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We consider a continuous-time stochastic volatility model. The model contains a stationary volatility

process, the density of which, at a fixed instant in time, we aim to estimate. We assume that we

observe the process at discrete instants in time. The sampling times will be equidistant with vanishing

distance. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared

processes is proposed to estimate the volatility density. An expansion of the bias and a bound on the

variance are derived.
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1. Introduction

Let S denote the log-price process of some stock on a financial market. It is often assumed

that S can be modelled as the solution of a stochastic differential equation or, more

generally, as an Itô diffusion process. So we assume that we can write

dSt ¼ bt dt þ � t dWt, S0 ¼ 0, (1)

or, in integral form,

St ¼
ð t

0

bs dsþ
ð t

0

�s dWs, (2)

where W is a standard Brownian motion and the processes b and � are assumed to satisfy

certain regularity conditions (see Karatzas and Shreve 1991) for the integrals in (2) to be well

defined. In the financial context, the process � is called a volatility process.

In this paper we model � as a strictly stationary positive process satisfying a mixing

condition, for example an ergodic diffusion on [0, 1), and we make the assumption that �
is independent of W . We will assume that the one-dimensional marginal distribution of �
has a density with respect to the Lebesgue measure on (0, 1). This is typically the case in

virtually all stochastic volatility models that are proposed in the literature, where the

evolution of � is modelled by a stochastic differential equation, mostly in terms of � 2 or

log � 2; see, for example, Wiggins (1987) and Heston (1993).

For stochastic differential equations of the type

dXt ¼ b(Xt)dt þ a(Xt)dBt,
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with Bt representing Brownian motion, the invariant density is, up to a multiplicative

constant, equal to

x 7! 1

a2(x)
exp 2

ðx
x0

b(y)

a2(y)
dy

 !
, (3)

where x0 is an arbitrary element of the state space (l, r); see e.g. Gihman and Skorohod

(1972) or Skorokhod (1989). From formula (3) one sees that the invariant distribution of the

volatility process (take, for instance, X equal to � 2 or log � 2) may take on many different

forms, as is the case for the various models that have been proposed in the literature. This

observation supports our point of view that nonparametric procedures are by all means

sensible tools for obtaining insight in the behaviour of the volatility.

In the present paper we propose a nonparametric estimator for the volatility density.

Using ideas from deconvolution theory, we will propose a procedure for the estimation of

the marginal density at a fixed point. We will assume that we observe the log-asset price S

at time instants 0, ˜, 2˜, . . . , n˜, where the time gap satisfies ˜ ¼ ˜n ! 0 and n˜n !1
as n!1. To assess the quality of our procedure, we will study how the bias and variance

of the estimator behave under these assumptions.

The remainder of the paper is organized as follows. In the next section, we give the

heuristic arguments that motivate the definition of our estimator. In Section 3 the main

result concerning the asymptotic behaviour of the estimator is presented and discussed. The

proof of the main theorem is given in the last two sections.

2. Construction of the estimator

To motivate the construction of the estimator, we first consider (1) without the drift term, so

we have

dSt ¼ � t dWt, S0 ¼ 0:

It is assumed that we observe the process S at the discrete time instants 0, ˜, 2˜, . . . , n˜.

For i ¼ 1, 2, . . . we work, as in Genon-Catalot et al. (1998; 1999), with the normalized

increments

X˜
i ¼

1ffiffiffiffĩp (Si˜ � S(i�1)˜):

For small ˜, we have the rough approximation

X˜
i ¼

1ffiffiffiffĩp ð i˜
(i�1)˜

� t dWt � � (i�1)˜
1ffiffiffiffĩp (Wi˜ � W(i�1)˜) ¼ � (i�1)˜Z

˜
i ,

where, for i ¼ 1, 2, . . . , we define

Z˜
i ¼

1ffiffiffiffĩp (Wi˜ � W(i�1)˜):
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By the independence and stationarity of Brownian increments, the sequence Z˜
1 , Z˜

2 , . . . is an

independent and identically distributed (i.i.d.) sequence of standard normal random variables.

