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In a Bayesian framework, to make predictions on a sequence X1,X2, . . . of random observations, the inferrer needs
to assign the predictive distributions σn(·) = P(Xn+1 ∈ · | X1, . . . ,Xn). In this paper, we propose to assign σn

directly, without passing through the usual prior/posterior scheme. One main advantage is that no prior probability
has to be assessed. The data sequence (Xn) is assumed to be conditionally identically distributed (c.i.d.) in the
sense of (Ann. Probab. 32 (2004) 2029–2052). To realize this programme, a class � of predictive distributions is
introduced and investigated. Such a � is rich enough to model various real situations and (Xn) is actually c.i.d.
if σn belongs to �. Furthermore, when a new observation Xn+1 becomes available, σn+1 can be obtained by a
simple recursive update of σn. If μ is the a.s. weak limit of σn, conditions for μ to be a.s. discrete are provided as
well.

Keywords: Bayesian nonparametrics; conditional identity in distribution; exchangeability; predictive distribution;
random probability measure; sequential predictions; strategy

1. Introduction

The object of this paper is Bayesian predictive inference for a sequence of random observations. Let
(Xn : n ≥ 1) be a sequence of random variables with values in a measurable space (S,B). Assuming
that (X1, . . . ,Xn) = x, for some n ≥ 1 and x ∈ Sn, the problem consists of predicting Xn+1 based on
the observed data x. In a Bayesian framework, this means to assess the predictive distribution, say

σn(x)(B) = P
(
Xn+1 ∈ B | (X1, . . . ,Xn) = x

)
for all B ∈ B.

To address this problem, the Xn can be taken to be the coordinate random variables on S∞. Accord-
ingly, in the sequel, we let

Xn(s1, . . . , sn, . . .) = sn

for each n ≥ 1 and each (s1, . . . , sn, . . .) ∈ S∞. Also, to avoid needless technicalities, S is assumed to
be a Borel subset of a Polish space and B the Borel σ -field on S.

Let P denote the collection of all probability measures on B. Following Dubins and Savage [15], a
strategy is a sequence

σ = (σ0, σ1, . . .)

such that

1350-7265 © 2021 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/20-BEJ1255
mailto:patrizia.berti@unimore.it
mailto:emanuela.dreassi@unifi.it
mailto:pratel@mail.dm.unipi.it
mailto:pietro.rigo@unibo.it


Bayesian predictive inference 703

• σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P ;
• The map x �→ σn(x)(B) is Bn-measurable for fixed n ≥ 1 and B ∈ B.

Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as the conditional distribution
of Xn+1 given that (X1, . . . ,Xn) = x.

According to the Ionescu-Tulcea theorem, for any strategy σ , there is a unique probability measure
P on (S∞,B∞) satisfying

P(X1 ∈ ·) = σ0 and P
(
Xn+1 ∈ · | (X1, . . . ,Xn) = x

) = σn(x)

for all n ≥ 1 and P -almost all x ∈ Sn.

Such a P is denoted as Pσ in the sequel.
To make predictions on the sequence (Xn), a Bayesian inferrer needs precisely a strategy σ . The

Ionescu-Tulcea theorem establishes that, for any strategy σ , the predictions based on σ are consistent
with a unique probability distribution for (Xn).

1.1. The standard and non-standard approach for exchangeable data

The data sequence (Xn) is usually assumed to be exchangeable. In that case, there are essentially two
procedures for selecting a strategy σ . For definiteness, we call them the standard approach (SA) and
the non-standard approach (NSA). The only reason for using these terms is that the first approach is
much more popular than the second. Both approaches can be adopted to make Bayesian predictive
inference and both lead to a full specification of the probability distribution of (Xn).

According to SA, to obtain σ , the inferrer should:

• Select a prior π , namely, a probability measure on P ;
• Calculate the posterior of π given that (X1, . . . ,Xn) = x, say πn(x);
• Evaluate σ as

σ0(B) =
∫
P

p(B)π(dp) and σn(x)(B) =
∫
P

p(B)πn(x)(dp) for all B ∈ B.

To assess a prior π is not an easy task. In addition, once π is selected, it is also quite difficult to
evaluate the posterior πn(x). Frequently, it happens that πn(x) cannot be written in closed form but
only approximated numerically.

On the other hand, SA is not motivated by prediction alone. Another motivation, possibly the main
one, is to make inference on other features of the data distribution, such as a mean, a quantile, a
correlation, or more generally some random parameter (possibly, infinite dimensional). In all these
cases, the posterior πn(x) is fundamental. In short, SA is a cornerstone of Bayesian inference, but,
when prediction is the main target, is possibly quite involved.

Instead, NSA entails assigning σn directly, without passing through π and πn. Merely, rather than
choosing π and then evaluating πn and σn, the inferrer just selects his/her predictive distribution σn.
This procedure makes sense because of the Ionescu-Tulcea theorem. See [3,4,8,11,12,16,19,20,24]; see
also [17,25,26,29] and references therein.

NSA is in line with de Finetti, Dubins and Savage, among others. Pitman’s work is fundamental as
well; see, for example, [27] and [28]. In fact, NSA is usually adopted (or at least implicit) in species
sampling models; see [24].

Similarly, NSA is used in [19] to obtain a fast online Bayesian prediction. Suppose that S = R

and σn(x) admits a density, with respect to some fixed measure λ on B, for all n ≥ 0 and x ∈ Sn. In
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[19], the update of predictive distributions is given a nice characterization in terms of copulas. Such a
characterization, in turn, allows for making Bayesian predictions through an useful recursive procedure.
In a sense, the present paper fits into the framework of [19].

From our point of view, NSA has essentially two merits. Firstly, it requires the assignment of proba-
bilities on observable facts only. The value of the next observation Xn+1 is actually observable, while
π and πn (being probabilities on P) do not deal with observable facts. Secondly, as noted in [19], Sec-
tion 6, NSA is much more efficient than SA when prediction is the main goal. In this case, why select
the prior π explicitly? Rather than wondering about π , it seems reasonable to reflect on how Xn+1 is
affected by (X1, . . . ,Xn).

Finally, NSA is even more appealing in a nonparametric framework, where selecting a prior with
large support is usually difficult.

We discuss an example to make the above remarks clearer.

Example 1 (SA versus NSA). If (Xn) is exchangeable, de Finetti’s theorem yields

P(X1 ∈ B1, . . . ,Xn ∈ Bn) =
∫

�

n∏
i=1

Pθ(Bi)π(dθ)

for some parameter space �, some prior π on �, and some statistical model

M = {Pθ : θ ∈ �} where Pθ ∈ P for each θ.

In the parametric case, � is a Borel subset of Rk and M is dominated and smooth. In the nonparametric
case, � is infinite-dimensional, typically � = P . In both cases, SA entails selecting π , evaluating the
posterior πn and calculating σ as

σn(x)(B) =
∫

�

Pθ(B)πn(x)(dθ).

In turn, NSA entails selecting σ directly, without passing through π and πn.
In our opinion, SA may be unsuitable for prediction even in the parametric framework. Not only it

is hard to choose π , but to evaluate πn may be difficult as well. On the contrary, NSA usually takes the
available information on the data into account more effectively. In fact, in various practical situations,
arguing in terms of strategies is simpler than arguing in terms of priors. An obvious example are Polya
urns, where the strategy σ is naturally determined by the sampling scheme, while the prior π is not.
The merits of NSA increase further in the nonparametric framework. In that case, if prediction is the
main goal, to assess a prior π and evaluate the posterior πn is really too expensive.

One more remark is in order. Because of exchangeability, the probability distribution P of (Xn) can
be written as above for some M and π . However, by assigning a strategy σ , the inferrer identifies P =
Pσ , not the pair (M,π). In a sense, when applying NSA, the “model uncertainty” about θ is integrated
out by the choice of σ . This appears reasonable after all, as when making predictions, the relevant
object is σ not (M,π). An intriguing problem, pioneered by Diaconis, Ylvisaker and Freedman, is
to give conditions on σ implying that the statistical model M underlying Pσ has a given form, for
instance M is an exponential family. Such a problem, however, is not investigated in this paper. See
[13,14,16,30] and references therein.

