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Abstract

Adopting the so-called concavity method, we establish a finite time blow-up result for a class
of fourth-order non-linear wave equations with positive energy.

2010 Mathematics Subject Classification. 35L70. 47F05
Keywords. Fourth-order wave equation, energy, blow-up.

1 Introduction

This paper studies non-existence of global solutions to the semi-linear fourth-order wave equation{
ü+ ∆2u+ u = f(u) ;
(u, u̇)|t=0 = (u0, u1) ,

(1.1)

where u is a real valued function of the variable (t, x) ∈ [0, T )×RN and the source term f is a real
function to be fixed later.

Equations of the fourth-order appear in problems of solid mechanics, in the theory of thin plates
and beams, elastic rods, and shallow water waves [7]. Moreover, in one space dimension, such equa-
tions describe a number of physical and biological phenomena, such as the analysis of elasto-plastic
microstructure models for longitudinal motion of an elasto-plastic bar [2].

The semi-linear fourth-order wave equation with a pure power non-linearity

ü+ ∆2u± u|u|p−1 = 0, u : R× RN → R, p > 1,

is invariant under the scaling

uλ(t, x) := λ
4

p−1u(λ2 t, λ x), λ > 0.

The homogeneous Sobolev ‖ . ‖Ḣsc norm, for sc := N
2 −

4
p−1 , is invariant under the dilatation

u 7→ uλ. The energy critical case sc = 2, corresponds to the critical exponent pc := N+4
N−4 , N ≥ 5.

Local well-posedness holds in the energy space for 1 < p ≤ pc and N ≥ 5 or 1 < p < ∞
and N ∈ [1, 4]. Moreover, global well-posedness hold in the defocusing case [3]. Scattering for
1 + 8

N ≤ p < pc was established by Levandosky [4], Levandosky and Strauss [5] and Pausader [8].
See [10] for an exponential source term in four space dimensions. Few results deal with finite time
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blow-up of solutions to fourth-order wave equations [11, 14].

It is the aim of this manuscript to give some sufficient conditions on the data which give finite
time blowing-up solutions to (1.1). This extends some known results about non-global solutions to
non-linear wave equations [12, 13, 9].

The rest of the paper is organized as follows. The next section contains some technical tools
needed in the sequel and the main results. The two last sections are devoted to proving the main
results.

In the rest of this note, for simplicity, denote the Lebesque space Lr := Lr(RN ) and the Sobolev
space H2 := H2(RN ). Denote also ‖ . ‖L2 by ‖ . ‖ and

‖ . ‖H2 :=
(
‖ . ‖2 + ‖∆ . ‖2

) 1
2

.

Moreover, for any u ∈ H2, define the quantities

G(t) := ‖u(t)‖2 and I(t) := ‖u(t)‖2H2 −
∫
RN

u(t, x)f(u(t, x)) dx.

2 Preliminary and main results

2.1 Preliminary

The Cauchy problem (1.1) is locally well-posed in the energy space [3, 10].

Proposition 2.1. Let (u0, u1) ∈ H2 ×L2 and f ∈ C1(R). Assume that one of the next conditions
holds

1/ N = 4 and f satisfies the following exponential growth condition{
f(0) = f ′(0) = 0 ;

∀α > 0,∃<α > 0 s. th |f(u)− f(v)|2 ≤ <α|u− v|2
(
eαu

2 − 1 + eαv
2 − 1

)
.

(2.1)

2/ N ≥ 5 and f(u) = up for some 1 < p ≤ N+4
N−4 .

Then, the semi-linear wave problem (1.1) has a unique maximal solution u in the class

CT∗(H
2) ∩ C1

T∗(L
2).

Moreover, the solution satisfies conservation of the energy

E(t) := E(u(t)) :=
1

2

(
‖u(t)‖2H2 + ‖u̇(t)‖2

)
−
∫
RN

F (u(t, x)) dx = E(0),

where F is the primitive of f vanishing on zero.
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Remark 2.2. In the particular case N = 4, the critical exponent pc := N+4
N−4 is not defined. By

use of the Sobolev injection

H1(R2) ↪→ Lr(R2), for all 2 ≤ r <∞,

and Moser-Trudinger inequalities [1], it is proved that every polynomial source term is energy
sub-critical and a critical non-linearity is of exponential growth at infinity [10].