Moreover, the sequence is independent of the process � by assumption.

Taking the logarithm of the square of X˜
i , we obtain

log((X˜
i )2) � log(� 2

(i�1)˜)þ log((Z˜
i )2), (4)

where the terms in the sum are independent. Assuming that the approximation is sufficiently

accurate, we can use this approximate convolution structure to estimate the unknown density

f of log(� 2
i˜) from the observed log((X˜

i )2).

Before we can define the estimator, we need some more notation. Observe that the

density of the ‘noise’ log(Z˜
i )2, denoted by k, is given by

k(x) ¼ 1ffiffiffiffiffiffi
2�
p ex=2 e�ex=2: (5)

The characteristic function of the density k is denoted by �k.

We will use a function w satisfying the following condition. For examples of such

kernels, see Wand (1998).

Condition 2.1. Let w be a real symmetric function with real-valued symmetric characteristic

function �w with support [�1, 1]. Assume, further, that

(i)
Ð1
�1 jw(u)jdu ,1,

Ð1
�1 w(u)du ¼ 1,

Ð1
�1 u2jw(u)jdu ,1;

(ii) �w(1� t) ¼ AtÆ þ o(tÆ) as t # 0, for some Æ . 0.

Following a well-known approach in statistical deconvolution theory, we use a

deconvolution kernel density estimator; see, for example, Section 6.2.4 of Wand and Jones

(1995). Having the characteristic functions �k and �w at our disposal, choosing a positive

bandwidth h, we introduce the kernel function

vh(x) ¼ 1

2�

ð1
�1

�w(s)

�k(s=h)
e�isx ds (6)

and the density estimator

f nh(x) ¼ 1

nh

Xn
j¼1

vh

x� log((X˜
j )2)

h

� �
: (7)

One can easily verify that the function vh is real-valued, as is the estimator f nh.

3. Results

To derive the asymptotic behaviour of the estimator, we need a mixing condition on the

process � . For the sake of clarity, we recall the basic definitions. For a certain process X let

F b
a be the � -algebra of events generated by the random variables Xt, a < t < b. The

mixing coefficient Æ(t) is defined by
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Æ(t) ¼ sup
A2F 0

�1,B2F1t
jP(A \ B)� P(A)P(B)j: (8)

The process X is called strongly mixing if Æ(t)! 0 as t!1.

As we mentioned in Section 1, it is common practice to model the volatility process

V ¼ � 2 as the stationary, ergodic solution of a stochastic differential equation of the form

dVt ¼ b(Vt)dt þ a(Vt)dBt:

The mixing condition that we use in Theorem 3.1 below is satisfied in this set-up. See, for

instance, Corollary 2.1 of Genon-Catalot et al. (2000).

It is easily verified for such processes that EjVt � V0j ¼ O(t1=2), provided that b 2 L1(�)

and a 2 L2(�), where � is the invariant probability measure. Indeed, we have

EjVt � V0j < E
Ð t

0
jb(Vs)jdS þ (E

Ð t
0
a2(Vs)dS)1=2 ¼ tkbkL1( �) þ

ffiffi
t
p
kakL2( �). Although we

will not assume explicitly that � 2 solves an SDE, the above observation motivates the

following condition:

Condition 3.1. We have Ej� 2
t � � 2

0j ¼ O(t1=2) for t! 0.

The following theorem describes the asymptotic behaviour of our estimator f nh. Note that

it also covers the case where there is a drift bt present in (1). The condition on the drift is

boundedness of E b2
t . This condition is typically satisfied in realistic models for the log-

returns of a stock, since bt is the local rate of return and this will itself mostly be bounded.

Theorem 3.1. Assume that Eb2
t is bounded. Let the process � be strongly mixing with

coefficient Æ(t) satisfying, for some 0 , q , 1,ð1
0

Æ(t)q dt ,1,

and suppose that Condition 3.1 holds. Let the kernel function w satisfy Condition 2.1 and let

the density f of log � 2
t be continuous, twice continuously differentiable with a bounded

second derivative. Also assume that the density of � 2
t is bounded in a neighbourhood of zero.

