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the techniques of the classical Itô stochastic calculus, we develop a new stochastic calculus for

Skorohod integral processes, different from that introduced by Nualart and Pardoux.

Keywords: Malliavin calculus; stochastic integrals

1. Introduction

The anticipating integral, or the Skorohod integral, is an extension of the Itô integral to

non-adapted integrands and coincides with the Itô integral when the integrand is adapted.

The aim of this work is to present a different approach to the anticipating stochastic

calculus, extending the results of the martingale theory. We study anticipating integral

processes (X t) t2T , with X t ¼
Ð t

0
us dWs. These processes are not martingales, since they are

not adapted to the Brownian filtration (F t) t2T . But they satisfy an interesting property, that

is, if F[s, t]c denotes the � -algebra generated by the increments of the Wiener process W on

Tn[s, t], then

E X t � X sjF[s, t]c

� �
¼ 0: (1)

Relation (1) implies immediately that the projection of X t on the Brownian filtration is a

martingale. Indeed, by (1), E(X tjFs) ¼ E(X sjFs) and, if we put Z t ¼ E X tjF t½ �, we have

E(Z t=Fs) ¼ E(E X tjF t½ �jFs) ¼ E X tjFs½ � ¼ E X sjFs½ � ¼ Zs:

We will see that every Skorohod integral process X t can be written as an ‘Itô’ integral of the

form Yt ¼
Ð t

0
E[vÆjF[Æ, t]c ]dWÆ, where v is a square-integrable process depending on u. The

integral Y is an isometry since, by the mean square formula for the Skorohod integral,

E

ð t

0

E vÆjF[Æ, t]c

� �
dWÆ

� �2

¼
ð t

0

E vÆjF[Æ, t]c

� �� �2
dÆ,

and it has another important property, that it can be viewed as a limit almost surely of a

certain uniformly integrable martingale. This fact will allow us to develop a parallel

stochastic calculus for anticipating integrals, different from that introduced in Nualart and

Pardoux (1988) but coinciding with it in the adapted case. We believe that our construction
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gives a more probabilistic approach to the anticipating stochastic calculus, opening up the

possibility of defining stopping times or almost sure limits for Skorohod integrals. We plan to

study these problems further.

Section 2 contains some preliminaries on the Malliavin calculus. In Section 3 we show

the connection between the class of Skorohod integrals and a class of isometric ‘Itô’

integrals. We show that, at every instant t, the integral X t is the last element of a uniformly

integrable martingale. We derive an anticipating Itô formula from the classical Itô formula

and we introduce a generalized local time for anticipating integral processes. Some

immediate consequences – Burkholder inequalities for anticipating processes and an

Itô formula for the product of a martingale and a backward martingale – are given in

Section 4.

2. Preliminaries

Let T ¼ [0, 1], the unit interval. Denote by(W t) t2T the standard Wiener process on the

canonical Wiener space (�, F, P), and let (F t) t2T be the natural filtration generated by W.

A functional of the Brownian motion of the form

F ¼ f W t1
, . . . , W t n

ð Þ with t1, . . . , t n 2 T , f 2 C1
b (Rn), (2)

is called a smooth random variable, and this class is denoted by S.

The Malliavin derivative is defined on S as

Dt F ¼
Xn

i¼1

@ f

@xi

(W t1
, . . . , W t n

)1[0, t i](t), t 2 T ,

if F has the form (2). The operator D is closable and can be extended to the closure of S
with respect to the seminorm

kFk p
k, p ¼ EjFj p þ

Xk

j¼1

EkD( j) Fk p

L p(T j)

(D(i) denoting the ith iterated derivative). Note that if F is FA-measurable (A being a Borel

subset of R), then DF ¼ 0 on Ac 3�.

