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We show how to extend several basic concentration inequalities for simple random tensors X = x1 ⊗· · ·⊗xd

where all xk are independent random vectors in R
n with independent coefficients. The new results have

optimal dependence on the dimension n and the degree d. As an application, we show that random tensors

are well conditioned: (1 − o(1))nd independent copies of the simple random tensor X ∈ R
nd

are far from
being linearly dependent with high probability. We prove this fact for any degree d = o(

√
n/ logn) and

conjecture that it is true for any d = O(n).
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1. Introduction

Concentration inequalities form a powerful toolset in probability theory and its many applica-
tions; see, for example, [12,18,19]. Perhaps the best known member of this large family of results
is the Gaussian concentration inequality, which states that a standard normal random vector x in
R

n satisfies

P
{∣∣f (x) −Ef (x)

∣∣ > t
} ≤ 2 exp

(
− t2

2‖f ‖2
Lip

)
(1.1)

for any Lipschitz function f : (Rn,‖ · ‖2) →R, see e.g. [12], Theorem 5.6.
The Gaussian concentration inequality can be extended to some more general distributions

on R
n. A remarkable situation where this is possible is where x has a product distribution with

bounded coordinates and f is convex. This result is due to by M. Talagrand [28]; see [18],
Section 4.2, [12], Section 7.5:

Theorem 1.1 (Convex concentration). Let f : (Rn,‖ · ‖2) →R be a convex and Lipschitz func-
tion. Let x be a random vector in R

n whose coordinates are independent random variables that
are bounded a.s. Then, for every t ≥ 0, we have

P
{∣∣f (x) −Ef (x)

∣∣ > t
} ≤ 2 exp

(
− ct2

‖f ‖2
Lip

)
. (1.2)

Here c > 0 depends only on the bound on the coordinates.

The boundedness assumption in this result unfortunately excludes Gaussian distributions and
many others. Significant efforts were made to extend Gaussian concentration to more general,
not necessarily bounded, distributions, see, for example, [2,6,15] and the references therein. One
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such result, which holds for a general random vector x with independent subgaussian coordi-
nates, is for Euclidean functions, that is, the functions of the form f (x) = ‖Ax‖H where A is a
linear operator from R

n into a Hilbert space.

Theorem 1.2 (Euclidean concentration). Let H be a Hilbert space and A : (Rn,‖ · ‖2) → H

be a linear operator. Let x be a random vector in R
n whose coordinates are independent, mean

zero, unit variance, sub-Gaussian random variables. Then, for every t ≥ 0, we have

P
{∣∣‖Ax‖H − ‖A‖HS

∣∣ ≥ t
} ≤ 2 exp

(
− ct2

‖A‖2
op

)
. (1.3)

Here c > 0 depends only on the bound on the sub-Gaussian norms.

In this result, ‖A‖HS and ‖A‖op denote the Hilbert–Schmidt and operator norms of A, respec-
tively. Theorem 1.2 can be derived from Hanson–Wright concentration inequality for quadratic
forms [27], see [35], Section 6.3.

1.1. New results

The goal of this paper is to demonstrate how Theorems 1.1 and 1.2 can be extended for simple
random tensors. These are tensors of the form

X := x1 ⊗ · · · ⊗ xd

where xk are independent random vectors in R
n whose coordinates are independent, mean zero,

unit variance random variables that are either bounded a.s. (in Theorem 1.1) or sub-Gaussian (in
Theorem 1.2).

Can we expect that a concentration inequality like (1.2) or (1.3) can hold for simple random
tensors, that is, for f (X) where f : (Rnd

,‖ · ‖2) → R? Not really: if such inequality did hold,
then it would imply that Var(f (X)) = O(1), but this is not the case. Indeed, consider the simplest
case where f is given by the Euclidean norm, that is, f (X) := ‖X‖2, and let all xk be standard
normal random vectors in R

n. Recall that a standard normal vector x in R
n satisfies

E‖x‖2
2 = n and E‖x‖2 ≤ √

n − c

for n large enough, where c > 0 is an absolute constant.1 Then

Var
(
f (X)

) = E‖X‖2
2 − (

E‖X‖2
)2 = (

E‖x‖2
2

)d − (
E‖x‖2

)2d

≥ nd − (n − c)d ≥ cd(n − c)d−1 (by the binomial expansion)

	 dnd−1.

1To check the second bound, write ‖x‖2
2 = n + ∑n

i=1(x2
i

− 1) and observe that, by the central limit theorem, the sum is

approximately
√

2ng where g ∼ N(0,1). Thus, ‖x‖2 ≈ √
n+g/

√
2, so Var(‖x‖2) � c. On the other hand, Var(‖x‖2) =

E‖x‖2 − (E‖x‖)2 = n − (E‖x‖)2. Thus, E‖x‖ ≤ √
n − c.
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Thus, the strongest concentration inequality we can hope for must have the form

P
{∣∣f (X) −Ef (X)

∣∣ > t
} ≤ 2 exp

(
− ct2

dnd−1‖f ‖2
Lip

)
. (1.4)

Such inequality, however, can not be true for large t . The coefficients of X are d-fold prod-
ucts of sub-Gaussian random variables, and such products for d ≥ 2 typically have tails that are
heavier than sub-Gaussian. Nevertheless, we may still hope that the inequality (1.4) might hold
for all t in some interesting range, for example for 0 ≤ t ≤ |Ef (X)|. This is what we prove in
the current paper.

Theorem 1.3 (Convex concentration for random tensors). Let n and d be positive integers
and f : (Rnd

,‖ · ‖2) → R be a convex and Lipschitz function. Consider a simple random tensor
X := x1 ⊗· · ·⊗xd in R

nd
, where all xk are independent random vectors in R

n whose coordinates
are independent, mean zero, unit variance random variables that are bounded a.s. Then, for every
0 ≤ t ≤ 2(E |f (X)|2)1/2, we have

P
{∣∣f (X) −Ef (X)

∣∣ > t
} ≤ 2 exp

(
− ct2

dnd−1‖f ‖2
Lip

)
.

