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Abstract

Firstly, a generalization of Riemannian submersions, slant submersions and semi-slant submer-
sions, we introduce semi-slant Riemannian maps from almost contact metric manifolds onto
Riemannian manifolds. In this paper, we obtain some results on such maps by taking the
vertical structure vector field. Among them, we study integrability of distributions and the
geometry of foliations. Further, we find the necessary and sufficient conditions for semi-slant
Riemannian maps to be harmonic and totally geodesic. We, also investigate some decomposi-
tion theorems and provide some examples to show the existence of the maps.
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1 Introduction

Differentiable maps between Riemannian manifolds play an important role in differential geometry.
There are certain kinds of differentiable maps between Riemannian manifolds whose existence
influences the geometry of the source manifolds and the target manifolds. These maps between two
Riemannian manifolds also play significant role to compare geometric structures defined on both
manifolds.

Let f be a differentiable map from a Riemannian manifold (M, gM ) to a Riemannian manifold
(N, gN ), where dimM = m and dimN = n. We know that the map f is harmonic if and only
if the tension field τ(f) = trace(∇f∗) = 0 [5], and we also know that f is totally geodesic if
(∇f∗)(X,Y ) = 0, for all X,Y ∈ Γ(TM) [1].

On the other hand, submersions have been studied widely in differential geometry. Riemannian
submersions between Riemannian manifolds were studied by O’Neill [12] and Gray [8]. Such sub-
mersions between Riemannian manifolds equipped with an additional structure of almost complex
type was firstly studied by Watson in [18]. There are several kinds of Riemannian submersions like:

Almost Hermitian submersion [17], slant submersions from almost Hermitian manifolds [16],
semi-Riemannian submersion and Lorentzian submersion [6], etc. As we know, Riemannian sub-
mersions are related with physics and have their applications in the Yang-Mills theory ([4], [18]),
Supergravity and superstring theories ([9], [11]), Kaluza-Klein theory [10], etc. Semi-slant Rieman-
nian maps into almost Hermitian manifolds was studied by Park and Sahin [14]. It is known that
complex techniques in physics have been very effective tools for understanding space time geometry.
Now, we study semi-slant Riemannian maps from almost contact metric manifolds into Riemannian
manifolds.

A. Fischer introduced a Riemannian map between Riemannian manifolds [7], which unifies and
generalizes the notions of an isometric immersion, a Riemannian submersion, and an isometry. Let
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f : (M, gM )→ (N, gN ) be a differentiable map between Riemannian manifolds such that 0 < rank
f∗ < min(m,n). Then we denote the kernal space of f∗ by kerf∗ such that the orthogonal
complementary space (kerf∗ )⊥ of kerf∗ in TM . Then the TM has the following orthogonal
decomposition:

TM = ker f∗ ⊕ (ker f∗)
⊥. (1.1)

Also, we denote the range of f∗ by (rangef∗f(p)), for p ∈ M and orthogonal complementary

space (rangef∗f(p))
⊥ of rangef∗f(p) in Tf(p)N. Thus the tangent space Tf(p)N has the following

orthogonal decomposition:

Tf(p)N = (rangef∗f(p))⊕ (rangef∗f(p))
⊥. (1.2)

Next, a differentiable map f : (M, gM ) → (N, gN ) is called a Riemannian map at p ∈ M if the
horizontal restriction fh∗p : (ker f∗p)

⊥ → (rangef∗f(p)) is linear isometry between the inner product

space ((ker f∗p)
⊥, gM (p)|(ker f∗p)⊥) and (rangef∗f(p),

gN (f(p))|(rangef∗f(p))). Therefore, Fischer define [7] that a Riemannian map is a map which is as
isometric as it can be. In the other hands, a differentiable map f : (M, gM ) → (N, gN ) between
Riemannian manifolds (M, gM ) and (N, gN ) is called a Riemannian map if it satisfies the equation

gN (f∗X, f∗Y ) = gM (X,Y ), for all X,Y ∈ (ker f∗)
⊥. (1.3)

It follows that isometric immersions and Riemannian submersions are particular cases of Rie-
mannian maps with ker f∗ = {0} and (rangef∗)

⊥ = {0} respectively. After that, there are lots of
papers on this topic. Further, slant Riemannian maps [15] and semi-slant submersions [13] were
studied. As a generalization of slant submersions, semi-slant submersions and slant Riemannian
maps, park defined the notion of semi-slant Riemannian maps from almost Hermitian manifolds to
Riemannian manifolds [14]. We will study semi-slant Riemannian maps from almost contact metric
manifolds into Riemannian manifolds.

