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In survival analysis, epidemiology and related fields there exists an increasing interest in statistical methods for
doubly truncated data. Double truncation appears with interval sampling and other sampling schemes, and refers
to situations in which the target variable is subject to two (left and right) random observation limits. Doubly
truncated data require specific corrections for the observational bias, and this affects a variety of settings including
the estimation of marginal and multivariate distributions, regression problems, and multi-state models. In this
work multivariate Efron–Petrosian integrals for doubly truncated data are introduced. These integrals naturally
arise when the goal is the estimation of the mean of a general transformation which involves the doubly truncated
variable and covariates. An asymptotic representation of the Efron–Petrosian integrals as a sum of i.i.d. terms is
derived and, from this, consistency and distributional convergence are established. As a by-product, uniform i.i.d.
representations for the marginal nonparametric maximum likelihood estimator and its corresponding weighting
process are provided. Applications to correlation analysis, regression, and competing risks models are presented.
A simulation study is reported too.
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1. Introduction

Doubly truncated data appear in epidemiology, survival analysis and other fields such as astronomy,
reliability engineering or econometrics. Under double truncation, the variable of interest X is observed
only when the condition U ≤ X ≤ V is satisfied, where (U,V ) with U ≤ V is the couple of left
and right truncating variables independent of X. In this setting, the distribution function (df) of X is
not identifiable unless aU ≤ aX and bX ≤ bV , where aξ and bξ denote the lower and upper limits
of the support of a random variable ξ (Woodroofe [33]). However, even under such identifiability
conditions, the sampling information on X is biased due to the double truncation phenomenon, so
specific estimation and inference procedures are needed.

In the seminal paper by Efron and Petrosian [7], the nonparametric (conditional) maximum likeli-
hood estimator (NPMLE) of the df of a doubly truncated variable was introduced; two different itera-
tive algorithms to compute the NPMLE were proposed too. Shen [24] proved that the Efron–Petrosian
NPMLE maximizes indeed the full likelihood, and provided a new iterative algorithm to compute both
the NPMLE of the df of X and that pertaining to the truncating couple (U,V ). He also stated some
asymptotic properties of the NPMLE. Moreira and de Uña-Álvarez [15] investigated the performance
of the bootstrap, while Moreira et al. [18] presented an R package implementing the iterative algo-
rithms of Efron and Petrosian [7] and Shen [24]. Moreira and de Uña-Álvarez [16], see also Shen
[26], proposed a semiparametric estimator alternative to the NPMLE when a parametric model for
the truncating variables is available; and Moreira et al. [19] developed goodness-of-fit tests for such
semiparametric model. Zhu and Wang [36,37] considered estimation and inference for bivariate data
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when the first component is doubly truncated by interval sampling. Austin et al. [2] introduced an
estimator with improved efficiency with respect to the Efron–Petrosian NPMLE for special cases of
double truncation. Also, Emura et al. [8] investigated the parametric MLE under double truncation for
the special exponential family. More recently, Shen and Liu [25], Mandel et al. [14] and Rennert and
Xie [21] independently investigated Cox regression with a doubly truncated response; see also Ying
et al. [35] for rank-based regression. In this paper additional theoretical developments for the random
double truncation model are provided.

Let (Xi,Ui,Vi), 1 ≤ i ≤ n, be the sampling information, that is, independent and identically dis-
tributed (i.i.d.) observations with the conditional distribution of (X,U,V ) given U ≤ X ≤ V . Let
α = P(U ≤ X ≤ V )> 0 be the probability of no truncation, and let G(x) = P(U ≤ X ≤ V |X = x) =
P(U ≤ x ≤ V ) be the sampling probability for a particular value X = x. The df’s of X and X1, denoted
here by F and F ∗ respectively, are linked through

F(x) = α

∫ x

aX

G(t)−1 dF ∗(t) (1.1)

with

α =
[∫ bX

aX

G(t)−1 dF ∗(t)
]−1

,

where we assume that G(t) > 0 on the support of X. Then, an estimator of F is given by

Fn(x) = αn

∫ x

aX

Gn(t)
−1 dF ∗

n (t) (1.2)

with

αn =
[∫ bX

aX

Gn(t)
−1 dF ∗

n (t)

]−1

,

where F ∗
n is the ordinary empirical df of the Xi ’s and Gn is an estimator for G. When Gn is constructed

by maximum-likelihood principles, Fn equals the Efron–Petrosian NPMLE. See Section 2 for details.
Equations (1.1) and (1.2) indicate that, in order to estimate consistently the df of X, the observed

value Xi must be inversely weighted by its sampling probability G(Xi), which is in practice replaced
by Gn(Xi). This strategy applies to the more general setting in which a covariate vector Z is attached
to X too. To be explicit, assume that one is interested in the estimation of

Sϕ = E
[
ϕ(X,Z)

] =
∫

ϕ(x, z) dFXZ(x, z), (1.3)

where ϕ is an arbitrary integrable transformation and FXZ stands for the df of (X,Z). Special cases of
(1.3) naturally appear in the regression setting and in the estimation of cumulative incidence functions,
see Section 3 for applications. The joint df FXZ(x, z) itself is a special case of (1.3) too, which is
obtained by considering the indicator function ϕ(x̃, z̃) = I (x̃ ≤ x, z̃ ≤ z).

Assume that the truncating couple (U,V ) is independent of (X,Z). This is stronger than the condi-
tional independence between (U,V ) and X given Z, often used in regression. Note, however, that the
unconditional independence is common in the estimation of multivariate distributions under random
truncation; see, for example, Gürler [10]. It holds that

Sϕ = α

∫
ϕ(x, z)G(x)−1 dF ∗

XZ(x, z) = E

[
ϕ(X1,Z1)

a(X1)

]
, (1.4)
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where a(x) = α−1G(x) and F ∗
XZ is the conditional df of (X,Z) given U ≤ X ≤ V . This suggests the

estimator

Sϕ
n = αn

∫
ϕ(x, z)Gn(x)−1 dF ∗

XZ,n(x, z) = 1

n

n∑
i=1

ϕ(Xi,Zi)

an(Xi)
, (1.5)

where Zi is the Z-vector attached to Xi , 1 ≤ i ≤ n, F ∗
XZ,n is the ordinary empirical df of the

(Xi,Zi)’s, and an(x) = α−1
n Gn(x). When there are no ties among the Xi ’s, (1.5) can be written as∑n

i=1 ϕ(Xi,Zi)Fn{Xi}, where Fn{Xi} denotes the jump of the Efron–Petrosian NPMLE (1.2) at Xi ,
see Section 2.

In this paper, we obtain an asymptotic representation of the Efron–Petrosian integral with covari-
ates, S

ϕ
n , as a sum of i.i.d. terms plus a remainder which converges to zero in probability at a suitable

rate. To this end, a uniform representation for an(x) − a(x) will be derived. The key result will be the
analogous representation for the Efron–Petrosian NPMLE itself, since the weighting process an(·) can
be written as a functional involving Fn(·). Compared to the related literature, the results on the mul-
tivariate Efron–Petrosian integral S

ϕ
n are novel. On the other hand, the uniform i.i.d. representations

established for S
ϕ
n − Sϕ , Fn(x) − F(x) and an(x) − a(x) are of independent interest, since they allow

for new applications in the setting of doubly truncated data. These applications go beyond the distri-
butional convergence of S

ϕ
n , Fn(·) and an(·), see Section 3. Asymptotic i.i.d. representations as those

provided in Section 2 open a door for the investigation of testing problems too. This comprises for ex-
ample, goodness-of-fit for regression models under double truncation (similarly as in Sánchez–Sellero
et al. [22], for left-truncated and right-censored data) as well as testing for semiparametric truncation
models (Moreira et al. [19]). Apart from this, our proofs repair several flaws in previous papers which
investigate the asymptotic properties of the NPMLE Fn; see Remark A.1 for details.

The rest of the paper is organized as follows. In Section 2, our main results are stated. Section 3
reports a number of applications of the main result in regression and to the estimation of important
targets in the scope of multi-state models. An illustrative simulation study is reported in Section 4.
Section 5 gives a final discussion. Some technical lemmas are collected and separately proved in the
Appendix.

For the main results in Section 2, besides the independence between (U,V ) and (X,Z) and the
identifiability conditions aU ≤ aX and bX ≤ bV (which are implied by assumption (A3) below), we
assume that U and V are absolutely continuous. This does not exclude the frequent situation in which
the joint density of (U,V ) does not exist. Such a situation occurs for example with interval sampling,
since V = U + τ for some constant τ (the interval width) in that case. Continuity of F will not be
imposed.

