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We give new results, under mild assumptions, on convergence rates in L1 and L2 for residual-based

kernel estimators of the innovation density of moving average processes. Exploiting the convolution

representation of the stationary density of moving average processes, these estimators can be used to

obtain n1=2-consistent plug-in estimators for this stationary density. Here we derive functional weak

convergence results in L1 and C0(R) for these plug-in estimators. If efficient estimators for the finite-

dimensional parameters of the process are used in our construction, semiparametric efficiency of our

plug-in estimators is obtained.
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1. Introduction

Smooth functionals of appropriate density estimators and regression function estimators are

known to converge at the parametric rate n�1=2, even though the function estimators themselves

converge only at slower rates, depending on the smoothness of the function estimated.

Analogous results hold for functionals of derivatives of densities and regression functions.

For nonparametric models and independent and identically distributed (i.i.d.) observations,

there is now a considerable literature on such ‘plug-in’ estimators in which the parametric rate

is obtained, the influence function is calculated, and the estimators are shown to be

asymptotically efficient in the sense of having minimal asymptotic variance among regular

estimators. Of particular interest have been nonlinear integral functionals of a density f and

its derivatives f (k). For
Ð
f f (k)(x)g2 dx, see Hall and Marron (1987) and Bickel and Ritov

(1988); for generalizations
Ð

( f (x), x)dx and

Ð

( f (x), . . . , f (k)(x), x)dx, see Laurent (1997)

and Birgé and Massart (1995). The Shannon entropy �
Ð
f (x)log f (x)dx is considered in

Dudewicz and van der Meulen (1981), Tsybakov and van der Meulen (1996) and Eggermont

and LaRiccia (1999). Abramson and Goldstein (1991) study the equidistribution functional

2
Ð
f (x)g(x)=( f (x) þ g(x))dx of two densities. Frees (1994) treats the density of a symmetric

function h(X1, . . . , X m) of m . 1 i.i.d. random variables at a point. His result generalizes to
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non-identically distributed random variables. This covers in particular convolution densities

g(x) ¼
Ð
f (x� Wy) f (y)dy at a fixed point x and for known scale parameter W, considered by

Saavedra and Cao (2000); such densities arise as stationary densities of first-order moving

average processes X t ¼ � t þ W� t�1 with innovation density f and known W. This also covers

densities of functions ui(X1) þ . . . þ um(X m) at a point. Schick and Wefelmeyer (2004b)

obtain functional central limit theorems for appropriate plug-in estimators of such densities,

viewed as elements of the function spaces C0(R) and L1(R). For results on plug-in estimators

of general functionals we refer to Goldstein and Khas’minskii (1995).

There are analogous nonparametric results on plug-in estimators based on i.i.d.

observations (X1, Y1), . . . , (X n, Yn) for functionals of the regression function r(x)

¼ E(Y jX ¼ x) and the quantile regression function qÆ(x) ¼ inffy : P(Y < yjX ¼ x)

> Æg. Goldstein and Messer (1992) and Loh (1997) study
Ð
fr(x)g2 dx; Efromovich and

Samarov (2000) treat
Ð
fr(k)(x)g2 dx. Stoker (1991), Samarov (1991; 1993), and Li (1996)

consider the average regression derivative Er9(X ). Doksum and Samarov (1995) introduce

three estimators of a weighted version of Pearson’s correlation ratio var r(X )=var Y .

Chaudhuri et al. (1996; 1997) estimate average weighted quantile regression derivatives

E[q9Æ(X )w(X )].

Suppose now that the model has additional structure. For example, in the regression

model we might assume that the error is independent of the covariate and/or that we have a

parametric model for the regression function. This complicates the calculation of the

asymptotic variance bound and the construction of efficient plug-in estimators. There is

much less literature on such problems. A well-studied degenerate case is the error variance

E�2 in the nonparametric regression model Y ¼ r(X ) þ �, with error � centred and

independent of the covariate X . Hall and Marron (1990) estimate the error variance by the

empirical variance of the residuals and calculate the asymptotic variance of this estimator.

Müller et al. (2004a; 2004b) show that the estimator is efficient, and adaptive with respect

to the regression function. For other functionals of the error distribution, the empirical

estimator is not adaptive but still efficient; see Akritas and Van Keilegom (2001) and

Müller et al. (2004a; 2004b). In the corresponding semiparametric model, with r ¼ rW
known up to some parameter W, the empirical estimators can be improved; see Schick and

Wefelmeyer (2002a) for an autoregressive version of such a result.

Here we are interested in n1=2-consistent and efficient estimation of the stationary density

of a moving average process. This model has structural features analogous to those

mentioned in the previous paragraph: it is driven by independent innovations, and it is

semiparametric. There is a rich literature on estimating stationary densities of stochastic

processes by kernel estimators (1=n)
Pn

j¼1kb(x� X j); see, for example, Chanda (1983),

Yakowitz (1989), Hart and Vieu (1990), Tran (1992), Chan and Tran (1992), Hallin and

Tran (1996) and Honda (2000), who also discuss applications. Under appropriate conditions,

these estimators have similar (nonparametric) rates to those for i.i.d. observations. For

continuous-time processes, parametric rates of kernel estimators are more common; see

Castellana and Leadbetter (1986), Bosq (1993; 1995), Blanke and Bosq (1997), and Bosq

et al. (1999). However, such estimators do not exploit the specific structure of the process.

For the case of the MA(1) model X t ¼ � t þ W� t�1, Saavedra and Cao (1999) make use of

the above-mentioned representation g(x) ¼
Ð
f (x� Wy) f (y)dy of the stationary density at x
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and propose the plug-in estimator ĝg(x) ¼
Ð
f̂f (x� ŴWy) f̂f (y)dy. Here ŴW is n1=2-consistent and

f̂f is a kernel estimator based on estimated innovations �̂� j ¼
P j�1

s¼0ŴW
sX j�s. Saavedra and Cao

observe that the asymptotic variance of the plug-in estimator decreases as n�1. Under rather

mild conditions, Schick and Wefelmeyer (2004a) give sharper results, in the spirit of the

above nonparametric references; they show, in particular, asymptotic linearity and discuss

efficiency. Heuristically, the required stochastic expansion of ĝg(x) is obtained by writing

ĝg(x) � g(x) �
ð

( f̂f (x� Wy) � f (x� Wy)) f (y)dy

þ
ð
f (x� Wy)( f̂f (y) � f (y))dy� (ŴW� W)

ð
yf 9(x� Wy) f (y)dy:

The first two terms are of order n�1=2 because they may be viewed as (centred) plug-in

estimators; the last term is of order n�1=2 if ŴW is n1=2-consistent. Related results exist for

continuous-time processes: efficient and n1=2-consistent estimators for the stationary density

of diffusion processes on a time interval [0, n] with nonparametric drift are constructed in

Kutoyants (1997a; 1997b; 1997c; 1999); for the derivative of the density, see Dalalyan and

Kutoyants (2003). We also refer to Chapter 4 in Kutoyants (2004).

The present paper extends the results on MA(1) models in two directions, at the same

time weakening the conditions further. One extension is to moving average processes of

(fixed) higher order. The other extension is that we do not consider the stationary density at

a fixed point x only, but view g and ĝg as elements of the function spaces L1 or C0(R) and

obtain that the process n1=2( ĝg � g) converges in distribution in these spaces to a centred

Gaussian process. This seems to be the first non-local result on functional convergence of

density estimators. The results can be used in a straightforward way for testing whether the

time series is Gaussian, and for efficient estimation of various linear and nonlinear

functionals of the stationary law. Schick and Wefelmeyer (2004c) have extended these

results further, to invertible infinite-order linear processes, including ARMA models.

Specifically, we consider an MA(q) process

X t ¼ � t þ W1� t�1 þ . . . þ Wq� t�q,

where the � t are i.i.d. innovations with finite second moment and density f . We assume that

the parameter W ¼ (W1, . . . , Wq)T satisfies Wq 6¼ 0, and that the complex polynomial

pW(z) ¼ 1 þ W1z þ . . . þ Wqz
q has no roots in the unit disc. This assumption guarantees

stationarity of the process. It also implies invertibility, i.e. a representation of the innovations

in terms of the observations,

� t ¼
X1
s¼0

Æs(W)X t�s,

where the Æs(W) are the coefficients in the series 1=pW(z) ¼
P1

s¼0Æs(W)zs.

