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We give new results, under mild assumptions, on convergence rates in L; and L, for residual-based
kernel estimators of the innovation density of moving average processes. Exploiting the convolution
representation of the stationary density of moving average processes, these estimators can be used to
obtain n'/2-consistent plug-in estimators for this stationary density. Here we derive functional weak
convergence results in L; and Co(R) for these plug-in estimators. If efficient estimators for the finite-
dimensional parameters of the process are used in our construction, semiparametric efficiency of our
plug-in estimators is obtained.

Keywords: efficient estimator; functional central limit theorem; least dispersed estimator; plug-in
estimator; semiparametric model; time series

1. Introduction

Smooth functionals of appropriate density estimators and regression function estimators are
known to converge at the parametric rate n~'/2, even though the function estimators themselves
converge only at slower rates, depending on the smoothness of the function estimated.
Analogous results hold for functionals of derivatives of densities and regression functions.
For nonparametric models and independent and identically distributed (i.i.d.) observations,
there is now a considerable literature on such ‘plug-in’ estimators in which the parametric rate
is obtained, the influence function is calculated, and the estimators are shown to be
asymptotically efficient in the sense of having minimal asymptotic variance among regular
estimators. Of particular interest have been nonlinear integral functionals of a density f and
its derivatives f®. For [{f®¥(x)}*dx, see Hall and Marron (1987) and Bickel and Ritov
(1988); for generalizations [ ¢(f(x), x)dx and [@(f(x), ..., fP(x), x)dx, see Laurent (1997)
and Birgé and Massart (1995). The Shannon entropy — [ f(x)log f(x)dx is considered in
Dudewicz and van der Meulen (1981), Tsybakov and van der Meulen (1996) and Eggermont
and LaRiccia (1999). Abramson and Goldstein (1991) study the equidistribution functional
2 [ f(x)g(x)/(f(x) + g(x))dx of two densities. Frees (1994) treats the density of a symmetric
function A(X, ..., X,;) of m > 1 i.i.d. random variables at a point. His result generalizes to
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non-identically distributed random variables. This covers in particular convolution densities
g(x) = [ f(x — 3»)f(»)dy at a fixed point x and for known scale parameter J, considered by
Saavedra and Cao (2000); such densities arise as stationary densities of first-order moving
average processes X, = &, + J¢&,_; with innovation density f and known 3. This also covers
densities of functions u;(X;) + ...+ u,(X,) at a point. Schick and Wefelmeyer (2004b)
obtain functional central limit theorems for appropriate plug-in estimators of such densities,
viewed as elements of the function spaces Cy(R) and L;(R). For results on plug-in estimators
of general functionals we refer to Goldstein and Khas’minskii (1995).

There are analogous nonparametric results on plug-in estimators based on i.i.d.
observations (X1, Y1), ..., (X,, ¥,) for functionals of the regression function r(x)
=E(Y|X =x) and the quantile regression function g¢,(x)=inf{y: P(Y < y|X =x)
= a}. Goldstein and Messer (1992) and Loh (1997) study [{r(x)}*dx; Efromovich and
Samarov (2000) treat [{r¥(x)}*dx. Stoker (1991), Samarov (1991; 1993), and Li (1996)
consider the average regression derivative E7'(X). Doksum and Samarov (1995) introduce
three estimators of a weighted version of Pearson’s correlation ratio varr(X)/var?Y.
Chaudhuri et al. (1996; 1997) estimate average weighted quantile regression derivatives
Elql,(X)w(X)].

Suppose now that the model has additional structure. For example, in the regression
model we might assume that the error is independent of the covariate and/or that we have a
parametric model for the regression function. This complicates the calculation of the
asymptotic variance bound and the construction of efficient plug-in estimators. There is
much less literature on such problems. A well-studied degenerate case is the error variance
Ee? in the nonparametric regression model Y = r(X)+ e, with error ¢ centred and
independent of the covariate X. Hall and Marron (1990) estimate the error variance by the
empirical variance of the residuals and calculate the asymptotic variance of this estimator.
Miiller et al. (2004a; 2004b) show that the estimator is efficient, and adaptive with respect
to the regression function. For other functionals of the error distribution, the empirical
estimator is not adaptive but still efficient; see Akritas and Van Keilegom (2001) and
Miiller et al. (2004a; 2004b). In the corresponding semiparametric model, with » = ry
known up to some parameter J, the empirical estimators can be improved; see Schick and
Wefelmeyer (2002a) for an autoregressive version of such a result.

Here we are interested in n'/?-consistent and efficient estimation of the stationary density
of a moving average process. This model has structural features analogous to those
mentioned in the previous paragraph: it is driven by independent innovations, and it is
semiparametric. There is a rich literature on estimating stationary densities of stochastic
processes by kernel estimators (l/n)z;7:1kb(x—Xj); see, for example, Chanda (1983),
Yakowitz (1989), Hart and Vieu (1990), Tran (1992), Chan and Tran (1992), Hallin and
Tran (1996) and Honda (2000), who also discuss applications. Under appropriate conditions,
these estimators have similar (nonparametric) rates to those for i.i.d. observations. For
continuous-time processes, parametric rates of kernel estimators are more common; see
Castellana and Leadbetter (1986), Bosq (1993; 1995), Blanke and Bosq (1997), and Bosq
et al. (1999). However, such estimators do not exploit the specific structure of the process.
For the case of the MA(1) model X; = ¢; + 3¢,_, Saavedra and Cao (1999) make use of
the above-mentioned representation g(x) = [ f(x — $y)f(y)dy of the stationary density at x
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and propose the plug-in estimator g(x) = | f (x— Qy) f (»)dy. Here 9 is n'/2-consistent and
f is a kernel estimator based on estimated innovations & ;= Zﬁ;(l)&‘X j—s- Saavedra and Cao
observe that the asymptotic variance of the plug-in estimator decreases as n~!. Under rather
mild conditions, Schick and Wefelmeyer (2004a) give sharper results, in the spirit of the
above nonparametric references; they show, in particular, asymptotic linearity and discuss
efficiency. Heuristically, the required stochastic expansion of g(x) is obtained by writing

g(x) — g(x) = J(f (x = 9y) = fx = 9y f(»)dy

4 Jf(x — () — FONdy — (6 - 9>Jyf'(x 9 (.

The first two terms are of order n~'/? because they may be viewed as (centred) plug-in
estimators; the last term is of order n~'/2 if § is n!/?-consistent. Related results exist for
continuous-time processes: efficient and n'/?-consistent estimators for the stationary density
of diffusion processes on a time interval [0, n] with nonparametric drift are constructed in
Kutoyants (1997a; 1997b; 1997c; 1999); for the derivative of the density, see Dalalyan and
Kutoyants (2003). We also refer to Chapter 4 in Kutoyants (2004).

