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Abstract

The main objective of this paper is to study triple difference sequence spaces over n-normed
space via the sequence of modulus functions. Some algebraic and topological properties of the
newly constructed spaces are also established.
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1 Introduction

A triple sequence (real or complex) is a function x : N × N × N → R(C), where N,R and C are
the set of natural numbers, real numbers, and complex numbers respectively. We denote by ω

′′′

the class of all complex triple sequence (xpqr), where p, q, r ∈ N. Then under the coordinate wise

addition and scalar multiplication ω
′′′

is a linear space. A triple sequence can be represented by a
matrix, in case of double sequences we write in the form of a square. In case of triple sequence it
will be in the form of a box in three dimensions.

The different types of notions of triple sequences and their statistical convergence were intro-
duced and investigated initially by Sahiner et. al [28]. Later Debnath et.al [3, 4, 7, 8], Esi [10],
Esi and Catalbas [11], Esi and Savas [12], Tripathy [30] and many others authors have studied it
further and obtained various results.

Kizmaz [20] introduced the notion of difference sequence spaces and defined the difference se-
quence spaces `∞(∆) , c(∆) and c0(∆) as follows:

Z(∆) = {x = (xk) ∈ ω : (∆xk) ∈ Z}

for Z = c0 , c and `∞, where
∆x = (∆xk) = (xk − xk+1) and ∆0xk = xk for all k ∈ N

The difference operator on triple sequence is defined as [2, 5]

∆xmnk = xmnk−x(m+1)nk − xm(n+1)k − xmn(k+1) + x(m+1)(n+1)k

+ x(m+1)n(k+1) + xm(n+1)(k+1) − x(m+1)(n+1)(k+1)

and ∆0
mnk = (xmnk).

Statistical convergence was introduced by Fast [13] and later on it was studied by Fridy [14, 15]
from the sequence space point of view and linked it with summability theory. The notion of
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statistical convergent in double sequence spaces was introduced by Mursaleen and Edely [24] which
was further studied by many authors like Debnath and Subramanian [9].

I-convergence is a generalization of the statistical convergence. Kostyrko et. al. [21] introduced
the notion of I-convergence of real sequence and studied its several properties. Later Jalal [17, 18,
19], Debnath and Saha [6], Salat et. al. [26] and many other researchers contributed in its study.
Sahiner and Tripathy [28] studied I-related properties in triple sequence spaces and showed some
interesting results. Tripathy [30] extended the concept of I-convergent to double sequence and later
Kumar [22] obtained some results on I-convergent double sequence.

In this paper we define the spaces c3[∆, F, ‖·, . . . , ·‖]I , c30[∆, F, ‖·, . . . , ·‖]I , `3∞[∆, F, ‖·, . . . , ·‖]I ,
M3
I [∆, F, ‖·, . . . , ·‖]I and M3

0I [∆, F, ‖·, . . . , ·‖]I by using sequence of modulii function F = (fpqr)
and also studied some algebraic and topological properties of these new sequence spaces.

2 Definitions and preliminaries

Definition 2.1. Let X 6= ϕ. A class I ⊂ 2X (power set of X) is said to be an ideal in X if the
following conditions hold:

(i) I is additive that is if A,B ∈ I then A ∪B ∈ I;

(ii) I is hereditary that is if A ∈ I, and B ⊂ A then B ∈ I.

I is called non-trivial ideal if X 6∈ I

Definition 2.2. [27, 28] A triple sequence (xpqr) is said to be convergent to L in Pringsheim’s
sense if for every ε > 0, there exists N ∈ N such that

|xpqr − L| < ε , whenever p ≥ N, q ≥ N, r ≥ N

and write as limp,p,r→∞ xpqr = L.

Note: A triple sequence is convergent in Pringsheim’s sense may not be bounded [27, 28].
Example Consider the sequence (xpqr) defined by

xpqr =

{
p+ q , for all p = q and r = 1

1
p2qr , otherwise.

Then xpqr → 0 in Pringsheim’s sense but is unbounded.

Definition 2.3. A triple sequence (xpqr) is said to be I-convergent to a number L if for every
ε > 0 ,

{(p, q, r) ∈ N× N× N : |xpqr − L| ≥ ε} ∈ I.

