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For stationary solutions of the affine stochastic delay differential equation

dX (t) ¼ ª0X (t)þ ªr X (t � r)þ
ð0
�r

X (t þ u)g(u)du

� �
dt þ �dW (t),

we consider the problem of nonparametric inference for the weight function g and for ª0, ªr from the

continuous observation of one trajectory up to time T . 0. For weight functions in the scale of Besov

spaces Bs
p,1 and Lr-type loss functions, convergence rates are established for long-time asymptotics. The

estimation problem is equivalent to an ill-posed inverse problem with error in the data and unknown

operator. We propose a wavelet thresholding estimator that achieves the rate (T=log T )�s=(2sþ3) under

certain restrictions on p and r. This rate is shown to be optimal in a minimax sense.

Keywords: Besov space; ill-posed inverse problem; minimax rates; spatial adaptivity; wavelet
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1. Introduction

1.1. The model

Stochastic delay differential equations (SDDEs) appear naturally in the description of many

processes: for example, in population dynamics with a time lag due to an age-dependent

birth rate (Scheutzow 1984), in economics where a certain ‘time to build’ is needed

(Kydland and Prescott 1982), in finance (Hobson and Rogers 1998) and in many

engineering applications; see Kolmanovskii and Myshkis (1992) for a broad range of

models appearing in applications and their mathematical analysis. They are also obtained as

continuous-time limits of time series models. Among the huge variety of types of equations,

the so-called affine stochastic delay differential equations form the fundamental class. They

generalize the Langevin equation leading to the Ornstein–Uhlenbeck process and appear as

continuous-time limits of linear autoregressive schemes. A general scalar affine SDDE is of

the form

dX (t) ¼
ð0
�r

X (t þ u)da(u)

� �
dt þ �dW (t), t > 0,

X (u) ¼ F(u), u 2 [�r, 0]:

(1:1)
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The drift coefficient depends linearly on the past trajectory (X (u), u 2 [t � r, t]) by means of

an integration with respect to the finite signed Borel measure a on [�r, 0]. The values r and

� are supposed to be positive and (W (t), t > 0) denotes a standard Wiener process adapted

to a filtration (F t) t>0, satisfying the usual conditions. In order to ensure well-posedness of

the differential equation, a whole initial function F independent of the Wiener process is

prescribed. The Langevin equation without memory effect is obtained if a is taken to be a

point measure at zero.

The asymptotic properties and the existence of stationary solutions for affine SDDEs,

even with more general driving processes, have been studied in detail by Mohammed et al.

(1986) and Gushchin and Küchler (2000). Our goal here is to estimate the weight measure

a nonparametrically from the observation (X (t), t 2 [�r, T ]) of one realization of a

stationary solution to (1.1). In many applications the drift term consists of both

instantaneous feedback and distributed delayed feedback. Having nonparametric estimation

and these kinds of models in mind, our parameter class should thus contain weight

measures a with a Lebesgue density except for a possible point mass at zero. Our

estimation procedure will more generally cope with weight measures having a Lebesgue

density in the interior and possible point masses at both interval end-points �r and 0.

1.2. The estimation procedure

The main idea for the construction of the estimator is that the weight measure a solves the

integral equation

Qaa(t) :¼
ð0
�r

qa(t � u)da(u) ¼ q9a(�t), t > 0, (1:2)

where the function qa denotes the covariance function of the process X . From observations

up to time T we can construct estimators of the kernel of the operator Qa and of the data q9a
and solve the integral equation for a. We shall show that Qa is regularizing in the manner of

twofold integration independently of the weight a such that the solution of equation (1.2)

does not depend continuously on the data. We face an ill-posed inverse problem of degree 2

with errors occurring in the operator and on the right-hand side.

A linear estimation technique for L2-risk and weight functions in L2-Sobolev balls of

regularity s . 1
2
was been presented in Reiss (2002), which is close in spirit to the work by

Efromovich and Koltchinskii (2001). The ill-posed inverse problem was solved by the

Galerkin projection method, and a minimax risk of order T�s=(2sþ3) for observation times

T ! 1 was established. Here, we strive for adaptive estimation, that is, we do not suppose

the regularity of the unknown weight function to be known and we automatically adapt to

spatial inhomogeneity of the function. Moreover, we allow for more general Lr-loss,

r 2 (1, 1). As usual in adaptive estimation theory, we are led to consider density functions

in Besov spaces Bs
p,Æ([�r, 0]) and to use nonlinear approximation techniques. Under

suitable conditions on p and r we shall find for our adaptive estimator an asymptotic risk

of order (T=log T )�s=(2sþ3), which will be shown to be minimax with respect to the Besov

classes considered.
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For the construction of the estimator, wavelet thresholding techniques in a suitable image

domain are used. Our approach is related to the wavelet–vaguelette decomposition and

vaguelette–wavelet decomposition methods proposed by Donoho (1995) and Abramovich

and Silverman (1998). In fact, the latter paper presents the main idea: we first threshold the

wavelet coefficients and then invert the approximation of equation (1.2). Since our operator

is not exactly known (and for each observation different), the inversion should not be

performed by calculating the corresponding vaguelettes exactly, but rather by applying a

numerical inversion algorithm. For this we can allow for numerical errors up to the order of

the statistical error in the first step and even rely on adaptive procedures; see Cohen et al.

(2004) for a suitable algorithm.

Mathematically speaking, we denoise the data in a certain Sobolev space along the lines

of the abstract results obtained by Kerkyacharian and Picard (2000) for heteroscedastic

noise. For the right choice of the thresholding level and for theoretical purposes the

mapping properties of the covariance operator have to be studied in detail.

1.3. Related approaches

Except for Reiss (2002), statistical inference for the weight measure in affine SDDEs has so

far focused on parametric models (see, for example Kutoyants et al. 1992; Gushchin and

Küchler 1999; 2003), where for sufficiently smooth parametrizations of the weight measure

a ¼ aŁ the classical local asymptotic normality property with rate T�1=2 holds under

stationarity assumptions. On the other hand, nonparametric and even adaptive estimation of

the drift coefficient b in ergodic diffusions

dX (t) ¼ b(X (t))dt þ �dW (t), t 2 [0, T ],

is well established (Hoffmann 1999; Dalalyan 2001). Although the estimation problem has a

similar structure, under recurrency conditions the minimax rate for estimating drift functions

b of regularity s is T�s=(2sþ1), indicating a close relationship with classical regression

estimation. In our SDDE case the worse, because smaller, exponent s=(2sþ 3) can be

explained intuitively by the presence of an integration in the drift term, which leads to

additional smoothing of the observation and thus makes the inference more difficult.

More correctly, the interpretation via the ill-posed problem (1.2) and the framework

developed by Nussbaum and Pereverzev (1999) allows a deeper understanding of this rate.

To give a rough summary, the model consists of a linear operator K on L2([0, 1]) that is

regularizing of degree � and a centred Gaussian noise ˆ on L2([0, 1]) with regularity ª
(ª ¼ 0 corresponds to white noise, ª ¼ 1 to Brownian motion, and so on). Under suitable

conditions their main result states that functions f from a Sobolev ball of regularity s can

be estimated from the observation Y� ¼ Kf þ �ˆ with an L2-risk of order �2s=(2sþ2(��ª)þ1).

The values � ¼ ª ¼ 0 correspond to the classical white noise model for direct observations,

which should still be called statistically ill-posed because convergence rates can only be

ensured under compactness assumptions on the function class. Translated to our situation,

we formally set � ¼ T�1=2, K ¼ Qa and � ¼ 2 and the noise process has regularity ª ¼ 1

(Theorem 3.1) yielding the exponent s=(2sþ 2(2� 1)þ 1), though it should be emphasized
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that neither the conditions such as exact knowledge of the operator and the Gaussian noise

structure nor the methods of proof using singular value decomposition can be suitably

adapted.

Ill-posed problems with stochastic error structure have recently attracted increasing

attention and the case of weight estimation in SDDEs provides a good example from

statistical inference with the special feature of a merely approximately known operator and

dependent non-Gaussian noise structure. The archetype of inverse problems in statistics is

density deconvolution, where ill-posedness arises due to the smoothness of the

contaminating noise density. Our problem might be compared to the case of an error in

this density; see Butucea and Matias (2003) for a study in the case of an unknown scaling

parameter. For idealized situations, like the Gaussian model sketched above, adaptive

estimation procedures based on wavelet thresholding or general oracle inequalities have

been obtained; see, for instance, Donoho (1995), Kalifa and Mallat (2003), Cavalier and

Tsybakov (2002) or Cavalier et al. (2002).

Inverse problems with approximately known operator have already been considered in a

deterministic setting by Hämarik (1983) and recently in a stochastic framework by

Efromovich and Koltchinskii (2001) and Cavalier and Hengartner (2002). The latter,

however, suppose all unknown operators to have the same eigenfunctions and can thus

transfer their problem to a sequence space model. Although the operators Qa are of

convolution type, their kernels are not periodic and their eigenfunctions are not given by the

Fourier basis, but depend on the weight a such that this approach is not feasible in our

case. The general procedure of Efromovich and Koltchinskii (2001) most closely resembles

the way we proceed. They also use suitable basis functions and establish the same risk

bounds as in the case of known operators whenever the level of the noise in the operator is

not larger than that of the noise in the data. We also recover the same minimax rates,

although we do not dispose of a training sample and the two noise sources are correlated.

The main difference in the estimation procedure is that we use a nonlinear projection

method and can thus adapt to spatial inhomogeneity, whereas Efromovich and Koltchinskii

(2001) employ a linear Lepski method.

1.4. Structure and notation

In Section 2 we introduce the theory of affine SDDEs and their stationarity behaviour and

present results on the mapping properties of the covariance operator. Section 3 is devoted to

the construction of the estimator and a discussion of its properties. In Section 4 we assess

the optimality of our estimator by the minimax approach. The proofs of the statements are

deferred to Sections 5 to 7, Section n providing the proofs for Section n� 3. The Appendix

presents some essentials on function spaces and wavelet bases.

Let us fix some notation. Pa(�) and Ea[�] denote the probability measure and the

expectation operator depending on the parameter a. By F X
T we denote the � -field generated

by the process X up to time T . The space of continuous (or p-integrable) functions on the

interval I is denoted by C(I) (Lp(I)). The space of finite signed Borel measures on I is

written as M(I) and equipped with the total variation norm norm k � kTV. �x is the Dirac
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measure in x and g � º denotes the measure with Lebesgue density g 2 L1. Usually, the

density g is identified with the measure g � º and thus operators acting on measures are

considered to act on the densities themselves. For f 2 C(I) and � 2 M(I) we introduce the

dual pairing h f , �i :¼
Ð

I f d�. The cardinality of a set M is denoted by jM j. Finally, the
symbol A(T ) ( B(T ) means that A(T ) is bounded by a multiple of B(T ) independently of

T , that is, A(T ) ¼ O(B(T )) in the O-notation. Equally, A(T ) ) B(T ) stands for

B(T ) ( A(T ), and A(T ) � B(T ) for A(T ) ( B(T ) as well as A(T ) ) B(T ).