The present paper extends the results on MA(1) models in two directions, at the same
time weakening the conditions further. One extension is to moving average processes of
(fixed) higher order. The other extension is that we do not consider the stationary density at
a fixed point x only, but view g and g as elements of the function spaces L; or Cy(R) and
obtain that the process n'/?(¢ — g) converges in distribution in these spaces to a centred
Gaussian process. This seems to be the first non-local result on functional convergence of
density estimators. The results can be used in a straightforward way for testing whether the
time series is Gaussian, and for efficient estimation of various linear and nonlinear
functionals of the stationary law. Schick and Wefelmeyer (2004c) have extended these
results further, to invertible infinite-order linear processes, including ARMA models.

Specifically, we consider an MA(g) process

Xi=¢e+%e +...+ 946,

where the &, are i.i.d. innovations with finite second moment and density f. We assume that
the parameter 3 = (%y,...,9,)" satisfies 9,70, and that the complex polynomial
py(z) =1+ %z + ...+ 9,27 has no roots in the unit disc. This assumption guarantees
stationarity of the process. It also implies invertibility, i.e. a representation of the innovations
in terms of the observations,

& = Z ax(‘g)Xt—s:
s=0

where the a,(9) are the coefficients in the series 1/pg(z) = > o gats(H)z*.

We suppose that we observe X, ..., X, from this process. Our first goal is to study
estimators of f. These are based on estimated innovations. Under the above assumptions,
there exist n'/?-consistent estimators 9 of 9. We use such an estimator to estimate the
innovations by the truncated series
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IS
&= a(dX, .
s=0

The estimators &; are good only for large values of j. Therefore, we will not use the first »

estimated innovations &, ..., &, to construct estimators for f, and estimate f by kernel
estimators
A 1 n
fO=—=>" kx-¢). (1.1)
n—r Jj=r+1

Here k() = k(u/b)/b for some density k and some bandwidth b.

In Section 2 we derive rates of convergence in probability for  in the L, and L, norms.
These rates are new. They are the same as those for kernel estimators based on the actual
innovations &,.1, ..., &,, 1.e. kernel estimators based on i.i.d. observations. For the sup-
norm, strong convergence rates of kernel estimators based on residuals have been obtained
in similar models: Fazal (1977) and Li (1995) consider linear regression with fixed design;
Liebscher (1999) treats nonlinear autoregressive models.

In Sections 3 and 4 we address estimation of the stationary density of the MA(q) process.
This density has the representation

q
g0 = Jf(x— Z&yi)f(yl) SOy ey, xeR (12)
i=1

We estimate g by plugging in the estimator f of the innovation density and the estimator 9 of
9. In Sections 3 and 4 we prove that n'/2(g — g) converges in distribution, in Z; and in
Co(R) respectively, to a centred Gaussian process. In Section 5 we show that ¢ is efficient in
those function spaces if an efficient estimator for 3 is used. Efficiency is understood in the
semiparametric sense discussed in Bickel et al. (1998) for the i.i.d. case. Recall that in
nonparametric models like the ones mentioned above, all regular estimators are
asymptotically equivalent, and therefore proving efficiency is straightforward, whereas in
our semiparametric model the calculations of the influence function of the estimator and of
the asymptotic variance bound pose difficulties.

2. Estimation of the innovation density

We study the estimator f introduced in (1.1). For notational convenience we assume that

the observations are X _,.q, ..., X,. Then we can write
J+r—1
é_]' = E aS(Q)Xj_S, ] = 1, R (N
s=0

o 1<
f@) =3 k(x—&).
j=1
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We will let » tend to infinity slowly. As a first approximation to &; we use
E=¢+ -9,

where

= Z ds('g)Xjfsz
5s=0

with a4(3) denoting the gradient of a(3) with respect to .

Lemma 1. Suppose 3 is n'/2-consistent for 8 and r/logn — oo and r/(log n)* — 0. Then

n

> & =& = 0,(D). 2.1)

J=1

Proof. Recall that ¢; =3 " a,(9)X,_;. We can bound the left-hand side of (2.1) by
Tl + T2 + ng 9||T3, with

n jtr—1
Ti=> Y la® —a® - = D" a®)| X,
Jj=1 s=0
= Z Z | (DX
Jj=1 s=j+r
n=3 3 e Xl
Jj=1 s=j+r

It is well known that a, and its derivatives exhibit exponential decay locally uniformly. Thus
there are 7 > 0, p < 1 and a constant C such that

o |as(@)| + llas@] + llas@] < €
—9||<p

Hence

ET =) > la®EX| = 0(2 p”") =0(p"),
j=1

j=1 s=j+r

ET; =) > la®|EX| = 0(2 pf“) = O(p").
=1

j=1 s=j+r
Since § is n'/2-consistent, the probability of ||§ — 9|| > # tends to zero, and

n Jjtr—1

”‘9 9” Z Z sup |as(r)“ |Xj s|+0p(1)* p(l)-

j=1 [r=3l=n
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In the last step we have used n'/>-consistency and

n j+r—1

E> "N plX ] = 0.
Jj=1 s=0

O

We use Lemma 1 and smoothness of f to obtain rates of convergence of f in the L,-
norms for p =1, 2. We say a function % is L ,-Lipschitz if there is a constant C such that

J\h(x - kP de< CPP,  teR.

We call C the L ,-Lipschitz constant. We use /' to denote the derivative of a differentiable
function /# and an almost everywhere derivative of an absolutely continuous function 4.

Lemma 2. Let h be absolutely continuous with h' in L, for some p € [1, co). Then h is L ,-
Lipschitz with L ,-Lipschitz constant C = ||h'|| ,. Moreover, for every random variable Y with
E[|Y|?] finite, we have

J|E[h(x + tY)] — h(x) — tE[Y]h'(x)|? dx = o(|#]?).
If h' is L,-Lipschitz and E[Y??] is finite, then we even have
J|E[h(X+ 1Y)] — h(x) — (E[Y]h'(x)|” dx < ||A"|| JE[Y 71|27
Proof. By absolute continuity, A(x + 1) — h(x) = tfol h'(x + ut)du, and the moment inequal-
ity gives
J|h(x ) — h(x)|? dx < |t”JJ;|h’(x + uf)|? dudy = |t|pJ|h’(x)|pdx.

Similarly,
1
J|E[h(x + 1Y) — h(x) — tYR'(x)]|” dx < |t|]’E l|Y|pJJ |h'(x + utY) — h’(x)pdudx] .
0

This bound is of order o(|#|”) by the L ,-continuity of translations (see, for example, Theorem
9.5 in Rudin (1974)), the Lebesgue dominated convergence theorem, and the bound
J1A' (x = 5) = h'(x)|? dx < 27| 1'|| 9. Tt is of order o(#*?) if i’ is L,-Lipschitz and E[Y?”] is
finite. O

Remark 1. Recall that the density f has finite Fisher information (for location) if f 1is

absolutely continuous and
, 2
Jr = J(]}((;;)) f(x)dx < oo. 2.2)
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In this case, we have ||f]l < [lf'|i </} and ||f'|3 < |Ifll/y < J3/*. Thus, if f has
finite Fisher information for location, then f is L;- and L,-Lipschitz.