Suppose that ˜ ¼ n�� for given 0 , � , 1 and choose h ¼ ª�=log n, where ª . 4=�. Then

the bias of the estimator (7) satisfies

E f nh(x)� f (x) ¼ 1
2
h2 f 0(x)

ð
u2w(u)duþ o(h2): (9)

Moreover, the variance of the estimator satisfies

var f nh(x) ¼ O
1

n
h2Æ e�=h

� �
þ O

1

nh1þq˜

� �
: (10)

The proof of the theorem is deferred to the next section. We conclude the present section

with a number of comments on the result.

Remark 3.1. The expectation of the deconvolution estimator is equal to the expectation of an

ordinary kernel density estimator, as becomes clear from the proof of Lemma 4.1.
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It is well known that the variance of kernel-type deconvolution estimators heavily

depends on the rate of decay to zero of j�k(t)j as jtj ! 1. The faster the decay the larger

the asymptotic variance. The smoother is k, in other words, the harder is the estimation

problem. This follows, for instance, for i.i.d. observations from results in Fan (1991) and for

stationary observations from the work of Masry (1993).

The rate of decay of j�k(t)j for the density (5) is given by Lemma 5.1 below, which

states that j�k(t)j �
ffiffiffi
2
p

e��j tj�2 as jtj ! 1. This shows that k is supersmooth; see Fan

(1991). By the similarity of the tail of this characteristic function to the tail of a Cauchy

characteristic function we can expect the same order of the mean squared error as in

Cauchy deconvolution problems, where it decreases logarithmically in n; see Fan (1991) for

results on i.i.d. observations. Note that this rate, however slow, is faster than the one for

normal deconvolution. Fan (1991) also shows that we cannot expect anything better.

Remark 3.2. The choices ˜ ¼ n��, with 0 , � , 1, and h ¼ ª�= log n, with ª . 4=�,

render a variance that is of order n�1þ1=ª(1= log n)2Æ for the first term of (10) and

n�1þ�(log n)1þq for the second term. Since by assumption ª . 4=�, we have 1=ª , �=4 , �
so the second term dominates the first term. The order of the variance is thus

n�1þ�(log n)1þq. Of course, the order of the bias is logarithmic, hence the bias dominates

the variance and the mean squared error of f nh(x) is also logarithmic.

Remark 3.3. Better bounds on the asymptotic variance can be obtained under stronger mixing

conditions. Consider, for instance, uniform mixing. In this case the mixing coefficient �(t) is

defined for t . 0 as

�(t) ¼ sup
A2F 0

�1 ,B2F1t
jP(AjB)� P(A)j, (11)

and a process is called uniform mixing if �(t)! 0 for t!1. Obviously, uniform mixing

implies strong mixing. As a matter of fact, one has the relation

Æ(t) < 1
2
�(t):

See Doukhan (1994) for this inequality and many other mixing properties. If � is uniform

mixing with coefficient � satisfying
Ð1

0
�(t)1=2 dt ,1, then the variance bound is given by

var f nh(x) ¼ O
1

n
h2Æ e�=h

� �
þ O

1

nh˜

� �
: (12)

The proof of this bound runs similarly to the strong-mixing bound. The essential difference is

that in (44) below we use Theorem 17.2.3 of Ibragimov and Linnik (1971) with � ¼ 0 instead

of Deo’s (1973) lemma, as in the proof of Theorem 2 in Masry (1983).

Remark 3.4. Smoothness conditions on the density at each time of the solution of a

stochastic differential equation are guaranteed under Hörmander’s condition; see Theorem

2.3.3 in Nualart (1995). Recall also relation (3), which can be used to relate the smoothness

of the invariant density to the smoothness of the drift and diffusion coefficients.
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4. Proof of Theorem 3.1

We give the proof under the additional assumption that bt ¼ 0. The general case is an easy

consequence. Let F� denote the sigma field generated by the process � and let ~ff nh denote

the estimator based on the approximating random variables � ( j�1)˜Z
˜
j , written as ~XX j, that

is,

~ff nh(x) ¼ 1

nh

Xn
j¼1

vh

x� log( ~XX 2
j)

h

 !
: (13)

The proof of (9) follows from the following two lemmas, whose proofs are given in the next

section. The first one deals with the expectation of ~ff nh.