In this paper, we study semi-slant Riemannian maps from almost contact metric manifolds into
Riemannian manifolds. The paper is organized as follows. In section 2, we collect main notions
and formulae which we need for this paper.

In section 3, we introduce semi-slant Riemannian maps from almost contact metric manifolds
onto Riemannian manifolds admitting vertical structure vector field. We find necessary and suffi-
cient conditions for semi-slant Riemannian maps to be harmonic and totally geodesic.

2 Preliminaries

An odd-dimensional smooth manifold M is said to have an almost contact structure (ϕ, ξ, η) if
there exist on M, a tensor field ϕ of type (1, 1), a vector field ξ and 1−form η such that

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, (2.1)

η(ξ) = 1, (2.2)

where I denote the identity tensor. The manifold M with an almost contact structure is called
almost contact manifold.
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If there exist a Riemannian metric g on an almost contact manifold M satisfying the following
conditions;

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), (2.3)

g(X,ϕY ) = −g(ϕX, Y ),

g(X, ξ) = η(X), (2.4)

where X,Y are the vector fields on M , then structure (ϕ, ξ, η, g) is called almost contact metric
structure and the manifold M is called an almost contact metric manifold. An almost contact
manifold M with almost contact metric structure (ϕ, ξ, η, g) is denoted by (M,ϕ, ξ, η, g). Further,
an almost contact structure (ϕ, ξ, η) is said to be normal if N+dη⊗ξ = 0, where N is the Nijenhuis
tensor of ϕ. The fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,ϕY ).

An almost contact metric manifold (M,ϕ, ξ, η, g) is said to be Sasakian manifold [3], if it satisfies
the following condition;

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, (2.5)

where ∇ denotes the Riemannian connection of metric g on M .

Example 2.1. ([2]) Let R2k+1 with cartesian coordinates (xi, yi, z) (i = 1, 2.....k) and its usual
contact form

η =
1

2
(dz −

k∑
i=1

yidxi).

The characteristic vector field ξ is given by 2 ∂
∂z and its Riemannian metric gR2k+1 and tensor field

ϕ are given by

gR2k+1 = η ⊗ η +
1

4
(

k∑
i=1

(dxi)
2 + (dyi)

2), ϕ =

 0 δij 0
−δij 0 0
0 yj 0

 , i = 1, ..., k.

This gives a contact metric structure on R2k+1. The vector fields Ei = 2 ∂
∂yi

, Ek+i = 2( ∂
∂xi

+

yi
∂
∂z ) and ξ form a ϕ−basis for the contact metric structure. On the other hand, it can be shown

that R2k+1(ϕ, ξ, η, g) is a Sasakian manifold.

For a Sasakian manifold M , we have

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (2.6)

∇Xξ = −ϕX, (2.7)

S(X, ξ) = 2nη(X), (2.8)

for any vector fields X,Y on M .
Let f : (M, gM )→ (N, gN ) be a differentiable map between Riemannian manifolds. The second

fundamental form of f is given by
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(∇f∗)(X,Y ) = ∇fXf∗Y − f∗(∇XY ), for X,Y ∈ ΓTM. (2.9)

where ∇f is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections
of the metrics gM and gN [1] . Recall that f is said to be harmonic if we have the tensor field
τ(f) = trace(∇f∗) = 0 and we call the map f a totally geodesic map if (∇f∗)(X,Y ) = 0, for X,Y
∈ ΓTM . Denote the range of f∗ by rangef∗ as a subset of the pullback bundle f−1TN . With
orthogonal complement (rangef∗)

⊥ we have the following orthogonal decomposition

f−1TN = rangef∗ ⊕ (range f∗)
⊥.