1.2. Conditionally identically distributed data

If (Xn) is assumed to be exchangeable, however, NSA has a gap. Given an arbitrary strategy σ , the
Ionescu-Tulcea theorem does not grant exchangeability of (Xn) under Pσ . Therefore, for NSA to ap-
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ply, one should first characterize those strategies σ which make (Xn) exchangeable under Pσ . A nice
characterization is [16], Theorem 3.1. However, the conditions on σ for making (Xn) exchangeable
are quite hard to check in real problems. This is possibly one of the reasons why NSA has not yet been
developed. Another reason is the lack of constructive procedures for determining σ . It is precisely this
lack which makes SA necessary for prediction, even if analytically more involved.

An obvious way to bypass the gap mentioned in the above paragraph is to weaken the exchange-
ability assumption. One option is to assume (Xn) to be conditionally identically distributed (c.i.d.),
namely

P(Xk ∈ · |Fn) = P(Xn+1 ∈ · | Fn) a.s. for all k > n ≥ 0

where Fn = σ(X1, . . . ,Xn) and F0 is the trivial σ -field.
Roughly speaking, the above condition means that, at each time n ≥ 0, the future observations

(Xk : k > n) are identically distributed given the past Fn. Such a condition is actually weaker than
exchangeability. Indeed, (Xn) is exchangeable if and only if it is stationary and c.i.d.

We refer to Section 2.1 for more information on c.i.d. sequences. Here, we just mention three reasons
for taking c.i.d. data into account.

• It is not hard to characterize the strategies σ which make (Xn) c.i.d. under Pσ ; see Theorem 3.
Therefore, unlike the exchangeable case, NSA can be easily implemented.

• The asymptotic behavior of c.i.d. sequences is analogous to that of exchangeable ones.
• A number of meaningful strategies cannot be used if (Xn) is assumed to be exchangeable, but are

available if (Xn) is only required to be c.i.d. See the examples in Sections 4–6.

To support the latter claim, we also note that conditional identity in distribution is a more appropriate
assumption than exchangeability in some real problems. Examples occur in various fields, including
clinical trials, generalized Polya urns, species sampling models and disease surveillance; see [1,2,5]
and [10].

1.3. Further notation and conditions (a)–(b)

A kernel (or a random probability measure) on (S,B) is a collection

α = {
α(x) : x ∈ S

}
such that α(x) ∈ P for each x ∈ S and the map x �→ α(x)(B) is measurable for fixed B ∈ B. Here,
α(x)(B) denotes the value taken at B by the probability measure α(x).

Let σ0 ∈P and α a kernel on (S,B). In the sequel, σ0 and α are such that:

(a) σ0 is a stationary distribution for α, namely,

σ0(B) =
∫

α(x)(B)σ0(dx) for all B ∈ B;

(b) There is a set A ∈ B such that σ0(A) = 1 and

α(x)(B) =
∫

α(z)(B)α(x)(dz) for all x ∈ A and B ∈ B.

Conditions (a)–(b) are not so unusual. For instance, they are satisfied whenever α is a regular con-
ditional distribution for σ0 given any sub-σ -field of B; see Lemma 6. In particular, conditions (a)–(b)



706 Berti, Dreassi, Pratelli and Rigo

trivially hold if

A = S and α(x) = δx for all x ∈ S

where δx denotes the point mass at x.
Finally, if x = (x1, . . . , xn) ∈ Sn and y ∈ S, we write (x, y) to denote

(x, y) = (x1, . . . , xn, y).

In addition, for any strategy σ , we let

S0 = {∅}, σ0(∅) = σ0, σ1(∅, y) = σ1(y).

1.4. Content of this paper

We aim to develop NSA for c.i.d. data. To this end, we introduce and investigate a class � of strategies.
Such a � is rich enough to model various real situations and (Xn) is c.i.d. under Pσ for each σ ∈ �.
Furthermore, when a new observation Xn+1 becomes available, σn+1 can be obtained from a simple
recursive update of σn.

Each σ ∈ � can be described as follows. Fix σ0 ∈ P and a kernel α on (S,B) satisfying conditions
(a)–(b). Also, for every n ≥ 0, fix a measurable function fn : Sn+2 → [0,1] such that

fn(x, y, z) = fn(x, z, y) for all x ∈ Sn and (y, z) ∈ S2.

Given σ0, α and (fn : n ≥ 0), a strategy σ can be obtained via the recursive equation

σn+1(x, y)(B) =
∫

α(z)(B)fn(x, y, z)σn(x)(dz) + α(y)(B)

{
1 −

∫
fn(x, y, z)σn(x)(dz)

}

for all n ≥ 0, B ∈ B, x ∈ Sn and y ∈ S.
We define � as the collection of all the strategies σ obtained as above.
The simplest example corresponds to

fn(x, y, z) = qn(x),

where qn : Sn → [0,1] is any measurable map (with q0 constant). In that case, the recursive equation
reduces to

σn+1(x, y) = qn(x)σn(x) + {
1 − qn(x)

}
α(y) (1)

for all n ≥ 0, x ∈ Sn and y ∈ S. (Here, for the sake of simplicity, we are assuming A = S where A is
the set involved in condition (b).)

In this specific case, the updating rule is quite transparent: σn+1(x, y) is just a convex combination
of the previous predictive distribution σn(x) and the kernel α evaluated in the last observation y. In
addition, the weight qn(x) does not depend on y. Note also that σn+1(x, y) can be written explicitly
(and not only in recursive form) as

σn+1(x, y) = σ0

n∏
i=0

qi + α(y)(1 − qn) +
n∑

i=1

α(xi)(1 − qi−1)

n∏
j=i

qj ,
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where x = (x1, . . . , xn) ∈ Sn, y ∈ S and qi is a shorthand notation to denote

qi = qi(x1, . . . , xi).

In general, specifying fn and α suitably, various meaningful strategies can be shown to be members
of �. Some of these strategies are well known and some are new (in the sense that, to our knowledge,
they have not been proposed to date). Examples of the former are the predictive distributions of Dirich-
let sequences, species sampling sequences and generalized Polya urns. Examples of the latter are the
strategies of Sections 5–6.

Another nice feature of � is that it also includes diffuse strategies, and this fact may be useful to
model real situations. We recall that a probability measure is diffuse if it vanishes on singletons, and a
strategy σ is diffuse if σn(x) is diffuse for all n ≥ 0 and x ∈ Sn.

In addition to introducing �, our main contributions are Theorems 4–5 and Theorems 18–20. The
former state that (Xn) is c.i.d. under Pσ for each σ ∈ �, while the latter deal with the asymptotics of
σn. A few words should be spent on Theorem 18.

Let X∗
1,X∗

2, . . . denote the (finite or infinite) sequence of distinct values corresponding to the obser-
vations X1,X2, . . . If (Xn) is c.i.d. under Pσ , where σ is any strategy (possibly not belonging to �),
there is a random probability measure μ on (S,B) such that

σn(B)
a.s.→ μ(B) for every fixed B ∈ B

where “a.s.” stands for “Pσ -a.s.”; see Section 2.1. Theorem 18 states that

μ
a.s.=

∑
k

WkδX∗
k
,

for some random weights Wk ≥ 0 such that
∑

k Wk = 1, if and only if

lim
n

Pσ (Xn �= Xi for each i < n) = 0.

Furthermore, Wk admits the representation

Wk
a.s.= lim

n

1

n

n∑
i=1

1{Xi=X∗
k }.

By applying Theorem 18 to σ ∈ �, it is not hard to give conditions on fn and α implying that μ

is a.s. discrete. Conditions for X∗
1,X∗

2, . . . to be i.i.d. and independent of the weights W1,W2, . . . are
given as well.

