I-Convergence of triple difference sequence spaces over *n*-normed space

Tanweer Jalal and Ishfaq Ahmad Malik

Department of Mathematics, National Institute of Technology, Srinagar, 190006, India E-mail: tjalal@nitsri.net, ishfaq_2phd15@nitsri.net

Abstract

The main objective of this paper is to study triple difference sequence spaces over *n*-normed space via the sequence of modulus functions. Some algebraic and topological properties of the newly constructed spaces are also established.

2010 Mathematics Subject Classification. **40A05**. 40C05 46A45 Keywords. Triple sequence spaces, difference sequence space, *I*-convergence, modulus functions, ideal, *n*-normed space.

1 Introduction

A triple sequence (real or complex) is a function $x : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}(\mathbb{C})$, where \mathbb{N}, \mathbb{R} and \mathbb{C} are the set of natural numbers, real numbers, and complex numbers respectively. We denote by $\omega^{''}$ the class of all complex triple sequence (x_{pqr}) , where $p, q, r \in \mathbb{N}$. Then under the coordinate wise addition and scalar multiplication $\omega^{'''}$ is a linear space. A triple sequence can be represented by a matrix, in case of double sequences we write in the form of a square. In case of triple sequence it will be in the form of a box in three dimensions.

The different types of notions of triple sequences and their statistical convergence were introduced and investigated initially by Sahiner et. al [28]. Later Debnath et.al [3, 4, 7, 8], Esi [10], Esi and Catalbas [11], Esi and Savas [12], Tripathy [30] and many others authors have studied it further and obtained various results.

Kizmaz [20] introduced the notion of difference sequence spaces and defined the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ as follows:

$$Z(\Delta) = \{ x = (x_k) \in \omega \colon (\Delta x_k) \in Z \}$$

for $Z = c_0$, c and ℓ_{∞} , where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ and $\Delta^0 x_k = x_k$ for all $k \in \mathbb{N}$

The difference operator on triple sequence is defined as [2, 5]

$$\Delta x_{mnk} = x_{mnk} - x_{(m+1)nk} - x_{m(n+1)k} - x_{mn(k+1)} + x_{(m+1)(n+1)k} + x_{(m+1)n(k+1)} + x_{m(n+1)(k+1)} - x_{(m+1)(n+1)(k+1)}$$

and $\Delta_{mnk}^0 = (x_{mnk}).$

Statistical convergence was introduced by Fast [13] and later on it was studied by Fridy [14, 15] from the sequence space point of view and linked it with summability theory. The notion of

Tbilisi Mathematical Journal 11(4) (2018), pp. 93–102. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 09 June 2018 . Accepted for publication: 21 August 2018. statistical convergent in double sequence spaces was introduced by Mursaleen and Edely [24] which was further studied by many authors like Debnath and Subramanian [9].

I-convergence is a generalization of the statistical convergence. Kostyrko et. al. [21] introduced the notion of *I*-convergence of real sequence and studied its several properties. Later Jalal [17, 18, 19], Debnath and Saha [6], Salat et. al. [26] and many other researchers contributed in its study. Sahiner and Tripathy [28] studied *I*-related properties in triple sequence spaces and showed some interesting results. Tripathy [30] extended the concept of *I*-convergent to double sequence and later Kumar [22] obtained some results on *I*-convergent double sequence.

In this paper we define the spaces $c^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$, $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$, $\ell_{\infty}^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$, $M_I^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ and $M_{0I}^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ by using sequence of modulii function $F = (f_{pqr})$ and also studied some algebraic and topological properties of these new sequence spaces.

2 Definitions and preliminaries

Definition 2.1. Let $X \neq \varphi$. A class $I \subset 2^X$ (power set of X) is said to be an ideal in X if the following conditions hold:

- (i) I is additive that is if $A, B \in I$ then $A \cup B \in I$;
- (ii) I is hereditary that is if $A \in I$, and $B \subset A$ then $B \in I$.

