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A saddlepoint approximation is developed for the likelihood ratio test statistic in non-regular

exponential models. For the one-parameter case, it is proved that the saddlepoint correction has a

relative error of order O(n�1), assuming that the canonical statistic has four finite moments. The

results are applied in reliability theory and survival analysis, testing for exponentiality. Note that we

are using the saddlepoint method for statistics without moment generating function.
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1. Introduction

The asymptotic distribution of the likelihood ratio test statistic, when the null model is

embedded in the boundary of the parameter space, is not usually a �2
n distribution. Often,

when certain regularity conditions are fulfilled, the asymptotic distribution is a mixture of

�2
n distributions. We refer to Self and Liang (1987) and Geyer (1994) for further

information on regularity conditions in non-standard cases.

In non-regular exponential models the standard regularity conditions do not always work,

because the null model does not have a natural extension to an open neighbourhood. This

fact is closely related to the steepness of the cumulant generating function and to the

moments of the limit distribution. Examples of interest are conjugate families of non-

negative random variables without a moment generating function, the singly truncated

normal distribution which includes the exponential distribution in the boundary (del Castillo

and Puig 1999a) and several situations in reliability theory and survival analysis, see del

Castillo and Puig (1999b).

This paper shows that saddlepoint approximation provides a modified likelihood ratio test

with finite-sample distribution closer to its asymptotic distribution, for non-regular

exponential models, assuming that the canonical statistic has four finite moments. We

have merged the results of the likelihood ratio test under non-standard conditions (see Self

and Liang 1987) and the saddlepoint approximation for the likelihood ratio test of Jensen

(1992). The paper shows when and why saddlepoint approximation works in non-regular

exponential models. Surprisingly, it works well even for statistics without moment
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generating function. For more information, see also Goutis and Casella (1999), Jensen

(1995), Barndorff-Nielsen and Cox (1994) or Reid (1996).

Section 2 clarifies the regularity conditions for exponential models with boundary points

in order to obtain first-order asymptotic results with the simplest assumptions. At this point

the concepts of steep and non-steep exponential models are especially important. Section 3

develops the high-order asymptotic methods for the likelihood ratio test statistic for non-

regular exponential models, following Jensen (1992). Section 4 shows how to use the

previous results for practical cases. Testing for exponentiality in reliability theory and

survival analysis models is also considered. The numerical accuracy of the saddlepoint

approximation is illustrated by means of an example on real data.

2. Exponential family models with boundary points

Let X be a continuous random variable with probability density function f (x) and cumulant

generating function k(Ł). Let ¨ be the set of points in R where k(Ł) is finite. Let F be the

conjugate family of f (x) given by

f (x; Ł) ¼ eŁx�k(Ł) f (x), Ł 2 ¨, (2:1)

which is a full exponential model (see Barndorff-Nielsen and Cox, 1994, Chapter 1). The

parameter set ¨ is a convex set containing the origin, and k(Ł) is infinitely differentiable and

strictly convex on the interior of ¨. For Ł ¼ 0, f (x; 0) is the initial distribution f (x).

If ¨ is an open set then F is called a regular exponential model. Otherwise, if ¨
includes some of its topological boundary points, F is called a non-regular exponential

model. A non-regular exponential model such that jk9(Ł)j tends to infinity as Ł tends to the

boundary points of ¨ is called steep. A necessary and sufficient condition for the maximum

likelihood estimator (MLE) to be the unique solution of the likelihood equation is the

steepness property. However, in this steep case with boundary points, the asymptotic

distribution of the MLE or the asymptotic distribution of the likelihood ratio test is

unknown when Ł belongs to the boundary.

Examples of exponential models with boundary parameter are obtained from continuous

positive random variables, with cumulant generating function not defined in a neighbour-

hood of 0, as a consequence of the following:

Example 1. Let X . 0 be a continuous positive random variable with probability density

function f (x). In this case the cumulant generating function, k(Ł), is finite for all Ł < 0.

Hence, if E[X k] ¼ 1, for some k > 1, the conjugate family given by (2.1) has 0 as a

boundary point of ¨.

