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Abstract

In this paper, we introduce the operator approach for orthogonality in linear spaces. In partic-
ular, we represent the concept of orthogonal vectors using an operator associated with them,
in normed linear spaces.
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1 Introduction

Orthogonality, is one of the important concepts in mathematical and numerical analysis. Perhaps,
it is the main property in linear spaces, normed spaces and inner product spaces. There are some
various kinds of orthogonality. In fact, it has been defined different kinds in mathematical spaces.

In inner product spaces, it is easily said that two vectors x, y are orthogonal if

〈x, y〉 = 0.

But, in normed spaces, there is no simple tool for define orthogonal vectors. However, there are
some good suggestions. One of them, is the Birkhoff James orthogonality [1].

Let X be a real normed space, and x, y be in X. We say that x is Birkhoff orthogonal to y if
for every constant a,

‖x‖ 6 ‖x+ ay‖. (1.1)

It is not difficult to show that this definition is the same in inner product spaces [6].
In 1993, Milicic [9] introduced g-orthogonality in normed spaces via Gateaux derivatives. In

fact, one has the notion of g-angle related to g-orthogonality.

Definition 1.1. The functional g : X ×X → R is defined by

g(x, y) =
1

2
‖(τ+(x, y) + τ−(x, y))‖, (1.2)

where

τ±(x, y) = lim
t→±0

‖x+ ty‖ − ‖x‖
t

. (1.3)

The g-angle between two vectors x and y, denoted by Ag(x, y), is given by

Ag(x, y) = arccos
g(x, y)

‖x‖‖y‖
. (1.4)
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Furthermore, x is said to be g-orthogonal to y, denoted by x ⊥g y, if

g(x, y) = 0,

i.e.,

Ag(x, y) =
π

2
.

In an inner product space (X, 〈., .〉), the angle A(x, y) between two nonzero vectors x and y in
X is usually given by

A(x, y) = arccos
〈x, y〉
‖x‖‖y‖

, (1.5)

where ‖x‖ = 〈x, x〉1/2 denotes the induced norm in X.
One may observe that the angle A(x, y) in X satisfies the following basic properties [4]:

(1) Parallelism: A(x, y) = 0 if and only if x and y are of the same direction; A(x, y) = π if and
only if x and y are of opposite direction.

(2) Symmetry: A(x, y) = A(y, x) for every x, y ∈ X.

(3) Homogeneity:

A(ax, by) =

{
A(x, y) ab > 0;

π −A(x, y) ab < 0.

(4) Continuity: If xn → x and yn → y (in norm), then A(xn, yn)→ A(x, y).

The g-angle is identical with the usual angle in an inner product space and has the following
properties:

(1) Part of parallelism property: If x and y are of the same direction, then

Ag(x, y) = 0;

if x and y are of opposite direction, then

Ag(x, y) = π.

(2) Part of homogeneity property:

Ag(ax, by) = Ag(x, y), x, y ∈ X, a, b ∈ R;

(3) Homogeneity property:

Ag(ax, by) =

{
Ag(x, y) ab > 0;

π −Ag(x, y) ab < 0.

(4) Part of continuity property: If yn → y (in norm), then Ag(x, yn)→ Ag(x, y).
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However, g-orthogonality is not equivalent to Birkhoff orthogonality.
In [2], projections are used to give a definition of the p-angle Ap(x, y) between two vectors x

and y such that x is Birkhoff orthogonal to y if and only if

Ap(x, y) =
π

2
.

Since the angle between two vectors in a normed space is also the angle between these two
vectors in the subspace spanned by them, it suffices to consider the Minkowski plane, i.e., real two
dimensional normed linear space. More about the geometry of Minkowski plane could be found in
[7] and [8].

Let X be the Minkowski plane. Denote by ‖.‖ the norm of X. Fix a basis {e1, e2} of X. Then
we can write each x ∈ X as x = (x1, x2) under this basis, where x1, x2 ∈ R. Moreover, {δe1 , δe2} is
a basis of the dual space X∗, where δei for i = 1, 2 is a bounded linear function on X with

δei(ej) =

{
0 i 6= j;

1 i = j.

Denote by L(X) the set of all bounded linear operators from X to X. For T ∈ L(X), the
operator T ∗ ∈ L(X∗) is said to be the Banach conjugate operator of T if for any z ∈ X and any
z∗ ∈ X∗, there must be (T ∗z∗)(z) = z∗(Tz). Note that if we use the following notation

f(x) = 〈x, f〉

then the property of conjugate can be rewritten as the following way

〈x, T ∗f〉 = 〈Tx, f〉

as usual in inner product spaces.
Suppose that x = (x1, x2)T and y = (y1, y2)T are two linearly independent vectors in X under

the basis {e1, e2}. Put

Dxy =

[
x1 y1

x2 y2

]
(1.6)

notice
|Dxy| = x1y2 − x2y1 6= 0

since x and y are linearly independent. Define by Pxy the projection parallel to y from X to the
subspace {λx;λ ∈ R}. Then Pxy depends only on the vectors x and y, and has the following
presentation under the basis {e1, e2}:

Pxy = Dxy .