Theorem 1. Suppose [ has finite second moment and is L|-Lipschitz. Suppose k has finite
second moment and is twice continuously differentiable, b — 0 as n — oo, and the integrals

[(1+ [u)?|k'(w)|du and [|k"(u)|du are finite. Let 3 be an n'*-consistent estimator of 9.
Then

I = flli = 0p(n' 572+ OB) + 0, (n 7207 112),
In particular, if b ~ n~'/3, we obtain ||f —flli = OP(n‘1/3)A

Proof. Let
fx) = Z kp(x — &) and f(x)= Z kp(x — &)).
3
Then, using Lemma 1,

A ~ 1 <&
17 = 7l =D [l = &) kot — 2l

=

1
(éj—éj)JOk[;(x—éj— M(é]—gj))du dx

-]

1< ~ , L
= ;Z & — & kbl = Op(n™'b7h).
=1
By the L;-Lipschitz property of f and the moment assumptions on £,

15 ko — £l = “v(x  bu) — f)|dx k(u)du < chbmk(u)du — o).

A similar argument, using [ &'(u)du = 0, yields

|kb = fl1 = b”J J(f(x — bu) — f(x)k'(u)du|dx < JC|uk’(u)|du =0(1). (2.3)

Since f and & have finite second moments and & is bounded, it follows from Lemma 2 in
Devroye (1992) that
If = f * kolli = Op(n™ 267112,
Thus it remains to show that
1f = Flli = 0p(n™"572) + Op(n™ 2. 24)
For this purpose let
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h(x) = lzn:éjké(x —&)), xeR.
nes

A Taylor expansion gives

v—f+@—9fmlsW—swiiyavwml=0An%2> 25)

Jj=
Let
h(x)%jiléjE[k;,(xej)]%jiléjk;’,*f(x), xeR

Then fz(x) — h(x) is a martingale, and

WE[ AGx) — h(0[1?] < ELllé [P kb(x — £1)7] = [llélllz]Jkux—y)zf(y)dy.

Using this bound, we can show that [||A(x) — A(x)||dx = O,(n~'/2b73/?). Indeed, with
ro = n~2b32E[||é,||?1/?, we can bound

JE[H/%(x) ~ )1dx = JE[HI%(x) @I dr
1/2
< j <Jf(x () dy) dx

dr , 12
=n([ 5 [Jar e mreras)

= O(ry).

In view of (2.3), we have [ || 4(x)|| dx = O,(1). Together with n 1/2_consistency of 3, the above
shows that H(8 S)Th||1 = ,,(n’l/z + n’lb 3/2) This and (2.5) yield (2.4). This completes
the proof. UJ

Remark 2. Other results are possible under different assumptions on f. If f is absolutely
continuous with integrable f’, and k& has mean zero, then Lemma 2 shows that
I/ % ks — f]li = o(b). In this case we can use b~ n'/* and obtain |f— f|,
=o,(n" UH.If £ is also L, -Lipschitz, then one can show that ||f * &k, — f1[1 = o(b?),
and the choice b~ n~'/% yields || f — f||i = O,(n"2/%). Faster rates are possible under
additional smoothness on f and if higher-order kernels are employed.

Corollary 1. Under the assumptions of Theorem 1, we have

me%mwaWﬂW- 2.6)
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Proof. Use the Cauchy—Schwarz inequality and | F(x)— f )] < F(x) + f(x) to bound the
square of the left-hand side of (2.6) by

sz(ﬂx) 4 f(x))de G0 — f(0)ldx.

The desired result follows from this bound and

sz F(x)dx = %Z J(é_,- + bu)? k(u)du < %Z 285 + 2b2Ju2 k(u)du = 0,(1).
1 j=1

In the last step we have used the fact that max;<;<,|é; —¢&;| = O,(1), which is a
consequence of Lemma 1. ]

Theorem 2. Suppose f has finite fourth moment and is Ly-Lipschitz. Suppose k has finite
second moment and is three times continuously differentiable, and the integrals
[+ ) W)|dv, [(1+v})|k"(v)|dv, and [|k"(v)|dv are finite. Let 3 be an n'/2-
consistent estimator of 3. Let b — 0 as n — oo. Then

1f = fll2 = Op(n™16722) + 0p(n™207172) + O(b) + Oy (n~>2b771%).
In particular, if b~ n~'3, we obtain ||f — |, = 0,(n~1/3).

Proof. Let f and f be as in the proof of Theorem 1. Using the Cauchy—Schwarz inequality
in the form (Y a;b,)* < |a;|>"|a j|b§, Fubini’s theorem and Lemma 1, we obtain

2

R N _ S
17 -7 = || IR )| b — & = utey ] ax

N I (Y L N o
s;Z|ej—sj|J;Z|s,—e,|J |kh(x — & — u(é; — &,))|* dudx

J=1 J=1 0

2
1< . . , o
= (;Z|Sj—€jl> [kb|5 = Op(n2b72).
J=1
It is well known that

E[|lf =/ * ksll3] = n Y| ko I3 = OB,

Thus ||/ — f * kp|la = O,(n~/2b~1/2). From the L,-Lipschitz property of / and the moment
assumptions on k we derive

If * kp — f5 < “(f(x — bu) — f(x))*k(u)dudx < CJbzuzk(u)du = O(b?).

Since [ k'(u)du =0 and [ k"(u)du =0, we can use a similar argument to conclude that

Ikh* fll2 = O(1) and ||k f]2 = O(b™"). 2.7
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For example,

2
kb » 1 = b‘zj (J(f(x ~buy— f(x))k'(u)du) dx

<72 [rte b Pl @l [kl = o)
To complete the proof we shall now show that

If = F15=0,(n 3677+ 0,(n"2b73) + 0,(n" ). (2.8)

Let /4 and / be as in the proof of Theorem 1, and set
2 I, s 77 I, oy
H(x) = ;; éjéjki(x—e;) and H(x) = ;;sjs Tkbxf(x),  xeR

Then a Taylor expansion yields
2

- -1 4 L 1N, - ) ?
Hf—f—(S—9)Th—2(9—9)TH(9—9) g”ﬂ;l(él—Lg)T?/}]j(x, b)| dx,

2
where
1plpl R
Ii(x, b) = J J J ow? [kf(x — &; — uow( — 9)'¢;)|du dv dw.
0J0JO

Now apply the Cauchy—Schwarz inequality as at the beginning of this proof and use the fact
that [ I5(x, b)dx < [(k}(x))* dx = b77||k"|5 to see that

1< R ' 2 1 ~ ) 2 - .
H;Zl(s;—sfeﬁfj(x, b)| dx =< (;ZI(S—S)TSJ-I3> bIK" 5.
Jj=1 j=1

Since f has finite fourth moment, we obtain that E[||¢;]|*] < cc. It is now easy to see that

2
=0,(nb7).