In this section we find the asymptotic distribution of the likelihood ratio test for Ł ¼ 0,

from independent and identically distributed samples, in some relevant examples of the

situation (2.1) where 0 is a boundary point. Since the cumulant generating function is not

defined in a neighbourhood of 0, not all the moments of X need exist. Without loss of

generality we can assume that ¨ is the interval c , Ł < 0, where c is some constant.
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Proposition 1. Let F be the statistical model given by (2.1), with ¨ ¼ fc , Ł < 0g. If

�0 ¼ E[X ] is finite then k9(Ł) " �0 as Ł " 0. Hence, F is a non-steep model.

Proof. k(Ł) is a strictly convex function, so EŁ[X ] ¼ k9(Ł) is strictly increasing. The result

follows from the dominated convergence theorem. h

Corollary 1. Under the same assumptions on F as in Proposition 1, given a sample of

independent and identically distributed components, the solution of the likelihood equation

k9(Ł) ¼ x

is Ł̂Ł , 0, for x , �0, and otherwise Ł̂Ł ¼ 0, for x > �0. Moreover, since k9(Ł) is strictly

increasing, the MLE, Ł̂Ł(x) is a continuous function at 0. Therefore, because of the law of

large numbers, the MLE is consistent, Ł̂Ł ¼ o p(1).

Given a normal variable with mean � and variance � 2 we denote by Nþ(�, � 2) the

positive truncated normal distribution with probability density function

fþ(x; �, � ) ¼ �((x� �)� �1)

��(�� �1)
, x . 0, (2:2)

where �(x) and �(x) are the density function and the distribution function of the standard

normal. On the other hand, we say that X is a random variable from a negative truncated

normal distribution, denoted N�(�, � 2), if �X is distributed according to Nþ(�, � 2).

We now derive the same asymptotic distribution given by Self and Liang (1987) for the

MLE as well as for the likelihood ratio test, weakening their assumptions to the existence

of the second moment of X .

Proposition 2. Let F be the model given by (2.1), with ¨ ¼ fc , Ł < 0g, where the

variance of X , � 2
0, is finite. The asymptotic distribution of

ffiffiffi
n

p
Ł̂Ł is a fifty–fifty mixture of the

constant 0 and the negative truncated normal N�(0, 1=� 2
0),

ffiffiffi
n

p
Ł̂Ł!d 1

2
N� (0, 1=� 2

0) þ 1

2
�0:

Proof. For x , �0 consider Ł̂Ł(x) as in Corollary 1. We can extend it to a continuously

differentiable function, ~ŁŁ(x), in the neighbourhood of �0, by ~ŁŁ(x) ¼ (x� �0)=� 2
0, for x > �0.

From the central limit theorem
ffiffiffi
n

p
(x� �0)!d N (0, � 2

0), and with the �-method

ffiffiffi
n

p
~ŁŁ(x)!d N (0, 1=� 2

0):

By definition of Ł̂Ł we have the correspondence Ł̂Ł ¼ ~ŁŁ for ~ŁŁ , 0 and Ł̂Ł ¼ 0 for ~ŁŁ > 0. Then

the asymptotic distribution of the MLE follows. h

For an exponential model F given by (2.1), with ¨ ¼ fc , Ł < 0g, the likelihood ratio

statistic for testing Ł ¼ 0, denoted by w, becomes
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w ¼ 2nfŁ̂Łx� k(Ł̂Ł)g: (2:3)

It is well known from Self and Liang (1987) that if the null model has a natural extension to

an open neighbourhood, the asymptotic distribution of w is a fifty–fifty mixture of a �2
1

distribution and the unit mass at the origin �0. We denote this mixture by �2
1. Here we give a

proof of the result with the simplest assumptions.

Corollary 2. Let F be a model given by (2.1), with ¨ ¼ fc , Ł < 0g, where the variance of

X , � 2
0, is finite. The asymptotic distribution of the likelihood ratio test w for Ł ¼ 0 is a �2

1

distribution.

Proof. From Proposition 2 the asymptotic distribution of n� 2
0Ł̂Ł

2 is a �2
1 distribution. Hence, it

is sufficient to prove that w� n� 2
0Ł̂Ł

2 ¼ o p(1). If we extend w, for Ł̂Ł . 0, to ~ww(Ł̂Ł) ¼ n� 2
0Ł̂Ł

2

then ~ww is a continuously differentiable function in the neighbourhood of 0. Therefore,

applying Taylor’s expansion to ~ww, the result follows. h

In an exponential model where the variance of X is not finite, in particular in a steep

model, the asymptotic distribution of the likelihood ratio statistic does not generally have to

be a �2
1 or even a �2

1. However, this does not contradict Self and Liang (1987) because their

sufficient conditions are not fulfilled.