We suppose that we observe X 1, . . . , X n from this process. Our first goal is to study

estimators of f . These are based on estimated innovations. Under the above assumptions,

there exist n1=2-consistent estimators ŴW of W. We use such an estimator to estimate the

innovations by the truncated series
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�̂� j ¼
Xj�1

s¼0

Æs(ŴW)X j�s:

The estimators �̂� j are good only for large values of j. Therefore, we will not use the first r

estimated innovations �̂�1, . . . , �̂�r to construct estimators for f , and estimate f by kernel

estimators

f̂f (x) ¼ 1

n� r

Xn
j¼rþ1

kb(x� �̂� j): (1:1)

Here kb(u) ¼ k(u=b)=b for some density k and some bandwidth b.

In Section 2 we derive rates of convergence in probability for f̂f in the L1 and L2 norms.

These rates are new. They are the same as those for kernel estimators based on the actual

innovations �rþ1, . . . , �n, i.e. kernel estimators based on i.i.d. observations. For the sup-

norm, strong convergence rates of kernel estimators based on residuals have been obtained

in similar models: Fazal (1977) and Li (1995) consider linear regression with fixed design;

Liebscher (1999) treats nonlinear autoregressive models.

In Sections 3 and 4 we address estimation of the stationary density of the MA(q) process.

This density has the representation

g(x) ¼
ð
� � �
ð
f x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq)dy1 � � � dyq, x 2 R: (1:2)

We estimate g by plugging in the estimator f̂f of the innovation density and the estimator ŴW of

W. In Sections 3 and 4 we prove that n1=2( ĝg � g) converges in distribution, in L1 and in

C0(R) respectively, to a centred Gaussian process. In Section 5 we show that ĝg is efficient in

those function spaces if an efficient estimator for W is used. Efficiency is understood in the

semiparametric sense discussed in Bickel et al. (1998) for the i.i.d. case. Recall that in

nonparametric models like the ones mentioned above, all regular estimators are

asymptotically equivalent, and therefore proving efficiency is straightforward, whereas in

our semiparametric model the calculations of the influence function of the estimator and of

the asymptotic variance bound pose difficulties.

2. Estimation of the innovation density

We study the estimator f̂f introduced in (1.1). For notational convenience we assume that

the observations are X�rþ1, . . . , X n. Then we can write

�̂� j ¼
Xjþr�1

s¼0

Æs(ŴW)X j�s, j ¼ 1, . . . , n,

f̂f (x) ¼ 1

n

Xn
j¼1

kb(x� �̂� j):
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We will let r tend to infinity slowly. As a first approximation to �̂� j we use

~�� j ¼ � j þ (ŴW� W)T _�� j,

where

_�� j ¼
X1
s¼0

_ÆÆs(W)X j�s,

with _ÆÆs(W) denoting the gradient of Æ(W) with respect to W.

Lemma 1. Suppose ŴW is n1=2-consistent for W, and r=log n ! 1 and r=(log n)2 ! 0. ThenXn
j¼1

j�̂� j � ~�� jj ¼ Op(1): (2:1)

Proof. Recall that � j ¼
P1

s¼0Æs(W)X j�s. We can bound the left-hand side of (2.1) by

T1 þ T2 þ kŴW� WkT3, with

T1 ¼
Xn
j¼1

Xjþr�1

s¼0

jÆs(ŴW) � Æs(W) � (ŴW� W)T _ÆÆ(W)j jX j�sj,

T2 ¼
Xn
j¼1

X1
s¼ jþr

jÆs(W)X j�sj,

T3 ¼
Xn
j¼1

X1
s¼ jþr

k _ÆÆs(W)k jX j�sj:

It is well known that Æs and its derivatives exhibit exponential decay locally uniformly. Thus

there are � . 0, r , 1 and a constant C such that

sup
k��Wk<�

jÆs(�)j þ k _ÆÆs(�)k þ k€ÆÆs(�)k < Crs:

Hence

ET2 ¼
Xn
j¼1

X1
s¼ jþr

jÆs(W)jEjX0j ¼ O
Xn
j¼1

r jþr

 !
¼ O(rr),

ET3 ¼
Xn
j¼1

X1
s¼ jþr

k _ÆÆs(W)kEjX 0j ¼ O
Xn
j¼1

r jþr

 !
¼ O(rr):

Since ŴW is n1=2-consistent, the probability of kŴW� Wk . � tends to zero, and

T1 < kŴW� Wk2
Xn
j¼1

Xjþr�1

s¼0

sup
k��Wk<�

k€ÆÆs(�)k jX j�sj þ o p(1) ¼ Op(1):
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In the last step we have used n1=2-consistency and

E
Xn
j¼1

Xjþr�1

s¼0

rsjX j�sj ¼ O(n):

h

We use Lemma 1 and smoothness of f to obtain rates of convergence of f̂f in the Lp-

norms for p ¼ 1, 2. We say a function h is Lp-Lipschitz if there is a constant C such thatð
jh(xþ t) � h(x)j p dx < C pjtj p, t 2 R:

We call C the Lp-Lipschitz constant. We use h9 to denote the derivative of a differentiable

function h and an almost everywhere derivative of an absolutely continuous function h.

Lemma 2. Let h be absolutely continuous with h9 in L p for some p 2 [1, 1). Then h is L p-

Lipschitz with L p-Lipschitz constant C ¼ kh9k p. Moreover, for every random variable Y with

E[jY j p] finite, we haveð
jE[h(xþ tY )] � h(x) � tE[Y ]h9(x)j p dx ¼ o(jtj p):

If h9 is L p-Lipschitz and E[Y 2 p] is finite, then we even haveð
jE[h(xþ tY )] � h(x) � tE[Y ]h9(x)j p dx < kh 0k p

pE[Y 2 p]jtj2 p:

Proof. By absolute continuity, h(xþ t) � h(x) ¼ t
Ð 1

0
h9(xþ ut)du, and the moment inequal-

ity gives ð
jh(xþ t) � h(x)j p dx < jtj p

ðð1

0

jh9(xþ ut)j p du dx ¼ jtj p
ð
jh9(x)j p dx:

Similarly,ð
jE[h(xþ tY ) � h(x) � tYh9(x)]j p dx < jtj pE jY j p

ðð1

0

jh9(xþ utY ) � h9(x)j p du dx

" #
:

This bound is of order o(jtj p) by the Lp-continuity of translations (see, for example, Theorem

9.5 in Rudin (1974)), the Lebesgue dominated convergence theorem, and the boundÐ
jh9(x� s) � h9(x)j p dx < 2 pkh9k p

p. It is of order o(t2 p) if h9 is Lp-Lipschitz and E[Y 2 p] is

finite. h

Remark 1. Recall that the density f has finite Fisher information (for location) if f is

absolutely continuous and

Jf ¼
ð

f 9(x)

f (x)

� �2

f (x)dx , 1: (2:2)
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In this case, we have k f k1 < k f 9k1 < J
1=2
f and k f 9k2

2 < k f k1Jf < J
3=2
f . Thus, if f has

finite Fisher information for location, then f is L1- and L2-Lipschitz.

Theorem 1. Suppose f has finite second moment and is L1-Lipschitz. Suppose k has finite

second moment and is twice continuously differentiable, b ! 0 as n ! 1, and the integralsÐ
(1 þ juj)2jk9(u)jdu and

Ð
jk 0(u)jdu are finite. Let ŴW be an n1=2-consistent estimator of W.

Then

k f̂f � f k1 ¼ Op(n
�1b�2) þ O(b) þ Op(n

�1=2b�1=2):

In particular, if b � n�1=3, we obtain k f̂f � f k1 ¼ Op(n�1=3).