2. Affine stochastic delay differential equations

For the theory of deterministic delay equations we refer to the monograph by Hale and

Verduyn Lunel (1993), while fundamental results on stochastic delay equations can be found

in Mohammed (1984) and Mao (1997). If we put � ¼ 0 in (1.1), we obtain the

deterministic linear delay equation

_xx(t) ¼
ð0
�r

x(t þ u)da(u), t > 0: (2:1)

As for linear ordinary differential equations, the ansatz x(t) ¼ eº t gives rise to a characteristic

function the zeros of which determine the long-time behaviour of general solutions x.

Definition 2.1. The characteristic function associated with (1.1) is given by

�a(º) :¼ º�
ð0
�r

eºu da(u), º 2 C:

The maximal real part of its zeros is denoted by

v0(a) :¼ supfRe(º) j �a(º) ¼ 0g:

Without loss of generality we shall henceforth assume � ¼ 1; otherwise we rescale X

and consider ~XX (t) ¼ � �1X (t) instead. Gushchin and Küchler (2003) then prove the

following result:

Theorem 2.1. A stationary solution of the affine SDDE (1.1) exists if and only if v0(a) , 0

holds. In this case the stationary solution X is unique. It is a centred Gaussian process with

(auto)covariance function qa(t) :¼ Ea[X (0)X (jtj)], t 2 R, satisfying

q9a(t) ¼
ð0
�r

qa(t þ u)da(u) for all t > 0: (2:2)

Its spectral density is given by

q̂qa(�) :¼
ð1
�1

qa(t)e
i� t dt ¼ 1

j�a(i�)j2
, � 2 R: (2:3)

Example 2.1. For the point easure a ¼ Æ�0, equation (1.1) reduces to a stochastic ordinary
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differential equation with the Ornstein–Uhlenbeck process as solution. We obtain

�a(º) ¼ º� Æ and v0(a) ¼ Æ. For Æ , 0 a stationary solution exists with covariance function

qa(t) ¼ (2jÆj)�1e�jÆ tj and spectral density q̂qa(�) ¼ (�2 þ Æ2)�1.

The law �X of the solution process X on the interval [0, T ] and the law �W of Brownian

motion starting at X (0) are mutually absolutely continuous in the canonical space C([0, T ]).

We express the likelihood ratio in terms of sufficient statistics bT and QT that will be of

major importance later.

Definition 2.2. For the solution process X of (1.1), define

bT (u) :¼
ðT
0

X (t þ u)dX (t) u 2 [�r, 0],

qT (u, v) :¼
ðT
0

X (t þ u)X (t þ v)dt u, v 2 [�r, 0],

QT �(u) :¼
ð0
�r

qT (u, v)d�(v) u 2 [�r, 0], � 2 M([�r, 0]),

Qa�(u) :¼
ð0
�r

qa(u� v)d�(v) u 2 [�r, 0], � 2 M([�r, 0]):

The operator Qa is the covariance operator of the stationary process X on [�r, 0], regarded

as an element of C([�r, 0]).

It is understood that for bT a continuous version in u 2 [�r, 0] is chosen, which is

possible since the Kolmogorov continuity theorem applies due to the moment bound:

E

ðT
0

X (t þ u1)dW (t)�
ðT
0

X (t þ u2)dW (t)

� �4
" #

( E

ðT
0

(X (t þ u1)� X (t þ u2))
2 dt

� �2
" #

(2:4)

( T 2(u1 � u2)
2,

which follows from the Burkholder–Davis–Gundy inequality and the uniform Lipschitz

continuity of the covariance function qa; see Proposition 5.1.

Theorem 2.2. For a deterministic initial function F in (1.1), the Radon–Nikodym derivative

¸T (X , X (0)þ W ) of �X with respect to �W is given by
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¸T (X , X (0)þ W ) :¼ d�X

d�W

¼ exp

ðT
0

ð0
�r

X (t þ u)da(u)dX (t)� 1

2

ðT
0

ð0
�r

X (t þ u)da(u)

� �2

dt

 !

¼ exp hbT , ai � 1
2
hQT a, ai

� �
:

This result is the basis for the maximum-likelihood theory developed by Gushchin and

Küchler (1999). Its proof is derived from the Girsanov theorem for diffusion-type processes

and the stochastic Fubini theorem; see Lipster and Shiryaev (2001) or Küchler and Sørensen

(1997).

The first impulse in defining a nonparametric estimator âaT of a would thus be to

maximize the likelihood function which amounts to solving the infinite-dimensional

equation QT âaT ¼ bT . However, the empirical covariance operator QT need not be invertible,

and although the covariance operator Qa, obtained in the limit, is invertible, its inverse Q�1
a

is an unbounded operator, as will be shown later. Hence, we are in a classical

nonparametric situation and smoothing methods need to be employed. Our basic idea is

to smooth first and then to solve the maximum likelihood equation in terms of the

smoothed quantities. The convergences T�1QT ! Qa and T�1bT ! Qaa for T ! 1, a

consequence of Theorems 6.1 and 3.1, show that in the limit of an infinitely long

observation period the weight measure a is always identifiable. Having adapted an

asymptotic viewpoint, we proceed by analysing the covariance operator Qa in detail. From

this analysis and the exact convergence properties all subsequent results will be derived.

For the notion of Besov spaces Bs
p,Æ of functions with Lp-regularity s and fine-tuning

parameter Æ we refer to the Appendix. Just recall the identity Bs
2,2 ¼ W s,2 so that the

subsequent results are valid, in particular, for the scale of L2-Sobolev spaces W s,2. Küchler

and Mensch (1992) show that the covariance function qa is twice differentiable on Rnf0g,
but its derivative has a jump at zero which implies that, roughly speaking, the covariance

operator Qa is smoothing of order 2, that is, measures with density Bs
p,Æ are mapped to

Bsþ2
p,Æ ; cf. Theorem 2.3. Now let us consider the images of point masses �r, r 2 [�r, 0]:

Qa�r(u) ¼ qa(u� r) ¼ qa(ju� rj), u 2 [�r, 0]:

This shows that for values of r in the interior (�r, 0) the image Qa�r 2 C([�r, 0]) has a

jump in its first derivative at u ¼ r, whereas at the boundary r 2 f�r, 0g the image Qa�r is

as regular as the covariance function qa on [�r, 0]. As a consequence, the inclusion of the

point measures at the boundary will not complicate the estimator and even imply that the

covariance operator is onto. In anticipation of the precise mapping properties we introduce

suitable spaces of weight measures; just recall that g � º denotes the measure with Lebesgue

density g on [�r, 0].

Definition 2.3. (i) Besov scale. For s . 0, p 2 (1, 1), Æ 2 [1, 1], v , 0, set
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Bs
p,Æ :¼ ª0�0 þ ªr��r þ g � ºjª0, ªr 2 R, g 2 Bs

p,Æ([�r, 0])
n o

,

Bs
p,Æ(v) :¼ a 2 Bs

p,Æjv0(a) > v
n o

:

On Bs
p,Æ we introduce the norm

kfª0�0 þ ªr��r þ g � ºks, p,Æ :¼ jª0j þ jªrj þ kgkBs
p,Æ([�r,0]):

(ii) Lp-scale. For p 2 (1, 1), v , 0, set

L p :¼ ª0�0 þ ªr��r þ g � ºjª0, ªr 2 R, g 2 Lp([�r, 0])f g,

L p(v) :¼ a 2 L pjv0(a) < vf g:

On L p we introduce the norm

kª0�0 þ ªr��r þ g � ºk p :¼ jª0j þ jªrj þ kgkL p([�r,0]):

The space Bs
p,Æ is isomorphic to the tensor product R2 � Bs

p,Æ and thus (Bs
p,Æ, k � ks, p,Æ) is

a Banach space. The SDDE (1.1) with weight a 2 Bs
p,Æ typically takes the form

dX (t) ¼ ª0X (t)þ ªr X (t � r)þ
ð0
�r

X (t þ u)g(u)du

� �
dt þ dW (t), t > 0:

The set Bs
p,Æ(v) is a closed subset of Bs

p,Æ, due to v , 0 consisting of weights with a uniform

mixing behaviour. This follows from a result in Reiss (2002) adapted to more general weight

measures. By the same arguments these properties also hold for L p. The Besov-type weights

form the nonparametric class M(s, p, S, �) for which our estimator will be shown to be rate-

optimal, whereas the space L p will merely occur in the context of mapping properties of the

covariance operator.

Definition 2.4. For s , 0, S . 0, p 2 [1, 1] and . � . 0, set

M(s, p, S, �) :¼ fa 2 Bs
p,1(��) j kaks, p,1 < Sg:

The choice Æ ¼ 1 in the definition will be discussed in Section 3.3. In Reiss (2001) and

Gushchin and Küchler (2003) it was shown that the covariance operator is always one-to-

one on M([�r, 0]) and maps densities in L2([�r, 0]) to W 2,2([�r, 0]). We show that for a

certain range of Besov spaces the covariance operator is also smoothing of order 2.

Theorem 2.3. For weight measures a in Bs
p,Æ(v) and the parameters as before, the covariance

operator is a bijective bounded linear operator on the appropriate spaces:

Qa : Bs
p,Æ ! Bsþ2

p,Æ ([�r, 0]) and Qa : L p ! W 2, p:

In order to obtain upper bounds in a minimax sense for our estimator, we shall need

uniform norm bounds in the preceding statement.
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Theorem 2.4. For s, S, � . 0, p 2 (1, 1), the following operator norms are uniformly

bounded:

sup
a2M(s, p,S,�)

kQakBs
p,Æ!Bsþ2

p,Æ
, 1, sup

a2M(s, p,S,�)
kQ�1

a kBsþ2
p,Æ!Bs

p,Æ
, 1,

sup
a2M(s, p,S,�)

kQakL p!W 2, p , 1, sup
a2M(s, p,S,�)

kQ�1
a kW 2, p!L p , 1:

3. Construction of the estimator

3.1. The general idea

We start by smoothing the statistic bT adaptively. To this end kernel and wavelet methods

are equally applicable, but since an integral equation with this estimator as data has to be

solved later, wavelet techniques avoid a second numerical discretization step. For the

notation (łº) of an s-regular wavelet basis on [�r, 0] we refer to the Appendix.

First, we need to clarify the functional nature of the noise in the estimate T�1bT of Qaa.

A good intuition is provided by the decomposition (recall � ¼ 1)

bT (u) ¼
ðT
0

X (t þ u)

ð0
�r

X (t þ v)da(v)

� �
dt þ

ðT
0

X (t þ u)dW (t)

¼ (QTa)(u)þ
ðT
0

X (t þ u)dW (t): (3:1)

Suppose for a moment that T�1QT equals Qa exactly (its kernel is in fact easier to estimate).