The adjoint of D is denoted by � and is called the Skorohod integral. That is, � is

defined on its domain

Dom(�) ¼ u 2 L2(T 3�)j
����E
ðT

0

us Ds Fds

���� < CkFkL2(�)

� 	

and is given by the duality relationship

E(F�(u)) ¼ E

ðT

0

us Ds Fds, u 2 Dom(�), F 2 S:

314 C.A. Tudor



Recall the formula for the covariance of two Skorohod integrals,

E(�(u)�(v)) ¼ E

ðT

0

uÆvÆ dÆþ E

ðT

0

ðT

0

D�uÆDÆv� dÆ d�: (3)

Also recall the commutativity relationship between the derivative operator and the Skorohod

integral: if u 2 Dom(�) with Dtu 2 Dom(�), then

Dt�(u) ¼ ut þ �(Dtu), t 2 T : (4)

By Lk, p we denote the set L p(T ; Dk, p), for k > 1 and p > 2, and L1, p ¼
T

k>1 L
k, p. Note

that Lk, p is a subset of the domain of �. Meyer’s inequality implies

Ej�(u)j p < kuk p
1, p: (5)

The following generalized Ocone–Clark formula was given in Nualart and Pardoux (1988):

F ¼ E FjF[s, t]c

� �
þ
ð t

s

E DÆFjF[Æ, t]c

� �
dWÆ, for F 2 D 1,2: (6)

If the process u 2 L1,2, then u1[0, t] belongs to Dom(�) for every t, and we can consider the

indefinite Skorohod integral X t ¼ � (u1[0, t]) ¼
Ð t

0
us dWs:

3. Martingale-type stochastic calculus for anticipating integral
processes

3.1. Representation for anticipating integrals and Itô formula

Our construction is based on the following observation. Let X t ¼
Ð t

0
uÆ dWÆ be a Skorohod

integral process with integrand regular enough in the Malliavin sense (e.g., u 2 L2,2), and let

us apply (6) to the integrand u. By interchanging the two Skorohod integrals (see Nualart

and Zakai 1988), we obtain

X t ¼
ð t

0

E uÆjF[Æ, t]c

� �
dWÆ þ

ð t

0

ð t

Æ
E D�uÆjF[�, t]c

� �
dW� dWÆ

¼
ð t

0

E uÆjF[Æ, t]c

� �
dWÆ þ

ð t

0

ð�
0

E D�uÆjF[�, t]c

� �
dWÆ

� �
dW�

¼
ð t

0

E uÆjF[Æ, t]c

� �
dWÆ þ

ð t

0

E

ð�
0

D�uÆ dWÆ

� �
jF[�, t]c


 �
dW�:

Let r� ¼
Ð �

0
D�uÆ dWÆ: Thus, if v ¼ u þ r, X t can be written as

X t ¼
ð t

0

E vÆjF[Æ, t]c

� �
dWÆ:
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Let us define, for k > 1 and p > 2, the sets of processes

M k, p ¼ X ¼ (X t) t2T , X t ¼
ð t

0

us dWs, u 2 Lk, p

� 	

and

N k, p ¼ Y ¼ (Yt) t2T , Yt ¼
ð t

0

E vsjF[s, t]c

� �
dWs, v 2 Lk, p

� 	
:

We refer to the elements of N k, p as Itô–Skorohod integral processes.

The following two propositions will show that there exists a strong relation between the

class of Skorohod integrals and the class of Itô–Skorohod integrals.

Proposition 1. Let u ¼ (ut) t2T be a stochastic process belonging to the Sobolev space

Lk, p, with k > 3, p . 2. Then there exists a unique process v 2 Lk�2, p such that

X t ¼
Ð t

0
E vÆjF[Æ, t]c

� �
dWÆ for every t 2 T. Moreover, v� ¼ u� þ

Ð �
0

D�us dWs:

Proof. The existence of v follows from computations given above. Let us show that it

belongs to Lk�2, p. Write rt ¼
Ð t

0
Dtus dWs. By Meyer’s inequality and the properties (4) and

(5) of the Skorohod integral,

krk p
1, p < E

ð
T

j� Dtu:1[0, t](�)
� �

j p dt þ E

ð
T

ð
T

jDs� Dtu:1[0, t](�)
� �

j p ds dt

< C p E

ð
T

ð
T

jDtusj p ds dt þ E

ð
T

ð
T

j� Ds Dtu:1[0, t](�)
� �

j p ds dt

� �

< C p E

ð
T

ð
T

jDtusj p ds dt þ E

ð
T

ð
T

ð
T

jDs DtuÆj p ds dt dÆ

�

þ E

ð
T

ð
T

ð
T

ð
T

jDr Ds DtuÆj p dr ds dt dÆ

�
< C pkukp

3, p:

In general, it is no more difficult to prove that krkk�2, p < C pkukk, p.

Suppose now that there exists another process v9 2 Lk�2, p satisfying X t ¼Ð t

0
E[v9ÆjF[Æ, t]c ]dWÆ for every t 2 T, and let z ¼ v� v9. Then

Ð t

0
E zÆjF[Æ, t]c

� �
dWÆ ¼ 0 and,

taking the Malliavin derivative, we obtain, by (4),

1[0, t](s)E zsjF[s, t]c

� �
þ
ð t

s

E DszÆjF[Æ, t]c

� �
dWÆ ¼ 0:

We know (see Nualart 1995) that a Skorohod integral process has a continuous modification

if the integrand belongs to L1, p with p . 2. Therefore, taking the limit as t ! s in the above

identity, we obtain z ¼ 0 on T 3�. h

We show that also the Itô–Skorohod integral processes can be written as a Skorohod

integral process.
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Proposition 2. Let (v t) t2T be a stochastic process in Lk, p, with k > 3 and p . 2. Then the

process Y ¼ (Yt) t2T , Yt ¼
Ð t

0
E vÆjF[Æ, t]c

� �
dWÆ, admits a Skorohod integral representation,

that is, there exists a unique process u 2 Lk�2, p such that Yt ¼
Ð t

0
us dWs, for every t 2 T.

Moreover, u is given by

ut ¼ v t �
ð t

0

E DtvsjF[s, t]c

� �
dWs: (7)

Proof. Existence. We will use the criteria of Minh Duc and Nualart (1990) to show that the

process Y admits a Skorohod integral representation. By Proposition 2.1 of Minh Duc and

Nualart (1990) we have to prove that the following properties are satisfied:

(a) Y0 ¼ 0:
(b) Yt 2 L2(�) for every t 2 T.

(c) E Yt � YsjF[s, t]c

� �
¼ 0.

(d) If ˜ : 0 ¼ t0 , t1 , . . . , t n ¼ 1 denotes a partition of T , the quadratic variation

V (Y ) :¼ sup˜ E
Pn�1

i¼0 (Ytiþ1
� Yti

)2 is finite.

Clearly, conditions (a) and (b) are satisfied. To see (c), we note that

E YtjF[s, t]c

� �
¼ E

ð t

0

E vÆjF[Æ, t]c

� �
dWÆjF[s, t]c


 �
¼

ð s

0

E vÆjF[Æ, t]c

� �
dWÆ

¼ E

ð s

0

E vÆjF[Æ,s]c

� �
dWÆjF[s, t]c


 �
¼ E YsjF[s, t]c

� �
:

Concerning (d), we have, by (3),

E(Ytiþ1
� Yti

)2 ¼ E

ð tiþ1

0

E vÆjF[Æ, t iþ1]c

� �
dWÆ

� �2

� 2E

ð t iþ1

0

E vÆjF[Æ, tiþ1]c

� �
dWÆ

� � ð t i

0

E vÆjF[Æ, t i]c

� �
dWÆ

� �
þ

ð ti

0

E vÆjF[Æ, t i]c

� �
dWÆ

� �2

¼ E

ð tiþ1

ti

E vÆjF[Æ, tiþ1]c

� �2
dÆþ E

ð t i

0

E vÆjF[Æ, ti]c

� �
� E vÆjF[Æ, t iþ1]c

� �� �2
dÆ: (8)