In this case we write I − limxpqr = L .

Definition 2.4. A triple sequence (xpqr) is said to be I-null if L = 0. In this case we write
I − limxpqr = 0 .

Definition 2.5. [27, 28] A triple sequence (xpqr) is said to be Cauchy sequence if for every ε > 0,
there exists N ∈ N such that

|xpqr − xlmn| < ε , whenever p ≥ l ≥ N, q ≥ m ≥ N, r ≥ n ≥ N
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Definition 2.6. A triple sequence (xpqr) is said to be I−Cauchy sequence if for every ε > 0, there
exists N ∈ N such that

{(p, q, r) ∈ N× N× N : |xpqr − almn| ≥ ε} ∈ I

whenever p ≥ l ≥ N, q ≥ m ≥ N, r ≥ n ≥ N

Definition 2.7. [27, 28] A triple sequence (xpqr) is said to be bounded if there exists M > 0, such
that |xpqr| < M for all p, q, r ∈ N.

Definition 2.8. A triple sequence (xpqr) is said to be I−bounded if there exists M > 0, such that
{(p, q, r) ∈ N× N× N : |xpqr| ≥M} ∈ I for all p, q, r ∈ N.

Definition 2.9. A triple sequence space E is said to be solid if (αpqrxpqr) ∈ E whenever (xpqr) ∈ E
and for all sequences (αpqr) of scalars with |αpqr| ≤ 1, for all p, q, r ∈ N .

Definition 2.10. Let E be a triple sequence space and x = (xpqr) ∈ E. Define the set S(x) as

S(x) =
{(
xπ(pqr)

)
: π is a permutations of N

}
If S(x) ⊆ E for all x ∈ E, then E is said to be symmetric.

Definition 2.11. A triple sequence space E is said to be convergence free if (ypqr) ∈ E whenever
(xpqr) ∈ E and xpqr = 0 implies ypqr = 0 for all p, q, r ∈ N.

Definition 2.12. A triple sequence space E is said to be sequence algebra if x · y ∈ E , whenever
x = (xpqr) ∈ E and y = (ypqr) ∈ E, that is product of any two sequences is also in the space.

Gähler [16] introduced the notation of 2-normed spaces which was further extended to n-normed
space by Misiak [23].

Definition 2.13. [23] (n-Normed Space) Let n ∈ N and X be a linear space over the field R
of reals of dimension d, where 2 ≤ d ≤ n. A real valued function ‖ ·, ..., · ‖ on Xn satisfying the
following four conditions:

(1) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent in X;

(2) ‖x1, x2, ..., xn‖ is invariant under permutation;

(3) ‖αx1, x2, ..., xn‖ = |α|‖x1, x2, ..., xn‖ for any α ∈ R;

(4) ‖x1 + x
′

1, x2, ..., xn‖ ≤ ‖x1, x2, ..., xn‖+ ‖x′1, x2, ..., xn‖;

is called an n-norm on X and (X, ‖ ·, ..., · ‖) is called an n−normed space over the field R.
For example (Rn, ‖ ·, ..., · ‖E) where

‖x1, x2, ..., xn‖E = the volume of the n-dimensional parallelopiped

spanned by the vectors x1, x2, ..., xn

which can also be written as
‖x1, x2, ..., xn‖E = |det(xij)|
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where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ‖·, ..., ·‖) be an n−normed
space of dimension 2 ≤ n ≤ d and {a1, a2, · · · , an} be linearly independent set in X. Then the
following function ‖·, ..., ·‖∞ on Xn−1 defined by

‖x1, x2, ..., xn−1‖∞ = max{‖x1, x2, ..., xn−1, ai‖ : i = 1, 2, ..., n}

defines an (n− 1)-norm on X with respect to {a1, a2, ..., an}.
The standard n-norm on X, a real inner product space of dimension d ≤ n is defined as follows:

‖x1, x2, · · · , xn‖S =

∣∣∣∣∣∣∣
〈x1, x1〉 · · · 〈x1, xn〉

...
...

...
...