The error term is then due to the stochastic integral term which is as regular with respect to u

as Brownian motion due to the Kolmogorov continuity theorem. Thus, we do not face the

classical ‘signal plus white noise’ model, but rather an integrated form involving the signal

and a perturbation by Brownian motion; one may think of recovering the function f from the

noisy observation

Y (u) ¼ f (u)þ �W (u), u 2 [�r, 0]:

However, in our setting the noise is not Gaussian and we are not interested in the signal

f ¼ Qaa itself, but rather in Q�1
a f ¼ a. Nevertheless the analoguous ill-posed problem in

white noise would be

dY (u) ¼ DQaa(u)dt þ �dW (u), u 2 [�r, 0],

where D denotes differentiation. The operator DQa has only one degree of ill-posedness, and

this explains the exponent s=(2sþ 3) in the minimax rate. This formal argument could be

substantiated by considering the stochastic differential dbT (u) instead of bT (u). The main

drawback of looking at differentials in our situation is that DQa is no longer one-to-one.

Taking account of Theorem 2.3, we will minimize the expected Lr-loss in estimating the
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signal Qaa with minimal W 2,r-loss. Although our noise process is more regular than white

noise, the noise is still less regular than the norm we want the signal to be estimated in.

To solve our problem in practice we can adapt the abstract wavelet thresholding results of

Kerkyacharian and Picard (2000). Our estimator b̂bT is obtained by expanding bT in a

wavelet basis up to a certain level and only keeping the significant coefficients (hard

thresholding).

Definition 3.1. Let smax . 2 be fixed. With bT from Definition 2.2, introduce for any multi-

index º the wavelet coefficient

�º,T :¼ 1

T
bT , łº

� �
,

where (łº)º is a compactly supported smax-regular wavelet basis in L2([�r, 0]) (see Section

A.2). Define the thresholding estimator

b̂bT :¼ b̂bT ,J(T ),k(T ) :¼
X

jºj<J (T )

�º,T1j�º,T j.kº(T )
� �

łº

for a certain resolution level J (T ) and thresholds (kº(T ))º.

3.2. Results

How should we choose the threshold values kº(T )? The second term in the decomposition

(3.1) gives for �º,T the variance estimate T�1hQałº, łºi � T�12�2jºj by Lemma A.5. In

Section 3.3 we comment on the choice for a specific sample; here, however, we strive for

asymptotically optimal threshold values kº(T ), T ! 1. We note that the overall noise level

is T�1=2 as expected, and that level-wise the noise intensity decays as 2�jºj, which indicates

that the noise is one degree smoother than white noise. A detailed analysis confirms this

picture and even yields uniform Gaussian tail estimates, which cannot be obtained by

standard large-deviation techniques.

Theorem 3.1. Let (łº)º be a compactly supported 2-regular wavelet basis of L2([�r, 0]) and

let R, �, r . 0. Then there is a universal bound k� . 0 such that we obtain uniformly for all

weight measures a with v0(a) < ��, kakTV < R, all multi-indices º and all sufficiently large

T,

Pa 2jºjT 1=2jhT�1bT � Qaa, łºij >
k
2

ffiffiffiffiffiffiffiffiffiffiffi
log T

p� 	
( T�3r for all k > k�: (3:2)

We shall therefore set kº(T ) ¼ k2�jºjT�1=2
ffiffiffiffiffiffiffiffiffiffiffi
log T

p
. As is classical in wavelet methods, we

choose the maximal frequency level J (T ) such that J (T )2J (T ) is inversely proportional to the

variance level T�1.

Proposition 3.2. Let s 2 (0, smax � 2], S . 0, r, p 2 (1, 1) and � . 0 be given satisfying
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1

p
� 1

r
<

2

r
s

3
: (3:3)

Set 2J (T) � T=log T and kº(T ) ¼ k2�jºjT�1=2log(T ) with k chosen as in Theorem 3.1. Then

we obtain the following asymptotic estimate for the estimator b̂bT from Definition 3.1:

sup
a2M(s, p,S,�)

Ea[kb̂bT � QaakW 2,r] (
T

log T

� ��s=(2sþ3)

:

In the next step we construct an operator Q̂QT from the observations up to time T , which

is close to the true covariance operator. We could, of course, use the results for QT from

Theorem 6.1, but it is even simpler to use (1.2), that is, q9a(t) ¼ Qaa(�t) obtained from

(2.2). Writing qa(t) ¼ qa(0)þ
Ð t
0
q9a(u)du, we can thus determine qa from qa(0) and Qaa

and derive an estimator from estimators for these two quantities. The convolution kernel of

Q̂QT will have a jump in the first derivative at zero, but will be regular elsewhere. This

explains why the mapping properties of Q̂QT resemble those of Qa. In particular, Q̂QT is with

high probability an isomorphism between Lr and W 2,r. This gives our main result.

Theorem 3.3. Let the parameters s, S, p and � be as before. Introduce the integral operator

Q̂QT : Lr ! W 2,r with convolution kernel

q̂qT (u) :¼
1

T

ðT
0

X (t)2 dt þ
ð0
�juj

b̂bT (v), dv, u 2 [�r, r],

that is,

Q̂QT �(t) :¼
ð0
� r

q̂qT (t � u)d�(u) for t 2 [�r, 0], � 2 L p:

Define the estimator âaT by

âaT :¼
min SkQ̂Q�1

T b̂bTk�1
Lr , 1

� 	
Q̂Q�1

T b̂bT , if Q̂QT : Lr ! W 2,r is invertible,

0, otherwise:

8<:
Then the following asymptotic upper bound holds for T ! 1:

sup
a2M(s, p,S,�)

Ea[kâaT � akLr] (
T

log T

� ��s=(2sþ3)

:

3.3. Discussion

Our method differs from the classical wavelet thresholding algorithm due to the ill-

posedness involved. Our threshold kº depends on the resolution level jºj, because the

intensity of the noise coefficients is of order 2�jºjT�1=2. Furthermore, it is not necessary to

impose additionally the linear constraint that the weight lies in W s=(2sþ3),r because the

restriction (3.3) is much stronger than in the classical setting. If we call � ¼ s=3 the
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effective smoothness (as in multidimensional smoothing) in our model, then (3.3) is well

known in terms of � (Härdle et al. 1998, Section 10.4). We have chosen the Besov scale

(Bs
p,Æ) with Æ ¼ 1 for simpler embedding relations. In fact, Æ ¼ p=r would do, as can be

seen from (6.3). It is not known whether this value is the maximal possible.

Example 3.1. What rate of convergence do we obtain for the Lr-risk of the weight function

g ¼ �1[�1
2
,0] with delay r ¼ 1? This might be seen as a toy example for estimating a change

point or the maximal delay time. The function g lies in B1
1,1([�1, 0]) and thus, by

embedding in W s,r([�1, 0]) for s , 1=p. This shows that linear methods cannot converge

faster than at rate T�1=(2þ3r) whereas, due to g 2 Bs
p,1 for any s , 1=p, relation (3.3) is

satisfied for all s , 3=(3r� 2). Owing to s < 1, our wavelet thresholding estimator achieves

(almost) the rate T�1=5 for r , 5=3 and the rate T�1=(3r) for r > 5=3, which is a significant

gain. If our results could be generalized to cover the case of the quasi-Banach spaces Lp for

p , 1 (which is to be expected), then g 2 Bs
1=s,1 would yield (almost) the L1-rate T�1=3.

The latter is in fact the minimax rate for nonparametric change point detection; cf. Reiss

(2004).

In the mathematical results we have focused on the spatial adaptivity of our estimator,

but the construction is clearly independent of major a priori knowledge of the unknown

parameter. However, we had to assume some maximal domain of regularity (smax), some

bound on the size (S) and some uniform mixing behaviour (�). The resulting minimal

asymptotically optimal threshold k� depends in a complicated way on these quantities. So

clearly the question arises how to choose kº for a specific observation.

First of all, note that T�º,T � hQT ałºi is a martingale with respect to T with quadratic

variation hQTłº, łºi. Asymptotically for T ! 1, the random variable

	º,T :¼ T 1=2 �º,T � hT�1QT a, łºi
�º,T

(with � 2
º,T :¼ hT�1QTłº, łºi � 2�2jºj)

is therefore N (0, 1)-distributed by the martingale central limit theorem. In other words, we

observe the coefficient hT�1QT a, łºi under the noise T�1=2�º,T	º,T . Because � 2
º,T converges

stochastically, we conclude that the noise is approximately normally distributed with variance

T�1� 2
º,T , which is observable. Thus, we are led to apply the usual threshold rules in the

Gaussian shift setting; see Donoho and Johnstone (1994) for a detailed discussion and

Neumann and von Sachs (1995) for the case of only asymptotically Gaussian noise. It only

remains to take account of the W 2,r-norm used so that we have to be a little bit more

conservative and should choose in the Hilbertian case r ¼ 2 the thresholds

k j ¼ T�1=2�º,T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log(T��2

º,T

q
, provided the isomorphism constants in Theorem 2.3 are close

to one when measured in the corresponding wavelet coefficient norms; cf. equation (17) of

Abramovich and Silverman (1998). The maximal frequency J should be chosen such that

J�12�J � T�1 maxº � 2
º,T , which is an estimate of the squared noise level.

The cut-off in the definition of âaT avoids uncontrolled errors in the inversion and is quite

natural; cf. Efromovich and Koltchinskii (2001). If only discrete observations (X ti ) are

available with 0 ¼ t0 < t1 < . . . < tN ¼ T , then it can be shown that the error in
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approximating the stochastic integral bT does not increase the asymptotics as long as

˜ :¼ maxi(tiþ1 � ti) satisfies ˜ ( T�1=2. For low-frequency observations, that is, ˜ . 0

fixed and N ! 1, it is an open question whether a consistent estimator exists at all.

One might wish to consider the submodel in which the weights do not include any point

masses, that is, the weight space Bs
p,1([�r, 0]) instead of Bs

p,1. For this purpose one can

project the estimator âaT onto Lr([�r, 0]) by neglecting the point measure part. The

asymptotic risk bound remains the same. Conversely, adding finitely many point masses

with known location to our model does not increase the asymptotic rates for the risk. It

must only be taken into account that the image functions of the weight measures under the

covariance operator are less regular at these locations.

Finally, note that the approach can be extended naturally to multidimensional affine

SDDEs where a matrix A of weight measures is to be estimated. In this case, we use the

matrix-valued statistics bT and qT formed by applying the one-dimensional definition to all

cross terms and we are led to the analogous inverse problem QT ÂAT � bT to determine an

estimator ÂAT. A mathematical analysis of an adaptive version of ÂAT will be accomplished

by similar methods, putting a wide range of applications within reach, the model being the

counterpart of vector autoregressive processes in time series analysis.

