M$ .

2) Suppose that for  $N, K \in M$ ,  $\sqrt[s]{N} \wedge \sqrt[s]{K} = 0_M$ . Then by Lemma 2.11(5), we have  $\sqrt[s]{N} \wedge \overline{K} = \sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}} = \sqrt[s]{0_M} = 0_M$ , consequently,  $N \wedge K = 0_M$  by (1). Conversely, suppose that  $N \wedge K = 0_M$  for  $N, K \in M$ . Then by (1),  $0_M = \sqrt[s]{N \wedge K}$ . Therefore by Lemma 2.11(5),  $\sqrt[s]{N \wedge K} = \sqrt[s]{\sqrt[s]{N} \wedge \sqrt[s]{K}} = 0_M$  and so  $\sqrt[s]{N} \wedge \sqrt[s]{K} = 0_M$  by (1). Q.E.D.

**Theorem 2.15.** Let M be a lattice module over a C-lattice L with each non-zero element of M contains a minimal element. If m is a maximal element of L and  $\sqrt{(0_M : Q)} = m$  for non-zero  $Q \in M$ , then  $\sqrt[s]{Q}$  is m-second.

*Proof.* Suppose that for  $0_M \neq Q \in M$ ,  $\sqrt{(0_M : Q)} = m$ , where *m* is a maximal element of *L*. By Lemma 2.11(7), we have  $\sqrt[s]{Q} \leq (0_M : \sqrt{(0_M : Q)})$ ,

therefore  $m = \sqrt{(0_M : Q)} \leq (0_M : \sqrt[s]{Q})$ . Since *m* is maximal, either  $(0_M : \sqrt[s]{Q}) = m$  or  $(0_M : \sqrt[s]{Q}) = 1_L$ . If  $(0_M : \sqrt[s]{Q}) = 1_L$ , then  $\sqrt[s]{Q} = 0_M$  and so by Theorem 2.14(1),  $Q = 0_M$ , a contradiction, consequently,  $(0_M : \sqrt[s]{Q}) = m$ . Since *m* is maximal,  $\sqrt[s]{Q}$  is minimal, indeed if  $\sqrt[s]{Q}$  is not minimal, then there exists a minimal element *K* such that  $K \leq \sqrt[s]{Q}$  and so by Lemma 2.3(3),

 $m = (0_M : \sqrt[s]{Q}) \le (0_M : K)$ , a contradiction to maximality of m, consequently,  $\sqrt[s]{Q}$  is minimal and hence is a second element of M.

**Lemma 2.16.** Let M be a comultiplication lattice module over a C-lattice L. Then for  $N, K \in M$ ,  $\sqrt[s]{N \lor K} = \sqrt[s]{N} \lor \sqrt[s]{K}$ .

Proof. By Lemma 2.11(4),  $\sqrt[s]{N} \lor \sqrt[s]{K} \le \sqrt[s]{N \lor K}$ . Now, suppose that S is a second element of M with  $S \le N \lor K$ , where  $N, K \in M$ . Since M is comultiplication, by Lemma 2.7 we have,  $N = (0_M : (0_M : N))$ , therefore  $S \le N \lor K = (0_M : (0_M : N)) \lor K$  and so by Theorem 2.5, either  $S \le (0_M : (0_M : N)) = N$  or  $S \le K$ , consequently,  $\sqrt[s]{N \lor K} \le \sqrt[s]{N} \lor \sqrt[s]{K}$ . Q.E.D.

**Definition 2.17.** Let M be a lattice module over a C-lattice L. Then the map  $\psi^s : Spec^s(M) \to Spec(L/(0_M : 1_M))$  defined by  $\psi^s(N) = \overline{(0_M : N)}$  is called the *natural map* of  $Spec^s(M)$ .

The following remark is immediate from Theorem 2.10.

**Remark 2.18.** Let M be a comultiplication lattice module over a C-lattice L. Then the natural map  $\psi^s$  is surjective.

**Lemma 2.19.** Let M be a lattice module over a C-lattice L and the natural map  $\psi^s$  be surjective. Then  $(0_M : (0_M : \sqrt{a})) = \sqrt{a}$ , for  $a \in L$  with  $(0_M : 1_M) \leq a$ .

Proof. Suppose that the natural map  $\psi^s$  of  $Spec^s(M)$  is surjective and  $(0_M : 1_M) \leq a$  for  $a \in L$ . Then  $(0_M : 1_M) \leq a \leq \sqrt{a} = \wedge p$ , where p is prime element of L with  $a \leq p$ . Since  $\psi^s$  is surjective and  $(0_M : 1_M) \leq p$ ,  $p = (0_M : S)$  for  $S \in Spec^s(M)$ . Therefore  $\sqrt{a} \leq (0_M : (0_M : \sqrt{a})) \leq (0_M : (0_M : \wedge p)) \leq \wedge (0_M : (0_M : p)) = (0_M : (0_M : (0_M : S)))$  by Lemma 2.3(1) and Lemma 2.3(3). But by Lemma 2.3(4),  $(0_M : (0_M : (0_M : S))) = (0_M : S)$ , therefore  $\sqrt{a} \leq (0_M : (0_M : \sqrt{a})) \leq (0_M : (0_M : \sqrt{a})) \leq (0_M : (0_M : \wedge a)) \leq \wedge (0_M : (0_M : a)) = (0_M : (0_M : (0_M : S))) = \wedge (0_M : S) = \wedge a = \sqrt{a}$ . Consequently,  $(0_M : (0_M : \sqrt{a})) = \sqrt{a}$ .