...
〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣
1
2

where 〈·, ·〉 denotes the inner product on X. For n = 1 this n-norm is the usual norm ‖x‖ =

〈x1, x1〉
1
2 .

A sequence (xk) in a n-normed space (X, ‖·, ..., ·‖) is said to converge to some L ∈ X if

lim
k→∞

‖xk − L, z1, ..., zn−1‖ = 0 for every z1, ..., zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ‖·, ..., ·‖) is said to be Cauchy if

lim
k,p→∞

‖xk − xp, z1, ..., zn−1‖ = 0 for every z1, ..., zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with
respect to the n-norm. Any complete n-complete n-normed space is said to be n-Banach space.
The n-normed space has been studied in stretch [1, 12, 19, 25, 29].

Definition 2.14. (Modulus Function) A function f : [0,∞) → [0,∞) is called a modulus
function if it satisfies the following conditions

(i) f(x) = 0 if and only if x = 0.

(ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0 and y ≥ 0.

(iii) f is increasing.

(iv) f is continuous from the right at 0.

Since |f(x) − f(y)| ≤ f(|x − y|), it follows from condition (iv) that f is continuous on [0,∞).
Furthermore, from condition (2) we have f(nx) ≤ nf(x), for all n ∈ N, and so
f(x) = f

(
nx( 1

n )
)
≤ nf

(
x
n

)
.

Hence 1
nf(x) ≤ f( xn ) for all n ∈ N.

Let I be an admissible ideal, F = (fpqr) be a sequence of modulus functions and (X, ‖·, . . . , ·‖)
be a n-normed space. By ω

′′′
(n − X) we denote the space of all triple sequences defined over

(X, ‖·, . . . , ·‖). In the present paper we define the following sequence spaces
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c3[∆, F, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

fpqr (‖∆xpqr − L, z1, · · · , zn−1‖) ≥ ε, for some L ∈ C and z1, . . . , zn−1 ∈ X

}
∈ I

}
c30[∆, F, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

fpqr (‖∆xpqr, z1, · · · , zn−1‖) ≥ ε, z1, . . . , zn−1 ∈ X

}
∈ I

}
`3∞[∆, F, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∃ K > 0 such that

{
(p, q, r) ∈ N× N× N :

sup
p,q,r≥1

{fpqr (‖∆xpqr, z1, · · · , zn−1‖)} ≥ K, z1, . . . , zn−1 ∈ X

}
∈ I

}

and

M3[∆, F, ‖·, . . . , ·‖]I = c3[∆, F, ‖·, . . . , ·‖]I ∩ `3∞[∆, F, ‖·, . . . , ·‖]I

M3
0 [∆, F, ‖·, . . . , ·‖]I = c30[∆, F, ‖·, . . . , ·‖]I ∩ `3∞[∆, F, ‖·, . . . , ·‖]I

For F (x) = x we have

c3[∆, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

‖∆xpqr − L, z1, · · · , zn−1‖ ≥ ε, for some L ∈ C and z1, . . . , zn−1 ∈ X

}
∈ I

}
c30[∆, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

‖∆xpqr, z1, · · · , zn−1‖ ≥ ε, z1, . . . , zn−1 ∈ X

}
∈ I

}
`3∞I [∆, ‖·, . . . , ·‖]I =

{
x = (xpqr) ∈ ω

′′′
(n−X) : ∃ K > 0 such that

{
(p, q, r) ∈ N× N× N :

sup
p,q,r≥1

(‖∆xpqr, z1, · · · , zn−1‖) ≥ K, z1, . . . , zn−1 ∈ X

}
∈ I

}
and

M3[∆, ‖·, . . . , ·‖]I = c3[∆, ‖·, . . . , ·‖]I ∩ `3∞[∆, ‖·, . . . , ·‖]I

M3
0 [∆, ‖·, . . . , ·‖]I = c30[∆, ‖·, . . . , ·‖]I ∩ `3∞[∆, ‖·, . . . , ·‖]I

3 Algebraic and Topological Properties of the new Sequence spaces

Theorem 3.1. Let F = (fpqr) be a sequence of modulus functions then the triple sequence spaces
c30[∆, F, ‖·, . . . , ·‖]I , c3[∆, F, ‖·, . . . , ·‖]I , `3∞[∆, F, ‖·, . . . , ·‖]I , M3[∆, F, ‖·, . . . , ·‖]I and
M3