I is called non-trivial ideal if $X \notin I$

Definition 2.2. [27, 28] A triple sequence (x_{pqr}) is said to be convergent to L in Pringsheim's sense if for every $\varepsilon > 0$, there exists $\mathbf{N} \in \mathbb{N}$ such that

$$|x_{pqr} - L| < \varepsilon$$
, whenever $p \ge \mathbf{N}, q \ge \mathbf{N}, r \ge \mathbf{N}$

and write as $\lim_{p,p,r\to\infty} x_{pqr} = L$.

Note: A triple sequence is convergent in Pringsheim's sense may not be bounded [27, 28]. **Example** Consider the sequence (x_{pqr}) defined by

$$x_{pqr} = \begin{cases} p+q &, \text{ for all } p=q \text{ and } r=1\\ \frac{1}{p^2qr} &, \text{ otherwise.} \end{cases}$$

Then $x_{pqr} \to 0$ in Pringsheim's sense but is unbounded.

Definition 2.3. A triple sequence (x_{pqr}) is said to be *I*-convergent to a number *L* if for every $\varepsilon > 0$,

$$\{(p,q,r)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:|x_{pqr}-L|\geq\varepsilon\}\in I.$$

In this case we write $I - \lim x_{pqr} = L$.

Definition 2.4. A triple sequence (x_{pqr}) is said to be *I*-null if L = 0. In this case we write $I - \lim x_{pqr} = 0$.

Definition 2.5. [27, 28] A triple sequence (x_{pqr}) is said to be Cauchy sequence if for every $\varepsilon > 0$, there exists $\mathbf{N} \in \mathbb{N}$ such that

 $|x_{pqr} - x_{lmn}| < \varepsilon$, whenever $p \ge l \ge \mathbf{N}, q \ge m \ge \mathbf{N}, r \ge n \ge \mathbf{N}$

Definition 2.6. A triple sequence (x_{pqr}) is said to be *I*-Cauchy sequence if for every $\varepsilon > 0$, there exists $\mathbf{N} \in \mathbb{N}$ such that

$$\{(p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{pqr} - a_{lmn}| \ge \varepsilon\} \in I$$

whenever $p \ge l \ge \mathbf{N}, q \ge m \ge \mathbf{N}, r \ge n \ge \mathbf{N}$

Definition 2.7. [27, 28] A triple sequence (x_{pqr}) is said to be bounded if there exists M > 0, such that $|x_{pqr}| < M$ for all $p, q, r \in \mathbb{N}$.

Definition 2.8. A triple sequence (x_{pqr}) is said to be *I*-bounded if there exists M > 0, such that $\{(p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{pqr}| \ge M\} \in I$ for all $p,q,r \in \mathbb{N}$.

Definition 2.9. A triple sequence space E is said to be solid if $(\alpha_{pqr}x_{pqr}) \in E$ whenever $(x_{pqr}) \in E$ and for all sequences (α_{pqr}) of scalars with $|\alpha_{pqr}| \leq 1$, for all $p, q, r \in \mathbb{N}$.

Definition 2.10. Let E be a triple sequence space and $x = (x_{pqr}) \in E$. Define the set S(x) as

$$S(x) = \left\{ \left(x_{\pi(pqr)} \right) : \pi \text{ is a permutations of } \mathbb{N} \right\}$$

If $S(x) \subseteq E$ for all $x \in E$, then E is said to be symmetric.

Definition 2.11. A triple sequence space E is said to be convergence free if $(y_{pqr}) \in E$ whenever $(x_{pqr}) \in E$ and $x_{pqr} = 0$ implies $y_{pqr} = 0$ for all $p, q, r \in \mathbb{N}$.

Definition 2.12. A triple sequence space E is said to be sequence algebra if $x \cdot y \in E$, whenever $x = (x_{pqr}) \in E$ and $y = (y_{pqr}) \in E$, that is product of any two sequences is also in the space.

Gähler [16] introduced the notation of 2-normed spaces which was further extended to *n*-normed space by Misiak [23].