We deal with the harmonicity of a Riemannian map f . Given a differentiable map f between
Riemannian manifolds, we can naturally define a function e(f) : M → [0,∞] given by

e(f)(x) :=
1

2
| e(f∗)(x) |2, x ∈M,

where | (f∗)(x) | denotes the Hilbert-Schmidt norm of (f∗)(x) [1]. We call e(f) the energy density
of f . Let K be a compact domain of M , i.e., K is the compact closure U of a non-empty connected
open subset U of M . The energy integral of f over K is the integral of its energy density:

E(f ;K) =

∫
K

e(f)vgM =
1

2

∫
K

| (f∗) |2 vgM ,

where vgM is the volume form on (M, gM ). Let C∞(M,N) denote the space of all differentiable
map from M to N . A differentiable map f : M → N is said to be harmonic if it is a critical point
of the energy functional E(f ;K) : C∞(M,N) → R for any compact domain K ⊂M. By the result
of J. Eells and J. Sampson [5], we know that the map f is harmonic if and only if the tension field
τ(f) = trace(∇f∗) = 0.

Let f : (M, gM )→ (N, gN ) be a Riemannian map. The map f is called a Riemannian map with
totally umbilical fibres if

TXY = gM (X,Y )H, for X,Y ∈ Γ(ker f∗),

where H is mean curvature vector field of the fibres.
Given a Riemannian manifold (M, gM ) and distribution D on M call the distribution D au-

toparallel or totally geodesic foliation if ∇XY ∈ Γ(D), for X,Y ∈ Γ(D). If D is autoparallel, then
it is obviously integrable and its leaves are totally geodesic in M . The distribution D is said to
be parallel if ∇XY ∈ Γ(D), for Y ∈ Γ(D) and Z ∈ Γ(TM). If D is parallel, then we easily obtain
that its orthogonal complementary distribution D⊥ is also parallel. In this situation, M is locally
a Riemannian product manifold of the leaves of D and D⊥. It is also easy to show that if the
distributions D and D⊥ are simultaneously autoparallel, then they are also parallel.

Lemma 2.2. Let f be a Riemannian map from a Riemannian manifold (M, gM ) to a Riemannian
manifold (N, gN ) [7]. Then
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(∇f∗)(X,Y ) ∈ Γ((rangef∗)
⊥), for X,Y ∈ Γ((ker f∗)

⊥).

Lemma 2.3. For any X,Y vertical and V,W horizontal vector fields, the tensors T and A satisfy
[12] :

TXY = TYX,

AVW = −AWV =
1

2
V[V,W ].

Lemma 2.4. Let f be a Riemannian map from a Riemannian manifold (M, gM ) to a Riemannian
manifold (N, gN ). Then the map f satisfies a generalized eikonal equation [7]

2e(f) =‖ f∗ ‖2= rankf.

As we know, ‖ f∗ ‖2 is a continuous function on M and rank f is integer-valued so that rank
f is locally constant. Hence, if M is connected, then rank f is a constant function.

3 Semi-slant Riemannian maps admitting vertical structure vector field

In this section we define semi-slant Riemannian maps from almost contact metric manifolds to
Riemannian manifolds. We investigate integrability of distributions and harmonicity conditions for
semi-slant Riemannian maps. Further, we find the conditions for a semi-slant Riemannian map
to be totally geodesic and prove some decomposition theorems. Throughout this section, we have
taken semi-slant Riemannian maps admitting vertical structure vector field and give as.

Definition 3.1. Let (M,ϕ, ξ, η, gM ) be an almost contact metric manifold and (N, gN ) be a Rie-
mannian manifold. A Riemannian map f : (M,ϕ, ξ, η, gM ) → (N, gN ) is called a semi-slant Rie-
mannian map if there are two distributions D1, D2 ⊂ ker f∗ such that

ker f∗ = D1 ⊕D2⊕ < ξ >,ϕ(D1) = D1,

and the angle θ = θ(X) between ϕX and the space (D2)p is constant for non-zero vector fields
X ∈ (D2)p and p ∈M, where D1 ⊕D2⊕ < ξ > is an orthogonal decomposition of ker f∗.

We call the angle θ a semi−slant angle.