[
1 0
0 0

]
. Dxy

−1 =
1

|Dxy|

[
x1y2 −x1y1

x2y2 −x2y1

]
. (1.7)

It is clear for any two linearly independent vectors x and y in X,

1 ≤ ‖Pxy‖ < +∞.



106 M. Iranmanesh, M. S. Khojasteh

Furthermore, denote

p(x, y) =

{
0 x and y are linearly dependent;

‖Pxy‖−1
x and y are linearly independent.

(1.8)

For any x, y ∈ X, the p-angle between x and y is defined by

Ap(x, y) = arcsin(p(x, y)). (1.9)

In an inner product space (X, 〈., .〉), obviously

p(x, y) =
〈x, y〉
‖x‖‖y‖

, (1.10)

and consequently, the p-angle is identical with the usual angle.
For more details, the interested reader is referred to [2].

2 Main results

Let X be a linear space with dimension n. Suppose that

xk = (xk1, . . . , xkn)
T

, k = 1, . . . , n

are n linearly independent vectors in X. Put

Dx1,...,xn
=

x11 . . . xn1

...
. . .

...
x1n . . . xnn


since x1, . . . , xn are linearly independent, we have

|Dx1,...,xn | 6= 0.

Moreover, suppose that

x = (x1, . . . , xn)
T

, y = (y1, . . . , yn)
T

are two linearly independent vectors in X. Extend x, y to a basis for X by adding n− 2 vectors as

zk = (zk1, . . . , zkn)
T

, k = 1, . . . , n− 2.

Denote by Px,z1,...,zn−2,y the projection parallel to y from X to the subspace generated by
x, z1, . . . , zn−2. Since the vectors x, z1, . . . , zn−2, y are the eigenvectors of Px,z1,...,zn−2,y, it turn
implies that Px,z1,...,zn−2,y is similar to the following

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0

 .



Operator approach for orthogonality in linear spaces 107

In fact, Px,z1,...,zn−2,y has a representation as follows

Px,z1,...,zn−2,y = Dx,z1,...,zn−2,y .


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0

 . D−1
x,z1,...,zn−2,y.

It is not difficult to see that for any two linearly independent vectors x and y in X,

1 ≤ ‖Px,z1,...,zn−2,y‖ < +∞

in other words, Px,z1,...,zn−2,y is a bounded operator.
Furthermore, denote

pz1,...,zn−2
(x, y) = ‖Px,z1,...,zn−2,y‖

−1

and let
p(x, y) = sup{pz1,...,zn−2

(x, y) : z1, . . . , zn−2 ∈ X}.

It is obvious that

p(x, y) = max{‖Px,z1,...,zn−2,y‖
−1

: z1, . . . , zn−2 ∈ X , ‖z1‖ = 1, . . . , ‖zn−2‖ = 1}.

Definition 2.1. For any linearly independent x, y in X , the p-angle between x, y is defined by

Ap(x, y) = arcsin(p(x, y)).

Note that p-angle is not depending on selected vectors z1, . . . , zn−2.
Moreover, we say that x, y are p-orthogonal if

Ap(x, y) =
π

2
.

Equivalently, x, y are p-orthogonal if there exist suitable vectors z1, . . . , zn−2 such that

‖Px,z1,...,zn−2,y‖ = 1.

Theorem 2.2. The p-angle has the following properties;

(a) Homogeneity property; i.e.
Ap(ax, by) = Ap(x, y)

for every x, y in X and nonzero a, b in R;

(b) Continuity property; i.e. If xn → x and yn → y (in norm), then

Ap(xn, yn)→ Ap(x, y).
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Proof. (a) The homogeneity of Ap is concluded easily from the definition. In fact,

Pax,z1,...,zn−2,by = Px,z1,...,zn−2,y

for all scalars a, b. Therefore

‖Pax,z1,...,zn−2,by‖ = ‖Px,z1,...,zn−2,y‖

and consequently
Ap(ax, by) = Ap(x, y).

(b) For continuity of Ap , note that the entries of the matrix Px,z1,...,zn−2,y are of the following form

1

|Dx,z1,...,zn−2,y|
f(x, z1, . . . , zn−2, y)

where f is a polynomial of x, z1, . . . , zn−2, y. So Px,z1,...,zn−2,y is continuous on x, y, i.e.

‖Pxm,z1,...,zn−2,ym − Px,z1,...,zn−2,y‖ −→ 0

when m −→∞.
On the other hand,

‖Pxm,z′1,...,z
′
n−2,ym

‖ ≤ ‖Pxm,z′1,...,z
′
n−2,ym

− Px,z1,...,zn−2,y‖+ ‖Px,z1,...,zn−2,y‖.