Lemma 4.1. We have

E ~ff nh(x) ¼ 1

h

ð1
�1

w
x� u

h

� �
f (u)du: (14)

The second lemma estimates the expected difference between f nh and ~ff nh. The bound is in

terms of the functions

ª0(h) ¼ 1

2�

ð1

�1





 �w(s)

�k(s=h)





ds (15)

and

ª1(h, x) ¼ e�=2h þ 1

h
exp

�

2

1þ �=jxj
h

� �
log

1þ �=jxj
h

: (16)

Lemma 4.2. For h! 0 and 
 small enough, we have

jE f nh(x)� E ~ff nh(x)j ¼ O
1

h2
ª0(h)

˜1=4



þ 1

h
ª0(h)

˜1=2


2
þ ª1(h, jlog 2
j=h)




jlog 2
j

 !
:

Notice that equality (14) is the same as for ordinary kernel estimators; see, for instance,

Wand and Jones (1995). Statement (9) of the theorem then follows by combining standard

arguments of kernel density estimation and Lemma 4.2. We will show that the bound in

Lemma 4.2 is essentially a negative power of n, whereas h2 is of logarithmic order. Recall

that we have assumed � . 4=ª. It follows that 1=2ª , �=4� 1=2ª, so we can pick a

	 2 (1=2ª, �=4� 1=2ª) and take 
 ¼ n�	. Up to factors that are logarithmic in n, the order

of jE f nh(x)� E ~ff nh(x)j is then

n1=2ª��=4þ	 þ n1=2ªþ2	��=2 þ n1=2ª�	, (17)

which is negligible with respect to h2 ¼ ª2�2=(log n)2 for the chosen values of the

parameters.

To prove the bound (10) we use the two lemmas below, which again are proved in the

next section. First consider the variance of ~ff nh(x).

456 B. van Es, P. Spreij and H. van Zanten



Lemma 4.3. We have, for h! 0,

var ~ff nh(x) ¼ O
1

n
h2Æ e�=h

� �
þ O

1

nh1þq˜

� �
: (18)

The next lemma estimates var( f nh(x)� ~ff nh(x)).

Lemma 4.4. We have, for h! 0 and 
 . 0 small enough,

Var( f nh(x)� ~ff nh(x)) ¼ O
1

nh4
ª0(h)2 ˜

1=2


2
þ 1

n
ª1(h, jlog 2
j=h)2 


jlog 2
j2

 !

þ 1

nh2˜
O

˜(1�q)=2

h2
2
þ 
1�q

� �
: (19)

The proof of (10) is finished as soon as we show that the estimate in Lemma 4.4 is of

lower order than that in Lemma 4.3. Up to terms that are logarithmic in n, the bound in

Lemma 4.3 is of order n��1. Choosing 
 ¼ n�	 again, up to logarithmic factors, the order

of var( f nh(x)� ~ff nh(x)) is

n�1þ1=ª��=2þ2	 þ n�1þ1=ª�	 þ n�1þ2	þ�(1þq)=2 þ n�1þ��	(1�q): (20)

Recall our assumption that �ª . 4. If we pick 	 less than 1
4
�(1� q), then all these terms are

indeed of lower order than n��1.

5. Technical lemmas

5.1. Analytic properties

We need expansions and order estimates for the functions �k , the kernel vh as defined in

(6), the function ª0 given as defined in (15) and ª1 as defined in (16). These are given in

the lemmas of this subsection.