Definition 2.13. [23] (*n*-Normed Space) Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{R} of reals of dimension d, where $2 \leq d \leq n$. A real valued function $\|\cdot, ..., \cdot\|$ on X^n satisfying the following four conditions:

- (1) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent in X;
- (2) $||x_1, x_2, ..., x_n||$ is invariant under permutation;
- (3) $\|\alpha x_1, x_2, ..., x_n\| = |\alpha| \|x_1, x_2, ..., x_n\|$ for any $\alpha \in \mathbb{R}$;
- (4) $||x_1 + x'_1, x_2, ..., x_n|| \le ||x_1, x_2, ..., x_n|| + ||x'_1, x_2, ..., x_n||;$

is called an *n*-norm on X and $(X, \| \cdot, ..., \cdot \|)$ is called an *n*-normed space over the field \mathbb{R} . For example $(\mathbb{R}^n, \| \cdot, ..., \cdot \|_E)$ where

 $||x_1, x_2, ..., x_n||_E$ = the volume of the *n*-dimensional parallelopiped

spanned by the vectors $x_1, x_2, ..., x_n$

which can also be written as

$$||x_1, x_2, \dots, x_n||_E = |\det(x_{ij})|$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, \|\cdot, \dots, \cdot\|)$ be an *n*-normed space of dimension $2 \leq n \leq d$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $\|\cdot, \dots, \cdot\|_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, ..., x_{n-1}||_{\infty} = \max\{||x_1, x_2, ..., x_{n-1}, a_i|| : i = 1, 2, ..., n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, ..., a_n\}$.

The standard *n*-norm on X, a real inner product space of dimension $d \leq n$ is defined as follows:

$$\|x_1, x_2, \cdots, x_n\|_S = \begin{vmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{vmatrix}^{\frac{1}{2}}$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on X. For n = 1 this *n*-norm is the usual norm $||x|| = \langle x_1, x_1 \rangle^{\frac{1}{2}}$.

A sequence (x_k) in a *n*-normed space $(X, \|\cdot, ..., \cdot\|)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} \|x_k - L, z_1, ..., z_{n-1}\| = 0 \quad \text{for every} \quad z_1, ..., z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, \|\cdot, ..., \cdot\|)$ is said to be Cauchy if

$$\lim_{k,p\to\infty} \|x_k - x_p, z_1, ..., z_{n-1}\| = 0 \quad \text{for every} \quad z_1, ..., z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the *n*-norm. Any complete *n*-complete *n*-normed space is said to be *n*-Banach space. The *n*-normed space has been studied in stretch [1, 12, 19, 25, 29].

Definition 2.14. (Modulus Function) A function $f : [0, \infty) \to [0, \infty)$ is called a modulus function if it satisfies the following conditions

- (i) f(x) = 0 if and only if x = 0.
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0$ and $y \ge 0$.
- (iii) f is increasing.
- (iv) f is continuous from the right at 0.

Since $|f(x) - f(y)| \leq f(|x - y|)$, it follows from condition (iv) that f is continuous on $[0, \infty)$. Furthermore, from condition (2) we have $f(nx) \leq nf(x)$, for all $n \in \mathbb{N}$, and so $f(x) = f\left(nx(\frac{1}{n})\right) \leq nf\left(\frac{x}{n}\right)$. Hence $\frac{1}{n}f(x) \leq f(\frac{x}{n})$ for all $n \in \mathbb{N}$.

Let I be an admissible ideal, $F = (f_{pqr})$ be a sequence of modulus functions and $(X, \|\cdot, \ldots, \cdot\|)$ be a *n*-normed space. By $\omega'''(n - X)$ we denote the space of all triple sequences defined over $(X, \|\cdot, \ldots, \cdot\|)$. In the present paper we define the following sequence spaces