Hf—f—(@—9)%—%(9—9)%(9—9)
2

Next we have

[t - eoiPiar < et P [ ki 220y ds = 067157,
and similarly

[0 ~ FeolP1ax = - g1 [ - 9200y e = 071579,

In view of (2.7), we also have
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[z ar =0, and |1 HIE 0= 0,06
From the above and the n!/?-consistency of ¢ we obtain
I3 = DAl = Op(n b7 + 7Y,
163 = HTHS = 9|3 = Op(n>b> +n7b72).
Combining the above we obtain the desired (2.8). Ol
Remark 3. Other results are possible under different assumptions on f. If f is absolutely
continuous with integrable f’, and k has mean zero, then Lemma 2 shows that
|f * k» — f|l2 = o(b). In this case we can use b~ n '/* and obtain |f — f|, =
op(n’l/“). If f' is also Lp-Lipschitz, then Lemma 2 shows that |/ x ks — fll2 = o(b?),
and the choice b ~ n~'/% yields ||f — f|2 = O,(n7%/").

Corollary 2. In addition to the assumptions of Theorem 2, let f be bounded and let k have a
finite fourth moment. Then

sz(ka) — S dx = 0,67 2|f = f]). (2.9)

Proof. 1t is easy to see that ||/ < ||k|l<cb™". As in the proof of Corollary 1, one verifies
that

Jx“ F(x)dx = %zn:(é i+ buy k(u)du < %Z 8% + 8b4ju4k(u)du = 0,(1).
j=1 j=1

Now use the Cauchy—Schwarz inequality to bound the square of the left-hand side of (2.9) by
If = fII5 [x*(f(x) — f(x))* dx and thus also by the larger term

17 = 7157 + £+ 171) = 06717 = 11
This is the desired result. O
We conclude this section with a technical result about scaling which will be used later.

Lemma 3. Let h be an integrable function that is absolutely continuous with h' satisfying
[1x] 12" (x)|dx < oc. Then, for s # 0, and as t — s,

[0 ) 5 Q)

Proof. Substituting u =x/s and letting a = s/t (which we may and do assume to be
positive), one simplifies the left-hand side to




900 A. Schick and W. Wefelmeyer

|

Let h(y) = e’h(e”), y € R. Then & is absolutely continuous with integrable A’ given by
h'(y) = e’h(e”) = e*’h'(e”). Thus Lemma 2 with ¥ = 1 and the fact that e ?(e? — 1) =
b+ o(b), as b — 0, yield

ah(au) — h(u) — %(h(u) — uh'(w))|du.

jv%(y 1 b)— h(y) — e (e — DR O)Idy = o(b).

Letting b = log(a), the substitution y = e* gives

l,

A similar argument yields the result for integration over negative u. O

a—

P ! (h(u) — uh'(u))|du.

ah(au) — h(u) —

3. Convergence in L; of estimators for the stationary density

We now address the estimation of the stationary density g viewed as an element of the
function space L;. Recall that g has the representation (1.2):

q
g = |1 <x - Zsiy,.)f(yl) o fdy - dy,  x€R
i=1

Alternatively, we can write g as the convolution g = f * f7,* --- *f; ~of the densities f,
frs s fr,, Where 7y, ..., T, are the non-zero components of 3 and f; denotes the density
of 7e; for non-zero 7, so that f;(x) = f(x/7)/|z|, x € R. Since 9, # 0, we can thus write

q—1
g = |, (x - Zsiy,)f(yl) Gy v, xER
i=1

In what follows we assume that f is absolutely continuous with integrable f’ almost
everywhere. This implies that f is bounded and L;-Lipschitz. It also implies
that f = f; is continuously differentiable with derivative f' x f; that is absolutely continuous
with  almost everywhere derivative [’ * (/7). We have ['x(f7)'(x)=(1/7)
| f'(x—7y)f'(y)dy. From this we immediately see that the density g is continuously
differentiable with integrable derivative g’ given by

q
g |r (x -3 siyl)f(yl) SOy dy, xR,
i1
and that g’ is absolutely continuous with integrable g” given by

q
=y | |7 (x - 9,-y,~> SO0 FO DS G -y, vER
q- i=1
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If we require, in addition, that [|xf'(x)][dx < oo, then the gradient g(x)=
(£1(x), ..., £4(x)" of g(x) with respect to the parameter 9 exists for every x and has vth
component given by

q
e <x - Z.giyi) FOn) -+ FOrdy -+ dy,

i—1

Actually, differentiability holds uniformly in x,
Suglg.m(x) — g(x) — 0" g()| = o([|o])), (3.1
xe

and in the L-sense,

lgsro — g =0 gl = oIS, (3.2)

where gy, ¢ denotes the stationary density for the parameter value 9 + d. These are verified
with the help of Lemmas 2 and 3.
We estimate g by the plug-in estimator

A~ q ~ A ~
g = |7 (x -3 siy,)f(yl) o fdy oy, xER
i=1

where f is as in Section 2. We view g as an element of L; and show that, under mild
additional assumptions, the process n'/?(g — g) converges in distribution in the space L; to a
centred Gaussian process.

To describe this result, it will be convenient to set 3y = 1. Note that g is the density of
Y=¢e+%er + ...+ 96, =>1,%¢€. Now let p; denote the density of ¥ — 3¢, for
i=0,...,q. Then

q—1
po(x) = J e stq (x - Zlgiyi)f()ﬁ) e fg-)dyr - dyge, x € R,
i=1

and, fori=1, ..., q,
pi(x) = J e Jf (X - Z 91‘)’/‘) H S(pdy;, xeR.
i i

We have, for i =0, ..., g,
in(x =9 f(dy = g(x), xeR.