2. Main results

In this section, we introduce the main results of this piece of work. Following Efron and Petrosian [7],
to introduce the NPMLE of the df of X, we consider the class of discrete distributions supported on
{Xi,1 ≤ i ≤ n}. Let φi be the mass attached to Xi by F . Similarly, consider a discrete bivariate df K

for the couple (U,V ), which gives mass ψi to (Ui,Vi). Then, the likelihood of (Xi,Ui,Vi), 1 ≤ i ≤ n,
is given by

L(φ,ψ) =
n∏

i=1

α−1φiψi =
n∏

i=1

φiψi∑n
j=1 �jψj

, (2.1)

where φ = (φ1, . . . , φn), ψ = (ψ1, . . . ,ψn), �j = ∑n
i=1 φiJji , and Jji = I (Uj ≤ Xi ≤ Vj ). The

NPMLE of F and K are given by Fn(x) = ∑n
i=1 φ̂iI (Xi ≤ x) and Kn(u, v) = ∑n

i=1 ψ̂iI (Ui ≤ u,Vi ≤
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v) respectively, where φ̂ = (φ̂1, . . . , φ̂n) and ψ̂ = (ψ̂1, . . . , ψ̂n) are the maximizers of (2.1) under the
constraints

∑n
i=1 φ̂i = 1,

∑n
i=1 ψ̂i = 1. The likelihood (2.1) is self-adapted to ties in the sense that, if

a value Xi = xk has multiplicity nk , the mass attached to xk will be nkφ̂i . Existence and uniqueness of
the NPMLE is discussed in Xiao and Hudgens [34].

The NPMLE Gn(x) of G(x) is given by

Gn(x) =
n∑

i=1

ψ̂iI (Ui ≤ x ≤ Vi),

while the NPMLE of α is αn = ∑n
j=1 �̂j ψ̂j , where �̂j = ∑n

i=1 φ̂iJji . It is easily seen that φ̂i =
αn(nGn(Xi))

−1, 1 ≤ i ≤ n, with αn = 1/
∑n

i=1(nGn(Xi))
−1. Then, the NPMLE Fn equals the esti-

mator introduced in (1.2).
Another property of the NPMLE is that ψ̂i = αnn

−1[Fn(Vi) − Fn(Ui−)]−1, 1 ≤ i ≤ n, with αn =
1/

∑n
i=1 n−1[Fn(Vi) − Fn(Ui−)]−1. Here, Fn(x−) stands for the left-continuous version of Fn(x).

This property shows that the NPMLE Fn(x) is the solution of

U
(
F,F ∗

n ,K∗
n

)
(x) = 0, (2.2)

with

U
(
F,F ∗

n ,K∗
n

)
(x) = F(x) −

∫ x

aX

dF ∗
n (t)

ãn(t)
,

where

ãn(t) =
∫

u≤t≤v

dK∗
n(u, v)

F (v) − F(u−)
,

and where K∗
n denotes the ordinary empirical df of the (Ui,Vi)’s. In the following result, we establish

the in-probability uniform consistency and an i.i.d. representation for the solution Fn of equation (2.2).
Put K∗ for the joint df of (U1,V1), and introduce

a(t) = α−1G(t) =
∫

u≤t≤v

dK∗(u, v)

F (v) − F(u−)
,

ān(t) =
∫

u≤t≤v

dK∗(u, v)

Fn(v) − Fn(u−)

and

an(t) = α−1
n Gn(t) =

∫
u≤t≤v

dK∗
n(u, v)

Fn(v) − Fn(u−)
.

Throughout this section we will refer to the following assumptions:

(A1) F has only a finite number of discontinuity points and is continuous everywhere else; aX <

aV1 , bU1 < bX; bX − aX < ∞; and P(V1 − U1 ≥ γ ) = 1 for some γ > 0
(A2) inf(u,v)∈supp(K∗)(F (v) − F(u−)) > δ1 > 0
(A3) infaX≤x≤bX

G(x) > δ2 > 0
(A4) The marginal densities of U1 and V1 are bounded on [aX,bX], and bX − aX < ∞
Assumption (A1), together with (A2)–(A4), is needed for the uniform consistency of Fn. Indeed,

(A1) is used to guarantee that, given F ∗ and K∗, the solution to U(F,F ∗,K∗)(x) = 0 is unique; see the
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Appendix for details. Condition (A1) allows for continuous, discrete and mixed F -distributions, only
limiting the amount of point masses to be finite. On the other hand, conditions aX < aV1 , bU1 < bX and
P(V1 −U1 ≥ γ ) = 1 in (A1) are only slightly stronger versions of the obvious identifiability conditions
aX ≤ aV , bU ≤ bX and P(V − U ≥ 0) = 1. We mention that, with interval sampling, P(V1 − U1 ≥
γ ) = 1 holds for any γ smaller than or equal to the interval width. Condition P(V1 −U1 ≥ γ ) = 1 was
needed by Xiao and Hudgens [34] to prove that there exists a unique NPMLE of F , so it precludes
problems in the very definition of Fn; it was also used by Frank et al. [9] to investigate the particular
setting in which V − U is independent of U . Assumptions (A2) and (A3) state that the sampling
probability for the truncating couple and the variable of interest remain bounded away from zero.
Interestingly, (A2) holds under (A1), but we keep the former separately for ease of reference; note that
(A1) is not required for Lemmas A.2–A.5 in the Appendix. On its turn, by using arguments similar
to those in the proof to Lemma A.6, it is easy to see that (A3) is satisfied under P(V1 − U1 ≥ γ ) = 1
when aU1 < aX , bX < bV1 hold. Finally, condition (A4) is needed for the boundedness of the operator
A : �∞[aX,bX] −→ �∞[aX,bX] appearing in Theorem 2.1 below; here, �∞[aX,bX] denotes the space
of bounded functions defined on the support of X, with the norm ‖h‖∞ = supaX≤x≤bX

|h(x)|. The
proof of Theorem 2.1 is postponed to the Appendix.

Theorem 2.1. Let Fn be the solution of (2.2). Under the assumptions (A1)–(A4), (a) it holds
supaX≤x≤bX

|Fn(x) − F(x)| = oP (1); and (b) there exists a bounded linear operator A = A(F,F ∗,
K∗) such that

Fn(x) − F(x) = 1

n

n∑
i=1

A[hXi,Ui ,Vi
](x) + oP

(
n−1/2),

uniformly in x ∈ [aX,bX], where

hXi,Ui ,Vi
(x) = I (Xi ≤ x)

a(Xi)
− I (Ui ≤ x)

F (Vi) − F(Ui−)

∫ x∧Vi

aX∨Ui

dF ∗(t)
a(t)2

.

Remark 2.1. Our Theorem 2.1 is obviously connected to Theorems 2 and 3 in Shen [24]. However,
in the Appendix we indicate some important gaps and inconsistencies in Shen [24] which are solved
by our assumptions and argumentations. At this point, we only mention that, unlike in Shen [24], our
assumptions (A1)–(A4) allow for a possibly non-continuous F , and that the joint density of (U,V ) is
not assumed to exist. As indicated in the Introduction, the latter is critical to include applications with
interval sampling.

Remark 2.2. For the left-truncated setting, Woodroofe [33] investigated conditions under which the
observable distributions (F ∗ and K∗) determine the underlying ones (F and K). In principle, the
natural extension of his Theorem 1 to double truncation would be that, given F ∗, K∗ and α > 0, there
exists a unique couple (F,K) with aU ≤ aX ≤ aV and bU ≤ bX ≤ bV giving rise to the same joint
distribution of (X1,U1,V1). Discussion of (A1)–(A4) above implies a result which is ‘almost’ that
one. Namely, (F,K) is unique within the class of couples satisfying aU < aX < aV and bU < bX < bV ,
bX − aX < ∞ and P(V − U ≥ γ ) = 1 for some γ > 0, provided that (e.g., to simplify the statement)
the densities of X, U and V exist and are continuous.

Remark 2.3. Theorem 2.1(b) generalizes existing results for one-sided truncation. For example, the
i.i.d. representation n−1 ∑n

i=1 A[hXi,Ui ,Vi
](x) reduces to that in Theorem 2 in Stute [27], see also

Gürler et al. [11], when one removes the right truncation limit V . See Remark A.2 in the Appendix for
details.
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Corollary 2.1. Under (A1)–(A4), the process
√

n(Fn(x) − F(x)), aX ≤ x ≤ bX , converges weakly to
a zero-mean Gaussian process W(x) with covariance function given by

Cov
(
A[hX1,U1,V1 ](x1),A[hX1,U1,V1 ](x2)

) = E
(
A[hX1,U1,V1 ](x1)A[hX1,U1,V1 ](x2)

)
.

Proof. The result follows from Theorem 2.1 and Lemma A.4 in the Appendix. �

Remark 2.4. An estimator for the variance of the process
√

n(Fn(x) − F(x)) can be introduced by
using the i.i.d. representation in Theorem 2.1. For this, both the function hXi,Ui ,Vi

(x) and the operator
A must be estimated. The former is simply done by replacing the unknown a(x), F(x) and F ∗(x)

by their empirical counterparts an(x), Fn(x) and F ∗
n (x) to give ĥXi ,Ui ,Vi

(x) say. The latter is not so
immediate. Lemma A.3 in the Appendix gives A= ∑∞

r=0 Ar where A is a functional involving F , K∗,
F ∗ and a. Introduce

An[h](x) =
∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

(Fn(v) − Fn(u−))2
dK∗

n(u, v)
dF ∗

n (t)

an(t)2

and, from this, An = ∑r∗
r=0 Ar

n, for some trimming parameter r∗. Let An,i = An[ĥXi ,Ui ,Vi
]. Then, the

variance of
√

n(Fn(x)−F(x)) can be approximated by n−1 ∑n
i=1 An,i(x)2. The theoretical properties

and the practical performance of this estimator are interesting open questions.