$$\begin{split} c^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \forall \varepsilon > 0, \text{ the set } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ f_{pqr} \left(\|\Delta x_{pqr} - L, z_{1}, \cdots, z_{n-1}\| \right) \ge \varepsilon, \text{ for some } L \in \mathbb{C} \text{ and } z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \\ c^{3}_{0}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \forall \varepsilon > 0, \text{ the set } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ f_{pqr} \left(\|\Delta x_{pqr}, z_{1}, \cdots, z_{n-1}\| \right) \ge \varepsilon, z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \\ \ell^{3}_{\infty}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \exists K > 0 \text{ such that } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ \sup_{p,q,r \ge 1} \left\{ f_{pqr} \left(\|\Delta x_{pqr}, z_{1}, \cdots, z_{n-1}\| \right) \right\} \ge K, z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \end{split}$$

and

$$M^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} = c^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \cap \ell_{\infty}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I}$$
$$M_{0}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} = c_{0}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \cap \ell_{\infty}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I}$$

For F(x) = x we have

$$\begin{aligned} c^{3}[\Delta, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \forall \varepsilon > 0, \text{ the set } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ \|\Delta x_{pqr} - L, z_{1}, \cdots, z_{n-1}\| \geq \varepsilon, \text{ for some } L \in \mathbb{C} \text{ and } z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \\ c^{3}_{0}[\Delta, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \forall \varepsilon > 0, \text{ the set } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ \|\Delta x_{pqr}, z_{1}, \cdots, z_{n-1}\| \geq \varepsilon, z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \\ \ell^{3}_{\infty I}[\Delta, \|\cdot, \dots, \cdot\|]^{I} &= \left\{ x = (x_{pqr}) \in \omega^{'''}(n-X) : \exists K > 0 \text{ such that } \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \\ \sup_{p,q,r \geq 1} (\|\Delta x_{pqr}, z_{1}, \cdots, z_{n-1}\|) \geq K, z_{1}, \dots, z_{n-1} \in X \right\} \in I \right\} \\ \text{and} \\ M^{3}[\Delta, \|\cdot, \dots, \cdot\|]^{I} &= c^{3}[\Delta, \|\cdot, \dots, \cdot\|]^{I} \cap \ell^{3}_{\infty}[\Delta, \|\cdot, \dots, \cdot\|]^{I} \\ M^{3}_{0}[\Delta, \|\cdot, \dots, \cdot\|]^{I} &= c^{3}[\Delta, \|\cdot, \dots, \cdot\|]^{I} \cap \ell^{3}_{\infty}[\Delta, \|\cdot, \dots, \cdot\|]^{I} \end{aligned}$$

3 Algebraic and Topological Properties of the new Sequence spaces

Theorem 3.1. Let $F = (f_{pqr})$ be a sequence of modulus functions then the triple sequence spaces $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $\ell_{\infty}^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $M^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ and $M_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ all linear over the field $\mathbb C$ of complex numbers.

Proof. We prove the result for the sequence space $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$. Let $x = (x_{pqr}), y = (y_{pqr}) \in c^3[\Delta, F, \|, \dots, \|]^I$ and $\alpha, \beta \in \mathbb{C}$, then there exist positive integers m_{α} and n_{β} such that $|\alpha| \leq m_{\alpha}$ and $|\beta| \leq n_{\beta}$, then for $z_1, z_2, \ldots, z_{n-1} \in X$

$$I - \lim f_{pqr} (\|\Delta x_{pqr} - L_1, z_1, \dots, z_{n-1}\|) = 0, \text{ for some } L_1 \in \mathbb{C}.$$

$$I - \lim f_{pqr} (\|\Delta x_{pqr} - L_2, z_1, \dots, z_{n-1}\|) = 0, \text{ for some } L_2 \in \mathbb{C}.$$

Now for a given $\varepsilon > 0$ we set

$$C_1 = \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : f_{pqr}(\|\Delta x_{pqr} - L_1, z_1, \dots, z_{n-1}\|) > \frac{\varepsilon}{2} \right\} \in I$$
(3.1)

$$C_2 = \left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : f_{pqr}(\|\Delta y_{pqr} - L_2, z_1, \dots, z_{n-1}\|) > \frac{\varepsilon}{2} \right\} \in I$$
(3.2)