Note that given a Euclidean space R2n+1 with coordinates (x1, x2, ........, x2n, x2n+1) we can
canonically choose an almost contact metric structure (ϕ, ξ, η, g) on R2n+1 as follows:

ϕ(a1
∂

∂x1
+ a2

∂

∂x2
+ ............+ a2n−1

∂

∂x2n−1
+ a2n

∂

∂x2n
+ a2n+1

∂

∂x2n+1
)

= (−a2
∂

∂x1
+ a1

∂

∂x2
+ .....................− a2n

∂

∂x2n−1
+ a2n−1

∂

∂x2n
),

where ξ = ∂
∂x2n+1

and a1, a2, a3,...., a2n, a2n+1 are C∞−real valued functions in R2n+1. Let η =

dx2n+1 is 1−form on R2n+1 and let { ∂
∂x1

, ......, ∂
∂xn

, ∂
∂xn+1

, ......, ∂
∂x2n

, ∂
∂x2n+1

} is orthonormal basis

of vector fields on R2n+1. Let gR2n+1 is a Euclidean metric on R2n+1.
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Example 3.2. Let R11 has almost contact metric structure with metric g11 as defined above. Let
(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) be coordinate system in R11 and (y1, y2, y3, y4, y5, y6, y7)
be coordinate system in R7. Let g7 be Euclidean metric on R7. Define a map f : R11 → R7 by

f(x1, x2, ......, x11) = (c, 0,
−x3 + x5√

2
, x4, d,

x7 + x9√
2

,
x8 + x10√

2
),

with c, d ∈ R. Then the map f is a semi-slant Riemannian map such that

D1 = <
∂

∂x1
,
∂

∂x2
,
∂

∂x7
− ∂

∂x9
,
∂

∂x8
− ∂

∂x10
>,

D2 = <
∂

∂x3
+

∂

∂x5
,
∂

∂x6
>, ξ =

∂

∂x11
,

(ker f∗)
⊥ = < V1 =

∂

∂x4
, V2 =

∂

∂x3
− ∂

∂x5
, V3 =

∂

∂x7
+

∂

∂x9
,

V4 =
∂

∂x8
+

∂

∂x10
>,

ω(D2) = <
∂

∂x4
,

∂

∂x3
− ∂

∂x5
>, µ =<

∂

∂x7
+

∂

∂x9
,
∂

∂x8
+

∂

∂x10
>,

f∗V1 =
∂

∂y4
, f∗V2 =

√
2
∂

∂y3
, f∗V3 =

√
2
∂

∂y6
, f∗V4 =

√
2
∂

∂y7
,

with the semi-slant angle θ = π
4 .

Let f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a semi-slant Riemannian map. Then there are distribu-
tions D1, D2 ⊂ ker f∗ such that

ker f∗ = D1 ⊕D2⊕ < ξ >,ϕ(D1) = D1,

and the angle θ = θ(X) between ϕX and space (D2)p is constant for non-zero vector fields X ∈
(D2)p and p ∈ M, where D1 ⊕ D2⊕ < ξ > is an orthogonal decomposition of a ker f∗. Then for
X ∈ Γ(ker f∗), we get

X = PX +QX + η(X)ξ, (3.1)

where PX ∈ Γ(D1) and QX ∈ Γ(D2).
For X ∈ Γ(ker f∗), we write

ϕX = ψX + ωX, (3.2)

where ψX ∈ Γ(ker f∗) and ωX ∈ Γ((ker f∗)
⊥).

For Z ∈ Γ((ker f∗)
⊥), we write

ϕZ = BZ + CZ, (3.3)

where BZ ∈ Γ(ker f∗) and CZ ∈ Γ((ker f∗)
⊥).

For U∈ Γ(TM), we obtain
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U = VU +HU, (3.4)

where VU ∈ Γ(ker f∗) and HU ∈ Γ((ker f∗)
⊥).

For W ∈ Γ(f−1TN), we have

W = PW +QW, (3.5)

where PW ∈ Γ(range f∗) and QW ∈ Γ(range f∗)
⊥.

Then

(ker f∗)
⊥ = ωD2 ⊕ µ,

where µ is the orthogonal complement of ωD2 in (ker f∗)
⊥ and is invariant under ϕ.

Thus, we have
TM = (ker f∗)⊕ (ker f∗)

⊥.

Futher more, we have

ψD1 = D1, ωD1 = 0 ⇔ ϕD1 = D1,

ψD2 ⊂ D2, B((ker f∗)
⊥) = D2,

ψ2 +Bω = −id, C2 + ωB = −id,
ωψ + Cω = 0, BC + ϕB = 0, ψξ = 0, ωξ = 0.