Now, we provide asymptotic results for the process an(x) − a(x). Write

an(x) − a(x) = an(x) − ān(x) + ān(x) − a(x).

We have

an(x) − ān(x) =
∫

u≤x≤v

d(K∗
n − K∗)(u, v)

F (v) − F(u−)
+ oP

(
n−1/2)

uniformly in x, see the proof to Lemma A.1 in the Appendix. On the other hand, for ān(x) − a(x) we
write

ān(x) − a(x) =
∫

u≤x≤v

F (v) − Fn(v) + Fn(u−) − F(u−)

(F (v) − F(u−))2
dK∗(u, v)

+
∫

u≤x≤v

F (v) − Fn(v) + Fn(u−) − F(u−)

F (v) − F(u−)

×
[

1

Fn(u) − Fn(v−)
− 1

F(v) − F(u−)

]
dK∗(u, v).

Since by Corollary 2.1 Fn(x) − F(x) = OP (n−1/2) uniformly in x ∈ [aX,bX], the second term at the
right-hand side is OP (n−1) uniformly in x under (A2). Summarising, we have the following results.

Theorem 2.2. Under the assumptions (A1)–(A4), we have

an(x) − a(x) = 1

n

n∑
i=1

[
I (Ui ≤ x ≤ Vi)

F (Vi) − F(Ui−)
− a(x) − Ã[hXi,Ui ,Vi

](x)

]
+ oP

(
n−1/2)
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uniformly in x ∈ [aX,bX], where

Ã[h](x) =
∫

u≤x≤v

A[h](v) −A[h](u−)

(F (v) − F(u−))2
dK∗(u, v).

Proof. The result is a direct consequence of the derivations above and the i.i.d. representation of Fn in
Theorem 2.1. �

Corollary 2.2. Under (A1)–(A4), the process
√

n(an(x) − a(x)), aX ≤ x ≤ bX , converges weakly to a
zero-mean Gaussian process W0(x) with covariance function given by

Cov

([
I (U1 ≤ x1 ≤ V1)

F (V1) − F(U1−)
− a(x1) − Ã[hX1,U1,V1](x1)

]
,

[
I (U1 ≤ x2 ≤ V1)

F (V1) − F(U1−)
− a(x2) − Ã[hX1,U1,V1](x2)

])

= E

([
I (U1 ≤ x1 ≤ V1)

F (V1) − F(U1−)
− a(x1) − Ã[hX1,U1,V1 ](x1)

]

×
[

I (U1 ≤ x2 ≤ V1)

F (V1) − F(U1−)
− a(x2) − Ã[hX1,U1,V1 ](x2)

])
.

Proof. The result follows from Theorem 2.2 and Lemma A.5 in the Appendix. �

The i.i.d. representation for an(x) − a(x) in Theorem 2.2 leads now to an i.i.d. representation for
(1.5). This is included in the following result.

Theorem 2.3. Under the assumptions (A1)–(A4), we have that S
ϕ
n → Sϕ in probability for any inte-

grable function ϕ. If in addition ϕ is square-integrable, we have

Sϕ
n = 1

n

n∑
i=1

ϕ(Xi,Zi)

a(Xi)
− 1

n

n∑
i=1

ζ ϕ(Xi,Ui,Vi) + oP

(
n−1/2),

where

ζ ϕ(x,u, v) = E

(
ϕ(X1,Z1)

a(X1)2

[
I (u ≤ X1 ≤ v)

F (v) − F(u−)
− a(X1) − Ã[hx,u,v](X1)

])
.

Proof. Write

Sϕ
n = 1

n

n∑
i=1

ϕ(Xi,Zi)

an(Xi)

= 1

n

n∑
i=1

ϕ(Xi,Zi)

a(Xi)
− 1

n

n∑
i=1

ϕ(Xi,Zi)

ni

(
an(Xi) − a(Xi)

) ≡ S̄ϕ
n + R

ϕ
n1,

where ni is between an(Xi) and a(Xi). Since by the Weak Law of Large Numbers, S̄
ϕ
n →

E[ϕ(X1,Z1)a(X1)
−1] = Sϕ in probability, the weak consistency of S

ϕ
n follows provided that R

ϕ
n1 =
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oP (1), which in its turn can be ensured under (A3) if ‖an − a‖∞ = oP (1). Now, in order to prove this,
write

an(x) − a(x) =
∫

u≤x≤v

[
1

Fn(v) − Fn(u−)
− 1

F(v) − F(u−)

]
dK∗

n(u, v)

+
∫

u≤x≤v

d(K∗
n − K∗)(u, v)

F (v) − F(u−)
.

The first term is oP (1) uniformly in x under (A1)–(A4). Note that these conditions imply that
1/ inf(u,v)∈supp(K∗)(Fn(v) − Fn(u−)) = OP (1) which can be used to deal with the denominator. Since
the second term is OP (n−1/2) uniformly in x (because the function (u, v) −→ 1/(F (v) − F(u−)) is
bounded under (A2)), the result follows.

In order to prove the second assertion, use a second order Taylor expansion of ν(s) = 1/s around
a(Xi) to get

Sϕ
n = S̄ϕ

n − 1

n

n∑
i=1

ϕ(Xi,Zi)

a(Xi)2

(
an(Xi) − a(Xi)

) + R
ϕ
n2,

where

R
ϕ
n2 = −2

n

n∑
i=1

ϕ(Xi,Zi)
1

3
ni

(
an(Xi) − a(Xi)

)2
,

with ni between an(Xi) and a(Xi). Note that the weak convergence of an(x)−a(x) in Corollary 2.2,
together with (A3), imply that R

ϕ
n2 = OP (n−1) = oP (n−1/2).

Now, for the term

Wϕ
n ≡ 1

n

n∑
i=1

ϕ(Xi,Zi)

a(Xi)2

(
an(Xi) − a(Xi)

)

use the asymptotic representation in Theorem 2.2 to get

Wϕ
n = 1

n(n − 1)

∑
i =j

ϕ(Xi,Zi)

a(Xi)2

[
I (Uj ≤ Xi ≤ Vj )

F (Vj ) − F(Uj−)
− a(Xi) − Ã[hXj ,Uj ,Vj

](Xi)

]

+ oP

(
n−1/2),

where we have used (A2) and (A3). The main part of W
ϕ
n , W

ϕ
0,n say, is a U -statistic with Hájek projec-

tion given by

Ŵ
ϕ
0,n =

n∑
k=1

E
(
W

ϕ
0,n|Xk

) − (n − 1)E
(
W

ϕ
0,n

) = 1

n(n − 1)

n∑
k=1

∑
i =j

Eijk − (n − 1)E
(
W

ϕ
0,n

)
,

where

Eijk = E

(
ϕ(Xi,Zi)

a(Xi)2

[
I (Uj ≤ Xi ≤ Vj )

F (Vj ) − F(Uj−)
− a(Xi) − Ã[hXj ,Uj ,Vj

](Xi)

]∣∣∣∣Xk

)
,



Efron–Petrosian integrals for doubly truncated data with covariates 257

and where Xk = {Uk,Vk,Xk,Zk}. Since E(W
ϕ
0,n) = 0 and Eijk = 0 whenever j = k, we get

Ŵ
ϕ
0,n = 1

n

n∑
k=1

ζ ϕ(Xk,Uk,Vk).

Finally, since E(ζϕ(X1,U1,V1)
2) < ∞, Theorem 5.3.3 in Serfling [23] implies that W

ϕ
0,n − Ŵ

ϕ
0,n =

o((logn)(1/2+ρ)/n) with probability 1 with ρ > 0 and, hence, the result follows. �

Corollary 2.3. Under the assumptions (A1)–(A4), for any square-integrable function ϕ we have that
n1/2(S

ϕ
n − Sϕ) → N(0, σϕ) in law, where

σ 2
ϕ = Var

(
ϕ(X1,Z1)

a(X1)
− ζ ϕ(X1,U1,V1)

)
.

Proof. The expectation of the first term in the representation of Theorem 2.3 is Sϕ , while the sec-
ond term has zero mean. Then, the result follows from Theorem 2.3 and the Central Limit Theorem
(CLT). �

Remark 2.5. Double truncation can be seen as a special case of a general biased sampling setting
in which the target vector (X,Z) is observed only when X ∈ W , W being a random set independent
of (X,Z). In such a general setting the function G becomes G(x) = P(x ∈ W). In principle, given
a random sample (Xi,Zi,Wi), 1 ≤ i ≤ n, with the distribution of (X,Z,W) conditional on X ∈ W ,
estimation of G and F by maximum likelihood is possible; just use the indicator Jji = I (Xi ∈ Wj)

in (2.1). However, the particular shape of W and its probability law relative to F are critical to ensure
the existence of the NPMLE and to allow for an asymptotic analysis analogous to that accomplished
in this paper. Extension of our results to more general forms of random truncation is currently under
investigation.

3. Applications

In this section, we give some applications of our main results. These concern particular Efron–Petrosian
integrals with covariates of the form as in (1.5). Specifically, applications to correlation analysis, accel-
erated failure time regression, Cox regression and cumulative incidence functions for competing risks
will be given.