Since $F = (f_{pqr})$ is a modulus function, so it is non-decreasing and convex, hence we get

$$\begin{aligned} f_{pqr}(\|(\alpha \Delta x_{pqr} + \beta \Delta y_{pqr}) - (\alpha L_1 + \beta L_2), z_1, \dots, z_{n-1}\|) \\ &= f_{pqr}(\|(\alpha \Delta x_{pqr} - \alpha L_1) + (\beta \Delta y_{pqr} - \beta L_2), z_1, \dots, z_{n-1}\|) \\ &\leq f_{pqr}(|\alpha| \|\Delta x_{pqr} - L_1, z_1, \dots, z_{n-1}\|) + f_{pqr}(|\beta| \|\Delta y_{pqr} - L_2, z_1, \dots, z_{n-1}\|) \\ &= |\alpha| f_{pqr}(|\Delta x_{pqr} - L_1|) + |\beta| f_{pqr}(|\Delta y_{pqr} - L_2|) \\ &\leq m_\alpha f_{pqr}(\|\Delta x_{pqr} - L_1, z_1, \dots, z_{n-1}\|) + n_\beta f_{pqr}(\|\Delta y_{pqr} - L_2, z_1, \dots, z_{n-1}\|). \end{aligned}$$

From (3.1) and (3.2) we can write

$$\{(p,q,r)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}: f_{pqr}(\|(\alpha\Delta x_{pqr}+\beta\Delta y_{pqr})-(\alpha L_1+\beta L_2),z_1,\ldots,z_{n-1}\|)>\varepsilon\}\subseteq C_1\cup C_2.$$

Thus $\alpha x + \beta y \in c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$. Therefore $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ is a linear space.

In the same way we can show that other spaces are linear as well. Q.E.D.

Theorem 3.2. Let $F = (f_{pqr})$ be a sequence of modulus functions then the inclusions $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I \subset c^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I \subset \ell_{\infty}^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ holds.

Proof. The inclusion $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I \subset c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ is obvious. We prove $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I \subset \ell^3_{\infty}[\Delta, F, \|\cdot, \dots, \cdot\|]^I$. Let $x = (x_{pqr}) \in c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ then there exists $L \in \mathbb{C}$ such that $I - \lim f_{pqr}(\|\Delta x_{pqr} - \|\Delta x_{pqr})$. $L, z_1, \ldots, z_{n-1} \parallel) = 0, \ z_1, \ldots, z_{n-1} \in X.$ Since $F = (f_{pqr})$ is a sequence of modulus functions so

$$f_{pqr}(\|\Delta x_{pqr}, z_1, \dots, z_{n-1}\|) \le f_{pqr}(\|\Delta x_{pqr} - L, z_1, \dots, z_{n-1}\|) + f_{pqr}(\|L, z_1, \dots, z_{n-1}\|).$$

On taking supremum over p, q and r on both sides gives $\begin{aligned} x &= (x_{pqr}) \in \ell_{\infty}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \\ \text{Hence the inclusion } c_{0}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \subset c^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \end{aligned}$ $\subset \ell^3_{\infty}[\Delta, F, \|\cdot, \dots, \cdot\|]^T$ holds. Q.E.D.

Theorem 3.3. The triple difference sequence $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ and $M_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ are solid. *Proof.* We prove the result for $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$. Consider $x = (x_{pqr}) \in c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$, then $I - \lim_{p,q,r} f_{pqr}(\|\Delta x_{pqr}, z_1, \ldots, z_{n-1}\|) = 0$. Consider a sequence of scalar (α_{pqr}) such that $|\alpha_{pqr}| \leq 1$ for all $p, q, r \in \mathbb{N}$. Then we have

$$I - \lim_{p,q,r} f_{pqr}(|\Delta \alpha_{pqr}(x_{pqr}), z_1, \dots, z_{n-1}||) \le I - |\alpha_{pqr}| \lim_{p,q,r} f_{pqr}(||\Delta x_{pqr}, z_1, \dots, z_{n-1}||) \le I - \lim_{p,q,r} f_{pqr}(||\Delta x_{pqr}, z_1, \dots, z_{n-1}||) = 0$$

Hence $I - \lim_{p,q,r} f_{pqr}(\|\Delta \alpha_{pqr} x_{pqr}, z_1, \dots, z_{n-1}\|) = 0$ for all $p, q, r \in \mathbb{N}$. Which gives $(\alpha_{pqr} x_{pqr}) \in c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$. Hence the sequence space $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ is solid. The result for $M_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ can be similarly proved.