Now define L;-valued processes H,, ..., H, , by

n

o) =5 (i = e = [pie— 9mrody),  xeR
n

J=1

With F denoting the empirical distribution function of the innovations ¢y, ..., &, and F the
distribution function with density f, we can write



902 A. Schick and W. Wefelmeyer

HMﬂZJm@—&ﬁdﬂw—F@» xR,

By the assumptions on f, the densities py, ..., p, are absolutely continuous and py, ..., pg
are integrable. Thus we have the representation

.00 = % [ pitx = 30)F0) ~ FOMy, € R (33)
We shall now use this representation to establish tightness of n'/2H,,; in L,. For this purpose
we also need the following characterization of compact sets in L;, which is known as the
Fréchet—Kolmogorov theorem; see Yosida (1980, p. 275).
Lemma 4. 4 closed subset H of L, is compact if and only if

sup | [l < oo,
he H

lim supj|h(x — 1) — h(x)|dx = 0,

=0 hen

lim supJ | A(x)|dx = 0.
[x|[>K

K100 he f

Let A= n'/>(F— F) denote the empirical process and assume that the function
Y = (1 — F)'/2F'/2 is integrable. Then

E[A] = jEnA(x)udx < jE[A%x)]l/de = Iyl < oc. (3.4)
We also find that

EJ |A(x)|dx < J PY(x)dx — 0 K — . (3.5)
|x[=K [x[=K

Moreover, for positive # € R and finite K,

1a 2 Hl < 194 1P AT (3.6)
Jnl/ZIHn,i(x + 1) —H,;(x)|dx < |9i|HAH1J|p§(X + 1) — pi(x)|dx, (3.7)
j I H, )dx < |9 Hp;nlj IAG)Idy (3.8)

[x|>2K [9;y[>K

19 ||A\|1j |Pl)ldx.
[>K

|x

By the integrability of pj,
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J|p,‘(z + 1) — pi(z)]dz— 0 as t — 0. (3.9

Applying (3.4), (3.5) and (3.9) to inequalities (3.6)—(3.8) and using Lemma 4, we see that
nl/Z[H],,,,- is tight in ;. Consequently, H,; + ...+ H,, converges in distribution in the
space L; to a centred Gaussian process.

For a > 1 we have

Iyl < J(l N dxj(l D — Feo)F(od,

This shows that integrability of 4 is implied if / has a finite moment of order > 2.
We are now ready to state the main result of this section. Let V' denote the map defined

by
V(x) =1+ |x|, xeR,
and set
uw=>0+8 +...4+ 9E[&].
Theorem 3. Suppose f has finite moment of order B > 2 and is absolutely continuous with
[ satisfying ||f' V|1 < oco. Let the kernel k be as in Theorem 1 and have mean zero. Let

the bandwidth b satisfy nb* — 0 and nb%> — 0. Let 3 be a n'*-consistent estimator of &
Then

lg—g—(Hauo + ...+ Hag) — (3 = HT(g — ug"i = 0,(n /2.

Moreover, n'/ 2(|]'[|n,o + ...+ H,y) converges in distribution in the space Li to a centred
Gaussian process.

Theorem 3 is a simple consequence of the following two lemmas. To state them, we
introduce the bounded linear operator A; from L, to L; which maps an integrable function
h to the integrable function 4;h defined by

Aih(x) = Jp,-(x — %iy)h(y)dy, xeR.
Abbreviate f * kj, by f.
Lemma 5. Under the assumptions of Theorem 3, we have
1§ = & = (Ao(/ = f) + o+ A(f = f:) = B = D Elli = 0,(n~'/2).
Lemma 6. Under the assumptions of Theorem 3, we have, for i =0, ..., g
14i(f = /) = Hoi + B = HTELa118:g |1 = 0,(n~ 1),

Proof of Lemma 5. 1t follows from nb%? — oo that n='b=2 + n~1/2p~1/2 = o(n~'/*). Thus,
in view of the proofs of Theorem 1 and Corollary 1,
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If = falli = 0p(n™'7), (3.10)

I(F = fV i = op(D). (3.11)

For t € R? and integrable ho, ..., hy, let L(t, ho, ..., hy) denote the integrable function
defined by

q
L(t, ho, .., hy)(x) = J e Jho <x -3 tiyi> m(y1) - hy()dyr - -dy,,  x€R.
i=1

It is easy to see that
|L(t, ho, .., h)lli < ||holli - -~ [|g]1- (3.12)
Moreover, if hj is absolutely continuous with integrable A, then
IL(t, oy <oy hg) = LA, oy -y Bt < @ PN BoNi e — sl 1 V- Vhg Vi (3.13)
Indeed, we can bound the left-hand side of (3.13) by

q
Hh(,)Hl Z |ti - Si|J T Jb’ihl(J’l) T hq(yq)|dy1 tee dyq-
i=1

We can write g:L(g,f, ...,f), g=LG, f,.... ) and g, =Lt f,...., f) It
follows from (3.2) and the n'/2-consistency of & that
lgs — g~ B =97l = 0,(n"?).
Set gF = L(t, fx, ..., fx). We can express g as
€100 = [ eutx — bk

with &, = L(t, k, ..., k) a density with mean zero and finite variance which is 1+ ||¢[?
times the variance of k. Thus, by Lemma 2,

&k — g5l < ||gg|\1szu21€9(u)du = 0,(b*) = 0,(n" ). (3.14)
For a subset 4 of {0, ..., g}, we set
V(ta A) = L(t9 hO» sy hq)
with

' f*’ Z#Aa

and, for r =0, ..., g, we set

T(r, =Y 9t A).

| 4]=r
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Since f =fx —I—f—f* and h; — L(t, ho, ..., hg) is linear for each i =0, ..., ¢, we obtain
the expansion

e=T0,9+...+Tqg+19.

We obtain from (3.12) that [T(r, )lli < 3, 7S, Dl < (1) = f4ll}- Thus, by
(3.10),

q+1

1€ =T, &) =T, Hlli = YT Hlly = 0,(n~ '),
r=2

Note that I'(0, g) = g;. Thus to finish the proof it suffices to show that
q
T, $) =T, Dl <D 7, iy =y, Dl = 0,(n'/?), (3.15)
i=0

where y(9, i) = (%, {i}). We obtain from (3.13), (3.10) and the n'/2-consistency of $ that
Iy, 1) =79 Dl = 1L, fas [ = S S oo S50 = LG, fas [ = Fios S5 Sl

< ¢ PSS = S = LV I VT = 0p(n™'72).

Here we have used that ||f%]|; = O(1) and ||« V|; = O(1). The former result was shown in
the proof of Theorem 1, and the latter follows from direct calculations. Similarly, for
i=2,...,q, we have [y i)—y®, )l = 0,(n"1/?). For the case i=0 we let
S =1, ..o, Yyt DT and Yk =%, ..., Fg—1, DT, and set qS :fﬁq * kﬁqb and
¢ = fi 9, * k‘gq »- Then we use the commutativity of convolutions to derive that

y(g,O):L(g,f—f*,f*,,f*)ZL(g*,f—f*,f*,,f*,é)

:L(g*,éyf*>3f*9f_f*)

and y(X, 0) = L(Fx, @, fxsr -+ [x, f — f%). By linearity of L(¢, ho, ..., hy) in hg, we can
write

Y9, 0) = y(8, 0) = LB, ¢ = b, s s fas [ = [
+L('§*s¢,f>k;-~~,f*;f_f*)—L(‘g*;¢af*,---;f*,f_f*)-

The arguments for the case i = 1 above yield

1L, @y fis oos s f = 3) = LB, by fres ooy fas [ = Fl = 0,(n7172).
Next, it follows from inequality (3.12) that

||L('§*a¢3_¢af>k’ 9f*7f_f*)||l = ||¢_¢||1Hf_f*“l

Lemma 3 and the n'/?-consistency of ¢ yield

15, * kg, = fo, * Ky plly = 11f5, = S, Il = Op(n™').