Another application of (6) and the properties of the Malliavin derivative yields, for Æ , ti,

E vÆjF[Æ, ti]c

� �
� E vÆjF[Æ, t iþ1]c

� �
¼ E vÆjF[Æ, t i]c

� �
� E E vÆjF[Æ, ti]c

� �
jF[Æ, tiþ1]c

� �

¼
ð t iþ1

t i

E E D�vÆjF[Æ, t i]c

� �
jF[�, tiþ1]c

� �
dW�,

and therefore
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E E vÆjF[Æ, t i]c

� �
� E vÆjF[Æ, tiþ1]c

� �� �2 ¼ E

ð t iþ1

t i

E E D�vÆjF[Æ, t i]c

� �
jF[�, t iþ1]c

� �� �2
d�

< E

ð t iþ1

t i

(D�vÆ)2 d�: (9)

Finally, by (8) and (9), we obtain that sup˜ E
Pn�1

i¼0 (Ytiþ1
� Yti

)2 is bounded by

sup
˜

E
Xn�1

i¼0

E

ð t iþ1

ti

v2
Æ dÆþ sup

˜
E
Xn�1

i¼0

E

ð t iþ1

t i

ð1

0

(D�vÆ)2 dÆ d� < kvk2
1,2 , 1:

The next step is to find an expression for u in terms of v. In order to do that, we

consider the limits

L2(�) � lim
�!0

DtYtþ� and L2(�) � lim
�!0

DtYt��,

and we have that

ut þ � 1[0, t] Dtu
� �

¼ v t and � 1[0, t] Dtu
� �

¼ � 1[0, t]E Dtv:jF (:, t]c

� �� �
: (10)

Therefore (7) holds and, as in the proof of Propostition 1, u 2 Lk�2, p.

Uniqueness. Suppose that there exists another process u9 2 Lk�2, p satisfying Yt ¼Ð t

0
u9s dWs. Then the difference z ¼ u � u9 satisfies

Ð t

0
zs dWs ¼ 0 for every t and therefore

its quadratic variation, which equals
Ð t

0
z2

s ds, is zero. This completes the proof.

h

Remark 1. If the process v in Proposition 2 is adapted, then u ¼ v. Otherwise this is not true,

although averaging over the future time dependence should intuitively act in a smoothing

manner over the integrand.

Remark 2. Formula (7) can be understood as the effect of the symmetrization of the kernels

appearing in the chaotic expression of the Skorohod integral. Recall that if the process u

admits the Wiener–Itô chaos expansion ut ¼
P

n I n( f n(�, t)), where I n is the multiple

Wiener–Itô integral of order n and ‘ : ’ denotes n variables, then �(u) ¼
P

n I n( ~f nf n), with ~f nf n

denoting the symmetrization of f n in n þ 1 variables.

Remark 3. Relation (7) can be directly verified in the case where u ¼ DF, with F 2 D1,2. We

will use the notation F t c for F[0, t]c. We note that, by (6), rÆ ¼ DÆF � E DÆFjFÆc½ �, and

therefore

ð t

0

(uÆ � rÆ) dWÆ ¼
ð t

0

E DÆFjFÆc½ �dWÆ ¼
ðT

0

E DÆFjFÆc½ �dWÆ �
ðT

t

E DÆFjFÆc½ �dWÆ

¼ F � E FjF t c½ � ¼
ð t

0

E DÆFjF[Æ, t]c

� �
dWÆ:
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Remark 4. If v 2 L1, p with p . 2, then we can prove that the process Y , Yt ¼Ð t

0
E vsjF[s, t]c

� �
dWs, admits a continuous modification. Indeed, using (6) and the

Kolmogorov criterion,

Yt � Ys ¼
ð t

s

E vÆjF[Æ, t]c

� �
dWÆ þ

ð s

0

E vÆjF[Æ, t]c

� �
� E vÆjF[Æ,s]c

� �� �
dWÆ

¼
ð t

s

E vÆjF[Æ, t]c

� �
dWÆ �

ð s

0

ð t

s

E E D�uÆjF[Æ,s]c jF[�, t]c

� �� �
dW� dWÆ

and therefore, if C p is a generic constant depending only on p and kuk1, p,

EjYt � Ysj p < C p(t � s) p=2�1

ð t

s

EjuÆj p dÆþ
ð s

0

ð t

s

E

����D�uÆ

����
p

d� dÆ

� �
< C p(t � s) p=2�1:

As a consequence the processes X and Y from Propositions 1 and 2 coincide as stochastic

processes.