Theorem 3.4. The triple difference sequence spaces $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $\ell_{\infty}^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ and $M_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ are sequence algebras.

Proof. We prove the result for $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$. Let $x = (x_{pqr}), y = (y_{pqr}) \in c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$. Then we have $I - \lim f_{pqr}(\|\Delta x_{pqr}, z_1, \ldots, z_{n-1}\|) = 0$ and

 $I - \lim f_{pqr}(\|\Delta y_{pqr}, z_1, \dots, z_{n-1}\|) = 0.$ Now $I - \lim f_{pqr}(\|\Delta (x_{pqr} \cdot y_{pqr}), z_1, \dots, z_{n-1}\|) = 0$ as

It implies that $(x_{pqr} \cdot y_{pqr}) \in c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ Hence the proof.

The result can be proved for the spaces $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $\ell^3_{\infty}[\Delta, F, \|\cdot, \dots, \cdot\|]^I$, $M^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ and $M^3_0[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ in the same way.

Theorem 3.5. In general the sequence spaces $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$, $c^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ and $\ell_{\infty}^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ are not convergence free.

Proof. We prove the result for the sequence space $c^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ using an example. **Example:** Let $I = I_f$ define the triple sequence $x = (x_{pqr})$ as

$$x_{pqr} = \begin{cases} 0 & , & \text{if } p = q = r \\ 1 & , & \text{otherwise.} \end{cases}$$

Then if $f_{pqr}(x) = (x_{pqr}) \quad \forall p, q, r \in \mathbb{N}$, we have $x = (x_{pqr}) \in c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$. Now define the sequence $y = y_{pqr}$ as

$$y_{pqr} = \begin{cases} 0 & , & \text{if } r \text{ is odd } , \text{ and } p, q \in \mathbb{N} \\ lmn & , & \text{otherwise.} \end{cases}$$

Q.E.D.

Then for $f_{pqr}(x) = (x_{par}) \quad \forall p, q, r \in \mathbb{N}$, it is clear that $y = (y_{par}) \notin c^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ Hence the sequence spaces $c^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I}$ is not convergence free. The space $c^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I}$ and $\ell_{\infty}^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I}$ are not convergence free in general can be proved in the same fashion. Q.E.D.

Theorem 3.6. In general the triple difference sequences $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ and $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ are not symmetric if I is neither maximal nor $I = I_f$.

Proof. We prove the result for the sequence space $c_0^3[\Delta, F, \|\cdot, \ldots, \cdot\|]^I$ using an example. **Example**: Define the triple sequence $x = (x_{pqr})$ as

$$x_{pqr} = \begin{cases} 0 &, & \text{if } r = 1, \text{ for all } p, q \in \mathbb{N} \\ 1 &, & \text{otherwise.} \end{cases}$$

Then if $f_{pqr}(x) = (x_{pqr}) \quad \forall p, q, r \in \mathbb{N}$, we have $x = (x_{pqr}) \in c_0^3[\Delta, F, \|, \dots, \|]^I$. Now if $x_{\pi(pqr)}$ be a rearrangement of $x = (x_{pqr})$ defined as

$$x_{\pi(pqr)} = \begin{cases} 1 & , & \text{for } p, q, r \text{ even } \in K \\ 0 & , & \text{otherwise.} \end{cases}$$

Then $\{x_{\pi(p,q,r)}\} \notin c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ as $\Delta x_{\pi(pqr)} = 1$. Hence the sequence spaces $c_0^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ is not symmetric in general. The space $c^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I$ is not symmetric in general can be proved in the same fashion. Q.E.D.