Here c > 0 depends only on the bound on the coordinates.

Theorem 1.4 (Euclidean concentration for random tensors). Let n and d be positive integers,
H be a Hilbert space and A : (Rnd

,‖ · ‖2) → H be a linear operator. Consider a simple random
tensor X := x1 ⊗ · · · ⊗ xd in R

nd
, where all xk are independent random vectors in R

n whose
coordinates are independent, mean zero, unit variance, sub-Gaussian random variables. Then,
for every 0 ≤ t ≤ 2‖A‖HS, we have

P
{∣∣‖AX‖H − ‖A‖HS

∣∣ ≥ t
} ≤ 2 exp

(
− ct2

dnd−1‖A‖2
op

)
.

Here c > 0 depends only on the bound on the sub-Gaussian norms.

Remark 1.5 (The range of concentration inequalities). Our argument shows that the main
results actually hold in a somewhat wider range of t , namely for 0 ≤ t ≤ 2nd/2‖f ‖Lip in Theo-
rem 1.3 and 0 ≤ t ≤ 2nd/2‖A‖op in Theorem 1.4.

1.2. Related results

Several existing techniques are already known to shed light on tensor concentration. Indeed,
the quantity ‖AX‖2

H in Theorem 1.4 can be expressed a polynomial of degree 2d in nd inde-
pendent sub-Gaussian random variables, which are the coefficients of the random vectors xi .
A remarkable result of Latala [17] provides two-sided bounds on the moments of polynomials
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of independent normal random variables, or Gaussian chaoses. These moment bounds can be
translated into the following concentration inequality that is valid for any fixed tensor B ∈ R

nd

and a simple random tensor X := x1 ⊗ · · · ⊗ xd composed of independent, mean zero, standard
normal random vectors xk in R

n:

P
{∣∣〈B,X〉∣∣ ≥ t

} ≤ Cd exp

(
−cd · min

1≤k≤d
min

I1�···�Ik=[d]

(
t

‖B‖I1,...,Ik

)2/k)
. (1.5)

The second minimum in the right-hand side is over all partitions of the index set [d] = {1, . . . , d}
into k subsets, and ‖B‖I1,...,Ik

are certain norms of B , which interpolate between the Hilbert–
Schmidt and the operator norms; see [17] for details.

Lehec [20] gave an alternative, shorter proof of (1.5) based on Talagrand’s majorizing measure
theorem. Adamczak and Latala [4] extended (1.5) for log-concave distributions. Adamczak and
Wolff [7] considered distributions that satisfy a Sobolev inequality, and he gave an extension
of (1.5) for general differentiable functions of X (not just polynomials). Götze, Sambale, and
Sinulis extended (1.5) for α-subexponential distributions. Very recently, Adamczak, Latala, and
Meller [5] explored extensions of (1.5) where the coefficients of B are not scalars but vectors in
some Banach space. We refer the paper to the papers [5,7] for a review of the vast literature on
concentration inequalities for multivariate polynomials, U-statistics, and more general functions
of independent random variables.

As we noted, inequality (1.5) is well suited to study concentration properties of the quantity
‖AX‖2

H that appears in Theorem 1.4. However, Latala’s concentration inequality (1.5), as well as
all its known extensions and ramifications, contain factors Cd and cd that depend on the degree
d of tensors in some unspecified way; the dependence seems to be at least exponential in d . In
contrast, Theorems 1.3 and 1.4 feature the optimal dependence on the degree d of tensors: the
constant c in both theorems does not depend on d at all. This can be critical in some applications,
one of which we discuss next.

1.3. Application: Random tensors are well conditioned

Our work was primarily inspired by a question that arose recently in the theoretical computer
science community [1,8,9,11]: Are random tensors well conditioned?

Suppose X1, . . . ,Xm are independent copies of a simple random tensor X := x1 ⊗ · · · ⊗ xd .
How large can m be so that these random tensors are linearly independent with high probability?
Certainly m can not exceed the dimension nd of the tensor space, but can it be arbitrarily close
to the dimension, say m = 0.99nd? Moreover, instead of linear independence we may ask for a
stronger, more quantitative property of being well conditioned. We would like to have a uniform
bound ∥∥∥∥∥

m∑
i=1

aiXi

∥∥∥∥∥
2

≥ σ‖a‖2 for all a = (a1, . . . , am) ∈R
m (1.6)

with σ as large as possible. Equivalently, we can understand (1.6) as a lower bound on the
smallest singular value of the nd × m matrix X�d (called the Khatri–Sidak product) whose
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columns are vectorized tensors X1, . . . ,Xm:

σmin
(
X�d

) ≥ σ.

Problems of this type were studied recently in the theoretical computer science community
in the context of computing tensor decompositions [8,11], learning Gaussian mixtures [9] and
estimating the capacity of error correcting codes [1].

For d = 1, this problem has been extensively studied in random matrix theory [3,10,13,16,22,
24–26,30–34]. Since X�1 is an n × m random matrix whose entries are independent, mean zero,
unit variance, sub-gaussian random variables, known optimal results [25] yield the bound

σmin
(
X�1) � ε

√
n (1.7)

if m = (1 − ε)n and ε ∈ (0,1].
For d ≥ 2, optimal results on σ = σmin(X�d) are yet unknown. Various random models were

studied: the factors xk of the simple tensor X were assumed to be Gaussian (possibly with
nonzero means) in [11], Bernoulli in [1] and are allowed to have very general general distri-
butions with non-degenerate marginals in [8]. Symmetric random tensors are considered in [1].
Baskara et al. [11] obtained the lower bound (1.6) with σ = (1/n)exp(O(d)) for d = o(log logn);
Anari et al. [8] improves this to σ = (1/O(n))d for d = o(

√
n/ logn), and Abbe et al. [1] guar-

antees linear independence (i.e. σ > 0) for symmetric random tensors if d = o(
√

n/ logn). For a
related notion of row product of random matrices, the problem was studied by Rudelson [23].