Lemma 5.1. For jtj ! 1 we have

j�k(t)j ¼
ffiffiffi
2
p

e��j tj=2 1þ O
1

jtj

� �� �
:

Proof. The characteristic function of k is given by

�k(t) ¼
1ffiffiffi
�
p 2i t ˆ(1

2
þ it): (21)

The result follows by applying the Stirling formula for the complex gamma function; see

Chapter 6 in Abramowitz and Stegun (1964). h
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Lemma 5.2. We have the following order estimate for the L2 norm of vh. For h! 0,

kvhk2 ¼ O(h1=2þÆ e�=2h): (22)

Proof. By Parseval’s identity,

kvhk2
2 ¼

1

2�

ð1

�1





 �w(s)

�k(s=h)






2

ds:

The integral on the right-hand side is bounded by

1

2

ð1

�1

j�w(s)j2e�js=hjdsþ
ð1

�1

j�w(s)j2




 1

j�k(s=h)j2 �
1
2
e�js=hj





ds (23)

The first term in (23) can be rewritten as

e�=hh1þ2Æ

ð1=h

0





�w(1� hv)

(hv)Æ






2

v2Æ e��vdv � e�=h h1þ2ÆA2

ð1
0

v2Æ e��v dv,

by the dominated convergence theorem. The second term in (23) is

2h1þ2Æ e�=h
ð1=h

0





 j�w(1� hv)j
(hv)Æ






2



 2 e��(1=h�v)

j�k(1=h� v)j2 � 1





v2Æ e��v dv,

which is of order O(h1þ2Æ e�=h) by the dominated convergence theorem. We have used the

fact that both the functions �w(1� u)=uÆ and j(2 exp(��u)=j�k(u)j2)� 1j are bounded and

that the second function is of order O(1=u) as u tends to infinity. This shows that the second

term in (23) is negligible with respect to the first. h

Lemma 5.3. For h! 0, we have

ª0(h) ¼ O h1þÆ e�=2hð Þ: (24)

Proof. The proof is similar to that of Lemma 5.2. h

Lemma 5.4. The functions vh are bounded and Lipschitz. More precisely, for all x, we have

jvh(x)j < ª0(h), and for all x and u,

jvh(xþ u)� vh(x)j < ª0(h)juj: (25)

Proof. The bound for jvh(x)j is obvious. To prove (25) write

jvh(xþ u)� vh(x)j < 1

2�

ð1

�1





 �w(s)

�k(s=h)





je�isu � 1jds < ª0(h)juj:

h

Lemma 5.5. For x!1, we have the following estimate on the behaviour of vh. For some

positive constant D,

458 B. van Es, P. Spreij and H. van Zanten



jvh(x)j < D

jxj ª1(h, x) as jxj ! 1, (26)

and

ª1(h, x) ¼ O
jlog hj

h
e�(1þ�=jxj)=2h

� �
as h! 0: (27)

Proof. By a bound in the proof of the Riemann–Lebesgue lemma in Hewitt and Stromberg

(1965, p. 402) we have, with y ¼ �=x,

jvh(x)j ¼ 1

2�






ð1
�1

�w(s)

�k(s=h)
e�isxds






<

1

2�

ð1
�1





 �w(s)

�k(s=h)
� �w(sþ y)

�k((sþ y)=h)





 ds
<

1

2�

ð1
�1





�w(s)� �w(sþ y)

�k(s=h)





 ds
þ 1

2�

ð1
�1

�w(sþ y)





 1

�k(s=h)
� 1

�k((sþ y)=h)





 ds: (28)

First we need a bound on the first integral in (28). Since it follows from Condition 2.1 that

�w is Lipschitz (the proof is similar to that of (25)), with Lipschitz constant C1, say, we haveð1
�1





�w(s)� �w(sþ y)

�k(s=h)





ds < C1

ð1

�1

1

j�k(s=h)j ds jyj

< 2C1

1

j�k(1=h)j jyj �
C1ffiffiffi

2
p e�=2h jyj,

by Lemma 5.1. To bound the second integral in (28) we need an estimate on the behaviour of

j�9k j=j�k j2. Recall expression (21) for �k. Hence, with � ¼ ˆ9=ˆ the digamma function,

j�9k(t)j ¼
1ffiffiffi
�
p





i log 2 ei t log2ˆ
1

2
þ it

� �
þ iei t log2ˆ9

1

2
þ it

� �




<

1ffiffiffi
�
p log 2





ˆ 1

2
þ it

� �



þ




ˆ9 1

2
þ it

� �




 !

and, as jtj ! 1,



 �9k(t)�k(t)2





 < ffiffiffi
�
p 1

jˆ(1
2
þ it)j

log 2þ




� 1

2
þ it

� �




 !