It is worth noting that Theorem 18 holds true for any strategy σ which makes (Xn) c.i.d. Hence,
Theorem 18 extends a known fact concerning exchangeability to all c.i.d. sequences; see, for example,
[23].

In addition to the results quoted above, other main contributions of this paper are the examples
included in Sections 4–6. In our opinion, these examples should support the fact that � is rich enough
to cover a wide range of problems.
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2. Preliminaries

2.1. Conditional identity in distribution

C.i.d. sequences have been introduced in [5] and [21] and then investigated in various papers; see, for
example, [1–4,6,7,10,18]. Here, we just recall a few basic facts.

Let (Gn : n ≥ 0) be a filtration and (Yn : n ≥ 1) a sequence of S-valued random variables. Then, (Yn)

is c.i.d. with respect to (Gn) if it is adapted to (Gn) and

P(Yk ∈ · | Gn) = P(Yn+1 ∈ · | Gn) a.s. for all k > n ≥ 0.

When (Gn) is the canonical filtration of (Yn), the filtration is not mentioned at all and (Yn) is just
called c.i.d. From a result in [21], (Yn) is exchangeable if and only if it is stationary and c.i.d.

Let (Yn) be c.i.d., Gn = σ(Y1, . . . , Yn), and

μn = 1

n

n∑
i=1

δYi

the empirical measure. In a sense, the asymptotic behavior of (Yn) is similar to that of an exchangeable
sequence. This claim can be supported by two facts.

First, there is a random probability measure μ on (S,B) satisfying

μn(B)
a.s.−→ μ(B) for every fixed B ∈ B.

As a consequence, for fixed n ≥ 0 and B ∈ B, one obtains

E
{
μ(B) | Gn

} = lim
m

E
{
μm(B) | Gn

}

= lim
m

1

m

m∑
i=n+1

P(Yi ∈ B | Gn) = P(Yn+1 ∈ B | Gn) a.s.

Thus, as in the exchangeable case, the predictive distribution P(Yn+1 ∈ · | Gn) can be written as
E{μ(·) | Gn}, where μ is the a.s. weak limit of the empirical measures μn. In particular, for each
B ∈ B, the martingale convergence theorem implies

P(Yn+1 ∈ B | Gn) = E
{
μ(B) | Gn

} a.s.−→ μ(B). (2)

Second, (Yn) is asymptotically exchangeable, in the sense that

(Yn,Yn+1, . . .) → (Z1,Z2, . . .) in distribution, as n → ∞,

where (Zn) is an exchangeable sequence. Moreover, (Zn) is directed by μ, namely

P(Z1 ∈ B1, . . . ,Zk ∈ Bk) = E

{
k∏

i=1

μ(Bi)

}

for all k ≥ 1 and B1, . . . ,Bk ∈ B.
The role played by μ is not as crucial as in the exchangeable case, since the probability distribu-

tion of (Yn) is not completely determined by μ; see Example 17. Nevertheless, μ is a meaningful
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random parameter for (Yn). In fact, μ(B) is the long run frequency of the events {Yn ∈ B}. Sim-
ilarly, because of (2), μ(B) can be regarded as the asymptotically optimal predictor of the event
{the next observation belongs to B}. And finally, μ is the directing measure of the exchangeable limit
sequence (Zn).

2.2. Stationarity, reversibility and characterizations

We first recall some definitions. Let τ ∈ P and α = {α(x) : x ∈ S} a kernel on (S,B). Then:

• τ is a stationary distribution for α if∫
α(x)(B)τ(dx) = τ(B) for all B ∈ B;

• α is reversible with respect to τ if∫
A

α(x)(B)τ(dx) =
∫

B

α(x)(A)τ(dx) for all A,B ∈ B;

• α is a regular conditional distribution for τ given G, where G ⊂ B is a sub-σ -field, if x �→ α(x)(B)

is G-measurable and∫
A

α(x)(B)τ(dx) = τ(A ∩ B) for all A ∈ G and B ∈ B.

Since S is nice (it is in fact a Borel subset of a Polish space), for any sub-σ -field G ⊂ B, there exists
a τ -a.s. unique regular conditional distribution for τ given G; see e.g. [22], page 107. Note also that
reversibility implies stationarity (just take A = S) but not conversely. In addition, τ is a stationary
distribution for α provided α is a regular conditional distribution for τ (take A = S again).

We next characterize exchangeable and c.i.d. sequences in terms of strategies.

Theorem 2 ([16], Theorem 3.1). For any strategy σ , (Xn) is exchangeable under Pσ if and only if

(i) The kernel {σn+1(x, y) : y ∈ S} is reversible with respect to σn(x) for all n ≥ 0 and Pσ -almost
all x ∈ Sn;

(ii) σn(x) = σn(f (x)) for all n ≥ 2, all permutations f on Sn and Pσ -almost all x ∈ Sn.

To deal with the c.i.d. case, it suffices to drop condition (ii) and to replace “reversible” with “station-
ary” in condition (i).

Theorem 3 ([6], Theorem 3.1). For any strategy σ , (Xn) is c.i.d. under Pσ if and only if

(i*) The kernel {σn+1(x, y) : y ∈ S} has stationary distribution σn(x) for all n ≥ 0 and Pσ -almost
all x ∈ Sn.

An obvious consequence of Theorem 3 is that (Xn) is c.i.d. under Pσ whenever {σn+1(x, y) : y ∈ S}
has stationary distribution σn(x) for all n ≥ 0 and all x ∈ Cn, where C ∈ B is any set with σ0(C) = 1.

Theorem 3 also suggests how to assess a c.i.d. sequence stepwise. First, select σ0 ∈ P , the marginal
distribution of X1. Then, choose a kernel {σ1(y) : y ∈ S} with stationary distribution σ0, where σ1(y) is
the conditional distribution of X2 given X1 = y. Next, for each x ∈ S, select a kernel {σ2(x, y) : y ∈ S}
with stationary distribution σ1(x), where σ2(x, y) is the conditional distribution of X3 given X1 = x

and X2 = y. And so on. In other terms, for getting a c.i.d. sequence, it is sufficient to assign a kernel
with a given stationary distribution at each step.
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3. A sequential updating rule
Our starting point is the following simple fact.

Theorem 4. Let τ ∈ P and f : S2 → [0,1] a measurable symmetric function. Fix a kernel α = {α(x) :
x ∈ S} on (S,B) and define

β(x)(B) =
∫

α(z)(B)f (x, z)τ (dz) + α(x)(B)

∫ (
1 − f (x, z)

)
τ(dz)

for all x ∈ S and B ∈ B. Then, β = {β(x) : x ∈ S} is a kernel on (S,B). Moreover:

• If τ is stationary for α, then τ is stationary for β;
• If α(x) = δx for all x ∈ S, then β is reversible with respect to τ .

Proof. Let φ(x) = ∫
f (x, z)τ (dz). If φ(x) = 0, then β(x) is clearly a probability measure on B. If

φ(x) ∈ (0,1],

β(x)(B) = φ(x)

∫
α(z)(B)f (x, z)τ (dz)

φ(x)
+ (

1 − φ(x)
)
α(x)(B).

Hence, β(x) ∈ P for all x ∈ S. Further, for fixed B ∈ B, the map x �→ β(x)(B) is measurable because
of Fubini’s theorem. Thus, β is a kernel on (S,B).