3.1. Correlation analysis

The Pearson correlation coefficient depends on quantities of the type (1.4) for special ϕ functions,
namely ϕ(x, z) = x, ϕ(x, z) = z, ϕ(x, z) = x2, ϕ(x, z) = z2, and ϕ(x, z) = xz. Each of these quantities
is estimated through (1.5) to get an empirical Pearson correlation coefficient, which is consistent under
the conditions in Theorem 2.3. The asymptotic normality of the Pearson correlation coefficient follows
then by the i.i.d. representation in Theorem 2.3, the multivariate CLT and the Delta method.
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3.2. Accelerated failure time regression

In this section, we consider the parametric regression setting in which the goal is to estimate and to do
inference for a vector of regression coefficients. Specifically, we consider the linear regression model

X = βt
0Z + ε, (3.1)

where ε is an error term such that E(ε|Z) = 0 and β0 is the vector of (true) regression coefficients.
Since the response variable X is observed under random double truncation, ordinary estimation ap-
proaches (such as e.g., least squares) must be properly adapted. In practice, the response variable is
often a logarithm transformation of the (truncated) lifetime of ultimate interest, leading to the so-called
accelerated failure time model. In such a case, X is replaced by log(X) in (3.1).

In order to estimate β0, introduce the randomly weighted least squares criterion

β �−→
n∑

i=1

(
Xi − βtZi

)2
Gn(Xi)

−1. (3.2)

Denote the minimizer of (3.2) by βn. It is straightforward to verify that βn =
M−1

1n M2n(X1, . . . ,Xn), where M1n and M2n are the matrices with entries

M1n(i, j) = αn

n∑
k=1

Zi
kZ

j
k Gn(Xk)

−1, 1 ≤ i, j ≤ p,

M2n(i, k) = αnZ
i
kGn(Xk)

−1, 1 ≤ i ≤ p,1 ≤ k ≤ n,

where Zi
k denotes the i-th coordinate of Zk and p is the dimension of Zk . Then, the consistency of S

ϕ
n

for the particular transformations ϕ
ij

1 (x, z) = zizj and ϕi
2(x, z) = zix, 1 ≤ i, j ≤ p, gives βn − β0 =

oP (1) under a first order assumption. For this, note that the limits of M1n and M2n(X1, . . . ,Xn) are
E(ZZt) and E(ZZt)β0, respectively. Besides, when the involved ϕ-functions satisfy E(ϕ(X,Z)2) <

∞, an application of Theorem 2.3, the multivariate CLT and the Delta method gives the asymptotic
normality of

√
n(βn − β0).

Our main result can be applied to nonlinear regression too. Assume, rather than (3.1),

X = f (Z,β0) + ε

for a certain family of smooth predictors {f (·, β),β ∈ B}, where again β0 denotes the true value of
the q-dimensional vector of regression coefficients β (q = p is possible), and where E(ε|Z) = 0.
Furthermore, assume that

(i) E(X2) < ∞
(ii) B is compact

(iii) β −→ f (z,β) is continuous for each z

(iv) f (z,β)2 ≤ M(z) for some integrable function M(z)

(v) E{f (Z,β) − f (Z,β0)}2 > 0 for β = β0

Then, the consistency of the Efron–Petrosian integral for the special function ϕβ(X,Z) = {X −
f (Z,β)}2 ensures that the minimizer βn of

β �−→
n∑

i=1

(
Xi − f (Zi,β)

)2
Gn(Xi)

−1.
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satisfies βn → β0 in probability. Besides, the asymptotic normality of βn follows from Theo-
rem 2.3, the multivariate CLT and the Delta method, provided that the functions ϕi(X,Z) = {X −
f (Z,β0)} ∂f (Z,β0)

∂βi
, 1 ≤ i ≤ q , are square-integrable and that f (z, .) is twice continuously differen-

tiable. The straightforward details are omitted. See Stute [28] or de Uña-Álvarez [4] for similar results
in the setting with right-censoring or biased sampling, respectively.

Another extension of (3.2) is obtained by considering a general function ρ(w) instead of the squared
loss. That is, βn becomes the minimizer of

β �−→
n∑

i=1

ρ
(
Xi − βtZi

)
Gn(Xi)

−1,

an M-estimator. As for least squares estimation, formal asymptotic theory can be established for this
generalized βn by using our Theorem 2.3. When the loss function ρ(w) is continuously differentiable
asymptotics follow by arguments similar to those of nonlinear regression. Nevertheless, one will gen-
erally wish to include in the analysis non-differentiable loss functions; an important example is given
by the least absolute deviation estimator, which is based on ρ(w) = |w|. Theory for M-estimation with
possibly non-differentiable convex ρ(w) is more elaborated, and may naturally involve dealing with
subgradients; see, for example, Bai et al. [3] or Du et al. [6]. With convex loss, a uniform version of
our consistency result in Theorem 2.3 along the class ϕβ(x, z) = ρ(x − βtz), β ∈ B , is easily obtained
(Pollard [20]), which is important for the application of standard consistency results in M-estimation
(e.g., Theorem 5.7 in van der Vaart [30]). This somehow resembles the application of Theorem 2 in
Jennrich [12] for continuous predictors in the nonlinear regression setting as considered by Stute [28].
Full formal derivations are out of the scope of the present paper and will be provided elsewhere.

3.3. Cox regression

Cox regression is based on the proportional hazards assumption

h(x|Z) = h0(x)eβtZ,

where h0(·) is a baseline hazard and β is the vector of regression coefficients attached to the covariate
vector Z. Mandel et al. [14] introduced the estimating equation for β given by Un(β) = 0, where

Un(β) =
n∑

i=1

[
Zi −

∑n
j=1 Zje

βtZj I (Xj ≥ Xi)Gn(Xj )
−1

∑n
j=1 eβtZj I (Xj ≥ Xi)Gn(Xj )−1

]
. (3.3)

Obviously, Gn(x) can be replaced by an(x) = α−1
n Gn(x) in (3.3). Large sample properties for the

solution of Un(β) = 0 were derived by Mandel et al. [14] under the following couple of conjectures:

C1. max1≤i≤n |an(Xi) − a(Xi)| = oP (1)

C2.
√

n(an(x) − a(x)) = n−1/2 ∑n
i=1 ςn,i(x) + oP (1) uniformly in x for zero-mean i.i.d. variables

ςn,i(x) = ςn(Xi,Ui,Vi, x) with E((ςn,i(x))2) < ∞
Our Theorem 2.2 shows that C1 and C2 hold under conditions (A1)–(A4).

3.4. Cumulative incidence functions

Cumulative incidence functions (CIFs) naturally appear in the competing risks setting. Let X denote
the lifetime of interest, and consider the case in which K competing events are present. Define the event
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indicator as a covariate Z taking values on the set {1, . . . ,K}. The goal is the estimation of the CIFs
Fj (x) = P(X ≤ x,Z = j), 1 ≤ j ≤ K . Note that Fj (x) is just the expectation of the transformation
ϕj (X,Z) = I (X ≤ x,Z = j), which is obviously square-integrable. Introduce the estimators

Fjn(x) = αn

n∑
i=1

I (Xi ≤ x,Zi = j)Gn(Xi)
−1, 1 ≤ j ≤ K. (3.4)

Then, under conditions (A1)–(A4), we have that Fjn(x) − Fj (x) = oP (1) (Theorem 2.3) and√
n(Fjn(x) − Fj (x)) converges in law to a Gaussian random variable (Corollary 2.3).

4. Simulation study

In this section, we perform a number of simulation studies related to some of the applications men-
tioned in Section 3. To be specific, the performance of the Pearson correlation coefficient, the weighted
least squares estimator for the linear regression model, and the cumulative incidence functions for com-
peting risks are investigated. See Mandel et al. [14] for simulations of Cox regression with a doubly
truncated response, and de Uña-Álvarez [5] for more on competing risks under double truncation.

4.1. Pearson correlation and weighted least squares regression

We have simulated an interval sampling scenario in which the couple of interest (X,Z) is observed only
when U ≤ X ≤ V with V = U + τ . Specifically, Z ∼ U(0,1), X = Z + σε, ε ∼ N(0,1) (independent
of X), σ = 0.1, U ∼ U(−0.25,0.5) (independent of X and ε), and τ = 0.75. Hence, the regression
function is a line with intercept β0 = 0 and slope β1 = 1. The true correlation between X and Z is
ρXZ = (1 + σ 2/Var(Z))−1/2 = 0.945. Note that X is ‘almost’ identifiable: the probability of the event
{aU < X < bV } is larger than 0.9996. The simulated scenario is illustrated in Figure 1, where a single
sample of size n = 500 before (top) and after (bottom) truncation is displayed by means of scatterplots
and histograms. From Figure 1, it is seen that the general trend is apparently unchanged by the double
truncation, and that the marginal distribution of X changes a lot; specifically, small and large values of
X are observed with a relatively smaller probability.

Table 1 reports the mean and standard deviation of the ordinary Pearson correlation coefficient,
denoted by ρ̃XZ , and of the estimator which takes the double truncation into account, ρ̂XZ say, along
1000 Monte Carlo trials with sample sizes n = 100, 250 and 500. The results of the weighted least
squares estimator (3.2) are reported too. From Table 1 it is seen that the naive estimator has a moderate,
albeit visible systematic bias, and that the estimators which correct for double truncation perform
consistently.