Define tensors T and A by

AEF = H∇HEVF + V∇HEHF, (3.6)

TEF = H∇VEVF + V∇VEHF, (3.7)

for E,F ∈ Γ(TM), where ∇ is the Levi-Civita connection of (M, gM ).
For X,Y ∈ Γ(ker f∗), define

∇̂XY = V∇XY, (3.8)

(∇Xψ)Y = ∇̂XψY − ψ∇̂XY, (3.9)

(∇Xω)Y = H∇XωY − ω∇̂XY. (3.10)

On the other hand, from equations (3.6) and (3.7), we have

∇XY = TXY + ∇̂XY, (3.11)

∇XZ = H∇XZ + TXZ, (3.12)

∇ZX = AZX + V∇ZX, (3.13)



26 R. Prasad, S. Kumar

∇ZW = H∇ZW +AZW, (3.14)

for X,Y ∈ Γ(ker f∗) and Z,W ∈ Γ((ker f∗)
⊥).

Lemma 3.3. Let (M,ϕ, ξ, η, gM ) be a Sasakian manifold and (N, gN ) be a Riemannian manifold.
Let f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a semi-slant Riemannian map. Then

(1)
(∇Xψ)Y = BTXY − TXωY +R(ξ,X)Y, (3.15)

(∇Xω)Y = CTXY − TXψY, (3.16)

for X,Y ∈ Γ(ker f∗).
(2)

V∇ZBW +AZCW = ψAZW +BH∇ZW + g(Z,W )ξ, (3.17)

AZBW +H∇ZCW = ωAZW + CH∇ZW, (3.18)

for Z,W ∈ Γ((ker f∗)
⊥).

(3)

∇̂XBZ + TXCZ = ψTXZ +BH∇XZ, (3.19)

TXBZ +H∇XCZ = CH∇XZ + ωTXZ, (3.20)

V∇ZψX +AZωX = ψV∇ZX +BAZX, (3.21)

AZψX +H∇ZωX + η(X)Z = ωV∇ZX + CAZX, (3.22)

for X ∈ Γ(ker f∗) and Z ∈ Γ((ker f∗)
⊥).

Theorem 3.4. Let f be a semi-slant Riemannian map from an almost contact metric manifold
(M,ϕ, ξ, η, gM ) to a Riemannian manifold (N, gN ) with the semi-slant angle θ. Then

ψ2X = − cos2 θ.X, forX ∈ Γ(D2).

Proof. Let f be a semi-slant Riemannian map from an almost contact metric manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ) with the semi-slant angle θ. Then for a non-vanishing vector
field X ∈ Γ(D2), we have

cos θ =
| ψX |
| ϕX |

, (3.23)

and

cos θ =
gM (ϕX,ψX)

| ϕX || ψX |
.
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By using equation (3.2), we have

cos θ =
gM (ψX,ψX)

| ϕX || ψX |
,

cos θ = −gM (X,ψ2X)

| ϕX || ψX |
. (3.24)

From equations (1.1), (3.23) and (3.24), we get

ψ2X = − cos2 θ.X, for X ∈ Γ(D2).

q.e.d.

Remark 3.5. From above theorem, it is easy to see that

gM (ψX,ψY ) = cos2 θgM (X,Y ),

gM (ωX,ωY ) = sin2 θgM (X,Y ),

for X,Y ∈ Γ(D2), when θ ∈ (0, π2 ). We can locally choose an orthonormal frame {e1, ψe1,
...., ek, ψek, f1, sec θψf1, csc θωf1, ....., fs, sec θψfs, csc θωfs, ξ, g1, ψg1, ...., gt, ψgt} of TM such that
{e1, ψe1, ...., ek, ψek} is an orthonormal frame of D1, {f1, sec θψf1 , , ....., fs, sec θψfs} an orthonor-
mal frame of D2, < ξ > an orthogonal D1 and D2 in Γ(ker f∗), {csc θωf1, ....., csc θωfs} an or-
thonormal frame of ωD2, and {g1, ψg1, ...., gt, ψgt} an orthonormal frame of µ.

Lemma 3.6. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM ) to
a Riemannian manifold (N, gN ) with the semi-slant angle θ. If tensor ω is parallel, then

TψXψX = − cos2 θ.TXX, forX ∈ Γ(D2). (3.25)

Proof. If the tensor ω is parallel such that

(∇Xω)Y = 0. (3.26)

From equation (3.16), we have

TY ψX = TXψY.