Proof. Let

~ff (x) ¼ 1

n

Xn
j¼1

kb(x� ~�� j) and f (x) ¼ 1

n

Xn
j¼1

kb(x� � j):

Then, using Lemma 1,

k f̂f � ~ff k1 <
1

n

Xn
j¼1

ð
jkb(x� �̂� j) � kb(x� ~�� j)jdx

¼ 1

n

Xn
j¼1

ð



(�̂� j � ~�� j)

ð1

0

k9b(x� ~�� j � u(�̂� j � ~�� j))du





dx
<

1

n

Xn
j¼1

j�̂� j � ~�� jj kk9bk1 ¼ Op(n
�1b�1):

By the L1-Lipschitz property of f and the moment assumptions on k,

k f � kb � f k1 <

ðð
j f (x� bu) � f (x)jdx k(u)du <

ð
Cjbujk(u)du ¼ O(b):

A similar argument, using
Ð
k9(u)du ¼ 0, yields

jk9b � f k1 ¼ b�1

ð




ð

( f (x� bu) � f (x))k9(u)du





dx <
ð
Cjuk9(u)jdu ¼ O(1): (2:3)

Since f and k have finite second moments and k is bounded, it follows from Lemma 2 in

Devroye (1992) that

k f � f � kbk1 ¼ Op(n
�1=2b�1=2):

Thus it remains to show that

k ~ff � f k1 ¼ Op(n
�1b�2) þ Op(n

�1=2): (2:4)

For this purpose let
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ĥh(x) ¼ 1

n

Xn
j¼1

_�� j k9b(x� � j), x 2 R:

A Taylor expansion gives

k ~ff � f þ (ŴW� W)T ĥhk1 < kŴW� Wk2 1

n

Xn
j¼1

k _�� jk2kk 0bk1 ¼ Op(n�1b�2): (2:5)

Let

h(x) ¼ 1

n

Xn
j¼1

_�� jE[k9b(x� � j)] ¼
1

n

Xn
j¼1

_�� j k9b � f (x), x 2 R:

Then ĥh(x) � h(x) is a martingale, and

nE[kĥh(x) � h(x)k2] < E[k _��1k2]E[k9b(x� �1)2] ¼ E[k _��1k2]

ð
k9b(x� y)2 f (y)dy:

Using this bound, we can show that
Ð
kĥh(x) � h(x)kdx ¼ Op(n

�1=2b�3=2). Indeed, with

rn ¼ n�1=2b�3=2E[k _��1k2]1=2, we can boundð
E[kĥh(x) � h(x)k]dx <

ð
E[kĥh(x) � h(x)k2]1=2 dx

< rn

ð ð
f (x� by)k9(y)2 dy

� �1=2

dx

< rn

ð
dx

1 þ x2

ðð
(1 þ x2) f (x� by)k9(y)2 dx dy

� �1=2

¼ O(rn):

In view of (2.3), we have
Ð
kh(x)k dx ¼ Op(1). Together with n1=2-consistency of ŴW, the above

shows that k(ŴW� W)T ĥhk1 ¼ Op(n
�1=2 þ n�1b�3=2). This and (2.5) yield (2.4). This completes

the proof. h

Remark 2. Other results are possible under different assumptions on f . If f is absolutely

continuous with integrable f 9, and k has mean zero, then Lemma 2 shows that

k f � kb � f k1 ¼ o(b). In this case we can use b � n�1=4 and obtain k f̂f � f k1

¼ o p(n
�1=4). If f 9 is also L1-Lipschitz, then one can show that k f � kb � f k1 ¼ O(b2),

and the choice b � n�1=5 yields k f̂f � f k1 ¼ Op(n�2=5). Faster rates are possible under

additional smoothness on f and if higher-order kernels are employed.

Corollary 1. Under the assumptions of Theorem 1, we haveð
jxj j f̂f (x) � f (x)jdx ¼ Op(k f̂f � f k1=2

1 ): (2:6)
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Proof. Use the Cauchy–Schwarz inequality and j f̂f (x) � f (x)j < f̂f (x) þ f (x) to bound the

square of the left-hand side of (2.6) byð
x2( f̂f (x) þ f (x))dx

ð
j f̂f (x) � f (x)jdx:

The desired result follows from this bound andð
x2 f̂f (x)dx ¼ 1

n

Xn
j¼1

ð
(�̂� j þ bu)2k(u)du <

1

n

Xn
j¼1

2�̂�2
j þ 2b2

ð
u2k(u)du ¼ Op(1):

In the last step we have used the fact that max1< j<nj�̂� j � � jj ¼ Op(1), which is a

consequence of Lemma 1. h

Theorem 2. Suppose f has finite fourth moment and is L2-Lipschitz. Suppose k has finite

second moment and is three times continuously differentiable, and the integralsÐ
(1 þ v2)jk9(v)jdv,

Ð
(1 þ v2)jk 0(v)jdv, and

Ð
jk -(v)jdv are finite. Let ŴW be an n1=2-

consistent estimator of W. Let b ! 0 as n ! 1. Then

k f̂f � f k2 < Op(n
�1b�3=2) þ Op(n

�1=2b�1=2) þ O(b) þ Op(n�3=2b�7=2):

In particular, if b � n�1=3, we obtain k f̂f � f k2 ¼ Op(n�1=3).

Proof. Let ~ff and f be as in the proof of Theorem 1. Using the Cauchy–Schwarz inequality

in the form (
P

a jb j)
2 <

P
ja jj
P

ja jjb2
j , Fubini’s theorem and Lemma 1, we obtain

k f̂f � ~ff k2
2 ¼

ð



 1

n

Xn
j¼1

(�̂� j � ~�� j)

ð1

0

k9b(x� ~�� j � u(�̂� j � ~�� j))du





2 dx

<
1

n

Xn
j¼1

j�̂� j � ~�� jj
ð

1

n

Xn
j¼1

j�̂� j � ~�� jj
ð1

0

jk9b(x� ~�� j � u(�̂� j � ~�� j))j2 du dx

¼ 1

n

Xn
j¼1

j�̂� j � ~�� jj
 !2

kk9bk2
2 ¼ Op(n

�2b�3):

It is well known that

E[k f � f � kbk2
2] < n�1kkbk2

2 ¼ O(n�1b�1):

Thus k f � f � kbk2 ¼ Op(n
�1=2b�1=2). From the L2-Lipschitz property of f and the moment

assumptions on k we derive

k f � kb � f k2
2 <

ðð
( f (x� bu) � f (x))2k(u)du dx < C

ð
b2u2k(u)du ¼ O(b2):

Since
Ð
k9(u)du ¼ 0 and

Ð
k 0(u)du ¼ 0, we can use a similar argument to conclude that

kk9b � f k2 ¼ O(1) and kk 0b � f k2 ¼ O(b�1): (2:7)
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For example,

kk9b � f k2
2 ¼ b�2

ð ð
( f (x� bu) � f (x))k9(u)du

� �2

dx

< b�2

ðð
( f (x� bu) � f (x))2jk9(u)jdu

ð
jk9(u)jdu dx ¼ O(1):

To complete the proof we shall now show that

k ~ff � f k2
2 ¼ Op(n

�3b�7) þ Op(n�2b�3) þ Op(n
�1): (2:8)

Let ĥh and h be as in the proof of Theorem 1, and set

ĤH(x) ¼ 1

n

Xn
j¼1

_�� j _��
T
j k 0b(x� � j) and H(x) ¼ 1

n

Xn
j¼1

_�� j _��
T
j k 0b � f (x), x 2 R:

Then a Taylor expansion yields




 ~ff � f � (ŴW� W)T ĥh� 1

2
(ŴW� W)T ĤH(ŴW� W)







2

2

<

ð



 1

n

Xn
j¼1

j(ŴW� W)T _�� jj3 I j(x, b)





2 dx,

where

I j(x, b) ¼
ð1

0

ð1

0

ð1

0

vw2jk -b(x� � j � uvw(ŴW� W)T _�� j)jdu dv dw:

Now apply the Cauchy–Schwarz inequality as at the beginning of this proof and use the fact

that
Ð
I2
j(x, b)dx <

Ð
(k -b(x))2 dx ¼ b�7kk -k2

2 to see thatð



 1

n

Xn
j¼1

j(ŴW� W)T _�� jj3 I j(x, b)





2 dx <
1

n

Xn
j¼1

j(ŴW� W)T _�� jj3
 !2

b�7kk -k2
2:

Since f has finite fourth moment, we obtain that E[k _��1k4] , 1. It is now easy to see that




 ~ff � f � (ŴW� W)T ĥh� 1

2
(ŴW� W)T ĤH(ŴW� W)







2

2

¼ Op(n�3b�7):

Next we haveð
E[kĥh(x) � h(x)k2]dx < n�1E[k _��1k2]

ðð
k9b(x� y)2 f (y)dy dx ¼ O(n�1b�3),

and similarlyð
E[k ĤH(x) � H(x)k2]dx < n�1E[k _��1k4]

ðð
k 0b(x� y)2 f (y)dy dx ¼ O(n�1b�5):

In view of (2.7), we also have
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ð
kh(x)k2

2 dx ¼ Op(1) and

ð
kH(x)k2

2 dx ¼ Op(b
�2):

From the above and the n1=2-consistency of ŴW we obtain

k(ŴW� W)T ĥhk2
2 ¼ Op(n�2b�3 þ n�1),

k(ŴW� W)T ĤH(ŴW� W)k2
2 ¼ Op(n�3b�5 þ n�2b�2):

Combining the above we obtain the desired (2.8). h

Remark 3. Other results are possible under different assumptions on f . If f is absolutely

continuous with integrable f 9, and k has mean zero, then Lemma 2 shows that

k f � kb � f k2 ¼ o(b). In this case we can use b � n�1=4 and obtain k f̂f � f k2 ¼
o p(n

�1=4). If f 9 is also L2-Lipschitz, then Lemma 2 shows that k f � kb � f k2 ¼ O(b2),

and the choice b � n�1=5 yields k f̂f � f k2 ¼ Op(n
�2=5).