In this paper, we prove a bound on the smallest singular value σmin(X�d) is of constant order.
We derive it as an application of Theorem 1.4. Let us give an informal statement here; Corol-
lary 6.2 will provide a more rigorous version.

Corollary 1.6 (Random tensors are well conditioned). If d = o(
√

n/ logn) and ε ∈ (0,1),
then m = (1 − ε)nd independent simple sub-Gaussian random tensors X1, . . . ,Xm in R

nd
are

well conditioned with high probability:∥∥∥∥∥
m∑

i=1

aiXi

∥∥∥∥∥
2

≥
√

ε

2
‖a‖2 for all a = (a1, . . . , am) ∈ R

m.

1.4. Our approach

Let us briefly explain our approach to tensor concentration. Suppose first that we do not care
about the dependence on the degree d . Then Theorem 1.3 can be proved by expressing the devi-
ation f − Ef as a telescopic sum and controlling each increment by Talagrand’s Theorem 1.1.
For example, if d = 3, then for the function f = f (x ⊗ y ⊗ z) we would write

f −Ef = (f −Ex f ) + (Ex f −Ex,y f ) + (Ex,y f −Ex,y,z f ) =: �1 + �2 + �3

where Ex denotes the conditional expectation with respect to x (conditional on y and z), and
similarly for Ex,y . Applying Theorem 1.1 for f as a function of x, we control �1; applying the
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same theorem for Ex f as a function of y, we control �2, and applying it again for Ex,y f as a
function of z, we control �3. Then we combine all increments �k by the triangle inequality.

This argument, however, would produce an exponential dependence of d in the concentration
inequality. This is because the Lipschitz norm of f as a function of x is bounded by

‖y‖2‖z‖2 ≤ Kd/2

if all coefficients of y and z are bounded by K a.s.
To get a better control of the Lipschitz norms of all functions that appear. in the telescopic

sum, we prove a maximal inequality in Section 3, which provides us with a uniform bound on
the products of norms of independent random vectors. This allows us to avoid losing any factors
that are exponential in d .

However, combining the increments �k by a simple union bound and triangle inequality is
suboptimal and leads to an extra factor that is linear in d . One can avoid this by noting that
�k are martingale differences and using martingale concentration techniques (coupled with the
maximal inequality). This is the approach we chose to prove Theorem 1.3.

One can try to prove Theorem 1.4 in a similar way, but a new difficulty arises here. We may
not simply choose f (x ⊗ y ⊗ z) = ‖A(x ⊗ y ⊗ z)‖2 and write the telescopic sum for it. This is
because Ex f is not a Euclidean function in y, it can not be expressed as ‖By‖ for any linear
operator B mapping R

n into a Hilbert space, so we may not use Theorem 1.2 to control the
deviation of Ex f .

This forces us to work with f 2 instead of f , since then (Ex f 2)1/2 is a Euclidean function.
Thus, we write

f 2 −Ef 2 = (
f 2 −Ex f 2) + (

Ex f 2 −Ex,y f 2) + (
Ex,y f 2 −Ex,y,z f 2) =: �1 + �2 + �3.

Squaring f , however, produces tails of the increments that are heavier than sub-Gaussian. This
prompts us to abandon the use of Theorem 1.2. Instead of controlling the tails of the increments,
we control their moment generating function (MGF). In the end, we still combine the MGF’s
of the increments using a martingale-like argument coupled with the maximal inequality. This
ultimately leads to Theorem 1.4.

Remark 1.7 (An alternative approach to convex concentration for random tensors). There
is an alternative and somewhat simpler way to prove Theorem 1.3, where one won’t have to
use a maximal inequality. Instead, one can deduce this result (with some work) from a version
of convex concentration (Theorem 1.1) that holds for a weaker notion of convexity, namely for
separately convex functions, that is, functions that are convex in each coordinate [21,28], see
[12], Theorems 6.10, 6.9. However, there seem to be no simpler way to prove Theorem 1.4, a
result we care most about in view of applications. So, for pedagogical reasons we choose to prove
Theorem 1.3 using maximal inequality, so we can use it later as a stepping stone for the proof of
Theorem 1.4.

Remark 1.8 (A broader view). The method we develop here is flexible and might be used to
“tensorize” some other concentration inequalities. For example, if all xk have the standard normal
distribution, then the convexity requirement is not needed in Theorem 1.3, and we get a tensor
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version of the Gaussian concentration inequality (1.1). Furthermore, one should be able to relax
the sub-Gaussian assumption in Theorem 1.4 by using in our argument a version Theorem 1.2
for heavier tails obtained recently by Götze, Sambale, and Sinulis [14].

1.5. Open problems

We do not know optimal concentration inequalities for symmetric tensors X = x⊗d = x ⊗ · · · ⊗
x. One could possibly use decoupling to reduce the problem to concentration to tensors with
independent factors, and then apply Theorem 1.3 or 1.4. However, decoupling will likely cause
a loss of factors that are exponential in d , which will defeat our purpose.

There are many directions in which Corollary 1.6 should be strengthened and generalized.
Can the bound be improved to εnd/2, matching the inequality (1.7) for d = 1? Does it hold
for degrees higher than

√
n, for example for d 	 n? Even linear independence is unknown for

higher degrees. Can Corollary 1.6 be extended to other models of randomness considered in the
theoretical computer science community [1,8,9,11]? For example, does it hold for symmetric
tensors, and can the mean zero and sub-Gaussian assumptions be significantly weakened?

1.6. The rest of the paper

In Section 2, we collect some basic facts from high-dimensional probability that will be needed
later. Most importantly, in Proposition 2.2 we show how to control the MGF of a random chaos
of order 2, which is the quadratic form xTMx where x is a random vector and M is a fixed
matrix. In Proposition 2.2, we derive a version of Hanson–Wright inequality in the MGF form.
These results, although possibly known as a folklore, are hard to find in the literature and could
be useful for future applications.