< 4
ffiffiffi
�
p

log(jtj)e�j tj=2, (29)

by Lemma 5.1 and by the expansion j�(z)j � log z for z!1, jArg zj , �; see Chapter 6 of

Abramowitz and Stegun (1964). We now return to the second integral in (28) and write
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ð1
�1

�w(sþ y)





 1

�k(s=h)
� 1

�k((sþ y)=h)





ds
¼
ð1

�1

�w(s)





 1

�k((s� y)=h)
� 1

�k(s=h)





ds
<

2

h
sup

(�1�j yj)=h<s<(1þj yj)=h





 �9k(s)�k(s)2





 jyj
<

2

h
sup

(�1�j yj)=h<s<(1þj yj)=h
4
ffiffiffi
�
p

log(jsj)e�jsj=2jyj

¼ 8

h

ffiffiffi
�
p

log((1þ jyj)=h)e�(1þj yj)=2hjyj

in view of (29). This completes the proof. h

5.2. Proofs of Lemmas 4.1–4.4

Recall that F� is the � -algebra generated by the process � .

Proof of Lemma 4.1. Write

E( ~ff nh(x)jF� ) ¼ 1

nh

Xn
t¼1

E vh

x� log � 2
( t�1)˜ � log(Z˜

t )2

h

 !
jF�

 !

¼ 1

nh

Xn
t¼1

1

2�

ð1
�1

�w(s)

�k(s=h)
E e

�is(x�log � 2
( t�1)˜�log( Z˜

t )2)=hjF�

� 	
ds

¼ 1

nh

Xn
t¼1

1

2�

ð1
�1

�w(s)

�k(s=h)
e�isx=h e

is log � 2
( t�1)˜=h�k(s=h)ds

¼ 1

nh

Xn
t¼1

1

2�

ð1
�1

�w(s)e
�is(x�log � 2

( t�1)˜)=h
ds

¼ 1

nh

Xn
t¼1

w
x� log � 2

( t�1)˜

h

� �
:

By taking expectations the result follows. h

For the proof of Lemma 4.2 we need a few properties of the process � , valid under

Condition 3.1. Since (x� y)2 < jx2 � y2j for x, y > 0, we have that E(� t � �0)2 ¼ O(t1=2)

for t! 0. Consequently, there exists a constant C . 0 such that
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E(X˜
1 � �0Z

˜
1 )2 < C˜1=2 for ˜! 0, (30)

since E(X˜
1 � �0Z

˜
1 )2 ¼ 1

˜E
Ð˜

0
(� t � �0)2dt. Moreover, Condition 3.1 implies that

E





 1

˜

ð˜
0

� 2
t dt � � 2

0





 ¼ O(˜1=2) for ˜! 0: (31)

Proof of Lemma 4.2. Writing

Wj ¼ vh

x� log((X˜
j )2)

h

� �
� vh

x� log( ~XX 2
j)

h

 !
,

so that f nh(x)� ~ff nh(x) ¼ (1=nh)
Pn

j¼1Wj, we have

jE f nh(x)� E ~ff nh(x)j < 1

h
E jWjj

¼ 1

h
EjWjjI [jX˜

1 j>
 and j ~XX1j>
]

þ 1

h
EjWjjI [jX˜

1 j<
 or j ~XX1j<
] I [jX˜
1� ~XX1j>
]

þ 1

h
EjWjjI [jX˜

1 j<
 or j ~XX1j<
] I [jX˜
1� ~XX1j,
]: (32)

By Lemma 5.4 and (30) the first term on the right in (32) can be bounded by

2

h2
ª0(h)Ejlog(X˜

1 )� log( ~XX1)jI [jX˜
1 j>
 and j ~XX1j>
] <

2

h2

1



ª0(h)EjX˜

1 � ~XX1j

<
2

h2
ª0(h)

ffiffiffiffi
C
p ˜1=4



:

In the same way, the second term can be bounded by

2

h
ª0(h)P(jX˜

1 � ~XX 1j > 
) <
2

h
ª0(h)C

˜1=2


2
:

Since the absolute value of both arguments of vh below is eventually larger than jlog2
j=h,

by Lemma 5.5 the third term on the right in (32) can be bounded by

1

h
ª1(h, jlog 2
j=h)

1

(jlog 2
j=h)
P(j ~XX 1j < 2
) < C2 ª1(h, jlog 2
j=h)




jlog 2
j ,

for some constant C2. Here we have used the fact that the density of ~XX 1 is bounded, which

follows from the assumption that � 2
0 has a bounded density in a neighbourhood of zero.

h

Proof of Lemma 4.3. Consider the decomposition
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var( ~ff nh(x)) ¼ var(E( ~ff nh(x)jF� ))þ E(var( ~ff nh(x)jF� )): (33)

By the proof of Lemma 4.1 the conditional expectation E( ~ff nh(x)jF� ) is equal to a kernel

estimator of the density of log� 2
t . By Theorem 3 of Masry (1983), we can bound its variance

by

20(1þ o(1))

nh1þq˜
f (x)1�q

ð1
�1
jw(u)j2=(1�q)du

� �1�qð1
0

Æ(�)qd� ¼ O
1

nh1þq˜

� �
:

Given the process � , the random variables log ~XX 2
t are independent, so we can bound the

second term in (33) by

1

n2h2

Xn
t¼1

var vh

x� log ~XX 2
t

h

� �� �
<

1

nh2
E vh

x� log ~XX 2
1

h

� �� �2

<
1

nh2
ª0(h)2,

by Lemma 5.4. The result follows by an application of Lemma 5.3. h

Proof of Lemma 4.4. Note that for different i, j, conditional on the process � , the pairs

X˜
i , ~XX i and X˜

j , ~XX j are independent. Hence the conditional covariances of functions of these

pairs vanish.

With Wj as in the proof of Lemma 4.2, we have

var( f nh(x)� ~ff nh(x))

¼ 1

nh2
var W1 þ

1

n2h2

X
i6¼ j

cov(E(WijF� ), E(WjjF� )): (34)

Let us first derive a bound on var W1. We have var W1 < E W 2
1, which can be split into three

terms

1

h
EW 2

j I [jX˜
1 j>
 and j ~XX1j>
]

þ 1

h
EW 2

j I [jX˜
1 j<
 or j ~XX1j<
] I [jX˜

1� ~XX1j>
]

þ 1

h
EW 2

j I [jX˜
1 j<
 or j ~XX1j<
] I [jX˜

1� ~XX1j,
]: (35)

By (30) and Lemma 5.4 the first term in (35) can be bounded by (2=h2)ª0(h)2C˜1=2=
2.

Again by (30) and Lemma 5.4 the second term in (35) can be bounded by

4ª0(h)2P(jX˜
1 � ~XX 1j > 
) < 4ª0(h)2C

˜1=2


2
:

Since the absolute value of both arguments of vh below is eventually larger than jlog 2
j=h,

by Lemma 5.5, the third term in (35) can be bounded by

ª1(h, log 2
j=h)2

(jlog 2
j=h)2
P(j ~XX1j < 2
) < C2 h

2ª1(h, jlog 2
j=h)2 


jlog 2
j2 ,
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for some constant C2, where we again use the fact, as in the proof of Lemma 4.2, that the

density of ~XX 1 is bounded. We obtain

EW 2
1 ¼ O

1

h2
ª0(h)2C

˜1=2


2
þ h2ª1(h, jlog 2
j=h)2 


jlog 2
j2

 !
, (36)

which gives the order bound for the first term on the right in (19).