906 A. Schick and W. Wefelmeyer

Since fgq is Ly-Lipschitz, we obtain
13, # kg = fo, % ko,plli = Op(Bl9 = 34) = 0,(n~ /7).

Thus we obtain || — ¢||; = O,(n~'/?) and hence y(8, 0) — y(9, 0)||, = 0,,(nj1/2). This
completes the proof of (3.15). The desired result now follows since y(3, i) = 4;,(f — f) for
i=0,...,q. O

Proof of Lemma 6. Fix i € {0, ..., q}. Let f and f be as in the proof of Theorem 1. Then
We can express
AS = 1= A =D+ A = D)+ 4] = [+)-

Since ||/ — f|li = O,(n"'b~") as shown in the proof of Theorem 1, we obtain that

14:(f = Dl < If = flli = op(n”'7).

It is easy to see that
Ai(f — fo)x) = J[H],,,i(x — 3;bu)k(u)du, xeR. (3.16)

Since [ |h,(x — a,u) — h(x)|dx — 0 as |k, — hll; — 0 and a, — 0, and since n'/’H,;
converges in distribution in the space L;, we obtain from Rubin’s theorem (see, for example,
Theorem 5.5 in Billingsley 1968) that

14:(f = fx) = Houillh = 0,(n /).

The desired result will thus follow if we show that

14:(f = )+ & — HTE[&119:¢'|l1 = 0,(n" /). (3.17)

For this purpose, note first that

n

_ 1 .
AP =33 [ = ey + 3= 1, + bkt

J=1

n

- 1
AP0 =33 [ = ey + bkt

=1
It follows from the properties of f that p; is absolutely continuous with integrable p;. Now
set

n

yi(x) = %Z é ,J Pix — 9i(e; + bu))k(u)du, xeR.

=

It is easy to see that we can bound D; = ||4:(f — f) + (3 — 9)Ty:|, by
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IR . 5
D=3 [Ipr = 813 = D)~ pi) + 81— 97 piwldn

=1

1 n R ) 1 , R ) ,
=15 = | | 17— 5905 = 916 picolasas
=

<19,/ 16 - 9||_z||.9,” sup j|p<x 86 — pl(o)ldx,

[f]<&
where &, = maXIgjgnKvg — 9T¢)|. Since 9 is n'/2-consistent and

P(maX n gy > 77) < nP(|lé1] > nn'?) < E[|l&|*11]|é1]| > 5n'1] — 0,

I<j<n
we can conclude that &, = 0,(1). This and (3.9) yield
14:(f = 1)+ 8:8 = )il = 0,(n~ /2.
It is easy to check that
lxi —El&1]g’[[1 = op(1).
This completes the proof of (3.17). O

Remark 4. Under the conditions of Theorem 3, the optimal bandwidth rate for estimating f is
b ~ n~'/3. The requirement nb* — 0 allows us to over-smooth the kernel estimates of /. The
condition nb* — 0 is used to conclude (3.14). It cannot be relaxed even if we impose
additional smoothness on f as long as we insist on using kernels of order 2. For higher-order
kernels, however, it can be relaxed. For example, if £ is a kernel of order 4 and f” is
integrable, then we can weaken the requirement nb* — 0 to nb® — 0. Indeed, we then
have |[|g7 — g;lli = O(b"). The latter even holds without the additional smoothness
assumption on f for such kernels as long as three of the coefficients of 3 are non-zero.
More generally, one can show that if m of the coefficients of & are non-zero and one uses a
kernel of order m + 1, then ||g — gglli = O(b™*). For m =2 and a kernel of order 3 we
can take b ~ n~'/3, although thls choice of bandwidth over-smoothes the kernel estimator f

4. Convergence in Cy(R) of estimators for the stationary
density

In the previous section we studied the estimation of g in the function space L;. This is a
natural space when dealing with densities. However, we are sometimes interested in other
norms, in particular in the sup-norm. In this case it is more convenient to view g as an
element of Cy(R), the set of (uniformly) continuous functions % from R to R which vanish
at infinity in the sense of the one-point compactification: limg ... supjy=x|h(x)| = 0.
Endowed with the sup-norm, Cy(R) becomes a separable Banach space.
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The goal of this section is to translate the results obtained in the L;-norm to the sup-
norm. More precisely, we shall prove a sup-norm version of the expansion given in
Theorem 3, and then conclude that the process n'/2(g — g) converges in distribution in the
space Cy(R) to some centred Gaussian process.

Note that integrable uniformly continuous functions belong to Cy(R). Assume now that f
is absolutely continuous with integrable f’. Then the densities g, po, ..., p, inherit these
properties and hence belong to Cy(R). From this we immediately obtain that the processes
H,o, ..., H,  introduced in the previous section have sample paths in Cy(R) and hence are
Co(R)-valued random elements. Let us now show that '/ 2H,,; is tight in Co(R) for each
i=0,...,q. To this end, we recall the following characterization of compact subsets of
Co(R). For a proof, see Schick and Wefelmeyer (2004b).

Lemma 7. 4 closed subset H of Cyo(R) is compact if and only if

limsup sup |A(z) — h(y)| =0,
0l0 heH |z—y|<o

lim sup sup |A(x)| = 0.
K=00 pe H |x=k

To obtain tightness of n'/ 2U-I],,,i, first recall the representation
b0 = 8 e~ SAGIy,  wER
Thus we may assume that 9; # 0 and obtain the bounds

sup [n'/2(H,(2) — HasO)| < || Al sup j|p;(u + 1) — piw)|du,

|z—y|=0o |t|<o

sup ['2H,, 0 = swp A i+ 181 picola
|x|[>2M [%iy|>M Ju|>M

These bounds, relation (3.9), and well-known properties of the empirical process give, in
view of Lemma 7, the desired tightness of the process n'/?H,, ;. It is now easy to check that
H,o + ...+ H,, converges in distribution in the space Cy(R) to a centred Gaussian
process.

We are now ready to state the main result of this section. Recall that V(x) = 1 + |x| and
uw=>04+8 +...+ 3YE[&].

Theorem 4. Suppose f has finite fourth moment and is absolutely continuous with f'
satisfying ||f' V|1 < oo and ||f'V||2 < co. Let the kernel k be as in Theorem 2 and have
mean zero and finite fourth moment. Let the bandwidth b satisfy nb* — 0 and nb"/® — co.
Let § be a n'?-consistent estimator of 9. Then

lg—g—MHuo + .+ Hup) — O = D& — 1g)llwe = 0,(n" ).
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Moreover, n'/?(H,o + ... + M, ) converges in distribution in the space Cy(R) to a centred
Gaussian process.