4.2. Cumulative incidence functions

We consider a competing risks model with an initial state 0 and two absorbing states 1 and 2 cor-
responding to two competing events. The cause-specific hazards are α01(x) = λ1 and α02(x) = λ2x,
which results in a hazard rate α(x) = λ1 +λ2x for X, with corresponding df F(x) = 1 − e−λ1x−λ2x

2/2.
To simulate this model, we use the inversion method for X and, given X = x, the event indicator
I (Z = 1) is drawn from a Bernoulli distribution with p(x) ≡ P(Z = 1) = α01(x)/α(x). In this model,
the cumulative incidence functions F1(x) and F2(x) corresponding to the competing events Z = 1
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Figure 1. Correlation/regression setting. Scatterplots and histograms for a single sample of size n = 500 from the
simulated model: before truncation (top) and after truncation (bottom).

and Z = 2 are F1(x) = λ1e
λ2

1/(2λ2)
√

2π/λ2(�μ,σ (x) − �μ,σ (0)) and F2(x) = F(x) − F1(x), where
�μ,σ denotes the df of a N(μ,σ) variable, μ = −λ1/λ2 and σ = 1/

√
λ2. The truncating variables U

and V are generated independently of (X,Z), with U ∼ U(−0.25,0.5) and V = U + 0.75. We take
λ1 = λ2 = 3 so the distribution of X is identifiable, except for the small proportion of values above
bV = 1.25 (1 − F(bV ) � 0.0023). About 81% of the observations correspond to the event Z = 1.
The simulated scenario is depicted in Figure 2, where it is seen that the naive estimator of Aalen and
Johansen [1] which ignores the double truncation (grey lines) is biased.

The bias, standard deviation and mean squared error of the empirical CIFs F1n(x) and F2n(x) along
1000 Monte Carlo trials at the three quartiles of X, namely x1 = 0.092, x2 = 0.211 and x3 = 0.393, are
reported in Table 2. The sample sizes are n = 100, n = 250 and n = 500. From Table 2 it is seen that
the estimators perform consistently, and that the bias is negligible compared to the standard deviation.

Table 1. Correlation/regression setting. Mean (standard deviation) of two estimators for the Pearson correlation
coefficient and the regression parameters along 1000 Monte Carlo trials with sample size n. The naive estimators
are ρ̃XZ , β̃0 and β̃1, while the estimators adapted to double truncation are ρ̂XZ , β̂0 and β̂1

n = 100 n = 250 n = 500

ρ̃XZ 0.925 (0.013) 0.925 (0.009) 0.925 (0.006)
β̃0 0.038 (0.021) 0.039 (0.014) 0.038 (0.010)
β̃1 0.923 (0.038) 0.923 (0.025) 0.923 (0.017)

ρ̂XZ 0.945 (0.010) 0.945 (0.007) 0.945 (0.005)
β̂0 0.002 (0.027) 0.001 (0.018) 0.000 (0.013)
β̂1 0.997 (0.048) 0.998 (0.033) 0.999 (0.025)
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Figure 2. Cumulative incidences setting. True cumulative incidences in the simulated scenario (black lines) to-
gether with the naive Aalen–Johansen estimator which ignores the double truncation, computed for a single sample
of size n = 10,000 (grey lines).

5. Discussion

In this paper, Efron–Petrosian integrals for doubly truncated data with covariates have been introduced.
These are empirical multivariate integrals with respect to the marginal NPMLE of the doubly truncated
variable X. The main result is the consistency of the Efron–Petrosian integrals, together with an asymp-
totic i.i.d. representation which immediately entails convergence to a normal. Application of the main
result to the asymptotic analysis of the Pearson correlation coefficient, least squares regression, Cox
regression and cumulative incidence functions has been given. The finite sample performance of the
Efron–Petrosian integrals has been investigated through simulations.

The asymptotic properties of the Efron–Petrosian integrals have been derived from those of its
weighting process an(·). In its turn, the latter follow from the asymptotic properties of Fn, the marginal
NPMLE of the df of X. In this paper, a formal and complete asymptotic analysis of Fn has been pro-
vided, filling some of the gaps in the related literature. In particular, primitive conditions under which

Table 2. Cumulative incidence setting. Bias, standard deviation (SD) and mean squared error (MSE) of F̂1n(x)

and F̂2n(x) at the three quartiles x1, x2 and x3 of X along 1000 replicates

Bias SD MSE

F̂1n F̂2n F̂1n F̂2n F̂1n F̂2n

n = 100 x1 −0.0030 −0.0005 0.0604 0.0194 0.0037 0.0004
x2 −0.0033 0.0001 0.0554 0.0304 0.0031 0.0009
x3 −0.0018 0.0019 0.0459 0.0362 0.0021 0.0013

n = 250 x1 0.0032 −0.0002 0.0396 0.0130 0.0016 0.0002
x2 0.0028 −0.0007 0.0364 0.0188 0.0013 0.0004
x3 0.0027 −0.0009 0.0295 0.0220 0.0009 0.0005

n = 500 x1 0.0011 0.0001 0.0264 0.0093 0.0007 0.0001
x2 0.0012 0.0008 0.0246 0.0139 0.0006 0.0002
x3 0.0009 0.0008 0.0209 0.0156 0.0004 0.0002
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Fn follows a suitable i.i.d. asymptotic representation have been given, and the invertibility and bound-
edness of the involved operators have been established. The stated results are valid when the truncating
couple (U,V ) has a joint density and when it has not; this is interesting since the latter occurs with
interval sampling, often encountered in practice.

From a practical viewpoint, a feature of much interest is the construction of confidence limits and
hypothesis testing. These can be solved by using the asymptotic normality results in this paper if an
estimator for the variance of the Efron–Petrosian integrals is available. The formal study of this issue is
not covered in this paper; however, in principle one may apply the bootstrap (or alternative resampling
procedures) to proceed. See Moreira and de Uña-Álvarez [15] for more on the bootstrap with doubly
truncated data. The i.i.d. representation in Theorem 2.2 could serve to introduce an estimator for the
variance too, in the spirit of Remark 2.4. This issue is currently under investigation.

Throughout the paper it has been assumed that the truncating variables are independent of the couple
of interest (X,Z); indeed, most of the technical literature and real data applications have pivoted on
such an assumption. Of course, in case of dependence between (U,V ) and (X,Z) weights alternative
to an(·) must be introduced; see Moreira et al. [17] for an extended Efron–Petrosian estimator under
dependent truncation. This is an interesting question which is left for future research.

Appendix: Technical proofs

Proof to Theorem 2.1. Assume for a moment that Theorem 2.1(a) holds, that is ‖Fn − F‖∞ = oP (1)

(we will come back to this later). Write

U
(
Fn,F

∗
n ,K∗

n

)
(x) − U

(
Fn,F

∗,K∗)(x)

= −
∫ x

aX

d(F ∗
n − F ∗)(t)
ān(t)

+
∫ x

aX

∫
u≤t≤v

d(K∗
n − K∗)(u, v)

Fn(v) − Fn(u−)

dF ∗
n (t)

an(t)ān(t)
.

In Lemma A.1 we show that, under ‖Fn − F‖∞ = oP (1), the quantity above equals −hn(x) +
oP (n−1/2) uniformly in x ∈ [aX,bX], where

hn(x) =
∫ x

aX

d(F ∗
n − F ∗)(t)
a(t)

−
∫ x

aX

∫
u≤t≤v

d(K∗
n − K∗)(u, v)

F (v) − F(u−)

dF ∗(t)
a(t)2

.

Lemma A.2 proves the Fréchet differentiability of F → U(F,F ∗,K∗), that is, there exists a linear
operator h → �(F,F ∗,K∗)[h] such that

lim‖h‖∞→0

1

‖h‖∞
∥∥U(

F + h,F ∗,K∗) − U
(
F,F ∗,K∗) − �

(
F,F ∗,K∗)[h]∥∥∞ = 0.

Indeed, Lemma A.2 gives

�
(
F,F ∗,K∗)[h](x) = h(x) −

∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

(F (v) − F(u−))2
dK∗(u, v)

dF ∗(t)
a(t)2

.

Choosing h = Fn − F , and since U(F,F ∗,K∗) ≡ 0 ≡ U(Fn,F
∗
n ,K∗

n), the results above lead to

�
(
F,F ∗,K∗)[Fn − F ](x) = U

(
Fn,F

∗,K∗)(x) − U
(
F,F ∗,K∗)(x) + oP

(‖Fn − F‖∞
)

= hn(x) + oP

(
n−1/2) + oP

(‖Fn − F‖∞
)

uniformly in x ∈ [aX,bX].
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The invertibility of the linear operator h → �(F,F ∗,K∗)[h] and the boundedness of its inverse
A = �(F,F ∗,K∗)−1 are established in Lemma A.3, in which the linearity of A is proved too. Now,
for any linear operator B it holds that ‖B[h]‖∞ ≤ ‖B‖‖h‖∞. Therefore, since A is bounded, we obtain

Fn(x) − F(x) = A[hn](x) + oP

(
n−1/2) + oP

(‖Fn − F‖∞
)

(A.1)

uniformly in x ∈ [aX,bX]. The weak convergence of the main term in (A.1) is established in
Lemma A.4. Hence, by the continuous mapping theorem, this main term satisfies ‖A[hn]‖∞ =
OP (n−1/2), from which it follows that ‖Fn − F‖∞ = OP (n−1/2). Then, the remainder in (A.1) is
oP (n−1/2) uniformly in x ∈ [aX,bX]. This proves Theorem 2.1(b) with

hXi,Ui ,Vi
(x) = I (Xi ≤ x)

a(Xi)
− E

[
I (X1 ≤ x)

a(X1)

]

− I (Ui ≤ x)

F (Vi) − F(Ui−)

∫ x∧Vi

aX∨Ui

dF ∗(t)
a(t)2

+ E

[
I (U1 ≤ x)

F (V1) − F(U1−)

∫ x∧V1

aX∨U1

dF ∗(t)
a(t)2

]
.