In Section 3, we prove a sharp maximal inequality for products of norms of independent ran-
dom vectors. We use it to establish our main results: in Section 4 we prove Theorem 1.3 and in
Section 5 we prove Theorem 1.4.

In Section 6, we give two applications to the geometry of random tensors. We prove a concen-
tration inequality for the distance between a random tensor and a given subspace in Corollary 6.1,
and then use it to show that random tensors are well conditioned, proving a formal version of
Corollary 1.6.

2. Preliminaries

Throughout this paper, we use basic facts about subgaussian and subexponential random vari-
ables that can be found for example, in [35], Chapters 2–3, and [36], Chapter 2. Positive con-
stants are denoted by C,c,C1, c1, . . . , and their specific values can be different in different parts
of this paper. We allow these constants to depend only on the a.s. bound of the coefficients (for
Theorem 1.1) or the sub-Gaussian norms of the coefficients (for Theorem 1.2), but not on any
other parameters.
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2.1. Concentration of the norm

One such fact that follows immediately from Theorem 1.2 for the identity matrix A is a concen-
tration inequality for the norm of a random vector.

Corollary 2.1 (Concentration of norm). Let x be a random vector in R
n whose coordinates are

independent, mean zero, unit variance, sub-Gaussian random variables. Then, for every t ≥ 0,
we have

P
{∣∣‖x‖2 − √

n
∣∣ > t

} ≤ 2 exp
(−ct2).

Here c > 0 depends only on the bound on the sub-Gaussian norms.

2.2. MGF of a quadratic form

Another useful fact is the following bound on the moment generating function (MGF) of a chaos
of order 2. It might be known but is hard to find in the literature in this generality.

Proposition 2.2 (MGF of a sub-Gaussian chaos). Let M be an n×n matrix. Let x be a random
vector in R

n whose coordinates are independent, mean zero, unit variance, sub-Gaussian random
variables. Then

E exp
(
λ
(
xTMx − trM

)) ≤ exp
(
Cλ2‖M‖2

HS

)
for every λ ∈ R such that |λ| ≤ c/‖M‖op.

Proof. Step 1. Separating the diagonal and off-diagonal parts. We can break the quadratic form
as follows:

S := xTMx − trM =
n∑

i=1

Mii

(
x2
i − 1

) +
∑

i,j :i �=j

Mij xixj =: Sdiag + Soffdiag.

By Cauchy–Schwarz inequality, we have

E exp(λS) ≤ [
E exp(2λSdiag)

]1/2[
E exp(2λSoffdiag)

]1/2
.

Let us consider the diagonal and off-diagonal parts separately.
Step 2. Diagonal part. Since xi are sub-Gaussian random variables with unit variance, x2

i − 1
are mean-zero, subexponential random variables, and∥∥x2

i − 1
∥∥

ψ1
�

∥∥x2
i

∥∥
ψ1

= ‖xi‖2
ψ2

� 1.

(This is a combination of some basic facts about sub-Gaussian and subexponential distributions,
see [35], Exercise 2.7.10 and Lemma 2.7.6.) Then a standard bound on the MGF of a mean-zero,
subexponential distribution ([35], Property 5 in Proposition 2.7.1) gives

E exp
(
λi

(
x2
i − 1

)) ≤ exp
(
Cλ2

i

)
if |λi | ≤ c. (2.1)
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Therefore

E exp(2λSdiag) =
n∏

i=1

E exp
(
2λMii

(
x2
i − 1

))
(by independence)

≤ exp

(
Cλ2

n∑
i=1

M2
ii

)
if |λ| ≤ c

|Mii | (by (2.1))

≤ exp
(
Cλ2‖M‖2

HS

)
if |λ| ≤ c

‖M‖op
.

Step 2. Off-diagonal part. Let x′
1, . . . , x

′
n be independent copies of x1, . . . , xn. We have

E exp(2λSoffdiag) = E exp

(
2λ

∑
i,j :i �=j

Mij xixj

)

≤ E exp

(
8λ

n∑
i,j=1

Mijxix
′
j

)
(by decoupling, see [35], Remark 6.1.3)

≤ exp
(
Cλ2‖M‖2

HS

)
if |λ| ≤ c

‖M‖op
,

where the last bound follows from [35], Lemmas 6.2.3 and 6.2.2.
Combining the diagonal and off-diagonal contributions, we complete the proof. �

Corollary 2.3. Let H be a Hilbert space and A : (Rn,‖ · ‖2) → H be a linear operator. Let x

be a random vector in R
n whose coordinates are independent, mean zero, unit variance, sub-

Gaussian random variables. Then

E exp
(
λ
(‖Ax‖2

H − ‖A‖2
HS

)) ≤ exp
(
Cλ2‖A‖2

op‖A‖2
HS

)
for every λ ∈R such that |λ| ≤ c/‖A‖2

op.

Proof. Apply Proposition 2.2 for M := A∗A and note that

xTMx = ‖Ax‖2
H , trM = ‖A‖2

HS, ‖M‖op = ‖A‖2
op, ‖M‖HS ≤ ‖A‖op‖A‖HS. �

Note in passing that Corollary 2.3 implies Euclidean concentration Theorem 1.2. All one needs
to do is use exponential Markov’s inequality and optimize the resulting bound in λ. We leave this
as an exercise.

2.3. Euclidean functions

Theorems 1.2 and 1.4 can be conveniently stated as results about concentration of Euclidean
functions.
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Definition 2.4 (Euclidean functions). A function f : Rn → [0,∞) is called a Euclidean func-
tion on R

n if it can be expressed as

f (x) = ‖Ax‖H

where H is a Hilbert space and A : Rn → H is a linear operator. Equivalently, f is Euclidean if
f 2 is a positive-semidefinite quadratic form, that is, if

f (x)2 = xTMx

for some n × n positive-semidefinite matrix M .

Let us note a few obvious facts about Euclidean functions.

Lemma 2.5 (Properties of Euclidean functions).

(i) If f is a Euclidean function on R
n, then af is, for any a ≥ 0.