4. Optimality of the estimator

We show that the adaptive wavelet thresholding estimator is rate-optimal with respect to Lr-

risk functions, in the sense that one cannot improve on the restriction (3.3) in order to

obtain the speed of convergence (T=log T )�s=(2sþ3) for weights in Bs
p,1. For smaller values

of p the rate of convergence is indeed worse and is obtained by embedding Bs
p,1 in Bu


,1
with some properly chosen u , s and 
 . p. In what follows, we merely assume

sþ 1=r� 1=p > 0 in order to have the embedding Bs
p,1 � Lr and thus a well-defined risk.

For the sake of simplicity we do not present the proofs for the stationary case, but for fixed

deterministic initial functions in (1.1). Due to ergodicity the initial segment is not

significant for asymptotic statements, but the proofs for stochastic initial conditions are

lengthy and tedious; see Reiss (2001).

Theorem 4.1. Let s . 0, p . 0, S . 0 and � . 0 be given with sþ 1=r� 1=p > 0 and

such that M(s, p, S, �) has non-empty interior in Bs
p,1. Then the following asymptotic

minimax lower bound holds for T ! 1:

inf
âaT

sup
a2M(s, p,S,�)

Ea[kâaT � akLr] )
T

log T

� ��(sþ1=r�1= p)=(2sþ3�2= p)

,

where the infimum is taken over all F X
T -measurable estimators âaT .

We obtain a fairly complete picture of the minimax rates for the Lr-risk and certain

Besov regularity classes M(s, p, S, �). Again replacing s=3 by the efficient regularity �, we
obtain the usual picture (Härdle et al. 1998, Section 10.4).
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Corollary 4.2. Assume that s . 0, p 2 (1, 1), S . 0 and � . 0 are given such that

M(s, p, S, �) has non-empty interior in Bs
p,1. In what follows the infima are taken over all

F X
T -measurable estimators âaT .

(i) (Sparse case.) For 1=p� 1=r > 2s=(3r) the risk lower and upper bound match, that

is, our estimator is rate-optimal in a minimax sense. We find

inf
âaT

sup
a2M(s, p,S,�)

Ea[kâaT � akLr � T

log T

� ��u=(2uþ3)

,

with

u ¼ 3r
3r� 2

sþ 1

r
� 1

p

� �
< s:

(ii) (Regular case.) For 1=p� 1=r , 2s=(3r) we have

T�s(2sþ3) ( inf
âaT

sup
a2M(s, p,S,�)

Ea[kâaT � akLr] (
T

log T

� ��s=(2sþ3)

:

It should be noted that the actual minimax rates in the regular case are of course T�s=(2sþ3),

which are attained by linear estimators.

5. Proofs for the covariance operator

5.1. Proof of Theorem 2.3

We first need precise regularity and tail behaviour results for the covariance function qa.

Roughly speaking, the covariance function is three times more regular than the weight itself

and decreases exponentially fast.

Proposition 5.1. For a 2 Bs
p,Æ(v) with v , 0, s . 0, p 2 (1, 1) and Æ 2 [1, 1], the

covariance function qa lies in Bsþ3
p,Æ ([0, r]).

Proof. Let us write a ¼ g þ Æ�0 þ ���r as in Definition 2.3. The covariance function

satisfies (2.2) such that, for t 2 (0, r),

q9a(t) ¼
ð0
�r

qa(jt þ uj)da(u) ¼
ð0
�r

qa(jt þ uj)g(u)duþ Æqa(t)þ �qa(r � t):

The properties qa(�t) ¼ qa(t), q9a(0þ) ¼ �1
2
and qa 2 C2([0, 1)) from Küchler and Mensch

(1992) imply for t 2 (0, r) that
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q-a(t) ¼
d

dt

ð0
�r

q9a(jt þ uj)sgn(t þ u)g(u)duþ Æq9a(t)� �q9a(r � t)

� �

¼
ð0
�r

q 0a(jt þ uj)g(u)duþ 2q9a(0þ)g(�t)þ Æq 0a(t)þ �q 0a(r � t)

¼
ð0
t�r

q 0a(v)g(v� t)dvþ
ð t
0

q 0a(v)g(v� t)dv� g(�t)þ Æq 0a(t)þ �q 0a(r � t):

This shows that the third derivative q-a is at least as regular in a Besov space sense as the

most irregular term among the terms on the right-hand side. For the two convolution terms,

note that the regularity result from Lemma A.2 with f ¼ g, k ¼ q 0a and with obvious

modifications of the interval boundaries applies: g 2 Bs
p,Æ and qa 2 Bw

p,Æ for some w > 1,

imply, by embedding, q 0a 2 B ~ww�2
p9,Æ9 for all ~ww , w� 1þ 2(p� 1)=p and thus, by Lemma A.2,

that the convolutions lie in B ~ww�2g
p,Æ . Formally, we now proceed by putting

w :¼ supfs > 2jqa 2 Bs
p,Æg and by deducing that the convolution terms are in B ~ww�2

p,Æ for

some ~ww . w� 1 while g is in Bs
p,Æ and q 0a in Bw�2��

p,Æ for all � . 0. Consequently, the right-

hand side is an element of B( ~ww�2)^s
p,Æ , hence qa is in B( ~wwþ1)^(sþ3)

p,Æ . By definition of w we know

that qa is not an element of B ~wwþ1
p,Æ and therefore qa 2 Bs

p,Æ follows. For the L p-scale the proof

is the same except that Lemma A.3 can be applied immediately to the expression for q9a.

h

The following lemma extends well-known non-uniform results; see, for example, Hale

and Verduyn Lunel (1993), Küchler and Sørensen (1997).

Lemma 5.2. For all S . 0 and v . � . 0, we have the uniform bound

sup
kakTV<S,v0(a)<�v

kE�qakC1([0,1)) , 1:

Proof. We consider the formula q̂qa(�) ¼ j�a(i�)j�2 from (2.3). Due to j�a(i�)j2 ¼
�a(i�)�a(�i�), the Fourier transform q̂q can be extended to a holomorphic function on the

strip fz 2 Cj jIm(z)j , v0(a)g (Katznelson 1976, Section VI.7.1) and satisfiesdE�(qa)E�(qa)(�) ¼ q̂qa(�þ i�) ¼ �a(i�� �)�1�a(�i�þ �)�1:

The assumptions guarantee j�a(	i�
 p�)j > ji�þ �j � Se�r. Since subsets U � M([�r, 0])

that are bounded and closed in total variation norm are compact in the weak*-topology of

M([�r, 0]) by the Banach–Alaoglu theorem, the set of characteristic functions f�aja 2 Ug is

compact in the space of entire functions equipped with the convergence on compact sets.

Consequently, the classical result from calculus about the convergence of maxima on compact

sets yields, for the respective choice of signs,

K	 :¼ sup
a

max
j�j<2Se� r

j�a(	i�
 p�)j�1 , 1,

where the supremum is taken over all measures a as in the statement of the lemma. We
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compare with the covariance function qOU(t) ¼ (2v)�1e�vj tj of the Ornstein–Uhlenbeck

process with parameter �v and conclude that

sup
a

kE�(qa � qOU)kC1(R)

< sup
a

ð1
�1

(1þ j�j)




 �a(i�� �)�a(�i�þ �)� �OU(i�� �)�OU(�i�þ �)

�a(i�� �)�a(�i�þ �)�OU(i�� �)�OU(�i�þ �)





, d�
< sup

a

ð1
�1

(1þ j�j) j�a(�i�þ �)� �OU(�i�þ �)j
j�a(�i�þ �)�OU(i�� �)�OU(�i�þ �)j d�

þ sup
a

ð1
�1

(1þ j�j) j�a(i�� �)� �OU(i�� �)j
j�a(i�� �)�a(�i�þ �)�OU(i�� �)j d�

< (e�rS þ v) (S þ S2e�r)(K3
þ þ K3

�)þ
ð
j�j.2Se� r

(1þ j�j)(ji�þ �j � Se�r)�3 d�

 !

, 1:

Because kE�(qOU)kC1([0,1)) , 1 the result follows. h

Proposition 5.3. Let E� be the multiplication operator with the exponential:

E�( f )(t) :¼ f (t)e� t. Then for S, v . 0 and p > 1, the covariance function qa has for any

� 2 (0, v) the property

sup
a2L p(�v):kak p<S

kE�(qa)kC2,1([0,1)) , 1:

In particular, the second derivative of E�(qa) is uniformly bounded on [0, 1) and Lipschitz

continuous.

Proof. The solution property (2.2) of the covariance function qa implies, for t > r,

jq 0a(t)j < kq9akC([ t�r, t])kakTV < kqakC([ t�2r, t])kak2TV:

By Lemma 5.2 and the product rule of differentiation we conclude that sup t>rjE�(qa) 0(t)j is
uniformly bounded over the weights a. Similarly, the bound jq 0a(t þ v)� q 0a(t)j
< kqa(� þ v)� qakC([ t�2r, t])kak2TV for t > r and v > 0 yields the existence of a uniform

Lipschitz constant for q 0a on [r, 1) by Lemma 5.2. It remains to apply Proposition 5.1, the

uniformity result of Proposition 5.4 and Sobolev embeddings to obtain the same results on

the interval [0, r]. h

We are now in a position to prove Theorem 2.3. First, let us see how Qa acts on

functions f 2 Bs
p,Æ([�r, 0]). Since Qa maps M([�r, 0]) continuously to C([�r, 0]) by

general properties of covariance operators (Vakhaniya et al. 1987, Theorem III.2.2), we only

need to estimate k(Qa f ) 0ks, p,Æ. By symmetry of qa and by the regularity result
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qa 2 Bsþ3
p,Æ ([0, r]) (Proposition 5.1) we obtain for t 2 [�r, 0], as in the proof of Lemma 5.1,

(Qa f ) 0(t) ¼
Ð 0
�r

q 0a(t � s) f (s)ds� f (t). From Lemma A.2 we infer further that

k(Qa f ) 0ks, p,Æ ( k f ks, p,Æ þ k f ks�1, p,Ækq 0aks, p9,Æ9 ( (1þ kqaksþ3, p,Æ)k f ks, p,Æ,

which shows that Qa maps Bs
p,Æ continuously to Bsþ2

p,Æ . Writing the derivative operator as

D, we find, for any � 2 (0, 2� (2
p
_ 1)), by Lemma A.2 with k ¼ q 0a and by the embedding

Bsþ1
p,Æ � Bsþ�

p9,Æ9, that

k(D 2Qa þ Id) f ksþ� ( k f ksþ��1, p,Ækq9aksþ�, p9,Æ9 ( kqaksþ3, p,Æk f ks, p,Æ:

Hence, D 2Qa þ Id is a compact operator on Bs
p,Æ (Bsþ�

p,Æ ([�r, 0]) � Bs
p,Æ([�r, 0]) compactly).

Let V � Bs
p,Æ denote the kernel of D 2Qa and let V c be a complementary subspace of V .