Next, we concentrate on the sum of covariances in (34). Define

� i ¼
1

˜

ð i˜
(i�1)˜

� 2
tdt: (37)

Note that given F� , X˜
i is N (0, � i) distributed and ~XX i is N (0, � 2

(i�1)˜). As in the proof of

Lemma 4.1, it follows that

E(WijF� ) ¼ w
x� log � i

h

� �
� w

x� log � 2
(i�1)˜

h

� �
:

We follow the line of argument in the proof of Theorem 3 in Masry (1983). The

stationarity of Wj implies that the conditional expectations ~WWj :¼ E(WjjF� ) are also

stationary. Hence we have

X
i6¼ j

cov( ~WWi, ~WWj) ¼ 2
Xn�1

k¼1

(n� k)cov( ~WW0, ~WWk):

Now note that the process ~WWj is strongly mixing with a mixing coefficient

~ÆÆ(k) < Æ((k � 1)˜), k ¼ 1, 2, . . . , where Æ is the coefficient of the process � . By a lemma

of Deo (1973) for strongly mixing processes it follows that, for all � . 0,

jcov( ~WW0, ~WWk)j < 10Æ((k � 1)˜)�=(2þ�) Ej ~WW1j2þ�
� �2=(2þ�)

: (38)

By the monotonicity of the mixing coefficient Æ we obtain



 1

n2h2

X
i 6¼ j

cov( ~WWi, ~WWj)






<

10

nh2
Ej ~WW1j2þ�
� �2=(2þ�)Xn�1

k¼1

1� k

n

� �
Æ((k � 1)˜)�=(2þ�)

<
10

nh2
Æ(0)�=(2þ�) þ 1

˜

ð1
0

Æ(t)�=(2þ�) dt

� �
E j ~WW1j2þ�
� �2=(2þ�)

:

Next we derive a bound on Ej ~WW1j2þ�. Fix k 2 (0, 1]. We have
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Ej ~WW1j2þ� ¼ E





w x� log(�1)

h

� �
� w

x� log(� 2
0)

h

� �




2þ�

I [� 1>
 and � 2
0
>
]

þ E





w x� log(�1)

h

� �
� w

x� log(� 2
0)

h

� �




2þ�

I [� 1<
 or � 2
0
<
] I [j� k

1�� 2k
0
j>
]

þ E





w x� log(�1)

h

� �
� w

x� log(� 2
0)

h

� �




2þ�

I [� 1<
 or � 2
0
<
] I [j� k

1�� 2k
0
j,
]: (39)

Note that by Condition 2.1 and Fourier inversion w is Lipschitz with constant 1=� and

bounded by 1=�. Hence the first term on the right in (39) can be bounded by

Ej� k
1 � � 2k

0 j2þ�=(k
h)2þ�. The second term can be bounded by

P(j� k
1 � � 2k

0 j > 
) <
1


2þ� E j� k
1 � � 2k

0 j2þ�:

Likewise, the third term can be bounded by

E





w x� log(�1)

h

� �
� w

x� log(� 2
0)

h

� �




2þ�

I [� 1<
(1þ
1�k)1=k and � 2
0
<
(1þ
1�k)1=k],

which is bounded by P(� 2
0 < 2
) ¼ O(
) since � 2

0 was assumed to have a bounded density in

a neighbourhood of zero.

With � ¼ 2q=(1� q) and k ¼ 1=(2þ �) ¼ (1� q)=2 we have, with an application of the

basic inequality juk � vkj < ju� vjk for u, v > 0 and k 2 (0, 1] in the second equality

below and from Condition 3.1 and its consequence (31) in the fourth equality,



 1

n2h2

X
i 6¼ j

cov( ~WW1, ~WWj)







¼ 1

nh2˜
O

1

h2þ�
1


2þ� E j� k
1 � � 2k

0 j2þ� þ 


� �2=(2þ�)

¼ 1

nh2˜
O

1

h2þ�
1


2þ� E j�1 � � 2
0jk(2þ�) þ 


� �2=(2þ�)

¼ 1

nh2˜
O

(E j�1 � � 2
0j)2=(2þ�)

h2
2
þ 
2=(2þ�)

� �
,

¼ 1

nh2˜
O

˜1=(2þ�)

h2
2
þ 
2=(2þ�)

� �

¼ 1

nh2˜
O

˜(1�q)=2

h2
2
þ 
1�q

� �
,

which gives the order bound for the second term on the right in (19). h
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