Next, suppose τ is stationary for α. Since f (x, z) = f (z, x), one obtains∫
β(x)(B)τ(dx) =

∫ ∫
α(z)(B)f (x, z)τ (dz)τ (dx)

+
∫

α(x)(B)τ(dx) −
∫

α(x)(B)φ(x)τ(dx)

=
∫

α(z)(B)

∫
f (z, x)τ (dx)τ(dz) + τ(B) −

∫
α(x)(B)φ(x)τ(dx)

=
∫

α(z)(B)φ(z)τ (dz) + τ(B) −
∫

α(x)(B)φ(x)τ(dx) = τ(B)

for all B ∈ B. Thus, τ is stationary for β .
Finally, if α(x) = δx , then∫

A

β(x)(B)τ(dx) =
∫ ∫

1A(x)1B(z)f (x, z)τ (dz)τ (dx)

+
∫

1A(x)1B(x)τ(dx) −
∫

1A(x)1B(x)φ(x)τ(dx)

for all A,B ∈ B. It follows that∫
A

β(x)(B)τ(dx) −
∫

B

β(x)(A)τ(dx)

=
∫ ∫

1A(x)1B(z)f (x, z)τ (dz)τ (dx) −
∫ ∫

1B(x)1A(z)f (x, z)τ (dz)τ (dx)

=
∫

1B(z)

∫
1A(x)f (z, x)τ (dx)τ(dz) −

∫
1B(x)

∫
1A(z)f (x, z)τ (dz)τ (dx) = 0.

Thus, β is reversible with respect to τ . �



Bayesian predictive inference 711

Heuristically, in the special case α(x) = δx , the idea underlying β reminds of Metropolis’ algorithm.
Starting from a state x, one first selects a new state z according to τ , and then goes to z or remains in x

with probabilities f (x, z) and 1 − f (x, z), respectively. This naive idea can be adapted to an arbitrary
kernel α as follows. First, select z according to τ . Then, the new state y is drawn from α(z) with
probability f (x, z), or from α(x) with probability 1 − f (x, z). From our point of view, however, what
is meaningful is that this idea provides a simple updating procedure.

Next, as in Section 1.4, fix σ0 ∈ P , a kernel α on (S,B) and a sequence of measurable functions
fn : Sn+2 → [0,1] such that

fn(x, y, z) = fn(x, z, y) for all n ≥ 0, x ∈ Sn and (y, z) ∈ S2.

The kernel α is assumed to satisfy conditions (a)–(b) of Section 1.3. We recall that (a)–(b) are automat-
ically true if α is a regular conditional distribution for σ0 given any sub-σ -field G ⊂ B; see Lemma 6
below. In particular, conditions (a)–(b) hold if α(x) = δx for all x ∈ S.

Given σ0, α and (fn : n ≥ 0), define a strategy σ according to

σn+1(x, y)(B) =
∫

α(z)(B)fn(x, y, z)σn(x)(dz) + α(y)(B)

{
1 −

∫
fn(x, y, z)σn(x)(dz)

}

for all n ≥ 0, x ∈ Sn, y ∈ S and B ∈ B.
Note that, when a new observation y becomes available, σn+1(x, y) is just a recursive update of

σn(x).
Let � denote the collection of all the strategies σ obtained in this way, for σ0, α and (fn : n ≥ 0)

varying. Each σ ∈ � makes (Xn) c.i.d.

Theorem 5. Let σ ∈ �. Then, (Xn) is c.i.d. under Pσ . Moreover, if α(x) = δx for all x ∈ S, then

Pσ

[
(Xn+1,Xn+2) ∈ · | Fn

] = Pσ

[
(Xn+2,Xn+1) ∈ · | Fn

]
a.s. (3)

for all n ≥ 0, where F0 is the trivial σ -field and Fn = σ(X1, . . . ,Xn).

Proof. We show that there is C ∈ B such that σ0(C) = 1 and {σn+1(x, y) : y ∈ S} has stationary
distribution σn(x) for all n ≥ 0 and all x ∈ Cn. By the remark after Theorem 3, this implies that (Xn)

is c.i.d. under Pσ .
Let A ∈ B be the set involved in condition (b). Define

A0 = A and An+1 = {
x ∈ An : α(x)(An) = 1

}
for all n ≥ 0.

If σ0(An) = 1 for some n ≥ 0, condition (a) yields∫
α(x)(An)σ0(dx) = σ0(An) = 1,

which in turn implies σ0(An+1) = 1. Since σ0(A0) = σ0(A) = 1, by induction, one obtains σ0(An) = 1
for each n ≥ 0. Let

C =
∞⋂

n=0

An.
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If x ∈ C, then α(x)(An) = 1 for all n, so that α(x)(C) = 1. Also, C ⊂ A and σ0(C) = 1. To summarize,
C satisfies

σ0(C) = 1, α(x)(C) = 1 and
∫

α(z)(B)α(x)(dz) = α(x)(B) for all x ∈ C and B ∈ B.

Next, if σn(x)(C) = 1 for some n ≥ 0 and all x ∈ Cn, then

σn+1(x, y)(C) =
∫

C

α(z)(C)fn(x, y, z)σn(x)(dz) + α(y)(C)

{
1 −

∫
fn(x, y, z)σn(x)(dz)

}

=
∫

C

fn(x, y, z)σn(x)(dz) + 1 −
∫

fn(x, y, z)σn(x)(dz) = 1 for all (x, y) ∈ Cn+1.

Arguing by induction again, σ0(C) = 1 implies

σn(x)(C) = 1 for all n ≥ 0 and all x ∈ Cn.

Finally, fix (x, y) ∈ Cn+1. Since σn(x)(C) = 1,∫
α(v)(B)σn+1(x, y)(dv) =

∫
C

∫
α(v)(B)α(z)(dv)fn(x, y, z)σn(x)(dz)

+
{

1 −
∫

fn(x, y, z)σn(x)(dz)

}∫
α(v)(B)α(y)(dv)

=
∫

C

α(z)(B)fn(x, y, z)σn(x)(dz)

+
{

1 −
∫

fn(x, y, z)σn(x)(dz)

}
α(y)(B)

= σn+1(x, y)(B) for all B ∈ B.

Therefore, σn+1(x, y) is a stationary distribution for the kernel α. By Theorem 4, σn+1(x, y) is still
stationary for the kernel {σn+2(x, y, z) : z ∈ S}.

This concludes the proof that (Xn) is c.i.d. under Pσ . To conclude the proof of the whole theorem,
suppose α(x) = δx for all x ∈ S. Then, condition (3) is a direct consequence of Theorem 4 and the
following well-known fact. Let X and Z be S-valued random variables, τ the probability distribution
of X, and γ = {γ (x) : x ∈ S} a regular version of the conditional distribution of Z given X. Then,

(X,Z) ∼ (Z,X) ⇔ γ is reversible with respect to τ. �

Condition (3) is stronger than the c.i.d. condition. As an example, (3) implies

(Xi,Xj ) ∼ (Xj ,Xi) for all i �= j

and this may fail for an arbitrary c.i.d. sequence; see e.g. [6], Example 3. Therefore, when α(x) = δx ,
the updating procedure of this section yields a special type of c.i.d. sequences. On the other hand, just
because of condition (3), Theorem 2 implies

(Xn) is exchangeable under Pσ ⇔ σn(x) = σn

(
f (x)

)
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for all n ≥ 2, all permutations f on Sn and Pσ -almost all x ∈ Sn. In other terms, if σ ∈ � and α(x) =
δx , the exchangeability of (Xn) can be easily characterized.

Finally, we turn to conditions (a)–(b). The next result is helpful for finding a kernel α satisfying
(a)–(b).

Lemma 6. If α = {α(x) : x ∈ S} is a regular conditional distribution for σ0 given a sub-σ -field G ⊂ B,
then α satisfies conditions (a)–(b).

Proof. Condition (a) (that is, σ0 stationary for α) has been already noted in Section 2.2. In turn, the
proof of (b) essentially agrees with that of [9], Lemma 10, but we report it for completeness. Let G0
be the σ -field over S generated by the maps z �→ α(z)(B) for all B ∈ B. Then, α is also a regular
conditional distribution for σ0 given G0. In addition, since B is countably generated, G0 is countably
generated as well. Hence, there is A ∈ B such that σ0(A) = 1 and

α(x)(B) = δx(B) for all x ∈ A and B ∈ G0.