By Fredholm theory (Rudin 1991) the range of D 2Qa is closed and its codimension equals

the finite dimension of V . Therefore there exists a complementary subspace U of

D 2Qa(B
s
p,Æ) with dimU ¼ dim V . The situation is illustrated by the following diagram:

Bs
p,Æ ¼ V c � V

Qa

Bsþ2
p,Æ ¼ Qa(B

s
p,Æ) þ (D 2)�1(U )

D 2

Bs
p,Æ ¼ D 2Qa(B

s
p,Æ) � U

While the decomposition in the first and in the third line hold by definition, the represent-

ation of Bsþ2
p,Æ in the second line follows from the third line due to

(D 2)�1(Bs
p,Æ) ¼ (D 2)�1(D 2Qa(B

s
p,Æ)� U ) � Qa(B

s
p,Æ)þ (D 2)�1(U ). The fact that Qa(V) is

contained in the kernel of D 2 implies that the operators Qa and D 2 each map the vertically

corresponding subspaces into each other.

This argument shows that Qa(B
s
p,Æ) is a closed subspace of Bsþ2

p,Æ of codimension

not larger than 2. Due to Qa��r ¼ qa(� þ r) and Qa�0 ¼ qa we have

Qa(span(��r, �0)) � Bsþ3
p,Æ � Bsþ2

p,Æ by Proposition 5.1. The injectivity of Qa on M([�r, 0])

implies that Qa(span(��r, �0)) is a two-dimensional subspace of Bsþ2
p,Æ in the complement of

Qa(B
s
p,Æ). Owing to codimQa(B

s
p,Æ) < 2 this codimension must equal two and

Qa : Bs
p,Æ ! Bsþ2

p,Æ is onto, hence bijective. Because Qa is separately continuous on these

two subspaces, it is continuous on its span Bs
p,Æ and by the open mapping theorem it is an

isomorphism.

Exactly the same reasoning applies for Lp and L p instead of Bs
p,Æ and Bs

p,Æ; just apply

Lemma A.3 to (Qa f )9.
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5.2. Proof of Theorem 2.4

This will be a consequence of the following continuity properties.

Proposition 5.4. Suppose s . 0, 1 , p , 1, Æ 2 [1, 1] and v , 0 are given. If (an) is a

sequence in Bs
p,Æ(v) that converges in Bs

p,Æ-norm to the Bs
p,Æ(v)-weight a, then

kqan
� qakBsþ3

p,Æ ([0,r])
! 0 follows.

Proof. Put f n :¼ qan
� qa and an ¼ gn þ ªr,n��r þ ª0,n�0. As before, the following

identities hold for t 2 (0, r):

f 0n(t) ¼
ð0
�r

qan
(� þ u)dan(u)�

ð0
�r

qa(� þ u)da(u)

� �
9(t)

¼
ð0
�r

f n(� þ u)dan(u)

� �
9(t)þ (Qa(an � a)(��))9(t)

¼ �
ð� t

�r

f 9n(�t � u)gn(u)duþ
ð0
� t

f 9n(t þ u)gn(u)du

� ªr,n f 9n(r � t)þ ª0,n f 9n(t)� (Qa(an � a))9(�t)

¼ �
ð r� t

0

f 9n(u)gn(�u� t)duþ
ð0
� t

f 9n(u)gn(u� t)du

� ªr,n f 9n(r � t)þ ª0,n f 9n(t)� (Qa(an � a))9(�t):

By Lemma A.2 we obtain for all w . 0 (allowing the value 1) the estimate

k f 0nkw, p,Æ ( k f 9nkw, p9,Æ9kgnkw�1, p,Æ þ (jª1,nj þ jª2,nj)k f 9nkw, p,Æ

þ kQakB
(w�1)_0
p,Æ !Bwþ1

p,Æ
kan � ak(w�1)_0, p,Æ: (5:1)

For an ! a weakly the covariance functions converge in W r,2([0, r]) for all r , 5
2
, which

was established in Reiss (2002) by spectral methods. Hence, k f nkw, p,Æ ! 0 holds for all

w , 2þ 1=p. In particular, the convergence k f nkL p ! 0 follows. The right-hand side of

estimate (5.1) is thus finite for all w 2 (0, 1=p). Once again using Bw
p,Æ � Bw�1þ�

p9,Æ9 for any

� 2 (0, 2� (2=p _ 1)), we obtain, for all w < sþ 1,

k f nkwþ2, p,Æ ( k f nkL p þ kanks, p,Æk f nkwþ2��, p,Æ þ kQak kan � aks, p,Æ:

Starting with w0 ¼ �, we can iterate this estimate (wnþ1 :¼ (wn þ �) ^ (sþ 1)). Hence

k f nksþ3, p,Æ is bounded by a multiple of k f nkL p þ k f nk2, p,Æ þ kan � aks, p,Æ, which tends to

zero for n ! 1. This proves that k f nksþ3, p,Æ ! 0. h

Proposition 5.5. If (an) is a sequence of Bs
p,Æ(v)-weights that converges in Bw

p,Æ-norm to the
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Bs
p,Æ-weight a for some w . s� 2þ (1 _ 2=p) and s . 0, p 2 (1, 1), Æ 2 [1, 1], v , 0,

then the covariance operators converge in operator norm:

lim
n!1

kQan
� QakBs

p,Æ!Bsþ2
p,Æ

¼ 0:

This statement remains true if Bs
p,Æ is replaced by L p and Bsþ2

p,Æ by W 2, p and under the

condition that (an) converges in L p-norm to a.

Proof. By linearity we have, for f 2 Bs
p,Æ and t 2 [�r, 0],

((Qan
� Qa) f ) 0(t) ¼

ð rþ t

0

f (t � u)(qan
� qa) 0(u)duþ

ð� t

0

f (t þ u)(qan
� qa) 0(u)du:

By Lemma A.2 and by the norm estimates k � ksþ2, p9,Æ9 ( k � kwþ3, p,Æ and k � kL p9 (

k � kwþ3, p,Æ, we infer the bound

k(Qan
� Qa) f ksþ2, p,Æ ( k(Qan

� Qa) f kL1 þ k f ks�1, p,Æk(qan
� qa) 0ks, p9,Æ9

( kqan
� qakL p9 þ kqan

� qakwþ3, p,Æ

� �
k f ks, p,Æ

( kqan
� qakwþ3, p,Æk f ks, p,Æ:

The proof in the Lp-case is proceeds in a completely analogous way. h

The following proof of Theorem 2.4 works for the Besov scale as well as for the Lp-

scale. Since the set M(s, p, S, �) is bounded in Bs
p,Æ, it is relatively compact in any Bw

p,Æ
for w , s. By the preceding result the operator norm of Qa depends continuously on a in

Bw
p,Æ-norm for some w , s such that the supremum of kQak over M(s, p, S, �) is attained

and finite. The norm continuity of the mapping Qa 7! Q�1
a (Rudin 1991, Thm. 10.11) yields

the bound for the inverse, and the proof of Theorem 2.4 is complete.

6. Proof of the upper bound

6.1. Proof of Theorem 3.1.

This result follows from an exponential moment bound on T�1QT , which for small

exponents Æ yields a Gaussian moment behaviour.

Theorem 6.1. Let �, R . 0 be given. Then there are constants K, T0 . 0 such that for all

weight measures a with v0(a) < ��, kakTV < R, all multi-indices º, all measures

� 2 M([�r, 0]), all T > T0 and all Æ 2 [0, T 1=2(Kk�kTV)�1), the following moment

bound holds:

Ea cosh ÆT 1=223jºj=2h(T�1QT � Qa)�, łºi
� 	h i

< exp Kk�k2TVÆ2
� 	

:

In particular, using x2m ( cosh(x), we obtain
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Ea[h(T�1QT � Qa)�, łºi2m]1=2m ( T�1=22�3jºj=2k�kTV: (6:1)

Proof. Due to cosh(x) ¼
P

mx
2m=(2m)!, we shall estimate polynomial moments. Using the

finiteness of E[kXk2mC([�r,T])] by the Fernique theorem on C([�r, T ]) as a requirement for the

Fubini theorem we obtain:

Ea[h(T�1QT � Qa)�, łºg2m]

¼ Ea[h�, (T�1QT � Qa)łºg2m]

¼
ð
[�r,0]2m

Ea

Y2m
i¼1

(T�1QT � Qa)ł(ui)

" #
d�(u2m) . . . d�(u1)

< k�k2mTV sup
u1,...,u2m





ð
[�r,0]2m

dv2m . . . dv1Ea

Y2m
i¼1

T�1qT (ui, vi)� qa(ui, vi)
� �" #Y2m

i¼1

łº(vi)






¼ k�k2mTVT�2m sup

u1,...,u2m





ð
[�r,0]2m

dv2m . . . dv1

ð
[0,T ]2m

dt2m . . . dt1

Ea

Y2m
i¼1

X (ti þ ui)X (ti þ vi)� qa(ui � vi)ð Þ
" #Y2m

i¼1

łº(vi)





:
In order to evaluate the expected value of the product, let us introduce the set P2(2n) of

all partitions of the set f1, . . . , 2ng into subsets with two elements. An easy argument

based on the characteristic function shows that for a centred Gaussian random vector

(N1, . . . , N2n) the formula

E
Y2n
i¼1

Ni

" #
¼

X
ˆ2P2(2n)

Y
(k, l)2ˆ

E[NkNl]

is valid. Let us set n ¼ 2m, Ai ¼ N2i�1, Bi ¼ N2i ¼ and Æ ¼ E[AiBi]. Then we obtain the

following formula because terms involving neighbouring random variables N2i�1, N2i cancel

(proof by induction over n):

Ea

Y2m
i¼1

(AiBi � Æ)

" #
¼

X
ˆ2P2(4m)

8i:f2i�1,2ig=2ˆ

Y
(k, l)2ˆ

Ea[NkNl]: (6:2)

In our case the expected value of the product equalsX
ˆ2P2(4m)

8i:f2i�1,2ig=2ˆ

Y
(k, l)2ˆ

qa(zk � zl),

with z2i�1 ¼ ti þ ui and z2i ¼ ti þ vi. Changing the order of integration, we start with the
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integration over vi, i ¼ 1, . . . , 2m. Since any vi appears only once in the product, we have to

deal with products over terms which have one of the following three forms:

(i) qa(ti þ ui � t j � u j),

(ii)
Ð 0
�r

qa(ti þ ui � t j � v j)łº(v j)dv j,

(iii)
Ð 0
�r

Ð 0
�r

qa(ti þ vi � t j � v j)łº(vi)łº(v j)dvi dv j.

For factor (i) we shall use jqa(ti þ ui � t j � u j) < C1e
��j t i� t jj derived from Proposition

5.1 for � , �v0(a).

The Lipschitz constant of qa(ti þ ui � t j � �) on [�r, 0] is of order e��(j t i� t jj�r) by

Proposition 5.1, which implies the existence of a constant C2 such that the modulus of

integral (ii) is smaller than C22
�3jºj=2e��j ti� t jj (Lemma A.6).