Therefore taking infimum over z′1, . . . , z
′
n−2 we conclude

inf
z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

‖ ≤

inf
z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

− Px,z1,...,zn−2,y‖

+ ‖Px,z1,...,zn−2,y‖,

again taking infimum over z1, . . . , zn−2 we conclude

inf
z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

‖ ≤

inf
z1,...,zn−2,z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

− Px,z1,...,zn−2,y‖

+ inf
z1,...,zn−2

‖Px,z1,...,zn−2,y‖,

therefore

inf
z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

‖ − inf
z1,...,zn−2

‖Px,z1,...,zn−2,y‖

≤ inf
z1,...,zn−2,z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

− Px,z1,...,zn−2,y‖.
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On the other hand

inf
z1,...,zn−2,z′1,...,z

′
n−2

‖Pxm,z′1,...,z
′
n−2,ym

− Px,z1,...,zn−2,y‖

≤ inf
z1,...,zn−2

‖Pxm,z1,...,zn−2,ym − Px,z1,...,zn−2,y‖.

It turn implies that the function

f(x, y) = inf
z1,...,zn−2

‖Px,z1,...,zn−2,y‖

is continuous. So the inverse of it is also continuous, i.e. the function

p(x, y) = (f(x, y))
−1

= sup
z1,...,zn−2

‖Px,z1,...,zn−2,y‖
−1
.

Finally, the function
A(x, y) = arcsin(p(x, y))

is also continuous and it completes the proof. q.e.d.

Lemma 2.3. Let x, y be two linearly independent vectors in X. Extending x, y to a basis as
{x, z1, . . . , zn−2, y} , every z in X can be written as

z = ax+ c1z1 + · · ·+ cn−2zn−2 + by.

Moreover
Px,z1,...,zn−2,y(z) = ax+ c1z1 + · · ·+ cn−2zn−2.

Proof. It is easy to obtain by definition of linearly independence and Px,z1,...,zn−2,y. q.e.d.

Theorem 2.4. The concept of p-orthogonality is compatible with the usual orthogonality in the
inner product spaces.

Proof. Let X be an inner product space. First, assume that x, y are orthogonal. We shall show
that

‖Px,z1,...,zn−2,y‖ = 1

for suitable choice of z1, . . . , zn−2 . To this end, extending x, y to a basis as {x, z1, . . . , zn−2, y} to
an orthogonal basis for X, we show that

‖P‖ = 1

where P = Px,z1,...,zn−2,y is the orthogonal projection associated with the subspace generated by
{x, z1, . . . , zn−2}.

Since
y ∈ [span{x, z1, . . . , zn−2}]⊥

and for any z in X, we have
Pz ∈ span{x, z1, . . . , zn−2}



110 M. Iranmanesh, M. S. Khojasteh

we conclude that
y ⊥ Pz

and we have
‖z‖2 = ‖z − Pz + Pz‖2 = ‖z − Pz‖2 + ‖Pz‖2 ≥ ‖Pz‖2

therefore
‖p‖ ≤ 1,

now, taking z = x, we have
Px = x

so
‖Px‖ = ‖x‖

hence
‖P‖ = 1.

Next, assume that x, y are not orthogonal. We shall show that

‖Px,z1,...,zn−2,y‖ > 1

for all choices of z1, . . . , zn−2 . To this end, assume that z1, . . . , zn−2 are arbitrary in X. We show
that

‖P‖ > 1

where P = Px,z1,...,zn−2,y is the parallel projection associated with the subspace generated by
{x, z1, . . . , zn−2} .

Since
{y}⊥ 6= span{x, z1, . . . , zn−2}

there exists a nonzero vector z in {y}⊥ that does not belong to span{x, z1, . . . , zn−2}. For this z
we have

Pz − z ⊥ z.

We conclude that

‖Pz‖2 = ‖Pz − z + z‖2 = ‖Pz − z‖2 + ‖z‖2 > ‖z‖2

therefore
‖P‖ > 1

as claimed. q.e.d.

Theorem 2.5. Let x, y be two linearly independent vectors in X. If

Ap(x, y) =
π

2

then x is Birkhoff orthogonal to y.
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Proof. Suppose that
‖Px,z1,...,zn−2,y‖ = 1,

then we have

‖x‖ = ‖Px,z1,...,zn−2,y(x, by)‖ ≤ ‖Px,z1,...,zn−2,y‖‖(x+ by)‖ = ‖(x+ by)‖

Thus, x is Birkhoff orthogonal to y. This completes the proof. q.e.d.

Example 2.6. To find the angle between x = (1, 0, 0) and y = (0, 1, 0) in lp3 ,where 1 ≤ p <∞, we
consider the following matrix

P =

1 a 0
0 b 1
0 c 0

1 0 0
0 1 0
0 0 0

1 a 0
0 b 1
0 c 0

−1

then we have

P =

1 0 0
0 0 b/c
0 0 1


and

ρ(PTP ) =

∣∣∣∣∣∣
x− 1 0 0

0 x 0

0 0 x− [( bc )
2

+ 1]

∣∣∣∣∣∣ = (x− 1)[x(x− ((
b

c
)
2

+ 1))].

Therefor maximum of eigenvalue of PTP is ( bc )
2

+ 1 and then by definition

p(x, y) = 1

i.e.,

Ap(x, y) =
π

2
.

Similarly, if x = (1, 0, 0) and y = (0, 0, 1) then Ap(x, y) = π
2 .
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