Fix x ∈ A and B ∈ B. Since the map z �→ α(z)(B) is G0-measurable, one obtains∫
α(z)(B)α(x)(dz) =

∫
α(z)(B)δx(dz) = α(x)(B). �

4. Examples: Discrete strategies

From now on, we fix σ0 ∈ P and a sequence

qn : Sn → [0,1], n ≥ 0,

of measurable functions (with q0 constant).
Moreover, in this section, we let

α(x) = δx for all x ∈ S and

fn(x, y, z) = qn(x) for all x ∈ Sn and (y, z) ∈ S2.

With this choice of fn, the calculation of σn(x) is straightforward. Writing

x = (x1, . . . , xn) and qi = qi(x1, . . . , xi),

one obtains

σn(x) = σ0

n−1∏
i=0

qi + δxn(1 − qn−1) +
n−1∑
i=1

δxi
(1 − qi−1)

n−1∏
j=i

qj . (4)

The strategy (4) is connected to Beta-GOS processes, as meant in [1]. If σ0 is diffuse, the qi have the
following interpretation. Let x = (x1, . . . , xn). Since σ0({x1, . . . , xn}) = 0 and δxi

({x1, . . . , xn}) = 1
for i ≤ n, it follows that

Pσ

(
Xn+1 = Xi for some i ≤ n | (X1, . . . ,Xn) = x

) = σn(x)
({x1, . . . , xn}

)
= (1 − qn−1) +

n−1∑
i=1

(1 − qi−1)

n−1∏
j=i

qj = 1 −
n−1∏
i=0

qi.
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More importantly, by specifying the qi suitably, a lot of meaningful predictive distributions can be
obtained from (4).

Example 7 (Exponential smoothing). If qi = q for all i ≥ 0, where q ∈ [0,1] is any constant, formula
(4) reduces to

σn(x) = qnσ0 + (1 − q)

n∑
i=1

qn−iδxi
;

see also [2]. Roughly speaking, this choice of σ makes sense when the inferrer has only vague opinions
on the dependence structure of the data, and yet he/she feels that the weight of the i-th observation xi

should be a decreasing function of n − i. Note that σn(x) is not invariant under permutations of x, so
that (Xn) fails to be exchangeable under Pσ . Yet, (Xn) is c.i.d. under Pσ because of Theorem 5.

Example 8 (Dirichlet sequences). If qi = i+c
i+1+c

for some constant c > 0, formula (4) yields

σn(x) = cσ0 + ∑n
i=1 δxi

n + c
.

These are the predictive distributions of a Dirichlet sequence. In this case, (Xn) is exchangeable under
Pσ .

Example 9 (Latent variables). Suppose qi of the form

qi = qi(x1, . . . , xi;λ1, . . . , λi)

where λ1, . . . , λi take values in a Borel set T of some Polish space.
To cover this situation, fix a Borel probability measure σ ∗

0 on S × T such that

σ ∗
0 (B × T ) = σ0(B) for all B ∈ B,

and define

σ ∗
n

[
(x1, λ1), . . . , (xn, λn)

] = σ ∗
0

n−1∏
i=0

qi + δ(xn,λn)(1 − qn−1) +
n−1∑
i=1

δ(xi ,λi )(1 − qi−1)

n−1∏
j=i

qj .

Marginalizing σ ∗
n , one obtains

σ ∗
n

[
(x1, λ1), . . . , (xn, λn)

]
(B × T ) = σn(x)(B) for all B ∈ B

where σn(x) is given by (4). Also, up to replacing S with S × T , Theorem 5 applies to the strategy
σ ∗. More precisely, let Pσ ∗ be the probability measure on the Borel sets of (S × T )∞ induced by σ ∗
and let �n be the n-th coordinate random variable on T ∞. Then, the sequence (Xn,�n) is c.i.d. under
Pσ ∗ . In other terms, (Xn) is c.i.d. (under Pσ ∗ ) even if qi depends on the latent variables λ1, . . . , λi .

A last remark, motivated by the next Example 10, is as follows. The above argument still applies if
λ1 is a known constant and

qi = qi(x1, . . . , xi;λ1, . . . , λi, λi+1).
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In fact, since λ1 is constant, q0 = q0(λ1) is constant as well. Thus, it suffices to replace (xn, λn) with
(xn, λn+1), namely, to define σ ∗

n as

σ ∗
n

[
(x1, λ2), . . . , (xn, λn+1)

] = σ ∗
0

n−1∏
i=0

qi + δ(xn,λn+1)(1 − qn−1) +
n−1∑
i=1

δ(xi ,λi+1)(1 − qi−1)

n−1∏
j=i

qj .

Arguing as above, the sequence (Xn,�n+1) is c.i.d. under Pσ ∗ and

σ ∗
n

[
(x1, λ2), . . . , (xn, λn+1)

]
(B × T ) = σn(x)(B) for all B ∈ B

where σn(x) is given by (4).

Example 10 (Generalized Polya urns). An urn contains a > 0 white balls and b > 0 black balls. At
each time n ≥ 1, one ball is taken out and then replaced together with Dn more balls of the same color.
In the classical scheme, Dn = d for all n where d ≥ 0 is a fixed constant. Here, instead, (Dn) is any
sequence of non-negative random variables.

Let Yn be the indicator of the event {white ball at time n}. Following [5], Example 1.3, it is natural
to let

P(Yn+1 = 1 | Y1, . . . , Yn,D1, . . . ,Dn) = a + ∑n
i=1 DiYi

a + b + ∑n
i=1 Di

a.s.

Assuming D1 constant, this is a special case of Example 9. Take in fact S = {0,1}, T = [0,∞), and
σ ∗

0 a Borel probability on S × T such that

σ ∗
0

({1} × [0,∞)
) = a

a + b
.

Then, it suffices to let

qi(x1, . . . , xi;λ1, . . . , λi, λi+1) = a + b + ∑i
j=1 λj

a + b + ∑i+1
j=1 λj

for all i ≥ 0.

5. Examples: Diffuse strategies

In this section, we still let fn(x, y, z) = qn(x) but α = {α(x) : x ∈ S} is any kernel on (S,B) satisfying
conditions (a)–(b). For the sake of simplicity, we suppose that (b) holds with A = S (this can actually be
assumed without loss of generality). We denote by σ ∈ � the strategy induced by σ0, α and (qn : n ≥ 0).
Such a σ can be written as

σn(x) = σ0

n−1∏
i=0

qi + α(xn)(1 − qn−1) +
n−1∑
i=1

α(xi)(1 − qi−1)

n−1∏
j=i

qj

for all n ≥ 1 and x ∈ Sn, where qi = qi(x1, . . . , xi).
To our knowledge, none of the strategies exhibited in this section have ever been proposed before.

Two more remarks are in order.
First, σ is diffuse whenever σ0 and α are diffuse. Instead, the strategy (4), as well as many popular

strategies, has a discrete part in correspondence with the observed data.
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Second, let H ⊂ B be a countable partition of S and let H(x) denote the unique H ∈ H which
includes the point x ∈ S. For definiteness, suppose σ0(H) > 0 for all H ∈ H. Then, a simple kernel
satisfying conditions (a)–(b) is

α(x) =
∑
H∈H

1H (x)σ0(· | H) = σ0
(· | H(x)

)
for all x ∈ S. (5)

Let us turn to specific examples.

Example 11 (Examples 7 and 8 continued). For x = (x1, . . . , xn) ∈ Sn, the strategies of Examples 7
and 8 turn into

σn(x) = qnσ0 + (1 − q)

n∑
i=1

qn−iα(xi) and σn(x) = cσ0 + ∑n
i=1 α(xi)

n + c
,

respectively. For definiteness, we focus on the second one, which can be viewed as a version of the
predictive distributions of Dirichlet sequences.

As a first example, fix a countable partition H of S and define α according to (5). Then,

σn(x) = cσ0 + ∑n
i=1 σ0(· | H(xi))

n + c
.

Note that σn(x) is absolutely continuous with respect to σ0 for all n ≥ 0 and x ∈ Sn. Such a strategy
σ could be reasonable when H(xi) is the basic information coming from the observation xi . Roughly
speaking, due to the precision of the measuring tool, one is actually observing an element of H rather
than a point of S.