Theorem 3.7. Let $F = (f_{pqr})$ and $G = (g_{pqr})$ be two sequences of modulus functions. Then

$$Z^{3}[\Delta, F, \|\cdot, \dots, \cdot\|]^{I} \cap Z^{3}[\Delta, G, \|\cdot, \dots, \cdot\|]^{I} \subseteq Z^{3}[\Delta, F + G, \|\cdot, \dots, \cdot\|]^{I}$$

where $Z = c_0$, c and ℓ_{∞} .

Proof. We prove the result for $Z = \ell_{\infty}$. Let $x = (x_{pqr}) \in \ell_{\infty}^3[\Delta, F, \|\cdot, \dots, \cdot\|]^I \cap \ell_{\infty}^3[\Delta, G, \|\cdot, \dots, \cdot\|]^I$. Then for $z_1, \ldots, z_{n-1} \in X$ we have

$$\left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \sup_{p,q,r \ge 1} \left\{ f_{pqr} \left(\|\Delta x_{pqr}, z_1, \cdots, z_{n-1} \| \right) \right\} \ge K_1 \right\} \in I \quad \text{for some } K_1 > 0$$

and

$$\left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \sup_{p,q,r \ge 1} \left\{ g_{pqr} \left(\|\Delta x_{pqr}, z_1, \cdots, z_{n-1} \| \right) \right\} \ge K_2 \right\} \in I \quad \text{for some } K_2 > 0.$$

Now since

$$\sup_{p,q,r\geq 1} \left\{ \left(f_{pqr} + g_{pqr}\right) \left(\left\| \Delta x_{pqr}, z_{1}, \cdots, z_{n-1} \right\| \right) \right\} = \sup_{p,q,r\geq 1} \left\{ f_{pqr} \left(\left\| \Delta x_{pqr}, z_{1}, \cdots, z_{n-1} \right\| \right) + g_{pqr} \left(\left\| \Delta x_{pqr}, z_{1}, \cdots, z_{n-1} \right\| \right) \right\} \\ \leq \sup_{p,q,r\geq 1} \left\{ f_{pqr} \left(\left\| \Delta x_{pqr}, z_{1}, \cdots, z_{n-1} \right\| \right) \right\} + \sup_{p,q,r\geq 1} \left\{ g_{pqr} \left(\left\| \Delta x_{pqr}, z_{1}, \cdots, z_{n-1} \right\| \right) \right\} \right\}$$

Hence for $K = \max\{K_1, K_2\}$ we have

$$\left\{ (p,q,r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \sup_{p,q,r \ge 1} \left\{ (f_{pqr} + g_{pqr}) \left(\|\Delta x_{pqr}, z_1, \cdots, z_{n-1}\| \right) \right\} \ge K \right\} \in I.$$

Therefore $x = (x_{pqr}) \in \ell^3_{\infty}[\Delta, F + G, \|\cdot, \dots, \cdot\|]^I$. Hence

$$\ell^3_{\infty}[\Delta, F, \|\cdot, \dots, \cdot\|]^I \cap \ell^3_{\infty}[\Delta, G, \|\cdot, \dots, \cdot\|]^I \subseteq \ell^3_{\infty}[\Delta, F + G, \|\cdot, \dots, \cdot\|]^I.$$

In the same way the inclusion for $Z = c_0, c$ can be proved.

Acknowledgements

The authors express their gratitude to the referees for their valuable comments and suggestions which improved the presentation of the paper.