Proof. Since the density p; is uniformly continuous, the range of the operator A; contains
only integrable and uniformly continuous functions and is thus a subset of Cy(R). Actually,
A; is also a bounded linear operator from L; into Cy(R), as

[4ihllsc < || PillollAll1- (4.1)
Moreover, if % is also square-integrable and 3; # 0, we obtain the alternative bound
4ihlloc < 1872 il (4.2)
Indeed, an application of the Cauchy—Schwarz inequality shows that
AP = [p =P dy[ MR dy < e p B R @

Since f' is square-integrable, we find that g” is bounded. More precisely, we have, for 7 close
to 9,

goo < IF"* filloe < IF'2lF 72 < T2l 211115

From this and the fact that & has mean zero and finite variance we obtain, by a standard
argument, that

lgs — ggll =< |\g§\|mszu2/€§(u)du — 0,(b") = 0,(n ') (4.4)

It follows from proofs of Theorems 1 and 2, Corollaries 1 and 2, and the choice of bandwidth
that

If = felli=o0,(n* and ||(f = fV[li=0,(1),  i=1,2. (4.5)

It suffices to prove
g —g—(Ao(f —fs) + oot Af(f = Fs ) =B =D gl = 0,(n /> (4.6)

and, for i=0, ..., g,
[Ai(f = f5) = Hoi + (3 — DTE[E119:8" |0 = 0,p(n /). (4.7)

The proof of (4.6) is like the proof of Lemma 5; but now use (3.1) instead of (3.2), use
(4.4) instead of (3.14), apply the bound

IL(t, ho, s Bllse < [tg| ™ [ Roll2ll g2l Aally - - (g1l (4.8)
instead of the bound (3.12), and replace (3.13) with the bound
|L(t, ho, ..., hg) — L(s, ho, ..., hy)||

1
= 4"t - SllLlsq + 0ty — sl dvll gl g V2l VIl - Ilag-1 Vs
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valid for absolutely continuous /4y with square-integrable Ay. To prove this last inequality,
bound its left-hand side by the supremum over x of

1 q q q
[ L i <x =S s+ 0ty sv»yV) a0 > (6 = som [ [ 1
y=1 i=1 Jj=1
q q
Z“ _St‘J J J ho <X_Z(Sv+v(tv _Sv))yv>

v=1
and then argue as in (4.3) above.
It remains to verify (4.7). Fix i € {0, ..., g¢}. If 9; =0, then (4.7) holds as its left-hand
side equals zero. Now assume that 3; # 0. Let / and f be as in the proof of Theorem 1.
We shall show that

dy; ... dy,

q
LT17Gphpldy; do,
=1

4:(f = Dllo = Op(n~ b7, (4.9)
1A(f = f5) = Hoilloe = 0,(n77?), (4.10)
14:(f — )+ & — HTE[£1]9:g || = 0,(n7?). (4.11)

Since | f — flli = O,(n"'b~") as shown in the proof of Theorem 2, we obtain (4.9) from
(4.1). It is easy to see that

sup J(h,,(x — ayu) — h(x))k(u)du| — 0

xeR
if |y, —h|l — 0, a, — 0 and & € Co(R). In view of this, representation (3.16), and the
weak convergence of n'/?H,,; in Co(R), we derive (4.10) from Rubin’s theorem. Since g” is
bounded, we have that ||g’ * k) — g'||cc = O(b). Thus it suffices to verify (4.11) with g’
replaced by g’ * k. In other words, we need to show that ||Dj||o = 0,(n~'/?), where

Di=Ai(f - )+ - DE[1]%:¢ * kp.

Let F be the empirical distribution function based on &, ..., &,. Using representation (3.3),
we find that

Di(x) = 95”191‘()6 — 9i(y + bu))(F(y) — F() + (8 — HEL&11/()dy k(u)du.
With the argument used to establish (4.3), we now derive the bound
IDilloe = 194" i lIF = F + (3 = HTELE S |2
Thus it suffices to show that
n'2([F —F + (3 — DHTELE11f ]2 = 0,(1). (4.12)

A similar result for the sup-norm was obtained by Koul (1996) in the context of nonlinear
autoregression models. He required the density f to be positive. We follow his approach in
establishing (4.12), but will not need f to be positive.

Let us define, for x € R and ¢ € RY,
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H(x, ty=n""2> "([g; + n 21T, < x] = F(x — n~'17¢)),
Jj=1

Ux, 1) =Y (F(x—n "217¢)) = Fx)+ n 217, f(x)).

j=1
Then, with 7 = n!/ z(g —9), we can bound the square of the left-hand side of (4.12) by
2

3J(H(x, ) — H(x, 0))* dx + 3JU(x, f)dx + 3| £ 113171

1 n
> (¢ —El&a])
j=1

Since || f' V|, is finite, /" is bounded and hence square-integrable. Thus the last term tends to
zero in probability by the ergodic theorem. Since f is L,-Lipschitz in view of | f" V|, < oo
and &, = n1/2 maxlg_,-g,,|tATéj| = 0,(1) as shown in the proof of Lemma 6, we obtain
| U(x, t)dx = 0,(1). Thus, the desired result (4.12) follows if we show that, for all positive
integers M,

sup J(H(x, 1) — H(x, 0)*dx = o,(1). (4.13)
[l =M
Fix such an M and set S = {—1, 1}79. For j =1, ..., n, let S; be the S-valued random vector

whose ith coordinate equals the sign of the ith coordinate of €;. For o € S, let
Ho(x, )= n""2 3 1[S; = o](l[ej 42T < x] - Fx— n—l/zsz'j)).
j=1

Then H(x, t) =), .sHs(x, t), and (4.13) follows if we show that, for all o € S,

sup J(Hg(x, 1) — Hy(x, 0))* dx = o,(1). (4.14)

[ l=M

Now fix 0 € § and a large integer K. Partition the cube [—M, M]? into (2MK)? cubes of
equal volume. Let C denote the collection of these cubes. For each C € C there exist vertices
tc and T¢ of C such that tgéj S tTé_,- = TTCé_,- for all # € C and for all £; with S; = ¢. Using
this and monotonicity, we can now show that Hy(x, T¢c) — Re(x) < Hy(x, ) <
Hy(x, tc) + Re(x) for all ¢t € C, where

Re(x)=n"'2> 1S, = 0]<F(x —n 2 LE) — F(x — n*l/zTTCe'j)).
j=1
It is now easy to see that the left-hand side of (4.14) is bounded by
3 ngagJ ((Ho (x. t0) = Ho(x. 0)° + (Hy (x, 10) = Ho(x. To) + Re(x))dx.