For a more elaborate example, take S =R
2 and denote by R the Borel σ -field on R (so that B =R2).

Fix a probability measure r on R and define

σ0(A × B) =
∫

A

N(u)(B)r(du) for all A,B ∈ R,

where N(u) = N(u,1) is the Gaussian law on R with mean u and variance 1. Then, a kernel satisfying
conditions (a)–(b) is

α(u, v) = δu × N(u) for all (u, v) ∈ R
2.

Thus, if a point in the plane is selected through α(u, v), the abscissa agrees with u a.s. while the
ordinate is distributed according to N(u). Using this α, one obtains

σn(x)(A × B) = cσ0(A × B) + ∑n
i=1 1A(ui)N(ui)(B)

n + c
for all A,B ∈ R,

where the i-th observation xi is written as xi = (ui, vi). This strategy σ comes into play when the basic
information which stems from xi = (ui, vi) is the abscissa ui . Note that σn(x)(A × B) is small if n is
large but ui /∈ A for all i. In a sense, the classical Dirichlet prediction scheme is preserved as regards
the abscissas u1, . . . , un of the observed data. Note also that N(u) could be replaced by Q(u), where
{Q(u) : u ∈ R} is any measurable collection of probabilities on R.
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Next, given a countable class G of measurable maps g : S → S, say that σ0 is G-invariant if

σ0
(
g−1B

) = σ0(B) for all g ∈ G and B ∈ B.

In this case, the inferrer may wish his/her predictions were G-invariant as well.

Example 12 (Invariant strategies). Suppose σ0 is G-invariant and

G = {
B ∈ B : g−1B = B for all g ∈ G

}
.

As noted in Section 2.2, since S is nice, there is a regular conditional distribution α = {α(x) : x ∈ S}
for σ0 given G. Because of Lemma 6, α satisfies conditions (a)–(b). By standard arguments, since G

is countable and B countably generated, α can be taken in such a way that α(x) is G-invariant for all
x ∈ S. In turn, this implies that σn(x) is G-invariant for all n ≥ 0 and x ∈ Sn.

As a simple example, let S =R and σ0 symmetric. Take G = {g} where g(x) = −x, and

α(x) = δx + δ−x

2
.

Then,

σn(x) = σ0

n−1∏
i=0

qi + 1

2

(
δxn(1 − qn−1) +

n−1∑
i=1

δxi
(1 − qi−1)

n−1∏
j=i

qj

)

+ 1

2

(
δ−xn(1 − qn−1) +

n−1∑
i=1

δ−xi
(1 − qi−1)

n−1∏
j=i

qj

)

is a symmetric strategy which makes (Xn) c.i.d.
As a further example, let S = T d and σ0 exchangeable, where T is a Borel subset of a Polish space.

Take G as the set of all permutations of T d , and

α(x) =
∑

g∈G δg(x)

d! .

Then, σ is an exchangeable strategy which makes (Xn) c.i.d.

The strategy λ obtained in the last example does not belong to �. However, λ comes from essentially
the same idea of � and (Xn) is c.i.d. under Pλ.

Example 13 (Another strategy dominated by σ0). For each n ≥ 1, take a countable partition Hn of
S and assume

Hn ⊂ B, Hn+1 finer than Hn and σ0(H) > 0 for all H ∈Hn.

To avoid trivialities, assume also that qn > 0 for all n ≥ 0.
For every n ≥ 1 and τ ∈ P , a kernel αn = {αn(x) : x ∈ S} which admits τ as a stationary distribution

is

αn(x) =
∑

H∈Hn

1H (x)τ(· | H) = τ
(· | Hn(x)

)
.
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(Here, Hn(x) is the unique H ∈ Hn such that x ∈ H and we tacitly assumed τ(H) > 0 for all H ∈Hn.)
Let us define a strategy λ as follows. Let λ0 = σ0 and

λ1(x) = q0σ0 + (1 − q0)σ0
(· | H1(x)

)
for all x ∈ S.

By Theorem 4, λ0 is a stationary distribution for the kernel {λ1(x) : x ∈ S}. Next, for every (x, y) ∈ S2,
define

λ2(x, y) = q1(x)λ1(x) + (
1 − q1(x)

)
λ1(x)

(· | H2(y)
)
.

The kernel {λ2(x, y) : y ∈ S} admits λ1(x) as a stationary distribution. Moreover, since H2 is finer than
H1, one obtains

λ1(x)
(
B | H2(y)

) = σ0
(
B | H2(y)

)
for all B ∈ B.

Therefore, λ2(x, y) can be written as

λ2(x, y) = q0q1(x)σ0 + (1 − q0)q1(x)σ0
(· | H1(x)

) + (
1 − q1(x)

)
σ0

(· | H2(y)
)
.

In general, for every n ≥ 1 and x = (x1, . . . , xn) ∈ Sn, define

λn(x) = σ0

n−1∏
i=0

qi + σ0
(· | Hn(xn)

)
(1 − qn−1) +

n−1∑
i=1

σ0
(· | Hi(xi)

)
(1 − qi−1)

n−1∏
j=i

qj

where qi stands for qi(x1, . . . , xi). Arguing as above, it is easily seen that, for a fixed x ∈ Sn, the kernel
{λn+1(x, y) : y ∈ S} admits λn(x) as a stationary distribution. Hence, Theorem 3 implies that (Xn) is
c.i.d. under Pλ.

The strategy λ is reminiscent of (4). As a matter of fact, λ agrees with (4) up to replacing σ0(· |
Hi(xi)) with δxi

. Furthermore, the partitions Hn can be chosen such that

{x} =
⋂
n

Hn(x) for each x ∈ S.

Unlike (4), however, λn(x) is absolutely continuous with respect to σ0 for all n ≥ 0 and x ∈ Sn.

6. Examples: Other choices of fn

In the previous examples, fn(x, y, z) = qn(x) does not depend on (y, z). This is not so in the present
section. We let α(x) = δx and we denote by σ ∈ � the strategy induced by σ0, α and (fn : n ≥ 0). Once
again, to our knowledge, the strategies obtained in this section have never been proposed before.

Example 14 (Separating sets). For each n ≥ 0 and x ∈ Sn, take a set An(x) ∈ B and define

fn(x, y, z) = 1An(x)(y)1An(x)(z) + 1Ac
n(x)(y)1Ac

n(x)(z)

where Ac
n(x) is the complement of An(x). Thus, fn(x, y, z) = 0 or fn(x, y, z) = 1 according to

whether y and z can, or cannot, be separated by the set An(x). A direct calculation shows that

σn+1(x, y) = σn(x)
(
An(x)

)
σn(x)

(· | An(x)
) + σn(x)

(
Ac

n(x)
)
δy if y ∈ An(x),
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where the first summand on the right is meant to be 0 in case σn(x)(An(x)) = 0. Similarly,

σn+1(x, y) = σn(x)
(
Ac

n(x)
)
σn(x)

(· | Ac
n(x)

) + σn(x)
(
An(x)

)
δy if y /∈ An(x).

According to the heuristic interpretation of Section 3, such a strategy σ can be described as follows.
At time n+1, after observing (x, y) ∈ Sn+1, the inferrer selects a new state z according to σn(x). Then,
he/she remains in y or goes to z according to whether y and z are, or are not, separated by An(x). This
could be reasonable, for instance, if the inferrer has some reason to request

σn+1(x, y)
(
An(x)

) = 1An(x)(y).

Example 15 (Decreasing functions of the distance). In the spirit of Example 14, let

fn(x, y, z) = gn

[
x, d(y, z)

]
where d is the distance on S and gn : Sn × [0,∞) → [0,1] a measurable function such that

gn(x, t) < gn(x, s) < gn(x,0) = 1 for all x ∈ Sn and 0 < s < t.