Actually, the two expectations in this representation cancel out, and they both equal F(x). This
can be easily seen by using the relationships dF ∗(t) = a(t) dF (t), dK∗(u, v) = α−1(F (v) −
F(u−)) dK(u, v) and G(t) = αa(t). The proof of Theorem 2.1(b) is thus complete.

Now, in order to prove Theorem 2.1(a), note first that U(F,F ∗,K∗) ≡ 0 is equivalent to
H(F,F ∗,K∗) ≡ 0, where

H
(
F,F ∗,K∗)(x) =

∫
u≤v

F (v ∧ x) − F((u−) ∧ x)

F (v) − F(u−)
dK∗(u, v) − F ∗(x).

By the argument in van der Laan [29], p. 122, if F has only a finite number of point masses then
Fn has a subsequence which converges uniformly to a df F∞ which has the same support as F . Let
Fn(�) be such a subsequence. Lemma A.6 shows that, under (A1), F∞ satisfies (A2) and, therefore,
Fn(�)(v) − Fn(�)(u−) is bounded away from zero uniformly on the support of K∗. Conclude that
H(Fn(�),F

∗
n(�),K

∗
n(�))(x) − H(Fn(�),F

∗,K∗)(x) is bounded by C‖K∗
n − K∗‖∞ + ‖F ∗

n − F ∗‖∞ uni-
formly in x ∈ [aX,bX] for a constant C. This leads to

∥∥H
(
Fn(�),F

∗,K∗)∥∥∞ = ∥∥H
(
Fn(�),F

∗
n(�),K

∗
n(�)

) − H
(
Fn(�),F

∗,K∗)∥∥∞ = OP

(
n(�)−1/2).

The uniform consistency of Fn(�) trivially implies ‖H(Fn(�),F
∗,K∗) − H(F∞,F ∗,K∗)‖∞ = oP (1)

which shows that H(F∞,F ∗,K∗)(x) = 0 for x ∈ [aX,bX]. Now, since H(F,F ∗,K∗) ≡ 0 always
holds, we get (I − A∞)[F∞ − F ] = 0, where

A∞[h](x) = α−1
∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

F∞(v) − F∞(u−)
dK(u, v)

dF (t)

aF∞(t)
,

with

aF∞(t) =
∫

u≤t≤v

dK∗(u, v)

F∞(v) − F∞(u−)
,

so I −A∞ is analogous to the operator � above. Therefore, from Lemma A.3 we obtain the invertibility
of I − A∞, where we need again that F∞ satisfies (A2) (Lemma A.6). This implies the uniqueness of
the solution of H(F,F ∗,K∗) = 0 and, consequently, F∞ = F holds. Summarising, each subsequence
of Fn has a uniformly convergent subsequence, all having the same limit F . This proves the uniform
consistency of Fn. �
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Remark A.1. Theorem 2.1(a) is related to Theorem 2 in Shen [24], p. 844, where a statement on
the uniform consistency of Fn is given. Also, our Theorem 2.1(b) relates Theorem 3 in that paper.
Nevertheless, the assumptions and reasonings in Shen [24] suffer from several important gaps and
inconsistencies. For example, the convergence interval in Shen [24], Theorem 2, is of the form [aX, τ ],
suggesting a potential issue at the right tail of F . This is confusing, since the denominator F(v) −
F(u−) creates troubles for small v’s too. Indeed, our proof shows that there is no need to consider a
consistency interval other than [aX,bX] as long as F(v)−F(u−) remains bounded away from zero, as
stated by (A2). Shen [24] also refers to this boundedness condition in his Theorem 2, by assuming that
F(v) − F(u−) > δ > 0 for [u,v] ∈ [aX, τ ]; but this is obviously impossible in his setting, where F

has a density (just take u approaching v to violate Shen’s condition). More importantly, in the proof to
Theorem 2 in Shen [24] it is indicated that Fn(�)(v)−Fn(�)(u−) is uniformly bounded away from zero,
where Fn(�) is a subsequence converging to F∞, with supp(F∞) = supp(F ). No justification is given.
At this point the proof in Shen [24], Theorem 2, follows the argument in van der Laan [29], p. 122.
However, the investigation of the aforementioned boundedness is far from trivial; see p. 116 in van
der Laan [29] in which some artificial censoring is invoked and its possible impact on the NPMLE is
discussed. We have circumvented this by proving and exploiting our Lemma A.6, which is also critical
to justify that F∞ equals F . Note that this Lemma A.6 is not for free; it requires in particular that
v − u ≥ γ > 0 on the support of K∗, a condition which is missing in Shen [24].

On the other hand, our proof of Theorem 2.1(b) follows steps similar to those of Theorem 3 in Shen
[24], pp. 845–847, who considered the case in which X and (U,V ) have a density. However, unlike
in the referred paper, we provide a formal proof of the Fréchet differentiability of F → U(F,F ∗,K∗);
see Lemma A.2. Similarly to Shen [24], it turns out that A is the inverse of a certain linear operator
�(F,F ∗,K∗), which is the derivative of U . By deriving Volterra-type structures for �, we prove that
such operator is invertible and that its inverse A is bounded (Lemma A.3). We also obtain an explicit
formula for A, namely A = ∑∞

r=0 Ar where A[h](x) = ∫ bX

aX
L(x,w)h(w)dw for a certain function

L(x,w), see Lemma A.3. All these steps or results are missing in Shen [24]. Finally, compared to
Theorem 3 in Shen [24], we provide primitive assumptions under which the i.i.d. representation in
Theorem 2.1(b) holds true.

In the proof to his Theorem 3, Shen [24] says he can prove that the derivative of U ‘has a bounded
inverse in the same way as was in Section 3.4 of van der Laan [29]’ but, as mentioned, he does not
provide any proof for that. In the setting with double truncation things are different from van der Laan
[29]; for example, the Volterra structures appearing in the study of the invertibility of �(F,F ∗,K∗) are
more involved (both ‘direct’ and ‘reverse’ Volterra’s appear); we perform a thorough investigation of
them in Lemma A.3. Summarising, one can say that the proof of our Theorem 2.1 fills important gaps
in the proofs in Shen [24], while correcting and clarifying the needed assumptions in the statement of
the results.

Remark A.2. As mentioned in Remark 2.3, in the left-truncated setting the i.i.d. representation
A[hn](x) reduces to that in Stute [27], Theorem 2, which is n−1 ∑n

i=1 h̃i (x) with

h̃i (x) = α
(
1 − F(x)

)[ I (Xi ≤ x)

G(Xi)(1 − F(Xi))
− I (Ui ≤ x)

∫ x

aX∨Ui

I (Xi ≥ t) dF (t)

G(t)(1 − F(t))2

]
,

where the continuity of F is assumed for ease of presentation. Here G denotes the df of the left-
truncating variable U , which equals P(U ≤ x ≤ V ) when P(V ≥ bX) = 1. Since �(F,F ∗,K∗) =
A−1, the result follows provided that �(F,F ∗,K∗)[h̃i] = hXi,Ui ,Vi

, 1 ≤ i ≤ n. Now, in order to see
this, note first that when P(V ≥ bX) = 1 the operator �(F,F ∗,K∗) reduces to

�[h](x) = h(x) +
∫ x

aX

∫
u≤t

h(u) dG(u)dF (t)

(1 − F(u))G(t)
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and G becomes the df of U . We have
∫ x

aX

∫
u≤t

h̃i (u) dG(u)dF (t)

(1 − F(u))G(t)

=
∫ x

aX

∫
u≤t

αI (Xi ≤ u)dG(u)dF (t)

G(Xi)(1 − F(Xi))G(t)

−
∫ x

aX

∫
u≤t

αI (Ui ≤ u)

G(t)

∫ u

aX∨Ui

I (Xi ≥ s) dF (s)

G(s)(1 − F(s))2
dG(u)dF (t) ≡ I − II.

Straightforward calculations lead to

I = αI (Xi ≤ x)

1 − F(Xi)

[
F(x) − F(Xi)

G(Xi)
−

∫ x

Xi

dF (t)

G(t)

]

while II equals

αI (Ui ≤ x)

[∫ x∧Xi

aX∨Ui

(F (x) − F(s)) dF (s)

G(s)(1 − F(s))2
−

∫ x

aX∨Ui

(
1

1 − F(t ∧ Xi)
− 1

1 − F(Ui)

)
dF(t)

G(t)

]
.