Throughout this manuscript, consider two real numbers −2 < a < −1 and 0 < ε < 1 satisfying

a < −1

2

(
1 +

eε−1

ε

)
. (2.2)

Remarks 2.3. Note that,

1/ the statement of changes of ε 7→ − 1
2

(
1 + eε−1

ε

)
shows that Aa :=

{
ε ∈ (0, 1) such that a <

− 1
2

(
1 + eε−1

ε

)}
is an infinite set if a < −1;

2/ here and hereafter, if N = 4, the non-linearity and it’s primitive vanishing on zero are

fa(u) := eu − 1 + au and Fa(u) :=

∫ u

0

fa(s) ds = eu − 1− u+
a

2
u2.

The following property about the non-linearity will be useful in the sequel.

Lemma 2.4. Take −2 < a < −1 and ε ∈ Aa. Then,

1/ b := b(a, ε) := inf
x∈R

(
xfa(x)− (2 + ε)Fa(x)

)
∈ R;

2/ the next inequality holds

xfa(x) ≥ (2 + ε)Fa(x) + (a+ 1)
ε

2
x2, for any x ∈ R. (2.3)

Proof. 1/ It is sufficient to write lim
x→±∞

(
xfa(x)− (2 + ε)Fa(x)

)
= +∞;

2/ define the function

ϕ(x) := ϕε,a(x) := −(2 + ε)Fa(x) + xfa(x)− (a+ 1)
ε

2
x2

= x(ex − 1 + ax)− (2 + ε)(ex − 1− x+
a

2
x2)− (a+ 1)

ε

2
x2

= (x− 2− ε)ex + (2 + ε) + (1 + ε)x− ε

2
(1 + 2a)x2.

Thus,

ϕ′(x) = (x− 1− ε)ex + (1 + ε)− ε(1 + 2a)x ;

ϕ′′(x) = (x− ε)ex − ε(1 + 2a), ϕ′′′(x) = (x+ 1− ε)ex.

Using (2.2), a statement of changes shows that ϕ ≥ 0.
q.e.d.
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Recall a standard result about non-global solutions to an ordinary differential inequality.

Lemma 2.5. Let ε > 0. There is no real function H ∈ C2(R+) satisfying

H(0) > 0, H ′(0) > 0 and HH ′′ − (1 + ε)(H ′)2 ≥ 0 on R+.

Proof. Assume with contradiction, the existence of such a function. Then (H−(1+ε)H ′)′ ≥ 0 and

H ′

H1+ε
≥ H ′(0)

H(0)
> 0.

This is a Riccati inequality with blow-up time T < 1
ε
H(0)
H′(0) . This contradiction achieves the proof.

q.e.d.

2.2 Main results

This subsection contains two Theorems about non-global solutions to (1.1) under some sufficient
conditions on the data.

Theorem 2.6. Take N ≥ 5, f(u) = up for some 1 < 1 + ε < p ≤ N+4
N−4 , E0 > 0 and (u0, u1) ∈

H2 × L2. Assume that

E(0) = E0, I(0) < 0 and G′(0) >
4(2 + ε)

ε
E0.

Then, the maximal solution u ∈ CT∗(H2) ∩ C1
T∗(L

2) to (1.1), blows-up in a finite time. Precisely,

T ∗ <∞ and lim sup
t→T∗

‖u(t)‖ =∞.

Now, consider non-global solutions to (1.1) in four space dimensions.

Theorem 2.7. Take N = 4, −2 < a < −1, f := fa, ε ∈ Aa, E0 > 0 and (u0, u1) ∈ H2 × L2.
Assume that

E(0) = E0, I(0) < 0 and G′(0) >
2(2 + ε)

ε(2 + a)
E0.

Then, the maximal solution u ∈ CT∗(H2) ∩ C1
T∗(L

2) to (1.1), blows-up in a finite time. Precisely,

T ∗ <∞ and lim sup
t→T∗

‖u(t)‖ =∞.

3 Proof of Theorem 2.6

The proof is based on the following auxiliary result.