Then, σ can be attached an interpretation similar to Example 14. Again, after observing (x, y) ∈ Sn+1,
the inferrer selects a new state z according to σn(x). Then, he/she goes to z with probability fn(x, y, z)

or remains in y with probability 1 − fn(x, y, z). Moreover, the chance of reaching z starting from y is
a decreasing function of d(y, z) and is 1 if and only if y = z.

Example 16 (Ehrenfest-like models). Theorem 4 still works if the assumption f ≤ 1 is weakened.
More specifically, define β according to Theorem 4 with α(x) = δx and f a measurable symmet-
ric function such that 0 ≤ f ≤ c, where c is any constant. Then, β is a reversible kernel provided
β(x)(B) ≥ 0 for all x ∈ S and B ∈ B. Note that the latter condition is trivially true if c ≤ 1.

As an example, take S = {0,1} and fn a non-negative function on Sn+2 such that fn(x, y, z) =
fn(x, z, y). If

fn(x,0,1) − 1 ≤ fn(x,0,1)σn(x)
({1}) ≤ 1 for all n ≥ 0 and x ∈ Sn, (6)

then σn(x)(B) ≥ 0 for all n, x and B . Hence, (Xn) is c.i.d. under Pσ whenever condition (6) holds. On
the other hand, if fn(x,0,1) > 1, then

σn+1(x, y)
({y}) = σn(x)

({y}) + (
1 − fn(x,0,1)

)
σn(x)

({1 − y}) < σn(x)
({y}).

In other terms, observing y at step n + 1 makes the probability of y at step n + 2 strictly less than the
probability of y at step n + 1. This may look counterintuitive but it makes sense in some problems.

Think of two water-containers C0 and C1. At each time n ≥ 1, either C0 or C1 is selected and a part
of its water is transferred into the other one. The total quantity of water, say w, remains constant in
time. The data are the selected containers. To model this situation, it is quite natural to let S = {0,1}
and

λn(x)
({y}) = quantity of water in Cy after observing x

w

for all n ≥ 0, x ∈ Sn and y ∈ S. Such a strategy λ belongs to � under some assumptions on the quantity
of water moving from one container to the other. For instance suppose that, after observing (x, y) for
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some x ∈ Sn and y ∈ S, the quantity of water transferred from Cy into C1−y is

λn(x)
({1 − y})2

λn(x)
({y})w.

Then, λ ∈ �. In fact, λ is induced by λ0, {δx : x ∈ S} and

fn(x,0,1) = 1 + λn(x)
({0})λn(x)

({1}).
7. Discreteness of the limit of σn

This section investigates the limit μ of σn as n → ∞. It is split into two subsections. The first introduces
a sequence of random variables the predictive distributions of which are given by (4), while the second
includes the main results.

7.1. An explicit construction

Let σ be the strategy (4). To better understand the meaning of σ , it may be useful to build a sequence
(Yn) of random variables satisfying Y1 ∼ σ0 and

P(Yn+1 ∈ · | Y1, . . . , Yn) = σn(Y1, . . . , Yn)

= σ0

n−1∏
i=0

qi + δYn(1 − qn−1) +
n−1∑
i=1

δYi
(1 − qi−1)

n−1∏
j=i

qj a.s. for n ≥ 1 (7)

where qi = qi(Y1, . . . , Yi). One such (Yn) is provided by [4].
Let (Tn : n ≥ 1) and (Ui,j : j ≥ 1,0 ≤ i < j) be random variables such that:

(j) (Tn) is an i.i.d. sequence of S-valued random variables with T1 ∼ σ0;
(jj) (Ui,j ) is an i.i.d. array of [0,1]-valued random variables with U0,1 uniformly distributed on

[0,1];
(jjj) (Tn) is independent of (Ui,j ).

Using (Tn) and (Ui,j ) as building blocks, the sequence (Yn) is obtained as follows.
Let Y1 = T1. Then, define Y2 = T2 or Y2 = Y1 according to whether U0,1 ≤ q0 or U0,1 > q0. At step

n + 1, after Y1, . . . , Yn have been defined, let

Yn+1 = Tn+1 if Ui,n ≤ qi(Y1, . . . , Yi) for all 0 ≤ i < n,

Yn+1 = Yi+1 if Ui,n > qi(Y1, . . . , Yi) and Uj,n ≤ qj (Y1, . . . , Yj )

for some 0 ≤ i < n and all j > i.

It is not hard to verify that Y1 ∼ σ0 and condition (7) holds; see [4], Lemma 3.

7.2. Asymptotics

Let s = (s1, . . . , sn, . . .) denote a point of S∞. For any strategy σ which makes (Xn) c.i.d., there is a
random probability measure μ on (S,B) such that, for every fixed B ∈ B,

σn(s1, . . . , sn)(B) −→ μ(s)(B) for Pσ -almost all s ∈ S∞.
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As noted in Section 2.1, the role played by μ is not as crucial as in the exchangeable case, as Pσ is
not completely determined by μ.

Example 17. Take (Xn) c.i.d. but not exchangeable under Pσ and define

Q(A) = EPσ

{
μ∞(A)

}
for all A ∈ B∞.

By definition, (Xn) is exchangeable under Q. Also, since S is nice, Q = Pσ ∗ for some strategy σ ∗.
Thus, Pσ �= Pσ ∗ . However, for every fixed B ∈ B,

σ ∗
n (s1, . . . , sn)(B) −→ μ(s)(B) for Pσ ∗-almost all s ∈ S∞.

Despite Example 17, μ is an important random parameter for (Xn) and a (natural) question is: What
kind of random probability measures μ can be obtained if σ ∈ �? We address this question when σ is
given by (4). To this end, we first prove a general result.

In the next statement, we write “a.s.” to mean “Pσ -a.s.” and we denote by X∗
1,X∗

2, . . . the (finite or
infinite) sequence of distinct observations corresponding to X1,X2, . . . More specifically, if N is the
cardinality of the (random) set {X1,X2, . . .}, we let

X∗
n = Xτn for all integers n such that 1 ≤ n ≤ N,

where τ1 = 1 and τn = inf
{
j : Xj /∈ {

X∗
1, . . . ,X∗

n−1

}}
.

Theorem 18. Suppose (Xn) is c.i.d. under Pσ , where σ is any strategy. Then,

μ
a.s.=

∑
k

WkδX∗
k
, (8)

for some random variables Wk ≥ 0 such that
∑

k Wk = 1, if and only if

lim
n

Pσ (Xn �= Xi for each i < n) = 0. (9)

In addition,

Wk
a.s.= lim

n

1

n

n∑
i=1

1{Xi=X∗
k }. (10)

Proof. To make the notation easier, write P = Pσ , E = EPσ and In−1 = (X1, . . . ,Xn−1).
We first note a simple fact. Let

γ1 = δIn−1 × δXn, γ2 = δIn−1 × μ, and

H = {
(s1, . . . , sn) ∈ Sn : sn = si for some i < n

}
.

Then, γ1 and γ2 are random probability measures on (Sn,Bn) such that

γ1(H) = δXn

({X1, . . . ,Xn−1}
)

and γ2(H) = μ
({X1, . . . ,Xn−1}

)
.

Next, define two (non-random) probability measures on (Sn,Bn) as

γ ∗
1 (C) = E

{
γ1(C)

}
and γ ∗

2 (C) = E
{
γ2(C)

}
for all C ∈ Bn.
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Since (Xn) is c.i.d. under P , then P(Xn ∈ B | In−1) = E(μ(B) | In−1) a.s. for each B ∈ B; see Sec-
tion 2.1. Therefore,

γ ∗
1 (A × B) = P(In−1 ∈ A,Xn ∈ B)

= E
{
1A(In−1)P (Xn ∈ B | In−1)

}
= E

{
1A(In−1)E

(
μ(B) | In−1

)}
= E

{
1A(In−1)μ(B)

} = γ ∗
2 (A × B)

for all A ∈ Bn−1 and B ∈ B. Hence, γ ∗
1 = γ ∗

2 on Bn, which in turn implies

P(Xn = Xi for some i < n) = E
(
δXn

({X1, . . . ,Xn−1}
))

= γ ∗
1 (H) = γ ∗

2 (H) = E
(
μ

({X1, . . . ,Xn−1}
))

.