For the estimation of integral (iii) we let S denote the length of the minimal interval

supporting ł and distinguish the cases (1) jti � t jj . 2�jºjS and (2) jti � t jj > 2�jºjS. A

substitution givesð0
�r

ð0
�r

qa(ti þ vi � t j � v j)łº(vi)łº(v j)dvi dv j

¼
ðð

jvi�v jj<S

qa(ti � t j þ 2�jºj(vi � v j))2
�jºjł(vi)ł(v j) dvi dv j,

which shows that in case (1) qa needs only to be evaluated at either positive arguments or at

negative ones. Due to the Lipschitz continuity of q9a with exponentially decaying norm

(Proposition 5.1) the estimate in Lemma A.6 shows that the modulus of (iii) is in case (1)

smaller than C32
�3jºje��j ti� t jj, C3 . 0 a constant. In case (2) qa is at least Lipschitz

continuous and the modulus of (iii) is by the same arguments smaller than C42
�2jºje��j ti� t jj,

C4 . 0 a constant.

Finally, note that each ui and each vi appears exactly once in the product and that each ti
appears twice so that, with C :¼ max j C j,ð

[�r,0]2m
dv2m . . . dv1Ea

Y2m
i¼1

(X (ti þ ui)X (ti þ vi)� qa(ui � vi))

" #Y2m
i¼1

łº(vi)














<
X
ˆ

2�3jºjmC2m
Y

(k, l)2ˆ
1þ 2jºj1k, l evenj t k=2� t l=2j<S2�jºjg

� 	
e��j td k=2e� td l=2ej:

The partitions ˆ can also be described by fixed point-free permutations. Let us denote

2k � 1 and 2k by the same symbol s(k). The idea is to start with one pair fk0, k1g 2 ˆ, to
look for fk91, k2g 2 ˆ with s(k91) ¼ s(k1), then for fk92, k3g with s(k92) ¼ s(k2) and so on

until s(kl) equals s(k0). This describes a cyclic permutation of fs(k0), . . . , s(k l�1)g.
Proceeding in the same manner for the remaining elements of ˆ and identifying s(k) with

dk=2e, a fixed point-free permutation 
 ¼ 
(ˆ) of f1, . . . , 2mg is defined. To clarify the

construction look at the following example (m ¼ 6):
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ˆ ¼ ff1, 3g, f2, 11g, f4, 7g, f5, 10g, f6, 9g, f8, 12gg

) s(1) 7! s(2) 7! s(4) 7! s(6); s(3) 7! s(5) ) 
(G) ¼ (1 2 4 6) (3 5):

Let us denote by C(
) the set of cycles in 
 and by j�j the length of a cycle �. Then we

can easily evaluate the integral over the product:ð
[0,T ]2m

Y
(k, l)2ˆ

(1þ 2jºj1fk, l even,j t k=2� t l=2j<S2�jºjg)e
��j td k=2e� td l=2ej dt1 . . . dt2m

¼
Y

�2C(
(ˆ))

ð
[0,T ]j�j

Yj�j
k¼1

(1þ 2jºj1js kþ1�s k j<S2�jºjg)e
��js kþ1�sk j ds1 . . . dsj�j

<
Y

�2C(
(ˆ))

ðT
0

ds1

ð
[T ,T ]j�j�1

Yj�j�1

k¼1

(1þ 2jºj1juk j<S2�jºjg)e
��juk j du1 . . . , duj�j�1

<
Y

�2C(
(ˆ))
(T (2��1 þ 2S)j�j�1)

< T jC(
(ˆ))j(2��1 þ 2S)2m:

So far we have shown that

Ea[h(2(T�1QT � Qa)�, łºi2m] < k�k2mTVT�2m(2C(��1 þ S))2m2�3jºjm
X
ˆ

T jC(
(ˆ))j:

It remains to solve the combinatorial problem to determine the number an,k of fixed

point-free permutations of f1, . . . , ng with exactly k cycles. We claim that the following

recursive relation is true for all n > 3, k > 1:

an,k ¼ (n� 1)an�1,k þ (n� 1)an�2,k�1, an,1 ¼ an,0 ¼ 1, a1,k ¼ 0:

We classify with respect to the element n. If in a permutation n is in a cycle of length at least

3, then by leaving n out, we obtain a fixed-point free permutation of f1, . . . , n� 1g with k

cycles. Since n can stand in front of every other element, there are exactly n� 1 ways to

generate such an n-permutation from a valid (n� 1)-permutation. This explains the first term.

The second stems from the permutations where n lies in a cycle of length 2. By removing

this 2-cycle we obtain a fixed point-free permutation of n� 2 elements with k � 1 cycles.

Since the other element of the cycle involving n can be chosen from all other elements, we

find the second summand.

From this recursive relationship we infer by an easy induction argument that the

generating function satisfies
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X2m
k¼1

a2m,k x
k <

(2m)!

m!
(xþ 1) . . . (xþ m), x > 0:

We are now in a position to prove the assertion of the theorem:

Ea[cosh(ÆT
1=223jºj=2h(T�1QT � Qa)�, łºi)]

¼
X1
m¼0

Ea[(ÆT 1=223jºj=2h(T�1QT � Qa)Qa, łºi)2m]
(2m)!

<
X1
m¼0

k�k2mTVT�m(2C(��1 þ S))2mÆ2m

(2m)!

X2m
k¼1

a2m,kT
k

<
X1
m¼0

(k�k2TVT�1(2C(��1 þ S))2Æ2)m

m!
(T þ 1) � � � (T þ m)

<
X1
m¼0

(k�kTVT�1=22C(��1 þ S)Æ)2m T þ m
m

� 	
¼ (1� (k�kTV2C(��1 þ S)Æ)2T�1)�(Tþ1)

< exp(Kk�k2TVÆ2),

where K :¼ 2(2C(��1 þ S))2 and T > T0 large enough. The estimates of the covariance

function rely only on Proposition 5.1, whence, by Proposition 5.4, the uniformity of the

constant follows. h

We can now prove Theorem 3.1. The moment inequality in Theorem 6.1 yields

Pa T 1=223jºj=2jh(T�1QT � Qa)�, łºij >
k
2

ffiffiffiffiffiffiffiffiffiffiffi
log T

p� 	
<

exp(Kk�k2TVÆ2

cosh(1
2
Æk

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
)

for any suitable Æ. The choice Æ ¼ 1
2
K

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
=(2Kk�k2TV) yields the bound 2T�k2=(16Kk�k2TV).

From the decomposition (3.1) it follows that

j�º,T � hQaa, łºij < jh(T�1QT � Qa)a, łºij þ




T�1

ðT
0

hX (t þ �), łºidW (t)





:
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The stochastic integral has quadratic variation hQTłº, łºi and by the exact deviation

probability bound found by Lipster and Spokoiny (2000) we infer, for any k . 0 and large T ,

that

Pa

2jºj

T





ðT
0

hX (t þ �), łºidW (t)





 . k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22jºjhQałº, łºiT log T

q� �
< 4

ffiffiffi
e

p
k(log T )T�k2=(8þ2k(log T )1=2T �1=2)

þ Pa 22jºjjh(T�1QT � Qa)łº, łºij .
k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1 log T

p� 	
( T�k2=9 þ T�k2=(16Kkłk2

L1
):

By Lemma A.5 the expression 22jºj(Qałº, łºi is uniformly bounded from below by some

m . 0 and we obtain the uniform estimate

Pa 2jºjT 1=2j�º,T � hQaa, łºij .
k
2

ffiffiffiffiffiffiffiffiffiffiffi
log T

p� 	
( T�k22jºj=(16Kkak2TV) þ T�k2=(9m2) þ T�k2=(16Kkłk2

L1
m2):

If we choose k2 > max(48KR2, 48m2kłk2L1 , 27m2)r ¼: k�, then the right-hand side is of

maximal order T�3r. h

6.2. Proof of Proposition 3.2

Without loss of generality we assume p , r and we omit the T -dependence of the

quantities. Let us introduce the true coefficients (b j,k) and error coefficients (e j,k)

b j,k :¼ hQaa, ł j,ki, e j,k :¼ � j,k � b j,k ¼ hT�1bT � Qaa, ł j,ki:

We split the risk according to the usual bias–variance decomposition:

Ea[kb̂bT � QaakW 2,r] < Ea[kb̂bT � PJQaakW 2,r]þ k(Id� PJ )QaakW 2,r :

The second (bias) term can be dealt with by linear approximation theory. The Besov

space embeddings (A.1) yield under the restriction (3.3) that Bsþ2
p,1 � W

s
2sþ3

þ2,r together with

Jackson’s inequality (A.2) in W 2,r([�r, 0]),

k(Id� PJ )QaakW 2,r ( 2�J s=(2sþ3)kQaakW s=(2sþ3)þ2,r ( (T=log T )�s=(2sþ3)kQaakBsþ2
p,1
:

Due to Qa : Bs
p,1 ! Bsþ2

p,1 isomorphically (Theorem 2.3) with uniform constants (Theorem

2.4), this second term is of order (T=log T )�s=(2sþ3) uniformly over M(s, p, S, �).
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The first term can be estimated using the imbedding B2
r,1([�r, 0]) � W 2,r([�r, 0]), the

characterization of B2
r,1 by 2-regular wavelets (Section A.2) and Jensen’s inequality:

Ea[kb̂bT � PJQaakW 2,r ] ( Ea

X
j<J

2 j(5=2�1=r)
X
k





� j,k1j� j, k j.k j
� b j,k





r
 !1=r

24 35

<
X
j<J

2 j(5=2�1=r)
X
k

Ea





� j,k1j� j, k j.k j
� b j,k





r� � !1=r

:

The term � j,k1j� j, k j.k j
� b j,k jr can be split according to whether thresholding takes place

or not and whether the true coefficient is large or not. It equals

j� j,k � b j,k jr1j� j, k j.k j
þ jb j,k jr1j� j, k j<k j

¼ je j,k jr1j� j, k j.k j
jb j, k j<k j=2

þ je j,k jr1j� j, k j.k j
jb j, k j.k j=2

þ jb j,k jr1j� j, k j<k j
jb j, k j.2k j

þ jb j,k jr1j� j, k j<k j
jb j, k j<2k j

< je j,k jr1je j, k j.kn=2 þ je j,k jr1jb j, k j.k j=2 þ jb j,k jr1je j, k j.k j
þ jb j,k jr1jb j, k j<2k j

¼: S1( j, k)þ S2( j, k)þ S3( j, k)þ S4( j, k):

By the Cauchy–Schwarz inequality, the large deviation bound (3.2) on e j,k and (6.1), we

obtain a fast decay for the sum involving S1( j, k):

X
j<J

2 j(5=2�1=r)
X
k

Ea[S1( j, k)]

 !1=r

<
X
j<J

2 j(5=2�1=r)
X
k

Pa je j,k j .
k j

2

� 	1=2
Ea[e

2r
j,k]

1=2

 !1=r

<
X
j<J

2 j(5=2�1=r)
X
k

T�3r=22� jrT�r=2

 !1=r

� T�223J=2 ( T�1=2:

The large-deviation estimate also bounds the sum over S3( j, k):