Corollary 2. In addition to the assumptions of Theorem 2, let f be bounded and let k have a

finite fourth moment. Thenð
x2( f̂f (x) � f (x))2 dx ¼ Op(b�1=2k f̂f � f k2): (2:9)

Proof. It is easy to see that k f̂f k1 < kkk1b�1. As in the proof of Corollary 1, one verifies

that ð
x4 f̂f (x)dx ¼ 1

n

Xn
j¼1

(�̂� j þ bu)4k(u)du <
1

n

Xn
j¼1

8�̂�4
j þ 8b4

ð
u4k(u)du ¼ Op(1):

Now use the Cauchy–Schwarz inequality to bound the square of the left-hand side of (2.9) by

k f̂f � f k2
2

Ð
x4( f̂f (x) � f (x))2 dx and thus also by the larger term

k f̂f � f k2
2

ð
x4( f̂f (x) þ f (x))dx(k f̂f k1 þ k f k1) ¼ Op(b�1)k f̂f � f k2

2:

This is the desired result. h

We conclude this section with a technical result about scaling which will be used later.

Lemma 3. Let h be an integrable function that is absolutely continuous with h9 satisfyingÐ
jxj jh9(x)jdx , 1. Then, for s 6¼ 0, and as t ! s,ð



 1

jtj h
x

t

� �
� 1

jsj h
x

s

� �
þ t � s

sjsj h
x

s

� �
þ x

s
h9

x

s

� �� �



dx ¼ o(jt � sj):

Proof. Substituting u ¼ x=s and letting a ¼ s=t (which we may and do assume to be

positive), one simplifies the left-hand side to
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ð



ah(au) � h(u) � a� 1

a
(h(u) � uh9(u))





du:
Let ~hh(y) ¼ e y h(e y), y 2 R. Then ~hh is absolutely continuous with integrable ~hh9 given by
~hh9(y) ¼ e y h(e y) ¼ e2 y h9(e y). Thus Lemma 2 with Y ¼ 1 and the fact that e�b(eb � 1) ¼
bþ o(b), as b ! 0, yieldð

j ~hh(yþ b) � ~hh(y) � e�b(eb � 1) ~hh9(y)jdy ¼ o(b):

Letting b ¼ log(a), the substitution y ¼ eu givesð1
0





ah(au) � h(u) � a� 1

a
(h(u) � uh9(u))





du:
A similar argument yields the result for integration over negative u. h

3. Convergence in L1 of estimators for the stationary density

We now address the estimation of the stationary density g viewed as an element of the

function space L1. Recall that g has the representation (1.2):

g(x) ¼
ð
� � �
ð
f x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq)dy1 � � � dyq, x 2 R:

Alternatively, we can write g as the convolution g ¼ f � f �1
� � � � � f �m of the densities f ,

f �1
, . . . , f �m , where �1, . . . , �m are the non-zero components of W and f � denotes the density

of ��1 for non-zero �, so that f �(x) ¼ f (x=�)=j�j, x 2 R. Since Wq 6¼ 0, we can thus write

g(x) ¼
ð
� � �
ð
f � fWq

x�
Xq�1

i¼1

Wi yi

 !
f (y1) � � � f (yq�1)dy1 � � � dyq�1, x 2 R:

In what follows we assume that f is absolutely continuous with integrable f 9 almost

everywhere. This implies that f is bounded and L1-Lipschitz. It also implies

that f � f � is continuously differentiable with derivative f 9 � f � that is absolutely continuous

with almost everywhere derivative f 9 � ( f �)9. We have f 9 � ( f �)9(x) ¼ (1=�)Ð
f 9(x� �y) f 9(y)dy. From this we immediately see that the density g is continuously

differentiable with integrable derivative g9 given by

g9(x) ¼
ð
� � �
ð
f 9 x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq)dy1 � � � dyq, x 2 R,

and that g9 is absolutely continuous with integrable g 0 given by

g 0(x) ¼ 1

Wq

ð
� � �
ð
f 9 x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq�1) f 9(yq)dy1 � � � dyq, x 2 R:
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If we require, in addition, that
Ð
jxf 9(x)jdx , 1, then the gradient _gg(x) ¼

( _gg1(x), . . . , _ggq(x))T of g(x) with respect to the parameter W exists for every x and has �th

component given by

_gg�(x) ¼ �
ð
� � �
ð
y� f 9 x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq)dy1 � � � dyq:

Actually, differentiability holds uniformly in x,

sup
x2R

jgWþ�(x) � g(x) � �T _gg(x)j ¼ o(k�k), (3:1)

and in the L1-sense,

kgWþ� � g � �T _ggk1 ¼ o(k�k), (3:2)

where gWþ� denotes the stationary density for the parameter value Wþ �. These are verified

with the help of Lemmas 2 and 3.

We estimate g by the plug-in estimator

ĝg(x) ¼
ð
� � �
ð
f̂f x�

Xq
i¼1

ŴWi yi

 !
f̂f (y1) � � � f̂f (yq)dy1 � � � dyq, x 2 R,

where f̂f is as in Section 2. We view ĝg as an element of L1 and show that, under mild

additional assumptions, the process n1=2( ĝg � g) converges in distribution in the space L1 to a

centred Gaussian process.

To describe this result, it will be convenient to set W0 ¼ 1. Note that g is the density of

Y ¼ �0 þ W1�1 þ . . . þ Wq�q ¼
Pq

i¼0Wi�i. Now let pi denote the density of Y � Wi�i for

i ¼ 0, . . . , q. Then

p0(x) ¼
ð
� � �
ð
fWq

x�
Xq�1

i¼1

Wi yi

 !
f (y1) � � � f (yq�1)dy1 � � � dyq�1, x 2 R,

and, for i ¼ 1, . . . , q,

pi(x) ¼
ð
� � �
ð
f x�

X
j: j 6¼i

W j yj

 ! Y
j: j 6¼i

f (yj)dyj, x 2 R:

We have, for i ¼ 0, . . . , q,ð
pi(x� Wi y) f (y)dy ¼ g(x), x 2 R:

Now define L1-valued processes Hn,0, . . . , Hn,q by

Hn,i(x) ¼ 1

n

Xn
j¼1

pi(x� Wi� j) �
ð
pi(x� Wi y) f (y)dy

� �
, x 2 R:

With F denoting the empirical distribution function of the innovations �1, . . . , �n and F the

distribution function with density f , we can write
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Hn,i(x) ¼
ð
pi(x� Wi y)d(F(y) � F(y)), x 2 R:

By the assumptions on f , the densities p0, . . . , pq are absolutely continuous and p90, . . . , p9q
are integrable. Thus we have the representation

Hn,i(x) ¼ Wi

ð
p9i(x� Wi y)(F(y) � F(y))dy, x 2 R: (3:3)

We shall now use this representation to establish tightness of n1=2Hn,i in L1. For this purpose

we also need the following characterization of compact sets in L1, which is known as the

Fréchet–Kolmogorov theorem; see Yosida (1980, p. 275).