It follows that

E
(
μ

({
X∗

1,X∗
2, . . .

})) = lim
n

E
(
μ

({X1, . . . ,Xn−1}
)) = lim

n
P (Xn = Xi for some i < n).

This proves the equivalence between (8) and (9). In fact,

condition (8) ⇔ μ
({

X∗
1,X∗

2, . . .
}) a.s.= 1 ⇔ E

(
μ

({
X∗

1,X∗
2, . . .

})) = 1.

We finally turn to (10). As noted in Section 2.1, μ also satisfies

μn(B)
a.s.−→ μ(B) for every fixed B ∈ B,

where μn = 1
n

∑n
i=1 δXi

is the empirical measure. Hence,

P(μn
weakly−→ μ) = 1.

If condition (9) holds, then

μ
({

X∗
1,X∗

2, . . .
}) a.s.= 1 and μn

({
X∗

1,X∗
2, . . .

}) = 1 for each n,

where the first equation has been proved above and the second is trivial. Hence, under (9), μn converges
to μ in total variation norm with probability 1, that is,

sup
B∈B

∣∣μn(B) − μ(B)
∣∣ a.s.−→ 0.

In particular,

Wk = μ
({

X∗
k

}) = lim
n

μn

({
X∗

k

}) = lim
n

1

n

n∑
i=1

1{Xi=X∗
k } a.s.

�

Theorem 18 extends a result concerning exchangeability to the c.i.d. case. In fact, the equivalence
between (8) and (9) is already known if (Xn) is exchangeable under Pσ ; see e.g. [23].

Finally, we focus on the special case where σ is assessed according to (4). Then, Theorem 18 pro-
vides conditions for μ to be a.s. discrete.
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Theorem 19. Suppose the strategy σ is given by (4) and

n−1∏
i=0

qi(X1, . . . ,Xi)
Pσ−→ 0.

Then, μ admits representation (8) and the weights Wk are given by (10).

Proof. Just note that

Pσ

(
Xn+1 /∈ {X1, . . . ,Xn} | (X1, . . . ,Xn) = x

) = σn(x)
({x1, . . . , xn}c

)

= σ0
({x1, . . . , xn}c

) n−1∏
i=0

qi

where n ≥ 1, x = (x1, . . . , xn) ∈ Sn and qi = qi(x1, . . . , xi). Hence,

Pσ (Xn+1 �= Xi for each i ≤ n) = EPσ

{
σ0

({X1, . . . ,Xn}c
) n−1∏

i=0

qi(X1, . . . ,Xi)

}

≤ EPσ

{
n−1∏
i=0

qi(X1, . . . ,Xi)

}
−→ 0.

An application of Theorem 18 concludes the proof. �

Various popular random probability measures ν admit the representation

ν
a.s.=

∑
k

DkδZk
, (11)

where (Zk) is an i.i.d. sequence of random variables and the weights (Dk) are independent of (Zk).
Our last result is that μ often admits representation (11) provided σ is given by (4) and the qi are
constant.

Theorem 20. Suppose the strategy σ is given by (4) and σ0 is diffuse. Suppose also that qi is constant
for every i ≥ 0, and

n−1∏
i=0

qi → 0 and
∞∑

n=1

n−1∏
i=0

qi = ∞.

Then, μ admits representation (8) and the weights Wk are given by (10). Moreover, the sequence (X∗
k )

is i.i.d., X∗
1 ∼ σ0, and (X∗

k ) is independent of (Wk).

Proof. Take (Tn) and (Ui,j ) satisfying conditions (j)–(jjj) and define (Yn) as in Section 7.1. Since the
predictive distributions of (Yn) are given by (4), we can replace (Xn) with (Yn). In addition, since

∑
n

P
(
Yn+1 /∈ {Y1, . . . , Yn} | Y1, . . . , Yn

) a.s.=
∑
n

n−1∏
i=0

qi = ∞,
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the Borel–Cantelli lemma yields

P
(
Yn+1 /∈ {Y1, . . . , Yn} for infinitely many n

) = 1.

Hence, one can define

Y ∗
n = Yρn for all n ≥ 1,

where ρ1 = 1 and ρn = inf{j : Yj /∈ {Y ∗
1 , . . . , Y ∗

n−1}}.
Let ν be a random probability measure on (S,B) such that

P(Yn+1 ∈ B | Y1, . . . , Yn)
a.s.−→ ν(B) for each fixed B ∈ B.

Since
∏n−1

i=0 qi → 0, Theorem 19 implies

ν
a.s.=

∑
k

DkδY ∗
k

where Dk
a.s.= lim

n

1

n

n∑
i=1

1{Yi=Y ∗
k }.

We now prove that (Y ∗
k ) is i.i.d., Y ∗

1 ∼ σ0, and (Y ∗
k ) is independent of (Dk).

Let U be the σ -field generated by Ui,j for all i and j and

A = {Ti �= Tj for all i �= j}.
On the set A, one obtains Yn /∈ {Y1, . . . , Yn−1} if and only if Yn = Tn. Furthermore, P(A) = 1 for (Tn)

is i.i.d. and σ0 diffuse. Thus, up to a negligible set, ρk is U -measurable for each k. Similarly, up to a
negligible set, Dk is U -measurable for each k. Since (Tk) is independent of U , it follows that (Tk) is
independent of (Dk,ρk). Therefore, for each event H in the σ -field generated by (Dk), one obtains

P
(
H ∩ {

Y ∗
1 ∈ B1, . . . , Y

∗
k ∈ Bk

})
=

∑
m1,...,mk

P
(
H ∩ {ρ1 = m1, . . . , ρk = mk,Tm1 ∈ B1, . . . , Tmk

∈ Bk}
)

=
∑

m1,...,mk

P (Tm1 ∈ B1, . . . , Tmk
∈ Bk)P

(
H ∩ {ρ1 = m1, . . . , ρk = mk}

)

=
k∏

i=1

σ0(Bi)
∑

m1,...,mk

P
(
H ∩ {ρ1 = m1, . . . , ρk = mk}

) = P(H)

k∏
i=1

σ0(Bi).

This concludes the proof. �

If σ0 is diffuse, Theorem 20 applies to Dirichlet sequences of Example 8. In this special case, how-
ever, and more generally in case of exchangeable species sampling models, the conclusions of Theo-
rem 20 are due to Pitman [27], Proposition 11.

8. Concluding remarks

In this paper, only a very few indications on how to select fn and α have been given. Are there some
general criterions which help the inferrer in the choice of fn and α? Which problems are appropriate
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for fn(x, y, z) = qn(x) and which require more elaborate choices of fn? Or else, when is it reasonable
to take α(y) = δy?

These questions are certainly crucial from a practical point of view, but to answer them is beyond
the scope of this paper. However, we make three brief remarks.

First, in the subjective view of probability, any general criterion to select σ is possibly useful but
never mandatory. At least in principle, the choice of σ depends only on the knowledge/feelings of the
inferrer about the dependence structure of (Xn).

Second, the kernel α controls how much the next outcome is affected by the observed data. This is
quite evident in equation (1), where fn(x, y, z) = qn(x) and the updating rule reduces to σn+1(x, y) =
qn(x)σn(x) + {1 − qn(x)}α(y). In this case, the prediction of Xn+2 is affected by the last observation
Xn+1 = y only through α(y). Thus, in a sense, the choice of α has to do with how much the last
observation should be “reinforced”. In this respect, α(y) = δy is the more extreme choice of α.

Third, as suggested by an anonymous referee, the inferrer could apply a sort of empirical Bayes
procedure and select σ ∈ � based on the available data. As a simple example, the strategy of Example 7
depends on a single parameter q ∈ [0,1]. Such a q could be estimated by the data. For instance, a prior
for q could be assessed and q could be estimated by the mean of the corresponding posterior.
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