0 [∆, F, ‖·, . . . , ·‖]I all linear over the field C of complex numbers.
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Proof. We prove the result for the sequence space c3[∆, F, ‖·, . . . , ·‖]I .
Let x = (xpqr), y = (ypqr) ∈ c3[∆, F, ‖·, . . . , ·‖]I and α, β ∈ C, then there exist positive integers mα

and nβ such that |α| ≤ mα and |β| ≤ nβ , then for z1, z2, . . . , zn−1 ∈ X

I − lim fpqr (‖∆xpqr − L1, z1, . . . , zn−1‖) = 0, for some L1 ∈ C.
I − lim fpqr (‖∆xpqr − L2, z1, . . . , zn−1‖) = 0, for some L2 ∈ C.

Now for a given ε > 0 we set

C1 =
{

(p, q, r) ∈ N× N× N : fpqr(‖∆xpqr − L1, z1, . . . , zn−1‖) >
ε

2

}
∈ I (3.1)

C2 =
{

(p, q, r) ∈ N× N× N : fpqr(‖∆ypqr − L2, z1, . . . , zn−1‖) >
ε

2

}
∈ I (3.2)

Since F = (fpqr) is a modulus function, so it is non-decreasing and convex, hence we get

fpqr(‖(α∆xpqr + β∆ypqr)− (αL1 + βL2), z1, . . . , zn−1‖)
= fpqr(‖(α∆xpqr − αL1) + (β∆ypqr − βL2), z1, . . . , zn−1‖)
≤ fpqr(|α|‖∆xpqr − L1, z1, . . . , zn−1‖) + fpqr(|β|‖∆ypqr − L2, z1, . . . , zn−1‖)
= |α|fpqr(|∆xpqr − L1|) + |β|fpqr(|∆ypqr − L2|)
≤ mαfpqr(‖∆xpqr − L1, z1, . . . , zn−1‖) + nβfpqr(‖∆ypqr − L2, z1, . . . , zn−1‖).

From (3.1) and (3.2) we can write

{(p, q, r) ∈ N× N× N : fpqr(‖(α∆xpqr + β∆ypqr)− (αL1 + βL2), z1, . . . , zn−1‖) > ε} ⊆ C1 ∪ C2.

Thus αx+ βy ∈ c3[∆, F, ‖·, . . . , ·‖]I .
Therefore c3[∆, F, ‖·, . . . , ·‖]I is a linear space.
In the same way we can show that other spaces are linear as well. q.e.d.

Theorem 3.2. Let F = (fpqr) be a sequence of modulus functions then the inclusions
c30[∆, F, ‖·, . . . , ·‖]I ⊂ c3[∆, F, ‖·, . . . , ·‖]I ⊂ `3∞[∆, F, ‖·, . . . , ·‖]I holds .

Proof. The inclusion c30[∆, F, ‖·, . . . , ·‖]I ⊂ c3[∆, F, ‖·, . . . , ·‖]I is obvious.
We prove c3[∆, F, ‖·, . . . , ·‖]I ⊂ `3∞[∆, F, ‖·, . . . , ·‖]I .
Let x = (xpqr) ∈ c3[∆, F, ‖·, . . . , ·‖]I then there exists L ∈ C such that I − lim fpqr(‖∆xpqr −
L, z1, . . . , zn−1‖) = 0, z1, . . . , zn−1 ∈ X.
Since F = (fpqr) is a sequence of modulus functions so

fpqr(‖∆xpqr, z1, . . . , zn−1‖) ≤ fpqr(‖∆xpqr − L, z1, . . . , zn−1‖) + fpqr(‖L, z1, . . . , zn−1‖).

On taking supremum over p, q and r on both sides gives
x = (xpqr) ∈ `3∞[∆, F, ‖·, . . . , ·‖]I
Hence the inclusion c30[∆, F, ‖·, . . . , ·‖]I ⊂ c3[∆, F, ‖·, . . . , ·‖]I
⊂ `3∞[∆, F, ‖·, . . . , ·‖]I holds. q.e.d.
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Theorem 3.3. The triple difference sequence c30[∆, F, ‖·, . . . , ·‖]I and M3
0 [∆, F, ‖·, . . . , ·‖]I are solid.