(ii) If f and g are Euclidean functions on R
n then

√
f 2 + g2 is.

(iii) If f is a random Euclidean function on R
n, then (Ef 2)1/2 is.

(iv) The Lipschitz norm of a Euclidean function can be computed as follows:

‖f ‖Lip = max
x∈Rn:‖x‖2=1

f (x).

In particular, if f (x) = ‖Ax‖H then ‖f ‖Lip = ‖A‖op.

For future convenience, we restate Corollary 2.3 in terms of Euclidean functions.

Corollary 2.6 (MGF of a Euclidean function). Let f : (Rn,‖ · ‖2) → [0,∞) be a Euclidean
function. Let x be a random vector in R

n whose coordinates are independent, mean zero, unit
variance, sub-Gaussian random variables. Then

E exp
(
λ
(
f (x)2 −Ef (x)2)) ≤ exp

(
Cλ2‖f ‖2

Lip Ef (x)2)
for every λ ∈ R such that |λ| ≤ c/‖f ‖2

Lip.

3. A maximal inequality

The proof of both of our main results, Theorems 1.3 and 1.4, relies on a tight control of the norm
of the simple random tensor

‖X‖2 = ‖x1 ⊗ · · · ⊗ xd‖2 =
d∏

i=1

‖xi‖2. (3.1)
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Lemma 3.1 (The norm of a random tensor). Let x1, . . . , xd ∈ R
n be independent random

vectors with independent, mean zero, unit variance, sub-Gaussian coordinates. Then, for every
0 ≤ t ≤ 2nd/2, we have

P

{
d∏

i=1

‖xi‖2 > nd/2 + t

}
≤ 2 exp

(
− ct2

dnd−1

)
.

Note in passing that this result is a partial case of Theorem 1.3 for the function f (X) = ‖X‖2
and of Theorem 1.4 for the identity map A.

Proof. Let s ≥ 0. Then

P

{
d∏

i=1

‖xi‖2 > (
√

n + s)d

}
≤ P

{
1

d

d∑
i=1

(‖xi‖2 − √
n
)
> s

}
. (3.2)

To check this, take d-th root on both sides of the inequality
∏d

i=1 ‖xi‖2 > (
√

n + s)d , apply the
inequality of arithmetic and geometric means, and subtract

√
n from both parts. Furthermore, we

can replace all terms
√

n in (3.2) by the means μi := E‖xi‖2 since they satisfy

μi ≤ (
E‖xi‖2

2

)1/2 = √
n.

Thus the probability in (3.2) is bounded by

P

{
1

d

d∑
i=1

(‖xi‖2 − μi

)
> s

}
, (3.3)

which is a tail probability for a sum of independent, mean zero random variables.
By the concentration of the norm (Corollary 2.1) and a standard centering argument ([35],

Lemma 2.6.8), we have2

∥∥‖xi‖2 − μi

∥∥
ψ2

≤ C, i = 1, . . . , d,

and this implies that ∥∥∥∥∥ 1

d

d∑
i=1

(‖xi‖2 − μi

)∥∥∥∥∥
ψ2

≤ C√
d

,

see [35], Proposition 2.6.1. Thus the probability in (3.3) is bounded by

2 exp
(−cs2d

)
.

2Here ‖ · ‖ψ2 and ‖ · ‖ψ1 denote the sub-Gaussian and subexponential norms, respectively; see [35], Sections 2.5, 2.7,
for definition and basic properties.
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Let 0 ≤ u ≤ 2 and apply this bound for s := u
√

n/(2d). With this choice,

(
√

n + s)d = nd/2
(

1 + u

2d

)d

≤ nd/2(1 + u).

Thus we have shown that

P

{
d∏

i=1

‖xi‖2 > nd/2(1 + u)

}
≤ 2 exp

(
−cnu2

4d

)
. (3.4)

Using this inequality for u := t/nd/2, we complete the proof. �

A stronger statement will be needed in the proof of our main results: we will require a tight
control of the products (3.4) for all d simultaneously. The following maximal inequality will be
used for the following.

Lemma 3.2 (A maximal inequality). Let x1, . . . , xd ∈ R
n be independent random vectors with

independent, mean zero, unit variance, sub-Gaussian coordinates. Then, for every 0 ≤ u ≤ 2, we
have

P

{
max

1≤k≤d
n−k/2

k∏
i=1

‖xi‖2 > 1 + u

}
≤ 2 exp

(
−cnu2

d

)
.

Proof. Step 1. A binary partition. By increasing d if necessary, we can assume that

d = 2L for some L ∈N.

For each level � ∈ {0,1, . . . ,L}, consider the partition I� of the integer interval [1, d] =
{1, . . . , d} into 2� successive intervals of length

d� := d

2�
.

We call each of these intervals a binary interval. For example, the family I0 consists of just one
binary interval [1, d], and the family I1 consists of two binary intervals [1, d/2] and [d/2+1, d].

For every integer k ∈ [1, d], the interval [1, k] can be partitioned into binary intervals of differ-
ent lengths. (The binary representation of the number k/d determines which intervals participate
in this partition.) As a consequence, such partition of [1, k] must include no more than one inter-
val from each family I�.

Step 2. Controlling the product over binary sets. Fix a level � ∈ {0,1, . . . ,L} and a binary
interval I ∈ I�. Apply Lemma 3.1 with d replaced by |I | = d� = d/2� and for t := 2−�/4nd�/2u.
It gives

P

{∏
i∈I

‖xi‖2 >
(
1 + 2−�/4u

)
nd�/2

}
≤ 2 exp

(
− c0nu2

2�/2d�

)
= 2 exp

(
−2�/2 · c0nu2

d

)
.
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Taking a union bound over all levels � and all 2� binary intervals I in the family I�, we get

P

{
∃� ∈ {0, . . . ,L},∃I ∈ I� :

∏
i∈I

‖xi‖2 >
(
1 + 2−�/4u

)
nd�/2

}

≤
L∑

�=0

2� · 2 exp

(
−2�/2 · c0nu2

d

)
.