Lemma 4. A closed subset H of L1 is compact if and only if

sup
h2H

khk1 , 1,

lim
t!0

sup
h2H

ð
jh(x� t) � h(x)jdx ¼ 0,

lim
K"1

sup
h2H

ð
jxj.K

jh(x)jdx ¼ 0:

Let ˜ ¼ n1=2(F� F) denote the empirical process and assume that the function

ł ¼ (1 � F)1=2F 1=2 is integrable. Then

E[k˜k1] ¼
ð

E[j˜(x)j]dx <
ð

E[˜2(x)]1=2 dx ¼ kłk1 , 1: (3:4)

We also find that

E

ð
jxj>K

j˜(x)jdx <
ð
jxj>K

ł(x)dx ! 0 K ! 1: (3:5)

Moreover, for positive t 2 R and finite K,

kn1=2Hn,ik1 < jWij kp9ik1k˜k1, (3:6)ð
n1=2jHn,i(xþ t) �Hn,i(x)jdx < jWijk˜k1

ð
j p9i(xþ t) � p9i(x)jdx, (3:7)

ð
jxj.2K

jn1=2Hn,i(x)jdx < jWij kp9ik1

ð
jWi yj.K

j˜(y)jdy (3:8)

þ jWij k˜k1

ð
jxj.K

j p9i(x)jdx:

By the integrability of p9i,
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ð
jp9i(zþ t) � p9i(z)j dz ! 0 as t ! 0: (3:9)

Applying (3.4), (3.5) and (3.9) to inequalities (3.6)–(3.8) and using Lemma 4, we see that

n1=2Hn,i is tight in L1. Consequently, Hn,1 þ . . . þ Hn,m converges in distribution in the

space L1 to a centred Gaussian process.

For Æ . 1 we have

kłk2
1 <

ð
(1 þ jxj)�Æ dx

ð
(1 þ jxj)Æ(1 � F(x))F(x)dx:

This shows that integrability of ł is implied if f has a finite moment of order � . 2.

We are now ready to state the main result of this section. Let V denote the map defined

by

V (x) ¼ 1 þ jxj, x 2 R,

and set

� ¼ (1 þ W1 þ . . . þ Wq)E[ _��1]:

Theorem 3. Suppose f has finite moment of order � . 2 and is absolutely continuous with

f 9 satisfying k f 9Vk1 , 1. Let the kernel k be as in Theorem 1 and have mean zero. Let

the bandwidth b satisfy nb4 ! 0 and nb8=3 ! 0. Let ŴW be a n1=2-consistent estimator of W.
Then

k ĝg � g � (Hn,0 þ . . . þ Hn,q) � (ŴW� W)T( _gg � �g9)k1 ¼ o p(n
�1=2):

Moreover, n1=2(Hn,0 þ . . . þ Hn,q) converges in distribution in the space L1 to a centred

Gaussian process.

Theorem 3 is a simple consequence of the following two lemmas. To state them, we

introduce the bounded linear operator Ai from L1 to L1 which maps an integrable function

h to the integrable function Aih defined by

Aih(x) ¼
ð
pi(x� Wi y)h(y)dy, x 2 R:

Abbreviate f � kb by f �.

Lemma 5. Under the assumptions of Theorem 3, we have

k ĝg � g � (A0( f̂f � f �) þ . . . þ Aq( f̂f � f �)) � (ŴW� W)T _ggk1 ¼ o p(n�1=2):

Lemma 6. Under the assumptions of Theorem 3, we have, for i ¼ 0, . . . , q,

kAi( f̂f � f �) �Hn,i þ (ŴW� W)TE[ _��1]Wi g9k1 ¼ o p(n
�1=2):

Proof of Lemma 5. It follows from nb8=3 ! 1 that n�1b�2 þ n�1=2b�1=2 ¼ o(n�1=4). Thus,

in view of the proofs of Theorem 1 and Corollary 1,
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k f̂f � f �k1 ¼ o p(n�1=4), (3:10)

k( f̂f � f �)Vk1 ¼ o p(1): (3:11)

For t 2 Rq and integrable h0, . . . , hq, let L(t, h0, . . . , hq) denote the integrable function

defined by

L(t, h0, . . . , hq)(x) ¼
ð
� � �
ð
h0 x�

Xq
i¼1

ti yi

 !
h1(y1) � � � hq(yq)dy1 � � � dyq, x 2 R:

It is easy to see that

kL(t, h0, . . . , hq)k1 < kh0k1 � � � khqk1: (3:12)

Moreover, if h0 is absolutely continuous with integrable h90, then

kL(t, h0, . . . , hq) � L(s, h0, . . . , hq)k1 < q1=2kh90k1kt � sk kh1Vk1 � � � khqVk1: (3:13)

Indeed, we can bound the left-hand side of (3.13) by

kh90k1

Xq
i¼1

jti � sij
ð
� � �
ð
jyi h1(y1) � � � hq(yq)jdy1 � � � dyq:

We can write ĝg ¼ L(ŴW, f̂f , . . . , f̂f ), g ¼ L(W, f , . . . , f ) and g t ¼ L(t, f , . . . , f ). It

follows from (3.2) and the n1=2-consistency of ŴW that

kgŴW � g � (ŴW� W)T _ggk1 ¼ o p(n�1=2):

Set g�t ¼ L(t, f �, . . . , f �). We can express g�t as

g�t (x) ¼
ð
gt(x� bu) ~kk t(u)du,

with ~kk t ¼ L(t, k, . . . , k) a density with mean zero and finite variance which is 1 þ ktk2

times the variance of k. Thus, by Lemma 2,

k ĝg�W � gŴWk1 < kg 0̂WWk1b
2

ð
u2 ~kkŴW(u)du ¼ Op(b2) ¼ o p(n

�1=2): (3:14)

For a subset A of f0, . . . , qg, we set

ª(t, A) ¼ L(t, h0, . . . , hq)

with

hi ¼ f̂f � f �, i 2 A,

f �, i 6¼ A,

�
and, for r ¼ 0, . . . , q, we set

ˆ(r, t) ¼
X
jAj¼r

ª(t, A):
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Since f̂f ¼ f � þ f̂f � f � and hi 7! L(t, h0, . . . , hq) is linear for each i ¼ 0, . . . , q, we obtain

the expansion

ĝg ¼ ˆ(0, ŴW) þ . . . þ ˆ(qþ 1, ŴW):

We obtain from (3.12) that kˆ(r, ŴW)k1 <
P

jAj¼rkª(ŴW, A)k1 < (qþ1
r )k f̂f � f �k

r
1. Thus, by

(3.10),

k ĝg � ˆ(0, ŴW) � ˆ(1, ŴW)k1 <
Xqþ1

r¼2

kˆ(r, ŴW)k1 ¼ o p(n�1=2):

Note that ˆ(0, ŴW) ¼ gŴW. Thus to finish the proof it suffices to show that

kˆ(1, ŴW) � ˆ(1, W)k1 <
Xq
i¼0

kª(ŴW, i) � ª(W, i)k1 ¼ o p(n
�1=2), (3:15)

where ª(W, i) ¼ ª(W, fig). We obtain from (3.13), (3.10) and the n1=2-consistency of ŴW that

kª(ŴW, 1) � ª(W, 1)k1 ¼ kL(ŴW, f �, f̂f � f �, f �, . . . , f �) � L(W, f �, f̂f � f �, f �, . . . , f �)k1

< q1=2k f 9�k1kŴW� Wk k( f̂f � f �)Vk1k f �Vk
q�1
1 ¼ o p(n

�1=2):

Here we have used that k f 9�k1 ¼ O(1) and k f �Vk1 ¼ O(1). The former result was shown in

the proof of Theorem 1, and the latter follows from direct calculations. Similarly, for

i ¼ 2, . . . , q, we have kª(ŴW, i) � ª(W, i)k1 ¼ o p(n�1=2). For the case i ¼ 0 we let

ŴW� ¼ (ŴW1, . . . , ŴWq�1, 1)T and W� ¼ (W1, . . . , Wq�1, 1)T, and set 
̂
 ¼ f ŴWq
� kŴWqb

and


 ¼ fWq
� kWq b. Then we use the commutativity of convolutions to derive that

ª(ŴW, 0) ¼ L(ŴW, f̂f � f �, f �, . . . , f �) ¼ L(ŴW�, f̂f � f �, f �, . . . , f �, 
̂
)

¼ L(ŴW�, 
̂
, f �, . . . , f �, f̂f � f �)

and ª(W, 0) ¼ L(W�, 
, f �, . . . , f �, f̂f � f �). By linearity of L(t, h0, . . . , hq) in h0, we can

write

ª(ŴW, 0) � ª(W, 0) ¼ L(ŴW�, 
̂
� 
, f �, . . . , f �, f̂f � f �)

þ L(ŴW�, 
, f �, . . . , f �, f̂f � f �) � L(W�, 
, f �, . . . , f �, f̂f � f �):