The result that links the existence of moments and the derivatives of the characteristic

function at zero (Billingsley 1995, Chapter 5) can be extended to one-sided Taylor

expansion for the cumulant generating function in our case.

Lemma 1. Let F be a model given by (2.1), with ¨ ¼ fc , Ł < 0g, where the absolute

moment EjX jk is finite. Then the derivatives of the cumulant generating function k(r)(Ł),

r < k, defined for Ł , 0, extend continuously up to Ł ¼ 0. Hence, we have

k(Ł) ¼ k1Łþ 1

2
k2Ł

2 þ 1

3!
k3Ł

3þ . . . þ 1

k!
kkŁ

k þ o(jŁjk), (2:4)

where kr are the cumulants at Ł ¼ 0.

Proof. The result is equivalent to proving that the derivatives of the moment generating

function, M(Ł) ¼ ek(Ł), extend continuously.

In the interior points, c , Ł , 0, the derivatives exist and are expressed as

M (r)(Ł) ¼
ð1
�1

x reŁx f (x)dx:

To prove continuity we only need to show that the dominated convergence theorem can be

applied. We consider two situations.

If x > 0, then eŁx < 1 andð1
0

x reŁx f (x)dx <

ð1
0

jxjr f (x)dx , 1

If x , 0, we have

494 J. del Castillo and A. López-Ratera



jxjr
r!

< ejxj ¼ e�x:

For � . 0, replacing x by �x we have

jxjreŁx < r!��re(Ł��)x

we can choose � small enough to have c , Ł� � , 0. Therefore,����
ð0

�1
x reŁx f (x)dx

���� < r!��r

ð0

�1
e(Ł��)x f (x)dx , 1:

h

3. Saddlepoint approximation at the boundary

In this section we assume that F is an exponential model given by (2.1), with

¨ ¼ fc , Ł < 0g, and also that the sample mean x has a bounded density for some n. This

assumption can also be expressed in terms of integrability of the characteristic function

(Kolassa 1994, Chapter 6). In this situation, we will derive high-order properties for the

likelihood ratio test. The saddlepoint approximation does not always exist for the whole

range of the distribution, as noted in the pioneering paper of Daniels (1954). Fortunately, it

exists in cases which are useful in our situation.

Following Daniels (1954), when x , �0 we have the saddlepoint approximation to the

probability density function of the sample mean

f x(x) ¼
ffiffiffi
n

p expf�n(Ł̂Łx� k(Ł̂Ł))gffiffiffiffiffiffi
2�

p
� (Ł̂Ł)

f1 þO(n�1)g, (3:1)

where Ł̂Ł is defined by k9(Ł̂Ł) ¼ x , and � (Ł̂Ł)2 ¼ k 0(Ł̂Ł) is the variance of X with the probability

density function f (x; Ł̂Ł). In particular, � 2
0 ¼ k 0(0) is the variance with respect to f (x).

From the likelihood ratio statistic, w, let us consider the one-to-one transform of x, for

x < �0, given by the signed log-likelihood ratio statistic

r ¼ sgn(Ł̂Ł)
ffiffiffiffi
w

p
, (3:2)

extended by zero when x > �0.

When x , �0, we easily deduce from (3.1) and the Jacobian @ r=@x ¼ nŁ̂Ł=r, an

approximation to the probability density function of r,

f r(r) ¼
1ffiffiffiffiffiffi
2�

p r

u
e�r2=2f1 þO(n�1)g, (3:3)

where u ¼ ffiffiffi
n

p
Ł̂Ł� (Ł̂Ł).

The last expression suggests we should look for a modified version of r with dominant

term equal to the standard normal density. Such a modified version was suggested in

Barndorff-Nielsen (1986):
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r� ¼ r þ 1

r
log

u

r

� �
: (3:4)

Hence, the modified likelihood ratio test statistic will be

w� ¼ (r�)2: (3:5)

In the next result the probability density function of r� is found.