Since H;(x, t) — Hy(x, s) is a martingale, we find, also utilizing stationarity, that

E[(H, (x, {) — Hy(x, $))’] < E[|F(x — n""21T¢)) — F(x — n='%s7¢))|].
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Since F is L;-Lipschitz, we thus obtain
[ttt e ) = o x5 < 171113020 =

By the Cauchy—Schwarz inequality we have

RL(x) < zn: 1[S; = a](F(x —nV2Lé) — F(x — n7!/? TTcej,-))2.

=1

Since f is square-integrable, F' is L,-Lipschitz and

[ Ratonts = WS 3 P = el = W13 3 P

Jj= Jj=

Combining the above shows that the expected value of the left-hand side of (4.14) is bounded
by

3 Ellén dliel + 1Te = tel) + 31/ I5ELIE P1gK
ceC

< 3E[||& [J@QMK) n /¢ 2(M + K1) + 3| FIGELé1 [P 19K 2.

Since this is valid for all integers K, relation (4.14) holds. This completes the proof. O

5. Efficiency of estimators for the stationary density

We show that g is efficient if an efficient estimator for 3 is used. This is a straightforward
generalization of the efficiency result for MA(1) processes in Schick and Wefelmeyer
(2004a), and we will be brief. Fix true parameters 3 and f. Introduce a local model by
perturbing & as 9,. = 9+ n~'/2¢ with ¢ € R, and f as f,, with

2
(a0 se0 = w2 D012 ax = o7

The Hellinger derivative % is in Lro(f) = {h € Lo(f) : | h(x)f(x)dx = 0}. For technical
convenience we choose f,; such that, in addition, ||/, — f]|lcc — 0. Assume that /" has finite
Fisher information J, = féz(x) f(x)dx, with £ = f"/f, in the sense of (2.2). Since f has a
finite second moment, one obtains from an application of the Cauchy—Schwarz inequality
that || /' V||, is finite. Write P, and P, for the joint distribution of (X_,.y, ..., X,) under
(&, f) and (3¢, fan), respectively, and set € = ;. We have local asymptotic normality
(LAN),

dPnch o

n

log w2y (b)) + h(ep) = 5 lies MEan + 0D, (5.1)
j=1

with squared LAN norm
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(e, WItan = Jrc E[é€M1e + 2¢TE[€]E[K(e) h(e)] + E[A(e)?].

LAN for MA(g) processes follows from known results for more general time series. For
E[e] =0 and fixed f, see Kreiss (1987), Jeganathan (1995), and Drost et al. (1997); for
varying f, see Koul and Schick (1997). The LAN inner product induced by the LAN norm is

((c, h), (d, k))ian = Jrc E[é671d + c"E[E]E[{(e) k()]

+ d'E[€]E[l(e)h(e)] + E[h(e)k(e)].

Now consider a real-valued functional x of (3, f) that is differentiable at the true (3, f)
in the (usual) sense that there exist cx € R? and hx € Lyo(f) such that, for all ¢ € R? and

he L(f),
n 26 Snes fan) — 109, £)) — ¢, ¢+ E[hx(e)h(e)]. (5.2)

The convolution theorem characterizes efficient estimators of x in terms of the gradient of x
in the LAN inner product. This LAN gradient is the pair (c., h.) with ¢, € R? and
hy € Lyo(f) such that

c, ¢+ Elhx(e)h(e)] = (¢ hi)s (¢, Mian forall ¢ € RY, h € Loo(f).
Setting first ¢ = 0 and then /4 = 0, one obtains
cx = J ;" cov[E] ! (ex — E[EJE[L(e) hx(e)]), he = hx — cTE[E]0(e). (5.3)

An estimator k¥ of x is called regular at (9, f) with limit L if L is a random variable
such that

nl/z(l% — k(3 e, fun)) = L under P, for all c € RY, h € Lyo(f).

The convolution theorem says that L is the convolution of some random variable and a
normal random variable with mean zero and variance ||(cy, /)||7 x. This justifies calling &
efficient at (3, f) if L is distributed as this normal random variable. It also follows from the
convolution theorem that x is regular and efficient if and only if

n' 2k —k(9, f))=n"'"? i:(czs' () + hie(e)) + 0,(1). (5.4)
j=1

We apply this characterization to g(x) and to the components of 3, interpreted as functionals
of (8, f). First we calculate the LAN gradient of

q
KN =g = [ 1 (x =S siy,)f(yl) o f Oy dyy.
i=1

Recall that u = (1 + 91 + ... + §,)E[£].

Lemma 8. If f has finite Fisher information Jy, then the functional i, is differentiable at
(3, f) with LAN gradient (c,, hy) given by
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e = J covlE] N (8() — ug' (@), e = . — cTELE,
where

q

()= <p,»(x — %) — jp,»(x - siz)f(z)dz) :

i=0

Proof. 1t is straightforward to check that the functional «, is differentiable in terms of the
usual inner product for (¢, h):

n'2(1(Snes [rn) — k(8 £)) — " (x) + E[h(e)ya(e)]-

This is differentiability (5.2) with cx = g(x) and &x = . The LAN gradient (c,, A,) is now
obtained from (5.3), using E[{(e)y.(e)] = (1 4+ 8 + ... + 3, g'(x). O

By (5.4), an estimator «, is regular and efficient for g(x) if and only if
n'(k, — g(x)

= 172N (Wale) + (800 — 1g' ()T covIE] (& — ELEDS S He)) + 0,1
=1
Note that (1/m)}>"_9x(e;) = Hyo + ... + H, 4. Comparing with Theorems 3 and 4, we see
that our estimator g(x) is efficient if

2§ -9 =n'"? Z cov[£]' (&, — E[])J ; U(e)) + 0,(1).
j=1

This is the characterization (5.4) of a (componentwise) efficient estimator of 9. Indeed, the
functional (9, f) =39, is differentiable in the sense of (5.2) with cx = e;, the ith ¢-
dimensional unit vector, and /#x = 0. Hence by Lemma 8 its LAN gradient is (¢;, 4;) with

ci=J ;" cov[é] e, hi = —c] E[¢]L.

Efficient estimators of 3§ were constructed in Kreiss (1987) under the assumption of
symmetry, and in Drost et al. (1997), Koul and Schick (1997), and Schick and Wefelmeyer
(2002b) under the assumption that Ee = 0. These constructions can be adapted to our slightly
more general situation; see Schick and Wefelmeyer (2004a) for the case g = 1.

Since g(x) is efficient for g(x) whatever x, it follows that (g(x), ..., g(xz)) is efficient
for (g(x1), ..., g(xx)) for any x;, ..., x; and any k£ As an immediate consequence, under
the assumptions of Sections 3 and 4, our estimator g is efficient for g in the spaces L; and
Co(R).
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