The arguments for the case i ¼ 1 above yield

kL(ŴW�, 
, f �, . . . , f �, f̂f � f �) � L(W�, 
, f �, . . . , f �, f̂f � f �)k1 ¼ o p(n
�1=2):

Next, it follows from inequality (3.12) that

kL(ŴW�, 
̂
� 
, f �, . . . , f �, f̂f � f �)k1 < k
̂
� 
k1k f̂f � f �k1:

Lemma 3 and the n1=2-consistency of ŴW yield

k f ŴWq
� kŴWq b

� fWq
� kŴWq b

k1 < k f ŴWq
� fWq

k1 ¼ Op(n
�1=2):
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Since fWq
is L1-Lipschitz, we obtain

k fWq
� kŴWqb

� fWq
� kWqbk1 ¼ Op(bjŴWq � Wqj) ¼ o p(n�1=2):

Thus we obtain k
̂
� 
k1 ¼ Op(n�1=2) and hence kª(ŴW, 0) � ª(W, 0)k1 ¼ o p(n�1=2). This

completes the proof of (3.15). The desired result now follows since ª(W, i) ¼ Ai( f̂f � f �) for

i ¼ 0, . . . , q. h

Proof of Lemma 6. Fix i 2 f0, . . . , qg. Let ~ff and f be as in the proof of Theorem 1. Then

we can express

Ai( f̂f � f �) ¼ Ai( f̂f � ~ff ) þ Ai( ~ff � f ) þ Ai( f � f �):

Since k f̂f � ~ff k1 ¼ Op(n�1b�1) as shown in the proof of Theorem 1, we obtain that

kAi( f̂f � ~ff )k1 < k f̂f � ~ff k1 ¼ o p(n�1=2):

It is easy to see that

Ai( f � f �)(x) ¼
ð
Hn,i(x� Wibu)k(u)du, x 2 R: (3:16)

Since
Ð
jhn(x� anu) � h(x)jdx ! 0 as khn � hk1 ! 0 and an ! 0, and since n1=2Hn,i

converges in distribution in the space L1, we obtain from Rubin’s theorem (see, for example,

Theorem 5.5 in Billingsley 1968) that

kAi( f � f �) �Hn,ik1 ¼ o p(n
�1=2):

The desired result will thus follow if we show that

kAi( ~ff � f ) þ (ŴW� W)TE[ _��1]Wi g9k1 ¼ o p(n
�1=2): (3:17)

For this purpose, note first that

Ai( ~ff )(x) ¼ 1

n

Xn
j¼1

ð
pi(x� Wi(� j þ (ŴW� W)T _�� j þ bu))k(u)du,

Ai( f )(x) ¼ 1

n

Xn
j¼1

ð
pi(x� Wi(� j þ bu))k(u)du:

It follows from the properties of f that pi is absolutely continuous with integrable p9i. Now

set

�i(x) ¼ 1

n

Xn
j¼1

_�� j

ð
p9i(x� Wi(� j þ bu))k(u)du, x 2 R:

It is easy to see that we can bound Di ¼ kAi( ~ff � f ) þ Wi(ŴW� W)T�ik1 by
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Di <
1

n

Xn
j¼1

ð
j pi(x� Wi(ŴW� W) _�� j) � pi(x) þ Wi(ŴW� W)T _�� j p9i(x)jdx

<
1

n

Xn
j¼1

jWij kŴW� Wk k _�� jk
ðð1

0

j p9i(x� sWi(ŴW� W) _�� j) � p9i(x)jds dx

< jWij kŴW� Wk 1

n

Xn
j¼1

k _�� jk sup
j tj<�n

ð
j p9i(x� Wi t) � p9i(x)jdx,

where �n ¼ max1< j<nj(ŴW� W)T _�� jj. Since ŴW is n1=2-consistent and

P max
1< j<n

n�1=2k _�� jk . �
� �

< nP(k _��1k . �n1=2) < E k _��1k21[k _��1k . �n1=2]
� �

! 0,

we can conclude that �n ¼ o p(1). This and (3.9) yield

kAi( ~ff � f ) þ Wi(ŴW� W)T�ik1 ¼ o p(n�1=2):

It is easy to check that

k�i � E[ _��1]g9k1 ¼ o p(1):

This completes the proof of (3.17). h

Remark 4. Under the conditions of Theorem 3, the optimal bandwidth rate for estimating f is

b � n�1=3. The requirement nb4 ! 0 allows us to over-smooth the kernel estimates of f . The

condition nb4 ! 0 is used to conclude (3.14). It cannot be relaxed even if we impose

additional smoothness on f as long as we insist on using kernels of order 2. For higher-order

kernels, however, it can be relaxed. For example, if k is a kernel of order 4 and f 0 is

integrable, then we can weaken the requirement nb4 ! 0 to nb8 ! 0. Indeed, we then

have kg�̂
WW
� gŴWk1 ¼ O(b4). The latter even holds without the additional smoothness

assumption on f for such kernels as long as three of the coefficients of W are non-zero.

More generally, one can show that if m of the coefficients of W are non-zero and one uses a

kernel of order mþ 1, then kg�̂
WW
� gŴWk1 ¼ O(bmþ1). For m ¼ 2 and a kernel of order 3 we

can take b � n�1=5, although this choice of bandwidth over-smoothes the kernel estimator f̂f .

4. Convergence in C0(R) of estimators for the stationary
density

In the previous section we studied the estimation of g in the function space L1. This is a

natural space when dealing with densities. However, we are sometimes interested in other

norms, in particular in the sup-norm. In this case it is more convenient to view g as an

element of C0(R), the set of (uniformly) continuous functions h from R to R which vanish

at infinity in the sense of the one-point compactification: limK!1 supjxj.K jh(x)j ¼ 0.

Endowed with the sup-norm, C0(R) becomes a separable Banach space.
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The goal of this section is to translate the results obtained in the L1-norm to the sup-

norm. More precisely, we shall prove a sup-norm version of the expansion given in

Theorem 3, and then conclude that the process n1=2( ĝg � g) converges in distribution in the

space C0(R) to some centred Gaussian process.

Note that integrable uniformly continuous functions belong to C0(R). Assume now that f

is absolutely continuous with integrable f 9. Then the densities g, p0, . . . , pq inherit these

properties and hence belong to C0(R). From this we immediately obtain that the processes

Hn,0, . . . , Hn,q introduced in the previous section have sample paths in C0(R) and hence are

C0(R)-valued random elements. Let us now show that n1=2Hn,i is tight in C0(R) for each

i ¼ 0, . . . , q. To this end, we recall the following characterization of compact subsets of

C0(R). For a proof, see Schick and Wefelmeyer (2004b).

Lemma 7. A closed subset H of C0(R) is compact if and only if

lim
�#0

sup
h2H

sup
jz� yj<�

jh(z) � h(y)j ¼ 0,

lim
K!1

sup
h2H

sup
jxj>K

jh(x)j ¼ 0:

To obtain tightness of n1=2Hn,i, first recall the representation

n1=2Hn,i(x) ¼ Wi

ð
p9i(x� Wi y)˜(y)dy, x 2 R:

Thus we may assume that Wi 6¼ 0 and obtain the bounds

sup
jz� yj<�

jn1=2(Hn,i(z) �Hn,i(y))j < k˜k1 sup
j tj<�

ð
j p9i(uþ t) � p9i(u)jdu,

sup
jxj.2M

jn1=2Hn,i(x)j < sup
jWi yj.M

j˜(y)j kp9ik1 þ k˜k1
ð
juj.M

j p9i(u)jdu:

These bounds, relation (3.9), and well-known properties of the empirical process give, in

view of Lemma 7, the desired tightness of the process n1=2Hn,i. It is now easy to check that

Hn,0 þ . . . þ Hn,q converges in distribution in the space C0(R) to a centred Gaussian

process.

We are now ready to state the main result of this section. Recall that V (x) ¼ 1 þ jxj and

� ¼ (1 þ W1 þ . . . þ Wq)E[ _��1].

Theorem 4. Suppose f has finite fourth moment and is absolutely continuous with f 9

satisfying k f 9Vk1 , 1 and k f 9Vk2 , 1. Let the kernel k be as in Theorem 2 and have

mean zero and finite fourth moment. Let the bandwidth b satisfy nb4 ! 0 and nb14=5 ! 1.

Let ŴW be a n1=2-consistent estimator of W. Then

k ĝg � g � (Hn,0 þ . . . þ Hn,q) � (ŴW� W)T( _gg � �g9)k1 ¼ o p(n�1=2):
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Moreover, n1=2(Hn,0 þ . . . þ Hn,q) converges in distribution in the space C0(R) to a centred

Gaussian process.