Replace Y → ψY, we have

TψXψX = − cos2 θ.TXX, forX ∈ Γ(D2).

q.e.d.



28 R. Prasad, S. Kumar

Proposition 3.7. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then the slant distribution D1 is not integrable when dimension
distribution D1 greater than or equal to 1.

Proof. For X ∈ ΓD1, since gM is Riemannian metric and using equations (2.3), and (2.7), we get

gM ([X,ϕX], ξ) 6= 0.

So D1 is not integrable. q.e.d.

Theorem 3.8. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then the slant distribution D1⊕ < ξ > is integrable if and only
if

ω(∇̂XY − ∇̂YX) = 0,

ψ(∇̂XY − ∇̂YX) = 0,

for X,Y ∈ ΓD1⊕ < ξ > .

Proof. For X,Y ∈ ΓD1⊕ < ξ > and W ∈ Γ(D2), since [X,Y ] ∈ Γ((ker f∗). Using equations
(2.3), (2.4), (2.5), (2.7) and (3.2), we get

gM ([X,Y ],W ) = gM (ϕ[X,Y ], ϕW ),

= gM (ϕ(∇XY −∇YX), ϕW ),

= gM (ϕ∇XY − ϕ∇YX,ϕW ).

Again using equations (3.2), (3.3), (3.11) and (3.16), we have

gM ([X,Y ],W ) = gM (BTXY + CTXY + ψ∇̂XY + ω∇̂XY
−BTYX − CTYX − ψ∇̂YX − ω∇̂YX,ψW + ωW ),

= gM (BTXY + ψ∇̂XY −BTYX − ψ∇̂YX,ψW )

+gM (CTXY + ω∇̂XY − CTYX − ω∇̂YX,ωW ),

gM ([X,Y ],W ) = gM (ψ∇̂XY − ψ∇̂YX,ψW ) + gM (ω∇̂XY − ω∇̂YX,ωW ).

Hence, ΓD1⊕ < ξ > is integrable ⇔ ψ(∇̂XY − ∇̂YX) = 0 and ω(∇̂XY − ∇̂YX) = 0, for
X,Y ∈ ΓD1⊕ < ξ > . q.e.d.

Theorem 3.9. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then the slant distribution D2⊕ < ξ > is integrable if and only
if

P (ψ(∇̂XY − ∇̂YX)) = 0,

for X,Y ∈ Γ(D2)⊕ < ξ > .



Semi-slant Riemannian maps 29

Proof. For X,Y ∈ ΓD2⊕ < ξ > and W ∈ Γ(D1), since [X,Y ] ∈ Γ((ker f∗). Using equations
(3.2), (3.3), (3.11) and (3.16), we have

gM ([X,Y ], ϕW ) = gM ([X,Y ], ϕW )

= −gM (ϕ∇XY − ϕ∇YX,W ),

= −gM (BTXY + CTXY + ψ∇̂XY + ω∇̂XY
−BTYX − CTYX − ψ∇̂YX − ω∇̂YX,W ),

= gM (ψ∇̂YX − ψ∇̂XY,W ).

Hence, D2⊕ < ξ > is integrable ⇔ P (ψ(∇̂XY − ∇̂YX)) = 0, for X,Y ∈ ΓD2⊕ < ξ > . q.e.d.

Theorem 3.10. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ) such that D1⊕ < ξ > is integrable. Then f is harmonic if and
only if trace(∇f∗) = 0 on D2 and H, where H denotes the mean curvature vector field of rangef∗.

Proof. Using Lemma 1, we get trace(∇f∗)|ker f∗ ∈ (range f∗) and trace
(∇f∗)|(ker f∗)⊥ ∈ (range f∗)

⊥ so that

trace(∇f∗) = 0⇔ trace(∇f∗)|ker f∗ = 0,

and
trace(∇f∗)|(ker f∗)⊥ = 0.

Since D1 is invariant under ϕ, we can choose locally orthonormal frame {e1, ϕe1, .....
....., ek, ϕek, ξ} of D1⊕ < ξ > . Using equations (2.1), (2.5), (2.7) and (2.9), we have

(∇f∗)(ϕei, ϕei) = −f∗(∇ϕeiϕei),
= f∗(∇eiei),
= −(∇f∗)(ei, ei), for 1 ≤ i ≤ k,

where f∗(∇ϕeiϕ)ϕei = 0.

and

(∇f∗)(ξ, ξ) = −f∗(∇ξξ),
= 0.