Our main result is a consequence of Propositions 1 and 2 and of Remarks 1–4.

Theorem 1. For every p . 2, the sets of stochastic processes M1, p and N1, p coincide.

Since the Itô–Skorohod integrals are also indefinite Skorohod integrals, the Skorohod

stochastic calculus developed in Nualart and Pardoux (1988) or Nualart (1995) can be

applied to Y. We now state an Itô formula in the Skorohod sense for Itô–Skorohod integral

processes.

Proposition 3. Let F 2 C2(R) and denote, for every t 2 T, rt ¼ �(1[0, t]E[Dtu:jF (:, t]c �Þ.
Assume that u � r 2 L2,4, and let Yt ¼

Ð t

0
E uÆjF[Æ, t]c

� �
dWÆ. Then the following Itô formula

holds for the process Yt:

F(Yt) ¼ F(0) þ
ð t

0

F9(YÆ)(uÆ � rÆ) dWÆ þ
1

2

ð t

0

F 0(YÆ)(u2
Æ � r2

Æ) dÆ: (11)

Proof. By (7), Yt can be written as Yt ¼
Ð t

0
vÆ dWÆ with vÆ ¼ uÆ � rÆ 2 L2,4. We can write

Itô’s formula for Skorohod integrals (see Nualart 1995) as

F(Yt) ¼ F(0) þ
ð t

0

F9(YÆ)vÆ dWÆ þ
1

2

ð t

0

F 0(YÆ)v2
Æ dÆþ

ð t

0

F 0(YÆ)vÆ�(1(0,Æ) DÆv) dÆ

and since, by (10), � 1[0, t] Dtv
� �

¼ rt for every t 2 T, we obtain

F(Yt) ¼ F(0) þ
ð t

0

F9(YÆ)(uÆ � rÆ) dWÆ þ
ð t

0

F 0(YÆ)uÆvÆ dÆ� 1

2

ð t

0

F 0(YÆ)v2
Æ

¼ F(0) þ
ð t

0

F9(YÆ)(uÆ � rÆ) dWÆ þ
1

2

ð t

0

F 0(YÆ)(u2
Æ � r2

Æ) dÆ:

h
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Remark 5. If the integrand u is adapted to the Brownian filtration, then DÆus ¼ 0 for Æ . s

and therefore r ¼ 0 on T 3�. We thus retrieve the classical Itô formula. Note that the

quadratic variation of Y is
Ð t

0
(uÆ � rÆ)2 dÆ if u � r 2 L1,2.

3.2. Itô-type stochastic calculus for anticipating integrals

We have just shown that the Skorohod stochastic calculus can be used for a process

Y 2 N k, p if the integrand u belongs to a large enough Sobolev space. We are now

interested in the converse direction. That is, since a process in N k, p seems to be ‘nicer’

than a Skorohod integral process, can we find interesting properties for a Skorohod integral

process using the properties of the processes in N k, p?

First, note that the integral Yt ¼
Ð t

0
E uÆjF[Æ, t]c

� �
dWÆ exists even for u 2 L2(T 3�) and

has similarities with a classical Itô integral. Observe that this integral is an ‘isometry’ in the

sense that

E

ð t

0

E uÆjF[Æ, t]c

� �
dWÆ

� �2

¼ E

ð t

0

E uÆjF[Æ, t]c

� �� �2
dÆ:

The following lemma will be the basic tool for developing an ‘Itô’-type stochastic calculus

for anticipating processes.