The calculations for II involve a triple integral; the expression above is obtained by integrating first
with respect to dG(u) and then with respect to dF(t). By collecting and simplifying the several terms
in h̃i (x) + I − II one finally comes up with

�[h̃i](x) = α
I (Xi ≤ x)

G(Xi)
− α

I (Ui ≤ x)

1 − F(Ui)

∫ x

aX∨Ui

dF (t)

G(t)
,

which is just hXi,Ui ,Vi
(x) in the case P(V ≥ bX) = 1. This completes the proof of our assertion.

Lemma A.1. Assume ‖Fn − F‖∞ = oP (1). Under (A1)–(A4), we have
∫ x

aX

d(F ∗
n − F ∗)(t)
ān(t)

=
∫ x

aX

d(F ∗
n − F ∗)(t)
a(t)

+ oP

(
n−1/2),

and ∫ x

aX

∫
u≤t≤v

d(K∗
n − K∗)(u, v)

Fn(v) − Fn(u−)

dF ∗
n (t)

an(t)ān(t)

=
∫ x

aX

∫
u≤t≤v

d(K∗
n − K∗)(u, v)

F (v) − F(u−)

dF ∗(t)
a(t)2

+ oP

(
n−1/2)

uniformly in x ∈ [aX,bX].

Proof. For the first assertion we need to prove that
∫ x

aX

d(F ∗
n − F ∗)(t)
ān(t)

−
∫ x

aX

d(F ∗
n − F ∗)(t)
a(t)

= oP

(
n−1/2) (A.2)

uniformly in x ∈ [aX,bX]. This follows if

sup
x∈[aX,bX]

∣∣G∗
n(fx,ηn − fx,η0)

∣∣ = oP (1), (A.3)
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where G∗
nf = √

n(P ∗
n − P ∗)f , and where P ∗f = ∫

f dF ∗, P ∗
n f = ∫

f dF ∗
n , fx,η(t) = I (t ≤ x)η(t),

ηn(t) = 1/ān(t) and η0(t) = 1/a(t). Now, by Theorem 2.1 in van der Vaart and Wellner [32], (A.3)
holds provided that:

(i) P(ηn ∈ H0) → 1 for a certain set of η-functions H0

(ii) {fx,η : x ∈ [aX,bX], η ∈ H0} is Donsker
(iii) supx∈[aX,bX]

∫
(fx,ηn(t) − fx,η0(t))

2 dF ∗(t) = oP (1)

Note that condition (iii) holds under (A1)–(A4). Now, introduce the set of functions

H0 =
{
t �→

[∫
u≤t≤v

dK∗(u, v)

F (v) − F(u−)

]−1

: F ∈F δ1,δ2

}
,

where F δ1,δ2 is the class of df’s F satisfying

inf
(u,v)∈supp(K∗)

(
F(v) − F(u−)

) ≥ δ1/2, inf
aX≤x≤bX

∫
u≤x≤v

dK∗(u, v)

F (v) − F(u−)
≥ δ2/(3α).

In order to verify (ii), note that the integral over the set {(u, v) : u ≤ t ≤ v} can be written as a difference
of monotone, bounded functions (integrate over {(u, v) : u ≤ t} and then subtract the integral over
{(u, v) : v < t}), which are Donsker (van der Vaart and Wellner [31]). The fact that indicator functions
are Donsker, and that the differences, products and inverses of (bounded away from zero) Donsker
classes are Donsker (same reference) allows then to conclude.

The verification of (i) is more subtle. Take ε = δ1/4 and write

P(ηn ∈ H0) = P
(
ηn ∈ H0|‖Fn − F‖∞ < ε

)
P

(‖Fn − F‖∞ < ε
)

+ P
(
ηn ∈ H0,‖Fn − F‖∞ ≥ ε

)
.

The second term is bounded from above by P(‖Fn − F‖∞ ≥ ε), which goes to zero because of The-
orem 2.1(a). Similarly, the factor P(‖Fn − F‖∞ < ε) goes to one. Now, it is straightforward to see
that, under (A2)–(A3), the conditional probability above equals one. Certainly, Fn is a df and, given
‖Fn − F‖∞ < ε, for each (u, v) ∈ supp(K∗) we have under (A2)

Fn(v) − Fn(u−) = Fn(v) − F(v) + F(v) − F(u−) + F(u−) − Fn(u−)

> δ1 − 2ε = δ1/2.

On the other hand, given ‖Fn − F‖∞ < ε,

∫
u≤x≤v

dK∗(u, v)

Fn(v) − Fn(u−)
≥

∫
u≤x≤v

dK∗(u, v)

F (v) − F(u−) + 2ε
.

Since ε < δ1 ≤ F(v) − F(u−) for each (u, v) ∈ supp(K∗), the right-hand side is bounded from below
by

1

3

∫
u≤x≤v

dK∗(u, v)

F (v) − F(u−)
> δ2/(3α),

where the last inequality follows from (A3) and G(x) = α
∫
u≤x≤v

dK∗(u, v)/(F (v) − F(u−)). This
shows that P(ηn ∈ H0|‖Fn − F‖∞ < ε) = 1 and thus the proof of the first assertion is finished.
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For the second assertion we proceed in a similar way. Note that the aim is to prove that
∫

u≤x∧v

(∫ x∧v

aX∨u

dF ∗
n (t)

an(t)ān(t)
−

∫ x∧v

aX∨u

dF ∗(t)
a(t)2

)
d(K∗

n − K∗)(u, v)

F (v) − F(u−)
= oP

(
n−1/2).

This term can be written as∫ x

aX

[
1

ān(t)
− 1

an(t)

]
dF ∗

n (t) −
∫ x

aX

[
ãn(t)

a(t)2
− 1

a(t)

]
dF ∗(t)

=
∫ x

aX

[
1

ān(t)
− 1

a(t)

]
d
(
F ∗

n − F ∗)(t) −
∫ x

aX

[
1

an(t)
− 1

a(t)

]
d
(
F ∗

n − F ∗)(t)

+
∫ x

aX

[
1

ān(t)
− 1

an(t)
− ãn(t)

a(t)2
+ 1

a(t)

]
dF ∗(t)

≡ I + II + III,

where, using the notation of Section 2,

ãn(t) =
∫

u≤t≤v

dK∗
n(u, v)

F (v) − F(u−)
.

The first integral is just (A.2) and thus I = oP (n−1/2) uniformly in x. For II we apply arguments
similar to those above; with ηn(t) = 1/an(t) and for the same class H0 of functions, one gets (i)–(iii)
above under conditions (A1)–(A4). In this case, to prove (i) one can use that

P
(
ηn ∈ H0|‖Fn − F‖∞ < ε,‖ãn − a‖∞ < ε

) = 1 (A.4)

for ε < min{δ1/4, δ2/(2α)}. Certainly, note that, conditionally on ‖Fn − F‖∞ < ε with ε ≤ δ1/4,
∫

u≤x≤v

dK∗
n(u, v)

Fn(v) − Fn(u−)
≥

∫
u≤x≤v

dK∗
n(u, v)

F (v) − F(u−) + 2ε

≥ 2

3

∫
u≤x≤v

dK∗
n(u, v)

F (v) − F(u−)
= 2

3
ãn(x).

Now, under ‖ãn −a‖∞ < ε < δ2/(2α), and since a(x) > δ2/α holds under (A3), the quantity 2ãn(x)/3
can be bounded from below by

2δ2

3α
− 3ε

2
≥ 2δ2

3α
− δ2

3α
= δ2

3α
,

so (A.4) holds. This shows that II = oP (n−1/2) uniformly in x. Finally, note that

III =
∫ x

aX

an(t) − ān(t)

an(t)ān(t)
dF ∗(t) −

∫ x

aX

ãn(t) − a(t)

a(t)2
dF ∗(t).

Now, it holds that an(t) − ān(t) = ãn(t) − a(t) + oP (n−1/2) uniformly in t . This can be proved by ap-
plying the aforementioned Theorem 2.1 of van der Vaart and Wellner [32] with fx,η(u, v) = I (u ≤ x ≤
v)η(u, v), ηn(u, v) = (Fn(v) − Fn(u−))−1, η0(u, v) = (F (v) − F(u−))−1 and the class of functions

H0 = {
(u, v) �→ 1/

(
F(v) − F(u−)

) : F ∈F δ1,0
}
,
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where F δ1,0 is formed by the df’s F such that inf(u,v)∈supp(K∗)(F (v) − F(u−)) ≥ δ1/2 (details are
omitted). Thus

III =
∫ x

aX

[
ãn(t) − a(t)

][ 1

an(t)ān(t)
− 1

a(t)2

]
dF ∗(t) + oP

(
n−1/2),

uniformly in x. Under (A1)–(A4), one easily gets that ‖1/(anān) − 1/a2‖∞ = oP (1). Furthermore,
since under (A2) the class of functions {(u, v) �→ I (u ≤ t ≤ v)(F (v) − F(u−))−1 : t ∈ [aX,bX]} is
Donsker, we have

ãn(t) − a(t) =
∫

u≤t≤v

d(K∗
n − K∗)(u, v)

F (v) − F(u−)
= Op

(
n−1/2)

uniformly in t . Hence, III = oP (n−1/2) uniformly in x and the proof is complete. �

Lemma A.2. Under (A2) and (A3), we have

lim‖h‖∞→0

1

‖h‖∞
∥∥U(

F + h,F ∗,K∗) − U
(
F,F ∗,K∗) − �

(
F,F ∗,K∗)[h]∥∥∞ = 0,

where

�
(
F,F ∗,K∗)[h](x) = h(x) −

∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

(F (v) − F(u−))2
dK∗(u, v)

dF ∗(t)
a(t)2

.