Lemma 3.1. Take N ≥ 5 and f(u) = up for some 1 < 1 + ε < p ≤ N+4
N−4 . Let (u0, u1) ∈ H2 × L2

such that E(0) = E0 > 0, I(0) < 0 and G′(0) > 4(2+ε)
ε E0. Then, I < 0 and G′ > 4(2+ε)

ε E on
[0, T ∗).
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Proof. Compute using the equation (1.1), G′ = 2
∫
RN u(x)u̇(x) dx and 1

2G
′′ = ‖u̇‖2 − I ≥ −I.

Assume that I is not always negative and define

t := min
{
s ∈ (0, T ∗) such that I(s) = 0

}
.

Then G′ is increasing on [0, t] and

G′ ≥ G′(0) >
4(2 + ε)

ε
E0 on [0, t]. (3.1)

Since I(t) = 0, yields

2E = ‖u(t)‖2H2 + ‖u̇(t)‖2 − 2

1 + p

∫
RN

|u(t, x)|1+p dx

= ‖u(t)‖2H2 + ‖u̇(t)‖2 − 2

1 + p

(
‖u(t)‖2H2 − I(t)

)
=

p− 1

1 + p
‖u(t)‖2H2 + ‖u̇(t)‖2.

Then, thanks to Cauchy-Schwarz inequality, since p > 1 + ε, we get

2E ≥ ‖u̇(t)‖2 +
ε

2 + ε
‖u(t)‖2H2

≥ ε

2 + ε

(
‖u̇(t)‖2 + ‖u(t)‖2

)
≥ ε

2 + ε
G′(t).

This contradicts (4.1) and finishes the proof. q.e.d.

Now, return to the proof of Theorem 2.6. With contradiction, assume that u is global. Compute,
using Cauchy-Schwarz inequality

(G′)2 = 4‖uu̇‖21 ≤ 4‖u‖2‖u̇‖2 ≤ 4G‖u̇‖2.

For λ ∈ R, define the real function

hλ := GG′′ − 3 + λ

4
(G′)2

≥ G
(
G′′ − (3 + λ)‖u̇‖2

)
≥ −G

(
2I + (1 + λ)‖u̇‖2

)
.

Now, take the case f(u) = up. Since p > 1 + ε, write

2E = ‖u‖2H2 + ‖u̇‖2 − 2

1 + p

∫
RN

|u|1+p dx

= ‖u‖2H2 + ‖u̇‖2 − 2

1 + p

(
‖u‖2H2 − I

)
≥ ‖u‖2H2 + ‖u̇‖2 − 2

2 + ε

(
‖u‖2H2 − I

)
.
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Then,
2(2 + ε)E ≥ (2 + ε)‖u̇‖2 + ε‖u‖2H2 + 2I.

Thus,

hλ ≥ −G
(

2I + (1 + λ)‖u̇‖2
)

≥ G
(
− 2(2 + ε)E + (2 + ε)‖u̇‖2 + ε‖u‖2H2 − (1 + λ)‖u̇‖2

)
≥ G

(
− 2(2 + ε)E + (1 + ε− λ)‖u̇‖2 + ε‖∆u‖2 + ε‖u‖2

)
.

Using the previous Lemma and Cauchy-Schwarz inequality, yields

h1+ ε
2
≥ G

(
− 2(2 + ε)E +

ε

2
‖u̇‖2 + ε‖∆u‖2 + ε‖u‖2

)
≥ G

(
− 2(2 + ε)E +

ε

2
‖u̇‖2 +

ε

2
‖u‖2

)
≥ ε

2
G
(
−G′ + ‖u̇‖2 + ‖u‖2

)
≥ 0.

Finally,

GG′′ − (1 +
ε

8
)(G′)2 ≥ 0.

The first part of Theorem 2.6 is proved thanks to Lemma 2.5.

4 Proof of Theorem 2.7

In this section, take N = 4, −2 < a < −1, f := fa and ε ∈ Aa. The proof is based on the following
intermediate result.

Lemma 4.1. Let (u0, u1) ∈ H2 × L2 such that E(0) = E0 > 0, I(0) < 0 and G′(0) > 2(2+ε)
ε(2+a)E0.