Lemma 1. For every º < t and u 2 L2(T 3�), let us define Y º
t by

Y º
t ¼

ðº
0

E uÆjF[Æ, t]c

� �
dWÆ: (12)

Then for fixed t 2 T, the process Y º
t

� �
º< t

is an F [º, t]c martingale and we have

lim
º! t,º< t

Y º
t ¼ Yt almost surely and in L2: (13)

Proof. It easy to see that we can express Y º
t as

Y º
t ¼ E

ð t

0

E uÆjF[Æ, t]c

� �
dWÆ

� �
jF[º, t]c


 �
¼ E YtjF[º, t]c

� �

¼ E

ðº
0

E uÆjF[Æ,º]c

� �
dWÆ

� �
jF[º, t]c


 �
¼ E YºjF[º, t]c

� �
:

The key observation is that, for every t 2 T, the process Y º
t

� �
º< t

is an F (º, t]c martingale and

L2(�) � limº! t,º< t Y º
t ¼ Yt: Indeed,

lim
º! t,º< t

kY º
t � Ytk2

L2 (�) ¼ lim
º! t,º< t

E

ð t

º
E uÆjF[Æ, t]c

� �
dWÆ

� �
¼ lim

º! t,º< t
E

ð t

º
E uÆjF[Æ, t]c

� �� �2
dÆ ¼ 0:

Since
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sup
º< t

EjY º
t j2 ¼ sup

º< t

E

ðº
0

E uÆjF[Æ, t]c

� �� �2
dÆ < E

ðº
0

u2
Æ dÆ < kuk2

L2 (T3�),

the martingale Y º
t

� �
º< t

is uniformly integrable and, by the martingale convergence theorem,

we obtain that the prior limit exists almost surely. h

Property (13) will be the key to developing an alternative stochastic calculus for

anticipating integral processes. In general, we will use the classical Itô theory for Y º
t and

take the limits almost surely as º goes to t.

A different Itô formula can be derived for Itô–Skorohod integral processes using the

martingale stochastic calculus.

Proposition 4. Let f 2 C2(R), u 2 L2(T 3�) and Yt ¼
Ð t

0
E uÆjF[Æ, t]c

� �
dWÆ. Then

f (Yt) ¼ f (0) þ
ð t

0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW� þ

1

2

ð t

0

f 0(Y
�
t ) E u�jF[�, t]c

� �� �2
d�: (14)

Proof. Let us write Itô’s formula for (Y º
t )º< t which is an F (º, t]c -martingale

f (Y º
t ) ¼ f (0) þ

ðº
0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW� þ

1

2

ðº
0

f 0(Y
�
t ) E u�jF[�, t]c

� �� �2
d� (15)

Note that

Mº
t ¼

ðº
0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW� ¼ E

ð t

0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW�jF[º, t]c


 �

is again an F (º, t]c -martingale converging almost surely (see the proof of Lemma 1) toð t

0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW�:

Letting º ! t, we obtain almost surely

f (Yt) ¼ f (0) þ
ð t

0

f 9(Y
�
t )E u�jF[�, t]c

� �
dW� þ

1

2

ð t

0

f 0(Y
�
t ) E u�jF[�, t]c

� �� �2
d�:

h

Since a Skorohod integral process can be written as

X t ¼
ð t

0

uÆ dWÆ ¼
ð t

0

E (uÆ þ rÆjF[Æ, t]c

� �
dWÆ

if rÆ ¼ � 1[0,Æ] DÆu
� �

, an Itô formula for X can be written as

f (X t) ¼ f (0) þ
ð t

0

f 9(X
�
t )E (u� þ r�)jF[�, t]c

� �
dW� þ

1

2

ð t

0

f 0(X
�
t ) E (u� þ r�)jF[�, t]c

� �� �2
d�

(16)

Martingale-type stochastic calculus for anticipating integral processes 321



where X
�
t ¼

Ð �
0
E[(us þ rs)jF[s, t]c ]dWs.