Using the integrability of the distribution D1⊕ < ξ >, we have

(∇f∗)(ϕei, ϕei) + (∇f∗)(ei, ei) + (∇f∗)(ξ, ξ) = 0.

Thus,
trace(∇f∗)|(ker f∗) = 0⇔ trace(∇f∗)|D2 = 0 .

Moreover, it is easy to see that

trace(∇f∗)|(ker f∗)⊥ = lH, for l = dim(ker f∗)
⊥,

so that
trace(∇f∗)|(ker f∗)⊥ = 0⇔ H = 0.

q.e.d.
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Theorem 3.11. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then f is a totally geodesic map if and only if

ω(∇̂XψY + TXωY ) + η(Y )ωX) + C(TXψY +H∇XωY ) = 0,

ω(∇̂XBZ + TXCZ) + C(TXBZ +H∇XCZ) = 0,

Q(∇fZ1
f∗Z2) = 0,

for X,Y ∈ Γ(ker f∗) and Z,Z1, Z2 ∈ Γ((ker f∗)
⊥).

Proof. If Z1, Z2 ∈ Γ((ker f∗)
⊥, then by Lemma 1, we get

(∇f∗)(Z1, Z2) = 0⇔ Q((∇f∗)(Z1, Z2)) = Q(∇fZ1
f∗Z2) = 0.

For X,Y ∈ Γ(ker f∗), using equations (2.1), (3.2), (3.3), (3.11) and (3.12), we have

(∇f∗)(X,Y ) = −f∗(∇XY ),

= f∗(ϕ(∇̂XψY + TXψY + TXωY +H∇XωY ) + η(Y )ϕX),

= f∗(ψ∇̂XψY + ω∇̂XψY +BTXψY + CTXψY + ψTXωY
+ωTXωY +BH∇XωY + CH∇XωY + η(Y )ψX + η(Y )ωX).

Hence

(∇f∗)(X,Y ) = 0

⇔ ω(∇̂XψY + TXωY + η(Y )ωX) + C(TXωY +H∇XωY ) = 0.

If X ∈ Γ(ker f∗) and Z ∈ Γ((ker f∗)
⊥), since the tensor ∇f∗ is symmetric. Using equations

(2.1), (3.2), (3.3), (3.11) and (3.12), we get

(∇f∗)(X,Z) = −f∗(∇XZ),

= f∗(ϕ(∇̂XBZ + TXBZ + TXCZ +H∇XCZ)),

= f∗(ψ∇̂XBZ + ω∇̂XBZ +BTXBZ + CTXBZ + ψTXCZ
+ωTXCZ +BH∇XCZ + CH∇XCZ).

Thus,

(∇f∗)(X,Z) = 0⇔ ω(∇̂XBZ + TXCZ) + C(TXBZ +H∇XCZ) = 0.

q.e.d.
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Theorem 3.12. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then (M,ϕ, ξ, η, gM ) is locally a Riemannian product manifold
of the leaves of Γ(ker f∗) and Γ((ker f∗)

⊥) if and only if

ω∇̂XψY + ωTXωY − η(Y )ωX + C(TXψY +H∇XωY ) = 0,

for X,Y ∈ Γ(ker f∗) and

ψ(V∇ZBW +AZCW ) +B(AZBW +H∇ZCW ) + η(∇ZW )ξ = 0,

for Z,W ∈ Γ((ker f∗)
⊥).

Proof. For X,Y ∈ Γ(ker f∗), using equation (2.1), (3.2), (3.3), (3.11) and (3.12), we get

∇XY = −(−∇XY ),

= −ϕ(∇̂XψY + TXψY + TXωY +H∇XωY )− η(Y )ϕX + η(∇XY )ξ,

= −(ψ∇̂XψY + ω∇̂XψY +BTXψY + CTXψY + ψTXωY + ωTXωY
+BH∇XωY + CH∇XωY )− η(Y )ψX − η(Y )ωX + η(∇XY )ξ.