To simplify this bound, we can assume that c0nu2/d ≥ 1, otherwise the probability bound in
the conclusion of the lemma becomes trivial if c < c0/2. Also, 2�/2 ≥ 1, and thus

2�/2 · c0nu2

d
≥ 1

2

(
2�/2 + c0nu2

d

)
.

Substituting this into our probability bound, we can continue it as

2 exp

(
−c0nu2

2d

)
.

L∑
�=0

2� · 2 exp
(−2�/2−1) ≤ C exp

(
−c0nu2

2d

)
.

By reducing the absolute constant c0, we can make C = 2.
Step 3. Controlling the product over any interval. Let us fix a realization of random vectors

for which the good event considered above occurs, that is,

∏
i∈I

‖xi‖2 ≤ (
1 + 2−�/4u

)
nd�/2 for every � ∈ {0, . . . ,L} and I ∈ I�. (3.5)

Let 1 ≤ k ≤ d . As we noted in Step 1, we can partition the interval [1, k] into binary intervals
I ∈ I� so that at most one binary interval is taken from each family I�. Let us multiply the
inequalities (3.5) for all binary intervals I that participate in this partition. Note that sum of
exponents d� is the sum of the length of these intervals I , which equals k. Thus, we obtain

k∏
i=1

‖xi‖2 ≤ nk/2
L∏

�=0

(
1 + 2−�/4u

) ≤ nk/2 exp

(
u

L∑
�=0

2−�/4

) (
using 1 + x ≤ ex

)

≤ nk/2 exp(Cu) ≤ nk/2(1 + e2Cu
)

(since 0 ≤ u ≤ 2).

This yields the conclusion of the lemma with Cu instead of u in the bound. One can get rid of
C by reducing the constant c in the probability bound. The proof is complete. �
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4. Proof of Theorem 1.3

Proof of Theorem 1.3. Step 1. Applying the maximal inequality. We can assume without loss of
generality that ‖f ‖Lip = 1. Consider the events

Ek :=
{

d∏
i=k

‖xi‖2 ≤ 2n(d−k+1)/2

}
, k = 1, . . . , d,

and let Ed+1 be the entire probability space for convenience. Applying the maximal inequality of
Lemma 3.2 for u = 1 and for the reverse ordering of the vectors, we see that the event

E := E2 ∩ · · · ∩ Ed

is likely:

P(E) ≥ 1 − 2 exp

(
−cn

d

)
. (4.1)

Step 2. Applying the convex concentration inequality. Fix any realization of the random vectors
x2, . . . , xd that satisfy E2 and apply the Convex Concentration Theorem 1.1 for f as a function
of x1. It is a convex and Lipschitz function. To get a quantitative bound on its Lipschitz norm,
consider any x, y ∈R

n and note that∣∣f (x ⊗ x2 ⊗ · · · ⊗ xd) − f (y ⊗ x2 ⊗ · · · ⊗ xd)
∣∣

≤ ∥∥(x − y) ⊗ x2 ⊗ · · · ⊗ xd

∥∥
2

(
since ‖f ‖Lip = 1

)

= ‖x − y‖2 ·
d∏

i=2

‖xi‖2 ≤ ‖x − y‖2 · 2n(d−1)/2 (since E2 holds).

This shows that f as a function of x1 has Lipschitz norm bounded by

L := 2n(d−1)/2. (4.2)

The Convex Concentration theorem 1.1 then yields

‖f −Ex1 f ‖ψ2(x1) ≤ CL for any x2, . . . , xd that satisfy E2.

In this inequality, x1 indicates that the expectation and the ψ2 norm is taken with respect to the
random vector x1, that is, conditioned on all other random vectors.

Fix any realization of the random vectors x3, . . . , xd that satisfy E3 and apply the Convex
Concentration theorem 1.1 for Ex1 f as a function of x2. It is a convex and Lipschitz function.
To get a quantitative bound on its Lipschitz norm, consider any x, y ∈ R

n and note that∣∣Ex1 f (x1 ⊗ x ⊗ x3 ⊗ · · · ⊗ xd) −Ex1 f (x1 ⊗ y ⊗ x3 ⊗ · · · ⊗ xd)
∣∣

≤ Ex1

∥∥x1 ⊗ (x − y) ⊗ x3 ⊗ · · · ⊗ xd

∥∥
2

(
by Jensen’s inequality and since ‖f ‖Lip = 1

)



Concentration for random tensors 3153

≤ (
Ex1 ‖x1‖2

2

)1/2 · ‖x − y‖2 ·
d∏

i=3

‖xi‖2

≤ √
n · ‖x − y‖2 · 2n(d−2)/2 (since E3 holds)

= ‖x − y‖2 · 2n(d−1)/2.

This shows that Ex1 f as a function of x2 has Lipschitz norm bounded by L = 2n(d−1)/2. The
Convex Concentration theorem 1.1 then yields

‖Ex1 f −Ex1,x2 f ‖ψ2(x2) ≤ CL for any x3, . . . , xd that satisfy E3.

Continuing in a similar way, we can show that for every k = 1, . . . , d :

‖Ex1,...,xk−1 f −Ex1,...,xk
f ‖ψ2(xk) ≤ CL for any xk+1, . . . , xd that satisfy Ek+1. (4.3)

Step 3. Combining the increments using a martingale-like argument. Let us look at the differ-
ences

�k = �k(xk, . . . , xd) := Ex1,...,xk−1 f −Ex1,...,xk
f.