X
j<J

2 j(5=2�1=r)
X
k

Ea[S3( j, k)]

 !1=r

¼
X
j<J

2 j(5=2�1=r)
X
k

Pa je j,k j .
k j

2

� 	
jb j,k jr

 !1=r

( kQaak2,r,1T�3 ( T�3kakB2
p,1
:
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The remaining estimates rely on nonlinear approximation theory. Using the characteriza-

tion by (sþ 2)-regular wavelets (Section A.2),

kQaakBsþ2
p, p=r

�
X
j>0

2 jp(sþ5=2�1= p)=r
X
k

jb jk j p
 !1=r

0@ 1Ar= p

,

we infer for all j 2 N0 and � j . 0 by a Chebyshev inequality-type argument the following

bound on the cardinality of large wavelet coefficients:

X
j>0

2 jp(sþ5=2�1= p)=rjfkj jb jk j > � jgj1=r� p=r
j ( kQaak p=r

Bsþ2
p, p=r

< kQaak p=r
Bsþ2

p,1

: (6:3)

The sum involving S2( j, k) can be bounded by separate estimates, where j0 is such that

2 j0 � T 1=(2sþ3):

X
j<J

2 j(5=2�1=r)
X
k

Ea[S2( j, k)]

 !1=r

¼
X
j<J

2 j(5=2�1=r)
X
k

Ea[je j,k jr]1jb j, k j.k j=2

 !1=r

(
X
j< j0

2 j(5=2�1=r)2 j=rT�1=22� j þ
X
j. j0

2 j(5=2�1=r)
X
k

T�r=22� jr1jb j, k j.k j=2

 !1=r

( T�1=223 j0=2 þ T�1=2þ p=2r
X
j. j0

2 j(3=2�1=rþ p=r) k j

2

� 	 p=r
jfkj jb j,k j . k j=2gj1=r

( T�1=223 j0=2 þ T�1=2þ p=2r2� j0( ps=rþ3 p=2r�3=2)

� T�1=223 j0=2(1þ T p=2r2� j0 p(sþ3=2)=r) � T�s=(2sþ3):

In the fifth line we have used the sparsity estimate (6.3) and the fact that

ps=rþ 3p=2r� 3=2 is non-negative due to assumption (3.3).

The slightly extended technique also applies to the estimate of the sum over S4( j, k).

Here, one must choose 2 j0 � (T=log T )1=(2sþ3) for balancing the two sums appearing in the

following calculations:
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X
j<J

2 j(5=2�1=r)
X
k

Ea[S4( j, k)]

 !1=r

¼
X
j<J

2 j(5=2�1=r)
X
k

jb j,k jr1jb j, k j<2k j

 !1=r

<
X
j< j0

2 j(5=2�1=r)2 j=r2k j þ
X
j. j0

2 j(5=2�1=r)
X
k

jb j,k jr
X
m>0

12�mk j,jb j, k j<2�mþ1k j

 !1=r

( 23 j0=2T�1=2(log T )1=2 þ
X
j. j0

2 j(5=2�1=r)
X
k

X
m>0

2(�mþ1)rkrj1jb j, k j.2�mk j

 !1=r

(
T

log T

� ��s=(2sþ3)

þ
X
m>0

X
j. j0

2 j(5=2�1=r)2�mk jjfkj jb j,k j . 2�mk jgj1=r

(
T

log T

� ��s=(2sþ3)

þ
X
m>0

2� j0( ps=rþ3 p=2r�3=2) 2�m(log T )1=2

T 1=2

� �(r� p)=r

� T

log T

� ��s=(2sþ3)

:

All estimates together yield Ea[kb̂bT � QaakW 2,r] ( (T=(log T ))�s=(2sþ3) with uniform

constants.

6.3. Proof of Theorem 3.3

Due to b̂bT 2 W 2,r([�r, 0]), the kernel q̂qT j[0,r] is an element of W 3,r([0, r]) and the

continuity of Q̂QT : Lr ! W 2,r([�r, 0]) follows from Lemma A.3. Formally, the von

Neumann series expansion yields for Q̂Q�1
T ,

Q̂Q�1
T ¼ (Id� Q�1

a (Qa � Q̂QT ))
�1Q�1

a ¼
X1
m¼0

(Q�1
a (QT � Q̂QT ))

mQ�1
a :

Introducing the random set

CT :¼ fkQ�1
a kW 2,r!LrkQa � Q̂QTkLr!W 2,r < 1

2
g,

the operator Q̂QT is therefore invertible on CT with

kQ̂Q�1
T kW 2,r!Lr < 2kQ�1

a kW 2,r!Lr ,

kQ̂Q�1
T � Q�1

a kW 2,r!Lr < 2kQ�1
a k2W 2,r!LrkQ̂QT � QakLr!W 2,r :
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In order to bound the probability of CT from below, we use the estimate

kQa � Q̂QTkLr!W 2,r ( kqa � q̂qTkW 3,r([�r,0]), derived from Lemma A.3 with k(t) ¼
(qa � q̂qT )(�t) and W 3,r � W 2,r9. From Proposition 3.2 we know that

Ea[kq9a � q̂q9TkW 2,r] ¼ Ea[kQaa(��)� b̂bT (��)kW 2,r] (
T

log T

� ��s=(2sþ3)

:

Furthermore, we infer from Propositions 5.1 and 5.4 that

Ea





qa(0)� 1

T

ðT
0

X (u)2 du





2
" #

¼ 1

T 2

ðT
0

ðT
0

2q2a(u� v)du dv (
1

T

with uniform constants. We conclude that

Ea[kqa � q̂qTkW 3,r ] (
T

log T

� ��s=(2sþ3)

: (6:4)

Finally, Markov’s inequality yields, for suitable c . 0,

sup
a2M (s, p,S,�)

Pa(�nCT ) < sup
a2M(s, p,S,�)

Pa(kqa � q̂qTkW 3,r . c)

< sup
a2M(s, p,S,�)

Ea[kqa � q̂qTkW 3,r ]c�1

(
T

log T

� ��s=(2sþ3)

:

It therefore suffices to work on the set CT , because on its complement the loss is bounded

by 2S. Since our renormalization uses the a priori knowledge kakLr < S, our estimator is

on CT only up to a constant factor worse than the estimator obtained by pure inversion. We

obtain on CT ,

kâaT � akLr ( Q̂Q�1
T b̂bT � Q�1

a QaakLr

< kQ̂Q�1
T kW 2,r!Lrkb̂bT � QaakW 2,r

þ kQ̂Q�1
T � Q�1

a kW 2,r!LrkQaakW 2,r

< 2kQ�1
a kW 2,r!Lrkb̂bT � QaakW 2,r

þ 2kQ�1
a k2W 2,r!LrkQa � Q̂QTkLr!W 2,rkQaakW 2,r

( kb̂bT � QaakW 2,r þ kqa � q̂qTkW 3,r :

By Theorem 2.4 the last estimate holds uniformly for all a 2 M(s, p, S, �).
From Proposition 3.2 and the estimate (6.4) we conclude that
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sup
a2M(s, p,S,�)

Ea[kâaT � akLr1CT
] ( T�s=(2sþ3),

which accomplishes the proof of the asymptotic risk upper bound.

7. Proof of the lower bound

Proof of Theorem 4.1. We build from a weight a0 in the interior of M(s, p, S, �) a family of

local alternatives (ajk). Choose a compactly supported s-regular wavelet basis in L2(R) and

denote by Rj a maximal set of integers with supp(ł jk) � [�r, 0] and supp(ł jk)

\ supp(ł jk9) ¼ ˘ for all k, k9 2 Rj, k 6¼ k9. For any k 2 Rj we set ajk :¼ a0 þ ªł jk with

ª ¼ ª(T ) � 2� j(T )(sþ1=2�1= p) such that kajkks, p,1 < S and v0(ajk) < �� are satisfied, hence

ajk 2 B(s, S, p, �). We are using a classical lemma on lower bounds in the sparse case:

Lemma 7.1. Suppose the likelihood ratio satisfies

Pa jk
(log(¸T (X

(a0), X (a jk ))) > � j) > p� . 0

uniformly for all a jk . Then for F X
T -measurable estimators âaT we have the lower bound

inf
âaT

sup
a2M(s, p,S,�)

Ea[kâaT � akLr] ) ª(T )2 j(T )(1=2�1=r) � 2� j(T )(sþ1=r�1= p):

This is an adapted version of Korostelev and Tsybakov (1993, Theorem 2.4.3). Note the

relations M � 2 j and sT � ª2 j(1=2�1=r) in their statement, having substituted n by T.

We use the likelihood ratio from Theorem 2.5 with some fixed initial condition and apply

Lemma A.5 and estimate (6.1):

Ea jk
[log(¸T (X

(a0), X (a jk )))2]

¼ Ea jk

ðT
0

hX (t þ �), ajk � a0idW (t)� 1
2
hQT (ajk � a0), ajk � a0i

� �2
" #

< 2ª2ThQa jk
ł jk , ł jki þ 1

2
Ea jk

[hQT (ajk � a0), ajk � a0i2]

< 2ª2ThQa jk
ł jk , ł jki þ ª4T 2hQa jk

ł jk , ł jki2

þ ª4Ea jk
[h(QT � TQa jk

)ł jk , ł jki2]

( ª2T2�2 j þ ª4T 22�4 j þ ª4T2�4 j

with a uniform constant for all a jk . Thus, by Chebyshev’s inequality the requirements of

Lemma 7.1 are satisfied, when we balance the restrictions on ª by choosing

2(2sþ3�2= p) j(T ) � T=log T such that

ª(T )4T 22�4 j(T ) � T 22� j(T)(4sþ6�4= p) � (log T )2 � j(T )2:

The lower bound follows. h
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Proof of Corollary 4.2. (i) The lower bound is just Theorem 4.1 properly rewritten. For the

upper bound use the embedding Bs
p,1 � Bw


,1 with 1=
 :¼ w� sþ 1=p , 1=p. Due to

1=
� 1=r ¼ 2=r3 w=3, we can apply Theorem 3.3 to the class M(w, 
, S9, �), S9 chosen
appropriately.

(ii) The upper bound is the content of Theorem 3.3, whereas the lower bound follows

along the lines of the L2-lower bound proof using Assouad’s cube in Reiss (2002). The

details are omitted. h

Appendix

A.1. Function spaces

For a more detailed account, see Triebel (1983). Let us introduce the scale of Sobolev

spaces W m, p(I), m 2 N, p 2 [1, 1], I � R an interval: W m, p(I) :¼ f f 2
Lp(I)j f (i) 2 Lp(I) for all i ¼ 0, . . . , mg, where f (i) denotes the ith derivative of f in a

weak sense. These are Banach spaces with respect to the norm k f km, p :¼
(
Pm

i¼0k f (i)k p
L p )1= p.

Besov spaces Bs
p,Æ, measure the regularity s in an Lp-sense with an additional fine-tuning

parameter Æ 2 [1, 1].