We can also generalize the Tanaka formula and introduce an extension of the martingale

local time. By the Tanaka formula for Y º
t , we obtain

jY º
t � aj ¼ jaj þ

ðº
0

sgn(Y
�
t )E u�jF[�, t]c

� �
dW� þ Lº

t (a), (17)

where the local time (Lº
t (a))º< t satisfies

Lº
t (a) ¼ lim

�!0

1

2�

ðº
0

1(a��,aþ�)(Y
�
t ) E u�jF[�, t]c

� �� �2
d� (18)

and the occupation time formula: for every Borel function �,

ðº
0

�(Y
�
t ) E u�jF[�, t]c

� �� �2
d� ¼

ð1
�1

�(a)Lº
t (a) da: (19)

Taking the limit as º ! t in (17), it is clear that the following limits exist almost surely

and, by the dominated convergence theorem, in L2(�):

jY º
t � aj ! jYt � aj and

ðº
0

sgn(Y
�
t ) dW� !

ð t

0

sgn(Y
�
t ) dW�:

Proposition 5. For every t 2 T, let (Lº
t (a))a2R,º< t be the local time of the martingale (Y º

t )º< t

given by (12). Then, for every a real and t 2 T, the following limit exists in L2 and almost

surely:

Lt(a) :¼ lim
º! t,º, t

Lº
t (a):

Definition 1. The process (Lt(a))a2R, t2T given by Proposition 4 will be called the generalized

local time of the Itô–Skorohod process Y.

Obviously, by (17), (18) and (19), we can prove the following result.

Proposition 6. Let (Lt(a))a2R, t2T be the generalized local time of the Itô–Skorohod integral

process Yt ¼
Ð t

0
E[uÆjF[Æ, t]c ]dWÆ with u 2 L2(T 3�), and let � be a Borel function. Then

we have the Tanaka formula,

jYt � aj ¼ jaj þ
ð t

0

sgn(Y
�
t � a)E u�jF[�, t]c

� �
dW� þ Lt(a),

the occupation time formula,ð t

0

�(Y
�
t ) E u�jF[�, t]c

� �� �2
d� ¼

ð1
�1

�(a)Lt(a) da,

and
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Lt(a) ¼ lim
�!0

1

2�

ð t

0

1(a��,aþ�)(Y
�
t ) E u�jF[�, t]c

� �� �2
d�:

Using the same arguments as before, if u 2 L2,2 and X t ¼
Ð t

0
uÆ dWÆ, we can define a

generalized local time for X as

LX
t (a) ¼ lim

º! t
LX ,º

t (a) almost surely in L2

LX ,º
t (a) being the local time of the martingale X º

t ¼
Ð º

0
E(u� þ �(1[0,�] D�u))jF [�, t]c ) dW�, and

the results of Proposition 5 will hold with ut þ �(1[0, t] Dtu) instead of ut.

Remark 6. In Imkeller and Nualart (1994) a local time lX
t (a) of the anticipating process

X t ¼
Ð t

0
uÆ dWÆ was introduced as the density of the occupation measure �(B) ¼Ð T

0
1B(X s) ds, where B is a subset of the real line. Its existence is proved using non-trivial

conditions on the integrand. This local time satisfies the Tanaka formula

(X t � a)þ ¼ (�a) þ
ð t

0

1(a,1)(X s)us dWs þ ~llX
t (a),

where ~llX
t (a) ¼

Ð t

0
us

1
2
us þ rs

� �
l(ds, a) and rs ¼ � 1[0,s] Dsu

� �
. The processes LX and ~llX do not

coincide in general, they coincide only if the integrand is adapted, but they always have the

same expectation.

4. Some consequences

The aim of this section is to present some applications of the stochastic calculus introduced

in this paper. We do not claim to give an exhaustive list of possible consequences. We

believe that the correspondence between Skorohod and Itô–Skorohod integrals could open

the door to further exploitation. We have chosen here only two immediate facts. The first

concerns Burkholder inequalities for Skorohod integrals. The upper bound is a version of

Meyer’s inequality, and the lower bound seems to be new and interesting in itself. The

second consists of an Itô formula for the product of a martingale and a backward

martingale; in a particular case we find rather surprising identities for the functionals of the

Brownian motion.