References

- A. Alotaibi, M. Mursaleen and S. K. Sharma, Double sequence spaces over n-normed spaces defined by a sequence of orlicz functions, Jou. Ineq. Appl., 216, (2014), 2014:216.
- [2] S. Debnath and B.C.Das, New type of difference triple sequence spaces, Palestine J. Math, 4(2), (2015), 284–290.
- [3] S. Debnath and B.C.Das, Some generalized triple sequence spaces defined by modulus function, Facta Universitatis, Series Math. Inform. 31(2), (2016),373–382.
- [4] S. Debnath, B.C.Das, D. Bhattacharya and J. Debnath, Regular matrix transformation on triple sequence spaces, Boletim da Soc. Paran. de Mat., 35(1), (2017), 85–96.
- [5] S.Debnath, U. Misra and B.C.Das, On some newly generalized difference triple sequence spaces, Southeast Asian Bull. Math. 41(4), (2017), 491–499.
- [6] S. Debnath and S. Saha, On some I-convergent generalized difference sequence spaces associated with multiplier sequence defined by a sequence of modulli, Proye. J. Math., 34(2), (2015), 137– 145.
- [7] S. Debnath, B. Sarma, B.C. Das, Some generalized triple sequence spaces of real numbers J. Non. Anal. Opt. 6, (2015), 71–79.
- [8] S. Debnath and N. Subramanian, Generalized rough lacunary statistical triple difference sequence spaces in probability of fractional order defined by musielak-orlicz function Bol. Soc. Paran. Mat. (3s) Vol. 37, 1, 55–62.
- S. Debnath and N. Subramanian, Rough statistical convergence on triple sequences, Proye. J. Math., 36(4), (2017), 685–699.
- [10] A. Esi, On some triple almost lacunary sequence spaces defined by orlicz functions, Research and Reviews: Discrete Mathematical structures 1, (2014), 16–25.
- [11] A. Esi and M.N. Catalbas, Almost convergence of triple sequences G. J. Math. Anal. 2, (2014), 6–10.
- [12] A. Esi and E. Savas On lacunary statically convergent triple sequences in probabilistic normed space Appl Mathand Inf Sci 9, (2015), 2529–2534.

Q.E.D.

- [13] H. Fast, Surla convergence statistique, Colloq. Math., 2, (1951), 241–244.
- [14] J.A. Fridy, On statistical convergence, Analysis, 5, (1985), 301–313.
- [15] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 11, (1993), 1187–1192.
- [16] S. Gähler, *Linear 2-normietre Rume*, Math. Nachr., 28 (1965), 1–43.
- [17] T. Jalal, Some new I-convergent sequence spaces defined by using a sequence of modulus functions in n-normed spaces, Int. J. Math. Archive, 5(9), (2014), 202-209.
- [18] T. Jalal, Some new I-lacunary generalized difference sequence spaces defined in n-normed spaces, Springer Proc. Math. Sat., 171, (2016), 249-258.
- [19] T. Jalal, Some new lacunary sequence spaces of invariant means defined by musielak-Orlicz functions on n-normed space, Int. J. P. Appl. Math., 119(7), (2018), 1-11.
- [20] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24(1), (1981), 169-176.
- [21] P. Kostyrko, T. Salat, W. Wilczynski, *I-convergence*, Real Anal. Exch. 26(2), (2000), 669-686.
- [22] V. Kumar, On I-convergence of double sequences, Math. Commun., 12, (2007), 171-181.
- [23] A. Misiak, *n-Inner product spaces*, Math. Nachr., **140**, (1989), 299-319.
- [24] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288, (2003), 223-231.
- [25] M. Mursaleen, K. Raj and S. K. Sharma, Some spaces of differences and lacunary statistical convergence in n-normed space defined by sequence of orlicz functions, Miskolc Mathematical Notes, 16(1), (2015), 283-304.
- [26] T. Salat, B. C. Tripathy and M. Ziman, On some properties of I-convergence, Tatra Mountain Mathematical Publications, pp. 669-686, 2000.
- [27] A. Sahiner, M. Gurdal and F.K. Duden, Triple Sequences and their statistical convergence, Selcuk J. Appl Math 8, (2007), 49-55.
- [28] A. Sahiner and B.C. Tripathy, Some I related properties of triple sequences, Selcuk J Appl Math 9, (2008), 9-18.
- [29] S.K. Sharma and Ayhan Esi, Some I-convergent sequence spaces defined by using sequence of moduli and n-normed space, J. Egyp. Math. Soc. 21(2) (20131), 103-107.
- [30] B. C. Tripathy, Statistically convergent double sequence, Tamkang. J. Math., 34(3), (2003), 231-237.