A lattice module M over a multiplicative lattice L is said to be faithful, if  $(0_M : 1_M) = 0_L$  (see [6]).

**Theorem 2.20.** Let M be a faithful comultiplication lattice module over a C-lattice L and  $a \in L$ . Then  $\sqrt[s]{(0_M : a)} = (0_M : \sqrt{a})$  if and only if  $(0_M : \sqrt[s]{(0_M : a)}) = \sqrt{a}$ .

Proof. Suppose that  $\sqrt[s]{(0_M:a)} = (0_M:\sqrt{a})$  where  $a \in L$ . Since M is faithful, we have  $(0_M:1_M) = 0_L \leq a$ . Also, since M is comultiplication, by Remark 2.18, the natural map  $\psi^s$  is surjective, therefore by Lemma 2.19,  $(0_M:(0_M:\sqrt{a})) = \sqrt{a}$  and hence  $(0_M:\sqrt[s]{(0_M:a)}) = \sqrt{a}$ . Conversely, suppose that  $(0_M:\sqrt[s]{(0_M:a)}) = \sqrt{a}$ . Since M is comultiplication, by Lemma 2.7,  $\sqrt[s]{(0_M:a)} = (0_M:(0_M:\sqrt[s]{(0_M:a)})$  therefore  $\sqrt[s]{(0_M:a)} = (0_M:(0_M:\sqrt[s]{(0_M:a)})) = (0_M:\sqrt{a})$ . Q.E.D.

**Theorem 2.21.** Let M be a faithful comultiplication lattice module over a C-lattice L. Then the following statements are equivalent.

- 1.  $\sqrt[s]{(0_M:a)} = (0_M:\sqrt{a}) \text{ for } a \in L.$
- 2.  $\sqrt[s]{N} = (0_M : \sqrt{(0_M : N)}) \text{ for } N \in M.$
- 3.  $(0_M : \sqrt[s]{N}) = \sqrt{(0_M : N)}$  for  $N \in M$ .

4. 
$$(0_M : \sqrt[s]{(0_M : a)}) = \sqrt{a} \text{ for } a \in L.$$

Proof. 1)  $\Rightarrow$  2) Since M is comultiplication, by Lemma 2.7, for  $N \in M$ ,  $N = (0_M : (0_M : N))$ therefore  $\sqrt[s]{N} = \sqrt[s]{(0_M : (0_M : N))}$  and hence  $\sqrt[s]{N} = \sqrt[s]{(0_M : (0_M : N))} = (0_M : \sqrt{(0_M : N)})$  by (1). 2)  $\Rightarrow$  3) Follows from Theorem 2.20. 3)  $\Rightarrow$  4) By Lemma 2.3(6), for  $a \in L$ ,  $(0_M : \sqrt[s]{(0_M : a)}) = (0_M : \sqrt[s]{(0_M : \sqrt{a})})$  therefore by (3),  $(0_M : \sqrt[s]{(0_M : a)}) = \sqrt{(0_M : (0_M : \sqrt{a}))}$  and hence  $(0_M : \sqrt[s]{(0_M : a)}) = \sqrt{(0_M : (0_M : \sqrt{a}))} = \sqrt{\sqrt{a}} = \sqrt{a}$  by Lemma 2.19. 4)  $\Rightarrow$  1) Suppose that  $(0_M : \sqrt[s]{(0_M : a)}) = \sqrt{a}$ , where  $a \in L$ . Since M is comultiplication, then by Lemma 2.7,  $\sqrt[s]{(0_M : a)} = (0_M : (0_M : \sqrt[s]{(0_M : a)})$ , consequently, by (4)  $\sqrt[s]{(0_M : a)} = (0_M : (0_M : \sqrt[s]{(0_M : a)})) = (0_M : \sqrt{a})$ .

#### References

- H. Ansari-Toroghy and F. Farshadifar On the dual notion of prime radicals of submodules, Asian-Eur. J. Math., 6(2)(2013) 1350024(11 pages). doi: 10.1142/S1793557113500241.
- [2] E. A. AL-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci., 19(2003), 9-20.
- [3] A. Francisco, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1)(1995), 1-26.
- [4] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Eur. J. Math., 8(2015), 1550066(10 pages). doi: 10.1142/S1793557115500667.
- [5] S. Ballal and V. Kharat, On φ-absorbing primary elements in lattice modules, Algebra, (2015), 183930(6 pages). doi: 10.1155/2015/183930.
- [6] F. Callialp and U. Tekir, *Multiplication lattice modules*, Iran. J. Sci. Technol., A4(2011), 309-313.
- [7] F. Callialp, U. Tekir and E. Aslan Karayigit, On multiplication lattice modules, Hacet. J. Math. Stat., 43(4) (2014), 571-579.
- [8] F. Callialp, U. Tekir and G. Ulucak, Comultiplication lattice modules, Iran. J. Sci. Technol., 39(A2) (2015), 213-220.
- [9] J. A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math., 66(1970), 341-371.
- [10] N. Phadatare, S. Ballal and V. Kharat, On the second spectrum of lattice modules, Discuss. Math. Gen. Algebra Appl, 37(2017), 59-74. doi:10.7151/dmgaa.1266.

- [11] N. Phadatare, S. Ballal and V. Kharat, Semi-complement graph of lattice modules, Soft Computing. doi: 10.1007/s00500-018-3347-y.
- [12] N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory-II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52(1988), 53-67.
- [13] N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Lecture Notes in Pure and Appl.Math., 91(1984), Dekker(New York).
- [14] S. Yassemi, The dual notion of prime submodules, Arch. Math.(Brno), 37(2001), 273-278.