4.1. Burkholder inequalities for Skorohod integrals

Proposition 7. Let u 2 L2(T 3�), and let Y be the Itô–Skorohod integral process of u.

Then, for every t 2 T and p real, there exist two constants, c1( p) . 0 and c2( p) . 0, such

that

c1( p)E

ð t

0

E uÆjF[Æ, t]c

� �� �2
dÆ

� � p

< EjYtj2 p < c2( p)E

ð t

0

E uÆjF[Æ, t]c

� �� �2
dÆ

� � p

: (23)

Proof. For the upper bound, we can write, by the classical Burkholder inequality,
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EjYtj2 p < E sup
º< t

jY º
t j2 p

� �
< c2( p)E

ð t

0

E uÆjF[Æ, t]c

� �� �2
dÆ

� � p

:

Concerning the lower bound, since EjYtj2 p ¼ E(limº! t,º< tjY º
t j2 p) and since EjY º

t j2 p

< Ekuk p

L2(T)
, for every º , t, by the dominated convergence theorem,

EjYtj2 p ¼ lim
º! t,º< t

EjYºjF[º, t]c j p > c1( p) lim
º! t,º< t

E

ðº
0

E uÆjF(Æ, t]c

� �2
dÆ

� � p

¼ c1( p)E

ð t

0

E uÆjF[Æ, t]c

� �2
dÆ

� � p

:

h

We can write Burkholder inequalities for an anticipating integral process X t ¼
Ð t

0
uÆ dWÆ

where u 2 L1,2. That is, for every t, there exist C1( p), C2( p) . 0 such that

C1( p)E

ð t

0

E uÆ þ rÆjF[Æ, t]c

� �� �2
dÆ

� � p

< E

����X t

����
2 p

< C2( p)E

ð t

0

E uÆ þ rÆjF[Æ, t]c

� �� �2
dÆ

� � p

with rÆ ¼ �(1[0,Æ] DÆu). As far as we know, the lower bound is new.

4.2. Itô formula for the product of a martingale and a backward

martingale

Let M ¼ (M t) t2T be a Brownian martingale and N ¼ (Nt) t2T a backward martingale

(basically, N t is adapted to F t c for every t and E[NsjF t c ] ¼ M t for every s , t, see Revuz

and Yor (1994). Let a ¼ (at) t2T be an adapted square-integrable process such that

M t ¼
Ð t

0
as dWs. Then the process MN can be expressed as

M t N t ¼ Nt

ð t

0

as dWs ¼
ð t

0

as Nt dWs ¼
ð t

0

asE NsjF t c½ �dWs ¼
ð t

0

E as NsjF[s, t]c

� �
dWs:

Therefore the process MN belongs to the class of Itô–Skorohod integral processes and, using

Itô’s formula,

f (M t Nt) ¼ f (0) þ
ð t

0

f 9 E M s NsjF[s, t]c

� �� �
E as NsjF[s, t]c

� �
dWs

þ 1

2

ð t

0

f 0 E M s NsjF[s, t]c

� �� �
E as NsjF[s, t]c

� �� �2
ds

¼ f (0) þ
ð t

0

f 9(M s Nt)as Nt dWs þ
1

2

ð t

0

f 0(M s N t)a
2
s N 2

t ds

Considering the particular case M t ¼ W t and Nt ¼ W1 � W t, we obtain
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f W t(W1 � W t)ð Þ ¼ (W1 � W t)

ð t

0

f 9 Ws(W1 � W t)ð ÞdWs þ
1

2
(W1 � W t)

2

ð t

0

f 0 Ws(W1 � W t)ð Þds:

For different (non-polynomial) choices of f , the last formula gives surprising identities

between the functionals of the Wiener process.
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