Proof. Since the density pi is uniformly continuous, the range of the operator Ai contains

only integrable and uniformly continuous functions and is thus a subset of C0(R). Actually,

Ai is also a bounded linear operator from L1 into C0(R), as

kAihk1 < kpik1khk1: (4:1)

Moreover, if h is also square-integrable and Wi 6¼ 0, we obtain the alternative bound

kAihk1 < jWij�1=2kpik2khk2: (4:2)

Indeed, an application of the Cauchy–Schwarz inequality shows that

jAih(x)j2 <

ð
pi(x� Wi y)2 dy

ð
h(y)2 dy <

1

jWij
kpik2

2khk
2
2, x 2 R: (4:3)

Since f 9 is square-integrable, we find that g 0 is bounded. More precisely, we have, for t close

to W,

kg 0tk1 < k f 9 � f 9tqk1 < k f 9k2k f 9tqk2 < jtqj�3=2k f 9k2
2:

From this and the fact that k has mean zero and finite variance we obtain, by a standard

argument, that

kg�̂
WW
� gŴWk1 < kg 0̂WWk1b2

ð
u2 ~kkŴW(u)du ¼ Op(b2) ¼ o p(n

�1=2): (4:4)

It follows from proofs of Theorems 1 and 2, Corollaries 1 and 2, and the choice of bandwidth

that

k f̂f � f �ki ¼ o p(n
�1=4) and k( f̂f � f �)Vki ¼ o p(1), i ¼ 1, 2: (4:5)

It suffices to prove

k ĝg � g � (A0( f̂f � f �) þ . . . þ Aq( f̂f � f �)) � (ŴW� W)T _ggk1 ¼ o p(n
�1=2) (4:6)

and, for i ¼ 0, . . . , q,

kAi( f̂f � f �) �Hn,i þ (ŴW� W)TE[ _��1]Wi g9k1 ¼ o p(n�1=2): (4:7)

The proof of (4.6) is like the proof of Lemma 5; but now use (3.1) instead of (3.2), use

(4.4) instead of (3.14), apply the bound

kL(t, h0, . . . , hq)k1 < jtqj�1kh0k2khqk2kh1k1 . . . khq�1k1 (4:8)

instead of the bound (3.12), and replace (3.13) with the bound

kL(t, h0, . . . , hq) � L(s, h0, . . . , hq)k1

< q1=2kt � sk
ð1

0

jsq þ v(tq � sq)j�1=2 dvkh90k2khqVk2kh1Vk1 � � � khq�1Vk1,
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valid for absolutely continuous h0 with square-integrable h90. To prove this last inequality,

bound its left-hand side by the supremum over x ofð
� � �
ð




ð1

0

h90 x�
Xq
�¼1

(s� þ v(t� � s�))y�

 !
dv
Xq
i¼1

(ti � si)yi
Yq
j¼1

h j(yj)





dy1 . . . dyq

<
Xq
i¼1

jti � sij
ð1

0

ð
� � �
ð



h90 x�

Xq
�¼1

(s� þ v(t� � s�))y�

 !



Yq
j¼1

jV (yj)h j(yj)jdyj dv,

and then argue as in (4.3) above.

It remains to verify (4.7). Fix i 2 f0, . . . , qg. If Wi ¼ 0, then (4.7) holds as its left-hand

side equals zero. Now assume that Wi 6¼ 0. Let ~ff and f be as in the proof of Theorem 1.

We shall show that

kAi( f̂f � ~ff )k1 ¼ Op(n
�1b�1), (4:9)

kAi( f � f �) �Hn,ik1 ¼ o p(n
�1=2), (4:10)

kAi( ~ff � f ) þ (ŴW� W)TE[ _��1]Wi g9k1 ¼ o p(n�1=2): (4:11)

Since k f̂f � ~ff k1 ¼ Op(n
�1b�1) as shown in the proof of Theorem 2, we obtain (4.9) from

(4.1). It is easy to see that

sup
x2R






ð

(hn(x� anu) � h(x))k(u)du





! 0

if khn � hk1 ! 0, an ! 0 and h 2 C0(R). In view of this, representation (3.16), and the

weak convergence of n1=2Hn,i in C0(R), we derive (4.10) from Rubin’s theorem. Since g 0 is

bounded, we have that kg9 � kb � g9k1 ¼ O(b). Thus it suffices to verify (4.11) with g9

replaced by g9 � kb. In other words, we need to show that kDik1 ¼ o p(n
�1=2), where

Di ¼ Ai( ~ff � f ) þ (ŴW� W)TE[ _��1]Wi g9 � kb:

Let ~FF be the empirical distribution function based on ~��1, . . . , ~��n. Using representation (3.3),

we find that

Di(x) ¼ Wi

ðð
p9i(x� Wi(yþ bu))(~FF(y) � F(y) þ (ŴW� W)TE[ _��1] f (y))dy k(u)du:

With the argument used to establish (4.3), we now derive the bound

kDik1 < jWij1=2kp9ik2k~FF� Fþ (ŴW� W)TE[ _��1] f k2:

Thus it suffices to show that

n1=2k~FF� Fþ (ŴW� W)TE[ _��1] f k2 ¼ o p(1): (4:12)

A similar result for the sup-norm was obtained by Koul (1996) in the context of nonlinear

autoregression models. He required the density f to be positive. We follow his approach in

establishing (4.12), but will not need f to be positive.

Let us define, for x 2 R and t 2 Rq,
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H(x, t) ¼ n�1=2
Xn
j¼1

(1[� j þ n�1=2 tT _�� j < x] � F(x� n�1=2 tT _�� j)),

U (x, t) ¼
Xn
j¼1

(F(x� n�1=2 tT _�� j) � F(x) þ n�1=2 tT _�� j f (x))2:

Then, with t̂t ¼ n1=2(ŴW� W), we can bound the square of the left-hand side of (4.12) by

3

ð
(H(x, t̂t ) � H(x, 0))2 dxþ 3

ð
U (x, t̂t )dxþ 3k f k2

2k t̂tk2






 1

n

Xn
j¼1

( _�� j � E[ _��1])







2

:

Since k f 9Vk1 is finite, f is bounded and hence square-integrable. Thus the last term tends to

zero in probability by the ergodic theorem. Since f is L2-Lipschitz in view of k f 9Vk2 , 1
and �n ¼ n�1=2 max1< j<nj t̂tT _�� jj ¼ o p(1) as shown in the proof of Lemma 6, we obtainÐ
U (x, t̂t )dx ¼ o p(1). Thus, the desired result (4.12) follows if we show that, for all positive

integers M ,

sup
k tk<M

ð
(H(x, t) � H(x, 0))2 dx ¼ o p(1): (4:13)

Fix such an M and set S ¼ f�1, 1gq. For j ¼ 1, . . . , n, let S j be the S-valued random vector

whose ith coordinate equals the sign of the ith coordinate of _�� j. For 	 2 S, let

H	 (x, t) ¼ n�1=2
Xn
j¼1

1[S j ¼ 	 ] 1[� j þ n�1=2 tT _�� j < x] � F(x� n�1=2 tT _�� j)
� 	

:

Then H(x, t) ¼
P

	2SH	 (x, t), and (4.13) follows if we show that, for all 	 2 S,

sup
k tk<M

ð
(H	 (x, t) � H	 (x, 0))2 dx ¼ o p(1): (4:14)

Now fix 	 2 S and a large integer K. Partition the cube [�M , M]q into (2MK)q cubes of

equal volume. Let C denote the collection of these cubes. For each C 2 C there exist vertices

tC and TC of C such that tTC _�� j < tT _�� j < TT
C _�� j for all t 2 C and for all _�� j with S j ¼ 	 . Using

this and monotonicity, we can now show that H	 (x, TC) � RC(x) < H	 (x, t) <

H	 (x, tC) þ RC(x) for all t 2 C, where

RC(x) ¼ n�1=2
Xn
j¼1

1[S j ¼ 	 ] F(x� n�1=2 tTC _�� j) � F(x� n�1=2TT
C _�� j)

� 	
:

It is now easy to see that the left-hand side of (4.14) is bounded by

3 max
C2C

ð
(H	 (x, tC) � H	 (x, 0))2 þ (H	 (x, tC) � H	 (x, TC))2 þ R2

C(x)
� �

dx:

Since H	 (x, t) � H	 (x, s) is a martingale, we find, also utilizing stationarity, that

E[(H	 (x, t) � H	 (x, s))2] < E[jF(x� n�1=2 tT _��1) � F(x� n�1=2sT _��1)j]:
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Since F is L1-Lipschitz, we thus obtainð
E[(H	 (x, t) � H	 (x, s))2]dx < k f k1E[k _��1k]n�1=2kt � sk:

By the Cauchy–Schwarz inequality we have

R2
C(x) <

Xn
j¼1

1[S j ¼ 	 ] F(x� n�1=2 tTC _�� j) � F(x� n�1=2TT
C _�� j)

� 	2

:

Since f is square-integrable, F is L2-Lipschitz andð
R2
C(x)dx < k f k2

2

1

n

Xn
j¼1

k _�� jk2kTC � tCk2 < k f k2
2

1

n

Xn
j¼1

k _�� jk2qK�2:

Combining the above shows that the expected value of the left-hand side of (4.14) is bounded

by

3
X
C2C

E[k _��1k]n�1=2(ktCk þ kTC � tCk) þ 3k f k2
2E[k _��1k2]qK�2

< 3E[k _��1k](2MK)qn�1=2q1=2(M þ K�1) þ 3k f k2
2E[k _��1k2]qK�2:

Since this is valid for all integers K, relation (4.14) holds. This completes the proof. h

5. Efficiency of estimators for the stationary density

We show that ĝg is efficient if an efficient estimator for W is used. This is a straightforward

generalization of the efficiency result for MA(1) processes in Schick and Wefelmeyer

(2004a), and we will be brief. Fix true parameters W and f . Introduce a local model by

perturbing W as Wnc ¼ Wþ n�1=2c with c 2 Rq, and f as f nh withð
f nh(x)1=2 � f (x)1=2 � n�1=2 1

2
h(x) f (x)1=2

� �2

dx ¼ o(n�1):

The Hellinger derivative h is in L2,0( f ) ¼ fh 2 L2( f ) :
Ð
h(x) f (x)dx ¼ 0g. For technical

convenience we choose f nh such that, in addition, k f nh � f k1 ! 0. Assume that f has finite

Fisher information Jf ¼
Ð
‘2(x) f (x)dx, with ‘ ¼ f 9= f , in the sense of (2.2). Since f has a

finite second moment, one obtains from an application of the Cauchy–Schwarz inequality

that k f 9Vk1 is finite. Write Pn and Pnch for the joint distribution of (X�rþ1, . . . , X n) under

(W, f ) and (Wnc, f nh), respectively, and set � ¼ �1. We have local asymptotic normality

(LAN),

log
dPnch

dPn

¼ n�1=2
Xn
j¼1

(cT _�� j‘(� j) þ h(� j)) �
1

2
k(c, h)k2

LAN þ o p(1), (5:1)

with squared LAN norm
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k(c, h)k2
LAN ¼ Jf c

TE[ _�� _��T]cþ 2cTE[ _��]E[‘(�)h(�)] þ E[h(�)2]:

LAN for MA(q) processes follows from known results for more general time series. For

E[�] ¼ 0 and fixed f , see Kreiss (1987), Jeganathan (1995), and Drost et al. (1997); for

varying f , see Koul and Schick (1997). The LAN inner product induced by the LAN norm is

((c, h), (d, k))LAN ¼ Jf c
TE[ _�� _��T]d þ cTE[ _��]E[‘(�)k(�)]

þ dTE[ _��]E[‘(�)h(�)] þ E[h(�)k(�)]:

Now consider a real-valued functional k of (W, f ) that is differentiable at the true (W, f )

in the (usual) sense that there exist c� 2 Rq and h� 2 L2,0( f ) such that, for all c 2 Rq and

h 2 L2,0( f ),

n1=2(k(Wnc, f nh) � k(W, f )) ! cT

� cþ E[h�(�)h(�)]: (5:2)

The convolution theorem characterizes efficient estimators of k in terms of the gradient of k
in the LAN inner product. This LAN gradient is the pair (ck, hk) with ck 2 Rq and

hk 2 L2,0( f ) such that

cT

� cþ E[h�(�)h(�)] ¼ ((ck, hk), (c, h))LAN for all c 2 Rq, h 2 L2,0( f ):

Setting first c ¼ 0 and then h ¼ 0, one obtains

ck ¼ J�1
f cov[ _��]�1(c� � E[ _��]E[‘(�)h�(�)]), hk ¼ h� � cT

kE[ _��]‘(�): (5:3)

An estimator k̂k of k is called regular at (W, f ) with limit L if L is a random variable

such that

n1=2(k̂k� k(Wnc, f nh)) ) L under Pnch for all c 2 Rq, h 2 L2,0( f ):

The convolution theorem says that L is the convolution of some random variable and a

normal random variable with mean zero and variance k(ck, hk)k2
LAN. This justifies calling k̂k

efficient at (W, f ) if L is distributed as this normal random variable. It also follows from the

convolution theorem that k̂k is regular and efficient if and only if

n1=2(k̂k� k(W, f )) ¼ n�1=2
Xn
j¼1

(cT
k _�� j‘(� j) þ hk(� j)) þ o p(1): (5:4)

We apply this characterization to g(x) and to the components of W, interpreted as functionals

of (W, f ). First we calculate the LAN gradient of

kx(W, f ) ¼ g(x) ¼
ð
� � �
ð
f x�

Xq
i¼1

Wi yi

 !
f (y1) � � � f (yq)dy1 � � � dyq:

Recall that � ¼ (1 þ W1 þ . . . þ Wq)E[ _��].

Lemma 8. If f has finite Fisher information Jf , then the functional kx is differentiable at

(W, f ) with LAN gradient (cx, hx) given by

Stationary densities of moving average processes 913



cx ¼ J�1
f cov[ _��]�1( _gg(x) � �g9(x)), hx ¼ łx � cT

xE[ _��]‘,

where

łx(y) ¼
Xq
i¼0

pi(x� Wi y) �
ð
pi(x� Wi z) f (z)dz

� �
:

Proof. It is straightforward to check that the functional kx is differentiable in terms of the

usual inner product for (c, h):

n1=2(kx(Wnc, f nh) � kx(W, f )) ! cT _gg(x) þ E[h(�)łx(�)]:

This is differentiability (5.2) with c� ¼ _gg(x) and h� ¼ łx. The LAN gradient (cx, hx) is now

obtained from (5.3), using E[‘(�)łx(�)] ¼ (1 þ W1 þ . . . þ Wq)g9(x). h

By (5.4), an estimator k̂kx is regular and efficient for g(x) if and only if

n1=2(k̂kx � g(x))

¼ n�1=2
Xn
j¼1

łx(� j) þ ( _gg(x) � �g9(x))T cov[ _��]�1( _�� j � E[ _��])J�1
f ‘(� j)

� 	
þ o p(1):

Note that (1=n)
Pn

j¼1łx(� j) ¼ Hn,0 þ . . . þ Hn,q. Comparing with Theorems 3 and 4, we see

that our estimator ĝg(x) is efficient if

n1=2(ŴW� W) ¼ n�1=2
Xn
j¼1

cov[ _��]�1( _�� j � E[ _��])J�1
f ‘(� j) þ o p(1):

This is the characterization (5.4) of a (componentwise) efficient estimator of W. Indeed, the

functional k(W, f ) ¼ Wi is differentiable in the sense of (5.2) with c� ¼ ei, the ith q-

dimensional unit vector, and h� ¼ 0. Hence by Lemma 8 its LAN gradient is (ci, hi) with

ci ¼ J�1
f cov[ _��]�1ei, hi ¼ �cT

i E[ _��]‘:

Efficient estimators of W were constructed in Kreiss (1987) under the assumption of

symmetry, and in Drost et al. (1997), Koul and Schick (1997), and Schick and Wefelmeyer

(2002b) under the assumption that E� ¼ 0. These constructions can be adapted to our slightly

more general situation; see Schick and Wefelmeyer (2004a) for the case q ¼ 1.

Since ĝg(x) is efficient for g(x) whatever x, it follows that ( ĝg(x1), . . . , ĝg(xk)) is efficient

for (g(x1), . . . , g(xk)) for any x1, . . . , xk and any k. As an immediate consequence, under

the assumptions of Sections 3 and 4, our estimator ĝg is efficient for g in the spaces L1 and

C0(R).
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