Proof. We prove the result for c30[∆, F, ‖·, . . . , ·‖]I .
Consider x = (xpqr) ∈ c30[∆, F, ‖·, . . . , ·‖]I , then I − limp,q,r fpqr(‖∆xpqr, z1, . . . , zn−1‖) = 0.
Consider a sequence of scalar (αpqr) such that |αpqr| ≤ 1 for all p, q, r ∈ N.
Then we have

I − lim
p,q,r

fpqr(|∆αpqr(xpqr), z1, . . . , zn−1‖) ≤ I − |αpqr| lim
p,q,r

fpqr(‖∆xpqr, z1, . . . , zn−1‖)

≤ I − lim
p,q,r

fpqr(‖∆xpqr, z1, . . . , zn−1‖)

= 0

Hence I − limp,q,r fpqr(‖∆αpqrxpqr, z1, . . . , zn−1‖) = 0 for all p, q, r ∈ N.
Which gives (αpqrxpqr) ∈ c30[∆, F, ‖·, . . . , ·‖]I .
Hence the sequence space c30[∆, F, ‖·, . . . , ·‖]I is solid.
The result for M3

0 [∆, F, ‖·, . . . , ·‖]I can be similarly proved. q.e.d.

Theorem 3.4. The triple difference sequence spaces c30[∆, F, ‖·, . . . , ·‖]I , c3[∆, F, ‖·, . . . , ·‖]I ,
`3∞[∆, F, ‖·, . . . , ·‖]I , M3[∆, F, ‖·, . . . , ·‖]I and M3

0 [∆, F, ‖·, . . . , ·‖]I are sequence algebras.

Proof. We prove the result for c30[∆, F, ‖·, . . . , ·‖]I .
Let x = (xpqr), y = (ypqr) ∈ c30[∆, F, ‖·, . . . , ·‖]I .
Then we have I − lim fpqr(‖∆xpqr, z1, . . . , zn−1‖) = 0
and

I − lim fpqr(‖∆ypqr, z1, . . . , zn−1‖) = 0.
Now I − lim fpqr(‖∆(xpqr · ypqr), z1, . . . , zn−1‖) = 0 as

∆(xpqr · ypqr) =xpqr · ypqr − x(p+1)qr · y(p+1)qr − xp(q+1)r · yp(q+1)r − xpq(r+1)·
ypq(r+1) + x(p+1)(q+1)r · y(p+1)(q+1)r + x(p+1)q(r+1) · y(p+1)q(r+1)+

xp(q+1)(r+1) · yp(q+1)(r+1) − x(p+1)(q+1)(r+1) · y(p+1)(q+1)(r+1).

It implies that (xpqr · ypqr) ∈ c30[∆, F, ‖·, . . . , ·‖]I
Hence the proof.
The result can be proved for the spaces c3[∆, F, ‖·, . . . , ·‖]I , `3∞[∆, F, ‖·, . . . , ·‖]I , M3[∆, F, ‖·, . . . , ·‖]I
and M3

0 [∆, F, ‖·, . . . , ·‖]I in the same way. q.e.d.

Theorem 3.5. In general the sequence spaces c30[∆, F, ‖·, . . . , ·‖]I , c3[∆, F, ‖·, . . . , ·‖]I and
`3∞[∆, F, ‖·, . . . , ·‖]I are not convergence free.

Proof. We prove the result for the sequence space c3[∆, F, ‖·, . . . , ·‖]I using an example.
Example: Let I = If define the triple sequence x = (xpqr) as

xpqr =

{
0 , if p = q = r
1 , otherwise.