Definition A.1. Let I � R be an interval, ˜h f (x) :¼ f (xþ h)� f (x) and

Ih :¼ fx 2 I jx	 h 2 Ig. Then the nth-order L p-modulus of smoothness is defined by

øn( f , �) p :¼ sup
jhj<�

k˜n
h f kL p( I nh),

with ˜n
h denoting the n-fold application of ˜h. For p, Æ 2 [1, 1] and s . 0, set

k f ks, p,Æ :¼ k f kL p( I) þ
ð1
0

øn( f , t) p

t s

� �Æ
dt

t

� �1=Æ

with the usual modification sup t øn( f , t) p t
�s for Æ ¼ 1 and with n ¼ bsc þ 1. The Besov

space Bs
p,Æ(I) :¼ f f 2 Lp(I)j k f ks, p,Æ , 1g is a Banach space when equipped with the

norm k � ks, p,Æ On a bounded interval an equivalent norm is given by

k f kBs
p,Æ

� k f kL p þ k f (n�1)ks�(n�1), p,Æ, with n as above.

Proposition A.1. The following embedding relations hold true: Bs
p,Æ � Bs9

p,Æ9, s . s9, any

Æ, Æ9; Bs
p,Æ � Bs

p9,Æ, p . p9; Bs
p,Æ � Bs

p,Æ9, Æ , Æ9. The Sobolev embedding theorem

generalizes to

Bs
p,Æ � Bs9

p9,Æ for s > s9 and s� 1

p
> s9� 1

p9
: (A:1)

As a special case Bs
p,Æ � Cs9 for s� 1

p
. s9 follows. The first embedding is compact for

Besov spaces on bounded intervals.
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The regularity property of convolutions with variable integral bound seems obvious, but

does not appear to have been treated in the literature.

Lemma A.2. For functions f 2 Bs
p,Æ([�r, 0]) and k 2 Bsþ1

p9,Æ9([0, r]), where s . 0, p, p9

2 (1, 1) and Æ, Æ9 2 [1, 1] with 1=pþ 1=p ¼ 1=Æþ 1=Æ9 ¼ 1, set

L( f , k)(t) :¼
ð t
0

f (u� t)k(u)du, t 2 [0, r]:

Then L is a bilinear mapping from Bs
p,Æ([�r, 0])3 Bsþ1

p9,Æ9([0, r]) to Bsþ1
p,Æ ([0, r]) with

L( f , k)ksþ1, p,Æ ( k f ks, p,Ækkksþ1, p9,Æ9.

Proof. First, we show for a fixed function f in Lp([�r, 0]) that Tk :¼ L( f , k) maps

Bs
p9,Æ9([0, r]) to Bs

p,Æ([0, r]) for s 2 (0, 1) and all p and Æ.
In order to apply abstract interpolation theory, we consider the case s ¼ 1 in a Sobolev

scale first:

kTkkW 1, p � kTkkL p þ k(Tk)9kL p

( kTkkL1 þ

ð0
��
f (v)k(vþ �)dv

� �9
L p

< k f kL pkkkL p9 þ
 f (��)k(0)þ

ð�
0

f (u� �)k9(u)du

L p

< k f kL pkkkL p9 þ k f kL pkkk1 þ kT (k9)kL p

( k f kL pkkkW 1, p9

Due to kTkk1 < k f kL pkkkL p9 the real interpolation theory (Triebel 1983, Theorem 3.3.6)

yields, for all s 2 (0, 1),

kTkks, p,Æ ( k f kL pkkks, p9,Æ9:

In a second step, we use an induction argument from s to sþ 1 for non-integer s . 0.

Suppose f 2 Bs
p,Æ and k 2 Bsþ1

p9,Æ The weak derivative of L( f , k) is given by

L( f , k)9(t) ¼ f (�t)k(0)þ L( f , k9)(t), t 2 [0, r]

(see above), which yields, for s 2 (0, 1),

kL( f , k)9ks, p,Æ < k f ks, p,Ækkk1 þ kT (k9)ks, p,Æ ( k f ks, p,Ækkksþ1, p9,Æ9

and a fortiori for s . 1, s =2 N, by induction

kL( f , k)9ks, p,Æ < k f ks, p,Ækkk1 þ k f ks�1, p,Ækk9ks, p9,Æ9k ( k f ks, p,Ækkksþ1, p9,Æ9:

Since the very first argument provided an estimate for kL( f , k)kL p of the same type, the

norm kL( f , k)ksþ1, p,Æ is bounded.
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Finally, the same induction argument for s 2 N requires an extra estimate for

kT (k(s))k0, p,Æ. Since f is in Bs
p,Æ � L1 and k in Bsþ1

p9,Æ9 � Cs, we infer, fromð t
0

f (u� t)k(s)(u)du

� �
9
(t) ¼ f (0)k(s)(t)�

ð t
0

f 9(u� t)k(s)(u)du

and the convolution estimate (use Triebel 1983, Theorem 2.11.2, Proposition 3.3.2)

sup
t2R

j( f 91R� ) � (k(s)1Rþ )(t)j ( k f 9k0, p,Ækk(s)k0, p9,Æ9,

that kT (k(s))kC1 ( k f k1, p,Ækkksþ1, p9,Æ9. h

Lemma A.3. Suppose that k is a function in W 2,r9([0, r]), r9 2 (1, 1), and that r satisfies

1=rþ 1=r9 ¼ 1. Then the integral operator

Kf (t) :¼
ð0
�r

k(jt � sj) f (s)ds, t 2 [�r, 0],

is continuous from Lr([�r, 0]) to W 2,r([�r, 0]) with kKkLr!W 2,r ( kkkW 2,r9 .

Proof. First consider the following identities in an almost everywhere sense for t 2 [�r, 0]

and f 2 Lr([�r, 0]):

(Kf )9(t) ¼
ð0
�r

k9(jt � sj)sgn(t � s) f (s)ds,

(Kf ) 0(t) ¼
ð�
�r

k9(� � s) f (s)ds�
ð0
�
k9(s� �) f (s)ds

� �9
(t)

¼
ð0
�r

k 0(jt � sj) f (s)dsþ 2k9(0) f (t):

By the Hölder inequality, we obtain

kKf kLr < 2kkkLr9k f kLr , k(Kf ) 0kLr < rkk 0kLr9k f kLr þ rkk9k1k f kLr :

The Sobolev embedding W 2,r9 � C1 proves kKf kW 2,r ( kkkW 2,r9k f kLr . h

A.2. Wavelets

In the following definition we largely follow Cohen (2000).

Definition A.2. For j, k 2 Z, introduce the multi-index º ¼ ( j, k) and put jºj :¼ j( j, k)j :¼ j.

A wavelet basis (łº)º is an orthonormal basis of functions in L2(R), derived from one

function ł 2 L2(R) by translations and dilations

łº(x) :¼ ł jk(x) :¼ 2 j=2ł(2 jx� k):
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Furthermore, set Vj as the closure of span(łº, jºj < j). By Pj : L
2([�r, 0]) ! Vj we denote

the orthogonal projection onto Vj.

Cohen et al. (1993) constructed orthonormal wavelet bases on a bounded interval I . The

basis functions are obtained by restriction. Wavelet functions łº whose support crosses the

boundary of I are suitably corrected in order to keep the orthogonality and approximation

properties. These corrected functions are still denoted by łº even if they are not directly

derived from ł. A consequence of this construction is that only multi-indices º ¼ ( j, k)

with jkj ( 2 j are used and that the spaces Vj are finite-dimensional, whence we can start

off with a space V�1 and an orthonormal basis (ł�1,k)k of V�1. Then any function

f 2 L2(I) has the wavelet decomposition

f ¼
X
º

h f , łºiłº ¼
X
j>�1

X
k

h f , ł jkił jk :

Note that summation over jºj < j0 will always mean summation over ( j, k) for all j < j0 and

all possible values of k.

Definition A.3. A wavelet basis (łº) will be called s-regular on the interval I if the following

two conditions are satisfied:

(i) For all w 2 (0, s], p, Æ 2 [1, 1], the function f is an element of Bw
p,Æ(I) if and only

if

kP�1 f kL p þ
X1
j¼0

2Æ j(wþ1=2�1= p)
X
k

jh f , ł jkij p
 !Æ= p

0@ 1A1=Æ

, 1:

The above expression constitutes a norm equivalent to k � kw, p,Æ.
(ii) For all k ¼ 0, . . . , bsc, the vanishing moment propertyð1

�1
xkł(x)dx ¼ 0:

is fulfilled.

Sufficiently regular wavelets guarantee that, for m, s . 0 and r 2 [1, 1], the general

Jackson inequality

k f � PJ dkW m,r ( 2�Jsk f kW mþs,r for all f 2 W mþs,r (A:2)

holds (Cohen 2000). Despite their different notion of s-regularity, from Cohen et al. (1993)

we immediately obtain:

Theorem A.4. s-regular wavelet bases exist for any s . 0. Moreover, they may be chosen to

have compact support.

Lemma A.5. Let (łº) be a 1-regular wavelet basis. Then for any weight measure a with
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kakTV < R , 1 and v0(a) < �� , 0 and for any multi-index º, we have

hQałº, łºi � 2�2jºj uniformly.

Proof. Using the formula for the spectral density (2.3), estimates as in the proof of Lemma

5.2 and the spectral characterization of the space W 1,2, we obtain

hQałº, łºi ¼
ð1
�1





 ł̂łº(�)

i��
Ð 0
�r

ei�u . da(u)





2d� �
ð1
�1

(1þ �2)�1jł̂łº(�)j2 d�

¼ sup
k f k

L2
¼1





ð1
�1

(1þ �2)�1=2 f (�)ł̂łº(�)d�





2 ¼ sup
khkW 1,2¼1

hh, łºi2:

The last expression is clearly of order 2�2jºj. h

Lemma A.6. Given that f 2 Cm,1([�r, r]), m 2 N0, i.e. f (m) is Lipschitz continuous,

suppose that (łº) is a compactly supported (mþ 1)-regular wavelet basis of L2([�r, 0]).

Then 



ð0
�r

ð0
�r

f (x� y)łº(x)łº(y)dy dx





 ( k f kCm,12�jºj(mþ2)

with a constant independent of f and of the multi-index º.

Proof. Note that for y 2 [�r, 0] the function f (� � y)j[�r,0] lies in Cm,1([�r, 0]). By the

(mþ 1)-regularity of (łº) we find that



ð0
�r

ð0
�r

f (x� y)łº(x)łº(y)dy dx






< sup

y2[�r,0]

jh f (� � y), łºij kłºkL1

( sup
y2[�r,0]

k f (� � y)kCm,12�jºj(mþ1þ1=2)2�jºj=2kłkL1 :

Note that we have used the embedding Cm,1 � Bmþ1
1,1. h
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Gushchin, A.A. and Küchler, U. (1999) Asymptotic inference for a linear stochastic differential

equation with time delay. Bernoulli, 5, 1059–1098.
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