Thus,

∇XY ∈ Γ(ker f∗)

⇔ ω∇̂XψY + ωTXωY − η(Y )ωX + C(TXωY +H∇XωY ) = 0.

For Z,W ∈ Γ((ker f∗)
⊥), using equations (2.1), (3.2), (3.3), (3.13) and (3.14), we have

∇ZW = −(−∇ZW ),

= −ϕ(V∇ZBW +AZBW +AZCW +H∇ZCW ),

= −(ψV∇ZBW + ωV∇ZBW +BAZBW + CAZBW
+ψAZCW + ωAZCW +BH∇ZCW + CH∇ZCW ) + η(∇ZW )ξ.

Hence
∇ZW ∈ Γ((ker f∗)

⊥

⇔ ψ(V∇ZBW +AZCW ) +B(AZBW +H∇ZCW ) + η(∇ZW )ξ = 0. q.e.d.

Theorem 3.13. Let f be a semi-slant Riemannian map from a Sasakian manifold (M,ϕ, ξ, η, gM )
to a Riemannian manifold (N, gN ). Then the fibers of f are locally Riemannian product manifolds
of the leaves of D1 and D2 if and only if
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Q(ψ∇̂UψV +BTUψV + g(ϕU, V )ξ) = 0,

ω∇̂UψV + CTUψV = 0,

for U, V ∈ Γ(D1),
and

P (ψ(∇̂XψY + TXωY ) +B(TXψY +H∇XωY ) + g(ϕX, Y )ξ) + η(∇XY )ξ = 0,

ω(∇̂XψY + TXωY ) + C(TXψY +H∇XωY ) = 0,

for X,Y ∈ Γ(D2).

Proof. For U, V ∈ ΓD1, using equations (2.1), (3.2), (3.3) and (3.11), we have

∇UV = −(−∇UV ),

= −ϕ(∇̂UψV + TUψV ) + η(∇UV )ξ,

= −(ψ∇̂UψV + ω∇̂UψV +BTUψV + CTUψV ) + g(ϕU, V )ξ.

Hence

∇UV ∈ ΓD1 ⇔ Q(ψ∇̂UϕV +BTUϕV − g(ϕU, V )ξ) = 0,

and

ω∇̂UϕV + CTUϕV = 0.

For X,Y ∈ ΓD2, using equations (2.1), (3.2), (3.3), (3.11) and (3.12), we have

∇XY = −(−∇XY ),

= −(ψ∇̂XψY + ω∇̂XψY +BTXψY + CTXψY + ψTXωY
+ωTXωY +BH∇XωY + CH∇XωY + η(∇XY )ξ.

Hence ∇XY ∈ ΓD2 ⇔ P (ψ∇̂XψY + ψTXωY +BTXψY +BH∇XωY ) + η(∇XY )ξ = 0

and ω∇̂XψY + ωTXωY + CTXψY + CH∇XωY = 0. q.e.d.

Example 3.14. LetR9 has got a Sasakian structure as in Example 1, for k = 4. Let (x1, x2, x3, x4, y1, y2, y3, y4, z)
be coordinate system in R9 and (z1, z2, z3, z4, z5) be coordinate system in R5. Let the Riemannian
metric on R5 is gR5 = 1

4 (dz21 + 2dz22 + dz23 + dz24 + dz25). Define a map f : R9 → R5 by
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f(x1, x2, x3, x4, y1, y2, y3, y4, z) = (x2,
x3 − y4√

2
, 0, y3, y2).

Then the map f is a semi-slant Riemannian map such that

ξ = E9, D1 =< E1, E5 >,

D2 = < E8,
1√
2

(E4 + E7) >,

(ker f∗)
⊥ = < V1 = E2, V2 = E3, V3 =

1√
2

(E4 − E7), V4 = E6 >,

ω(D2) = < E3,
1√
2

(E4 − E7) >, µ =< E2, E6 >,

f∗V1 = 2
∂

∂z5
, f∗V2 = 2

∂

∂z4
, f∗V3 =

√
2
∂

∂z2
, f∗V4 = 2

∂

∂z1
.

Here gR9(Vi, Vi) = 1 for i = 1, 2, 3, 4 and gR5(f∗Vi, f∗Vi) = 1 for i = 1, 2, 3, 4. So f is Riemannian
map with the semi-slant angle θ = π

4 . Here equation (1.3) is satisfying.
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