Then, I < 0 and G′ > 2(2+ε)
ε(2+a)E on [0, T ∗).

Proof. Compute using the equation (1.1), G′ = 2
∫
RN u(x)u̇(x) dx and 1

2G
′′ = ‖u̇‖2 − I ≥ −I.

Assume that I is not always negative and define

t := min
{
s ∈ (0, T ∗) such that I(s) = 0

}
.

Then G′ is increasing on [0, t] and

G′ ≥ G′(0) >
2(2 + ε)

ε(2 + a)
E0 on [0, t]. (4.1)

Since I(t) = 0 and using (2.3), yields

2E = ‖u(t)‖2H2 + ‖u̇(t)‖2 − 2

∫
R2

Fa(u(t, x)) dx

≥ ‖u(t)‖2H2 + ‖u̇(t)‖2 − 2

2 + ε

∫
R2

(
u(t, x)fa(u(t, x))dx− ε

2
(1 + a)u2(t, x)

)
dx

≥ ‖u(t)‖2H2 + ‖u̇(t)‖2 − 2

2 + ε
(‖u(t)‖2H2 −

ε

2
(1 + a)‖u(t)‖2).
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Then, thanks to Cauchy-Schwarz inequality, one gets

2E ≥ ‖u̇(t)‖2 +
ε

2 + ε
‖∆u(t)‖2 +

(2 + a)ε

2 + ε
‖u(t)‖2

≥ ε(2 + a)

2 + ε

(
‖u(t)‖2 + ‖u̇(t)‖2 + ‖∆u(t)‖2

)
≥ ε(2 + a)

2 + ε
G′(t).

This contradicts (4.1) and finishes the proof. q.e.d.

Now, return to the proof of Theorem 2.7. Taking account of (2.3), write

2E = ‖u‖2H2 + ‖u̇‖2 − 2

∫
R2

Fa(u) dx

≥ ‖u‖2H2 + ‖u̇‖2 − 2

2 + ε

∫
R2

(
ufa(u)dx− ε

2
(1 + a)u2

)
dx

≥ ‖u‖2H2 + ‖u̇‖2 − 2

2 + ε

(
‖u‖2H1 − I −

ε

2
(1 + a)‖u‖2

)
.

Then,
2(2 + ε)E ≥ (2 + ε)‖u̇‖2 + ε‖∆u‖2 + ε(2 + a)‖u‖2 + 2I.

Thus,

hλ ≥ −G
(

2I + (1 + λ)‖u̇‖2
)

≥ G
(
− 2(2 + ε)E + (2 + ε)‖u̇‖2 + ε‖∆u‖2 + ε(2 + a)‖u‖2 − (1 + λ)‖u̇‖2

)
≥ G

(
− 2(2 + ε)E + (1 + ε− λ)‖u̇‖2 + ε‖∆u‖2 + ε(2 + a)‖u‖2

)
.

Using the previous Lemma, one gets G′ > 2(2+ε)
ε(2+a)E, so

h1−ε(1+a) ≥ G
(

(1 + ε− (1− ε(1 + a)))‖u̇‖2 + ε(2 + a)‖u‖2 − 2(2 + ε)E
)

≥ ε(2 + a)G
(
‖u̇‖2 + ‖u‖2 −G′

)
> 0.

Finally,

GG′′ − (1− ε(1 + a)

4
)(G′)2 ≥ 0.

The proof follows by Lemma 2.5 and the fact that a < −1.
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Annales Henri Poincaré. 18 (2017), no. 1, 345-374.

[12] Y. Wang, A sufficient condition for finite time blow-up of the nonlinear Klein-Gordon equations
with arbitrarily positive initial energy, P. A. M. S. 136 (2008), no. 10, 3477-3482.

[13] Y. Yanbing and X. Runzhang, Finite time blowup for nonlinear Klein-Gordon equa-
tions with arbitrarily positive initial energy, to appear in Appl. MAth. Letters.
https://doi.org/10.1016/j.aml.2017.09.014

[14] W. Zhao and W. Liu, A note on blow-up of solutions for a class of fourth-order wave equation
with viscous damping term, Applicable. Anal. 96 (2017), 1-9.