Then if fpqr(x) = (xpqr) ∀ p, q, r ∈ N, we have x = (xpqr) ∈ c3[∆, F, ‖·, . . . , ·‖]I .
Now define the sequence y = ypqr as

ypqr =

{
0 , if r is odd , and p, q ∈ N
lmn , otherwise.
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Then for fpqr(x) = (xpqr) ∀ p, q, r ∈ N, it is clear that y = (ypqr) 6∈ c3[∆, F, ‖·, . . . , ·‖]I
Hence the sequence spaces c3[∆, F, ‖·, . . . , ·‖]I is not convergence free.
The space c3[∆, F, ‖·, . . . , ·‖]I and `3∞[∆, F, ‖·, . . . , ·‖]I are not convergence free in general can be
proved in the same fashion. q.e.d.

Theorem 3.6. In general the triple difference sequences c30[∆, F, ‖·, . . . , ·‖]I and c3[∆, F, ‖·, . . . , ·‖]I
are not symmetric if I is neither maximal nor I = If .

Proof. We prove the result for the sequence space c30[∆, F, ‖·, . . . , ·‖]I using an example.
Example: Define the triple sequence x = (xpqr) as

xpqr =

{
0 , if r = 1, for all p, q ∈ N
1 , otherwise.

Then if fpqr(x) = (xpqr) ∀ p, q, r ∈ N, we have x = (xpqr) ∈ c30[∆, F, ‖·, . . . , ·‖]I .
Now if xπ(pqr) be a rearrangement of x = (xpqr) defined as

xπ(pqr) =

{
1 , for p, q, r even ∈ K
0 , otherwise.

Then {xπ(p,q,r)} 6∈ c30[∆, F, ‖·, . . . , ·‖]I as ∆xπ(pqr) = 1.
Hence the sequence spaces c30[∆, F, ‖·, . . . , ·‖]I is not symmetric in general.
The space c3[∆, F, ‖·, . . . , ·‖]I is not symmetric in general can be proved in the same fashion. q.e.d.

Theorem 3.7. Let F = (fpqr) and G = (gpqr) be two sequences of modulus functions. Then

Z3[∆, F, ‖·, . . . , ·‖]I ∩ Z3[∆, G, ‖·, . . . , ·‖]I ⊆ Z3[∆, F +G, ‖·, . . . , ·‖]I

where Z = c0 , c and `∞.

Proof. We prove the result for Z = `∞. Let x = (xpqr) ∈ `3∞[∆, F, ‖·, . . . , ·‖]I ∩`3∞[∆, G, ‖·, . . . , ·‖]I .
Then for z1, . . . , zn−1 ∈ X we have{

(p, q, r) ∈ N× N× N : sup
p,q,r≥1

{fpqr (‖∆xpqr, z1, · · · , zn−1‖)} ≥ K1

}
∈ I for some K1 > 0

and{
(p, q, r) ∈ N× N× N : sup

p,q,r≥1
{gpqr (‖∆xpqr, z1, · · · , zn−1‖)} ≥ K2

}
∈ I for some K2 > 0.

Now since

sup
p,q,r≥1

{
(fpqr + gpqr)

(∥∥∥∆xpqr, z1, · · · , zn−1

∥∥∥) }
= sup

p,q,r≥1

{
fpqr

(∥∥∥∆xpqr, z1, · · · , zn−1

∥∥∥) + gpqr

(∥∥∥∆xpqr, z1, · · · , zn−1

∥∥∥) }

≤ sup
p,q,r≥1

{
fpqr

(∥∥∥∆xpqr, z1, · · · , zn−1

∥∥∥) }
+ sup

p,q,r≥1

{
gpqr

(∥∥∥∆xpqr, z1, · · · , zn−1

∥∥∥) }
.

Hence for K = max{K1,K2} we have{
(p, q, r) ∈ N× N× N : sup

p,q,r≥1

{
(fpqr + gpqr) (‖∆xpqr, z1, · · · , zn−1‖)

}
≥ K

}
∈ I.
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Therefore x = (xpqr) ∈ `3∞[∆, F +G, ‖·, . . . , ·‖]I .
Hence

`3∞[∆, F, ‖·, . . . , ·‖]I ∩ `3∞[∆, G, ‖·, . . . , ·‖]I ⊆ `3∞[∆, F +G, ‖·, . . . , ·‖]I .

In the same way the inclusion for Z = c0, c can be proved. q.e.d.
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