Proof. We have
(
U

(
F + h,F ∗,K∗) − U

(
F,F ∗,K∗) − �

(
F,F ∗,K∗)[h])(x)

= −
∫ x

aX

[
1

a(h)(t)
− 1

a(t)

]
dF ∗(t) +

∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

(F (v) − F(u−))2
dK∗(u, v)

dF ∗(t)
a(t)2

,

where

a(h)(t) =
∫

u≤t≤v

dK∗(u, v)

(F + h)(v) − (F + h)(u−)
.

Now, since

1

a(h)(t)
− 1

a(t)
= 1

a(h)(t)a(t)

∫
u≤t≤v

h(v) − h(u−)

F (v) − F(u−)

dK∗(u, v)

(F + h)(v) − (F + h)(u−)
,

we get
(
U

(
F + h,F ∗,K∗) − U

(
F,F ∗,K∗) − �

(
F,F ∗,K∗)[h])(x)

= −
∫ x

aX

1

a(t)2

[
a(t)

a(h)(t)
− 1

]∫
u≤t≤v

h(v) − h(u−)

F (v) − F(u−)

dK∗(u, v)

(F + h)(v) − (F + h)(u−)
dF ∗(t)

−
∫ x

aX

1

a(t)2

∫
u≤t≤v

h(v) − h(u−)

(F (v) − F(u−))2

[
F(v) − F(u−)

(F + h)(v) − (F + h)(u−)
− 1

]
dK∗(u, v) dF ∗(t).

Clearly, under (A2) and (A3) both terms go to zero uniformly in x as ‖h‖∞ → 0 when divided by
‖h‖∞, which completes the proof. �
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Lemma A.3. Under (A2)–(A4), the linear operator h → �(F,F ∗,K∗)[h] is invertible, and its inverse
A= �(F,F ∗,K∗)−1 is a linear bounded operator.

Proof. Write �(F,F ∗,K∗) = I − A, where

A[h](x) =
∫ x

aX

∫
u≤t≤v

h(v) − h(u−)

(F (v) − F(u−))2
dK∗(u, v)

dF ∗(t)
a(t)2

.

To show that � ≡ I − A is invertible we will first show that A[h] is a linear operator which involves
Volterra-type structures. Note that we can restrict our attention to functions h that vanish outside the
interval [aX,bX], since h = Fn − F lives on that interval. For x,w ∈ [aX,bX] introduce

L(x,w) = E

[
I (X2 ≤ x)I (U1 ≤ X2 ≤ V1)

(F (V1) − F(U1−))2a(X2)2
|V1 = w

]
kV1(w)

− E

[
I (X2 ≤ x)I (U1 ≤ X2 ≤ V1)

(F (V1) − F(U1−))2a(X2)2
|U1 = w

]
kU1(w),

where kU1 and kV1 stand for the probability density functions of U1 and V1 respectively. Then, we have

A[h](x) =
∫ bX

aX

L(x,w)h(w)dw =
2∑

j=1

∫ bX

aX

Lj (x,w)h(w)dw ≡
2∑

j=1

Aj [h](x),

where L1(x,w) ≡ L(x,w)I (x ≥ w) and L2(x,w) ≡ L(x,w)I (x < w). It is clear that A, A1 and
A2 are linear operators, and that A1 has a Volterra structure in the sense of Kantorovich and Akilov
[13], p. 396, because L1(x,w) vanishes for x < w. Furthermore, under (A2)–(A4) the function L is
bounded. That is, there exists a constant M such that supaX≤x,w≤bX

|L(x,w)| ≤ M ; this constant M

serves as a bound for L1 and L2 too. Following Kantorovich and Akilov [13], p. 396, we have for
j = 1,

∥∥Ar
j [h]∥∥∞ ≤ Mr(bX − aX)r

(r − 1)! ‖h‖∞, r ≥ 1. (A.5)

Interestingly, the arguments also work for the operator A2, since it involves the function L2(x,w)

which fulfills the ‘reverse’ Volterra condition L2(x,w) = 0 for x ≥ w. That is, (A.5) holds for j = 2
too. Now, an application of the binomial formula gives

∥∥(A1 + A2)
r [h]∥∥∞ ≤

r∑
k=0

(
r

k

)∥∥Ak
1[h]∥∥∞

∥∥Ar−k
2 [h]∥∥∞.

Use (A.5) to get ‖(A1 +A2)
r [h]‖∞ ≤ Cr‖h‖2∞ where Cr ≡ (1 +M)2r/r!. Recall A = A1 +A2 so one

has ‖Ar [h]‖∞ ≤ (1 + M)2r/r! on the class of functions h with ‖h‖∞ = 1. Since Ar is linear, we get
∥∥Ar [h]∥∥∞ ≤ Cr‖h‖∞, r ≥ 0.

Finally, since
∑∞

r=0 Cr < ∞, we conclude that � = I − A is invertible and that A = (I − A)−1 =∑∞
r=0 Ar is its inverse operator, which is linear and bounded. This completes the proof of the

Lemma. �

Lemma A.4. Under (A2)–(A4), the process
√

nA[hn](x), aX ≤ x ≤ bX , converges weakly to a zero-
mean Gaussian process W(x) with covariance function given in Corollary 2.1.



Efron–Petrosian integrals for doubly truncated data with covariates 271

Proof. Since A is linear, it is Hadamard differentiable and its derivative is A. Thus, it suffices to show
that the class of functions

G = {
(t, u, v) → ht,u,v(x) : aX ≤ x ≤ bX

}

is Donsker (see Section 3.9 in van der Vaart and Wellner [31], on the Delta method). Here, ht,u,v(x) is
the function introduced in Theorem 2.1, that is,

ht,u,v(x) = I (t ≤ x)

a(t)
− I (u ≤ x)

F (v) − F(u−)

∫ x∧v

aX∨u

dF ∗(s)
a(s)2

.

Now, note that {t → I (t ≤ x) : aX ≤ x ≤ bX} is Donsker; t → 1/a(t) is a bounded function under (A3);
(u, v) → 1/(F (v) − F(u−)) is a bounded function under (A2); the class {u → ∫ x∧u

aX
F ∗(ds)/a(s)2 :

aX ≤ x ≤ bX} is Donsker because the functions are increasing and bounded. On the other hand, for
u ≤ x,

∫ x∧v

aX∨u

dF ∗(s)
a(s)2

=
∫ x∧v

aX

dF ∗(s)
a(s)2

−
∫ aX∨u

aX

dF ∗(s)
a(s)2

,

and the sums and products of (uniformly bounded) Donsker classes are Donsker. Therefore G is
Donsker. This completes the proof. �

Lemma A.5. Under (A2)–(A4), the leading process in Theorem 2.2 converges weakly to a zero-mean
Gaussian process W0(x) with covariance function given in Corollary 2.2.

Proof. The first part of the leading process in Theorem 2.2 is weakly convergent because the class
of functions (u, v) −→ I (u ≤ x ≤ v)/(F (v) − F(u−)), aX ≤ x ≤ bX , is Donsker. Consider now the
term involving the linear operator Ã. Since A is linear, the operator Ã is linear too. Then, by the Delta
method, the weak convergence of the process Ã[n−1/2 ∑n

i=1 hXi,Ui ,Vi
](x), aX ≤ x ≤ bX , follows from

that of the process n−1/2 ∑n
i=1 hXi,Ui ,Vi

(x), aX ≤ x ≤ bX . The latter holds because the class G in
Lemma A.4 is Donsker. �

Lemma A.6. Let F∞ be any df with the same support as F . Under (A1), F∞ satisfies (A2).

Proof. Assume for a moment that F is continuous with positive density on (aX, bX). Under (A1),
choose γ0 < min{γ /2, aV1 − aX,bX − bU1} and x� = x�−1 + γ0, 1 ≤ � ≤ L(γ0), such that x0 = aX

and xL = bX . Then, given (u, v) ∈ supp(K∗), we have v − u ≥ γ > 2γ0 and there exists t ∈ supp(F )

with u ≤ t ≤ v, so it holds F(v) − F(u−) ≥ F(x�) − F(x�−1) ≡ J� for some � ∈ {1, . . . ,L(γ0)}.
Then (A2) holds for δ1 = min1≤�≤L(γ0) J� > 0. Note that we have implicitly used γ0 < aV1 − aX (resp.
γ0 < bX − bU1 ) to ensure that F(v) (resp. F(u−)) remains away from 0 (resp. 1). If F is continuous
but supp(F ) is not convex, the result is proved similarly by considering separately the subintervals
of (aX, bX) on which the density of F is positive. Finally, the possible discontinuity points of F

create no difficulties. In order to see this note that, if (u, v) ∈ supp(K∗) is such that [u,v] ∩ supp(F )

contains a mass point ym of F , then obviously F(v) − F(u−) ≥ F {ym}, so (A2) holds with δ1 =
min{minm F {ym},min1≤�≤L(γ0) J�} > 0. Now, if F∞ is any df with the same support as F argument
above applies, and the proof is complete. �
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