Theorem 1. Let F be a model given by (2.1), with ¨ ¼ fc , Ł < 0g, where E[X 4] , 1
and the sample mean x has a bounded density for some n.

(i) The probability density function of r�, when x , �0, is given by

f r�(r�) ¼ 1ffiffiffiffiffiffi
2�

p e�(r�)2=2f1 þO(n�1)g:

(ii) The asymptotic distributions of
ffiffiffi
n

p
�0Ł̂Ł, r and r� are the same.

Proof. First of all we consider the expressions

u ¼
ffiffiffi
n

p
Łk 0(Ł)1=2, r ¼ �

ffiffiffiffiffiffi
2n

p
(Łk9(Ł) � k(Ł))1=2:

From Lemma 1 we have the expansions

u ¼
ffiffiffi
n

p ffiffiffiffiffi
k2

p
Łþ k3 Ł2

2
ffiffiffiffiffi
k2

p þ 2k2 k4 � k2
3

8k3=2
2

Ł3 þ o(jŁj3)

( )
, (3:6)

r ¼
ffiffiffi
n

p ffiffiffiffiffi
k2

p
Łþ k3 Ł2

3
ffiffiffiffiffi
k2

p þ 9k2 k4 � 4k2
3

72k3=2
2

Ł3 þ o(jŁj3)

( )
: (3:7)

From the definition of r� in (3.4) we can compute that

r� � r ¼ 1ffiffiffi
n

p k3

6k3=2
2

þ 9k2 k4 � 14k2
3

72k5=2
2

Łþ o(jŁj)
( )

: (3:8)

It follows that

˜r ¼ r� � r ¼ O(n�1=2),
@˜r

@Ł
¼ O(n�1=2),

@Ł

@ r
¼ O(n�1=2):

Hence

e(˜r)2=2 ¼ 1 þO(n�1)

and

@ r�
@ r

¼ 1 þ @˜r

@Ł

@Ł

@ r
¼ 1 þO(n�1):

Finally, from (3.3),
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f r�(r�) ¼ 1ffiffiffiffiffiffi
2�

p e�(r�)2=2e˜r2=2f1 þO(n�1)g
���� @ r�@ r

���� ¼ 1ffiffiffiffiffiffi
2�

p e�(r�)2=2f1 þO(n�1)g:

We are now considering r and r� as functions of the maximum likelihood estimator Ł̂Ł. In

Section 2 we showed that Ł̂Ł!p 0, hence from (3.7) we find that r �
ffiffiffi
n

p
�0Ł̂Ł ¼ o p(1), where

�0 ¼ ffiffiffiffiffi
k2

p
. Clearly from (3.8), r� � r ¼ o p(1). h

The last result shows that r� has the same properties as the saddlepoint method. That is,

we have control over the relative error of the probability density function with respect to

the standard normal, and the relative error is of order O(n�1).

From the Theorem 1 and the Proposition 2 we have:

Proposition 3. Let F be an exponential model under the assumptions of Theorem 1. Then the

asymptotic convergence

r�!d 1

2
N�(0, 1) þ 1

2
�0

has relative error O p(n
�1).

Finally, from this last result (3.5) improves the convergence of Corollary 2.

Corollary 3. Let F be an exponential model under the assumptions of Theorem 1. Then the

asymptotic convergence of w� to �2
1 has relative error O p(n

�1).

4. Applications in reliability theory and survival analysis

The results of the previous sections extend to some more general situations. For instance,

let X be a continuous random variable with probability density function f (x). Assume that

T (X ) is a statistic with cumulant generating function kT (Ł) ¼ log E[eŁT (x)] that converges

for Ł in ¨. We can construct by exponential tilting the set of all distributions

f (x; Ł) ¼ eŁT (x)�kT (Ł) f (x), Ł 2 ¨, (4:1)

which is a full exponential model. If T (x) is a one-to-one function of x , this model reduces

to (2.1) by considering the distribution of the random variable T ¼ T (X ). Moreover, since the

asymptotic distribution is a local property, the results of the previous sections apply when

T (x) is simply a one-to-one function of x in a neighbourhood of the boundary point. Hence,

in order to apply Corollary 3 in this case we need to assume E[T (X )4] , 1.