The estimate (4.3) on the sub-Gaussian norm yields the following bound on the moment gener-
ating function [35], Proposition 2.5.2:

Exk
exp(λ�k) ≤ exp

(
CL2λ2) for any xk+1, . . . , xd that satisfy Ek+1

and for any λ ∈ R. We can combine these pieces using a martingale-like argument, which we
defer to Lemma 4.1. It gives that for any λ ∈ R,

E exp
(
λ(f −Ef )

)
1E = E exp

(
λ(�1 + · · · + �d)

)
1E ≤ exp

(
CdL2λ2) (4.4)

where E = E2 ∩ · · · ∩ Ed is the event whose probability we estimated in (4.1).
Step 4. Deriving the concentration via exponential Markov’s inequality. To derive a probability

bound, we can use a standard argument based on exponential Markov’s inequality. Namely, we
have for every λ > 0:

P{f −Ef > t} ≤ P{f −Ef > t and E} + P
(
Ec

)
= P

{
exp

(
λ(f −Ef )

)
1E > exp(λt)

} + P
(
Ec

)
≤ exp(−λt)E exp

(
λ(f −Ef )

)
1E + P

(
Ec

) (
by Markov’s inequality

)
≤ exp

(−λt + CdL2λ2) + 2 exp

(
−cn

d

)
(by (4.4) and (4.1)).

This bound is minimized for λ := t/(2CdL2). With this choice of λ, and with the choice of L

made in (4.2), our bound becomes

P{f −Ef > t} ≤ exp

(
− t2

16Cdnd−1

)
+ 2 exp

(
−cn

d

)
. (4.5)
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Since by assumption of the theorem,

t2 ≤ 4E
∣∣f (x1 ⊗ · · · ⊗ xd)

∣∣2 ≤ 4E‖x1 ⊗ · · · ⊗ xd‖2
2

(
since ‖f ‖Lip = 1

)
= 4E‖x1‖2

2 · · · ‖xd‖2
2 = 4nd,

we have

t2

dnd−1
≤ 4n

d
.

This implies that the first term in the bound (4.5) dominates over the second, if the constant C is
sufficiently large compared to 1/c. This gives

P{f −Ef > t} ≤ 3 exp

(
− t2

16Cdnd−1

)
.

Finally, repeating the argument for −f instead of f we obtain the same probability bound for
P{−f +Ef > t}. Combining the two bounds, we get

P
{|f −Ef | > t

} ≤ 6 exp

(
− t2

16Cdnd−1

)
.

We can replace the factor 6 by 2 by making C larger if necessary. Theorem 1.3 is proved. �

Our argument above used on the following martingale-like inequality, which we will carefully
state and prove now.

Lemma 4.1 (A martingale-type inequality). Let x1, . . . , xd be independent random vectors.
For each k = 1, . . . , d , let fk = fk(xk, . . . , xd) be an integrable real-valued function and Ek be an
event that is uniquely determined by the vectors xk+1, . . . , xd . Let Ed+1 be the entire probability
space for convenience. Suppose that, for every k = 1, . . . , d :

Exk
exp(fk) ≤ πk for every choice of xk+1, . . . , xd satisfying Ek+1.

Then, for E := E2 ∩ · · · ∩ Ed , we have

E exp(f1 + · · · + fd)1E ≤ π1 · · ·πd.

Proof. We have

E exp(f1 + · · · + fd)1E2∩···∩Ed
= E exp(f2 + · · · + fd)1E3∩···∩Ed

Ex1 exp(f1)1E2

≤ π1 E exp(f2 + · · · + fd)1E3∩···∩Ed

since Ex1 exp(f1)1E2 ≤ π1 a.s. by assumption. Iterating this argument, we complete the proof. �
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5. Proof of Theorem 1.4

Let us restate Theorem 1.4 in terms of Euclidean functions which were introduced in Section 2.3.

Theorem 5.1 (Euclidean concentration for random tensors). Let n and d be positive integers
and f : (Rnd

,‖ · ‖2) → [0,∞) be a Euclidean function. Consider a simple random tensor X :=
x1 ⊗ · · · ⊗ xd in R

nd
, where all xk are independent random vectors in R

n whose coordinates are
independent, mean zero, unit variance, sub-Gaussian random variables. Then, for every 0 ≤ t ≤
2(Ef (X)2)1/2, we have

P
{∣∣f (X) − (

Ef (X)2)1/2∣∣ ≥ t
} ≤ 2 exp

(
− ct2

dnd−1‖f ‖2
Lip

)
.

Here c > 0 depends only on the bound on the sub-Gaussian norms.

Proof. Step 1. Applying the maximal inequality. The proof starts as in the proof of Theorem 1.3
in Section 4. We define the norm-controlling events Ek and estimate the probability of E = E2 ∩
· · ·Ed by a maximal inequality in the same way as before.

Step 2. Applying a sub-Gaussian concentration inequality. Fix any realization of the random
vectors x2, . . . , xd that satisfy E2 and apply Corollary 2.6 for f as a function of x1. It is a Eu-
clidean function, and one can check as before that its Lipschitz norm is bounded by

L := 2n(d−1)/2. (5.1)

Corollary 2.6 then yields

Ex1 exp
(
λ
(
f 2 −Ex1 f 2)) ≤ exp

(
Cλ2L2

Ex1 f 2)
provided that |λ| ≤ c/L2. For future convenience, let us restate this bound as follows. Choose
λ ∈R and denote

λ0 := λ; λ1 := λ0 + Cλ2
0L

2.

Then we have

Ex1 exp
(
λ0f

2 − λ1 Ex1 f 2) ≤ 1 for any x2, . . . , xd that satisfy E2,

provided that |λ0| ≤ c/L2.
Fix any realization of the random vectors x3, . . . , xd that satisfy E3 and apply Corollary 2.6

for (Ex1 f 2)1/2 as a function of x2. It is a Euclidean function whose Lipschitz norm is bounded
by L as before. Corollary 2.6 then yields

Ex2 exp
(
λ1

(
Ex1 f 2 −Ex1,x2 f 2)) ≤ exp

(
Cλ2

1L
2
Ex1,x2 f 2)

provided that |λ1| ≤ c/L2. We can restate this bound as follows. Denote

λ2 := λ1 + Cλ2
1L

2.
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Then we have

Ex2 exp
(
λ1 Ex1 f 2 − λ2 Ex1,x2 f 2) ≤ 1 for any x3, . . . , xd that satisfy E3,

provided that |λ1| ≤ c/L2.
Continuing in a similar way, we can show the following for every k = 1, . . . , d . Denote

λk := λk−1 + Cλ2
k−1L

2.