The most important distributions in reliability and survival analysis are increasing failure

rate (IFR) distributions. A relevant particular case is the exponential distribution which has

constant failure rate. It can be seen that the convexity of the negative logarithm of the

density ensures that a distribution belongs to the IFR class. Here we consider two-parameter

exponential models with probability density function on x > 0, of the form

p(x; Æ, �) ¼ exp(�Æx� �S(x))=C(Æ, �), (4:2)
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where S is a convex function and C is the normalizing constant. Moreover, if we assume that

lim
x!1

S(x)

x
¼ 1, (4:3)

then the model is only defined for � > 0, hence all the distributions are IFR, because

convexity is invariant under linear transforms; see del Castillo and Puig (1999b). Hence,

clearly (4.2) is an exponential model with boundary points. The boundary, � ¼ 0, corresponds

to the exponential distribution. Hence, a likelihood ratio test can be used to test

exponentiality against alternatives in IFR.

The possible choices for the function S that lead to the model (4.2) being scale invariant

are log x, x log x, and xq for any real number q; again see del Castillo and Puig (1999b).

When S(x) ¼ log(x) the model (4.2) is the gamma distribution and there are no boundary

points. With the assumption (4.3) only the functions x log x and xq, for q . 1, are

admissible. Because the function x log(x) is not a one-to-one transformation we do not

consider this case.

Under the null hypothesis of exponentiality we have that E[X k] are finite for k > 0.

Hence, the model (4.2) with S(x) ¼ xq (q . 1) has moments of all orders and S(x) is a

one-to-one transformation of x in the sample space (x . 0).

If Æ is fixed the model (4.2) is a particular case of (4.1) and the saddlepoint

approximation for the likelihood ratio test � ¼ 0, given by Corollary 3, can reasonably be

used. In general, Æ is a nuisance parameter. However, since (4.2) is scale invariant and the

likelihood ratio test, w, is also invariant, its distribution conditional on Æ does not depend

on Æ. Hence, as in the no nuisance parameter case, we can apply the w� transform.

Example 2. In an example discussed by Lee (1992), the remission times in weeks of 21

patients with acute leukaemia were as follows:

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23:

Del Castillo and Puig (1999b) showed that the fits obtained by the Weibull distribution,

proposed by Lee (1992), in this example can be improved by the model (4.2) with S(x) ¼ x3.

The maximum likelihood estimators are Æ̂Æ ¼ 0:031 334 and �̂� ¼ 0:000 128 46.

We can consider testing exponentiality with the likelihood ratio test. In this example

w ¼ 2fl(Æ̂Æ, �̂�) � l(~ÆÆ, 0)g ¼ 2:683 67,

where l is the log-likelihood function and ~ÆÆ ¼ 1=x ¼ 0:115 38 is the maximum likelihood

estimator of Æ under the null hypothesis.

The asymptotic distribution of w is a �2
1 distribution, as Corollary 2 shows. The same

asymptotic distribution works for the saddlepoint correction w�, from Corollary 3, but with

a smaller relative error. In this case, the critical point of the asymptotic distribution is

�2
1(0:05) ¼ 2:705 54. Hence w ¼ 2:683 67 leads to the rejection of the null hypothesis.

However, our saddlepoint correction with higher accuracy gives w� ¼ 1:5255, suggesting

the acceptance of exponentiality. The nominal p-values, using the asymptotic distribution

for w and w�, are 0:057 and 0:1048, respectively. However, the issue is whether a sample

size of n ¼ 21 is enough to accept these results.
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Since the model is scale invariant and the likelihood ratio test is also invariant, we can

check these results by simulation, taking a fixed value for the nuisance parameter. The

results are based on 100 000 samples with Æ ¼ 1. The p-value obtained from simulation is

0:1069, very close to that corresponding to w�, and it also leads us to not reject the null

hypothesis. Taking the result obtained by simulation as the exact value, we see that the

likelihood ratio test, w, has a relative error of 53% and its saddlepoint correction, w�, less

than 1.4%; this shows the high improvement obtained by saddlepoint correction.

Table 1 shows the empirical critical points for the distribution of the statistics w and w�
as well as the nominal critical points for the asymptotic distribution. We can see that for a

sample size as small as 21, the empirical critical points for w� are close to the nominal

ones.
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