Then we have

Ex2 exp
(
λk−1 Ex1,...,xk−1 f 2 − λk Ex1,...,xk

f 2) ≤ 1 ∀xk+1, . . . , xd that satisfy Ek+1,

provided that |λk−1| ≤ c/L2.
Step 3. Combining the increments using a martingale-like argument. Combining the pieces

into a telescoping sum using Lemma 4.1, we obtain

E exp
(
λ0f

2 − λd Ef 2)1E ≤ 1 (5.2)

provided that

|λk| ≤ c

L2
for all k = 0, . . . , d − 1. (5.3)

If we choose λ = λ0 ∈ R so that |λ| ≤ c0/(dL2) with a sufficiently small absolute constant c0,
then we can show by induction that (5.3) holds and, moreover,

λd ≤ λ + 2CdL2λ2.

We defer the verification of both of these bounds to Lemma 5.2 below. Substituting them into
(5.2) and rearranging the terms, we conclude that

E exp
(
λ
(
f 2 −Ef 2))1E ≤ exp

(
2CdL2λ2

Ef 2) if |λ| ≤ c0

dL2
.

Replacing λ with −λ, we see that the same bound holds for E exp(−λf 2 + λEf 2). Since the
inequality e|z| ≤ ez + e−z holds for all z ∈ R, we obtain

E exp
(
λ
∣∣f 2 −Ef 2

∣∣)1E ≤ 2 exp
(
2CdL2λ2

Ef 2) if |λ| ≤ c0

dL2
.

Step 4. Deriving a concentration inequality for f 2. Using the exponential Markov’s inequality
just like we did in the proof of Theorem 1.3 in Section 4, we get

P
{∣∣f 2 −Ef 2

∣∣ > u
} ≤ 2 exp

(−λu + 2CdL2λ2
Ef 2) + 2 exp

(
−cn

d

)

for any u > 0 and any 0 ≤ λ ≤ c0/(dL2).
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Let us optimize the right-hand side in λ. A good choice is

λ := c1

dL2
min

(
u

Ef 2
,1

)

for a sufficiently small constant c > 0. Indeed, if c1 ≤ c0 then λ lies in the required range 0 ≤
λ ≤ c0/(dL2), and if c1 ≤ 1/(4C), then substituting this choice of λ into our probability bound
gives

P
{∣∣f 2 −Ef 2

∣∣ > u
} ≤ 2 exp

(
− c1

2dL2
min

(
u2

Ef 2
, u

))
+ 2 exp

(
−cn

d

)
.

Step 5. Deriving a concentration inequality for f . Choose any ε ≥ 0 and substitute u := εEf 2

into our probability bound. We get

P
{∣∣f 2 −Ef 2

∣∣ > εEf 2} ≤ 2 exp

(
− c1

2dL2
min

(
ε2, ε

)
Ef 2

)
+ 2 exp

(
−cn

d

)
.

Now choose any δ ≥ 0 and apply this bound for ε := max(δ, δ2). Then min(ε2, ε) = δ2, and
one can easily check the following implication

∣∣f − (
Ef 2)1/2∣∣ > δ

(
Ef 2)1/2 =⇒ ∣∣f 2 −Ef 2

∣∣ > εEf 2.

(This follows from the implication |z−1| ≥ δ ⇒ |z2 −1| ≥ max(δ, δ2) that is valid for all z ≥ 0.)
Hence, we obtain

P
{∣∣f − (

Ef 2)1/2∣∣ > δ
(
Ef 2)1/2} ≤ 2 exp

(
−c1δ

2
Ef 2

2dL2

)
+ 2 exp

(
−cn

d

)
.

Now choose any t ≥ 0 and apply this bound for δ := t/(Ef 2)1/2. Recalling the value of L

from (5.1), we get

P
{∣∣f − (

Ef 2)1/2∣∣ > t
} ≤ 2 exp

(
− c1t

2

8dnd−1

)
+ 2 exp

(
−cn

d

)
.

Finally, we can use the theorem’s assumption on t to get rid of the second exponential term
just like we did in in the proof of Theorem 1.3 in Section 4. The proof is complete. �

In Step 3 of the argument above, we used the following bound on the multipliers λk , which we
promised to prove later. Let us do it now.

Lemma 5.2 (Multipliers). Let d,M ≥ 0 and consider a number λ0 ∈R such that

|λ0| ≤ 1

8dM
. (5.4)
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Define λ1, . . . , λd ∈ R inductively by the formula

λk := λk−1 + Mλ2
k−1, k = 1, . . . , d.

Then, for every k = 1, . . . , d , we have:

|λk| ≤ 1

6dM
and λk ≤ λ0 + 2kMλ2

0.

Proof. We can prove the second inequality in the conclusion by induction. Assume that it holds
for some k, that is,

λk ≤ λ0 + 2kMλ2
0. (5.5)

By construction, the sequence (λk) is increasing, so the triangle inequality gives

|λk| ≤ |λ0| + |λk − λ0| ≤ |λ0| + λk − λ0 ≤ |λ0| + 2kMλ2
0. (5.6)

Furthermore, the assumption (5.4) implies that

2kMλ2
0 ≤ 2dMλ2

0 ≤ |λ0|
4

.

Substituting this into (5.6), we get

|λk| ≤ 5

4
|λ0|. (5.7)

Then we have

λk+1 = λk + Mλ2
k (by construction)

≤ λ0 + 2kMλ2
0 + M

(
5

4
|λ0|

)2

(by (5.5) and (5.7))

≤ λ0 + 2(k + 1)Mλ2
0.

Thus we proved (5.5) for k + 1, so the second inequality in the conclusion is verified.
The first bound in the conclusion follows from the first. Indeed, using (5.7) and (5.6), we get

|λk| ≤ 5

4
|λ0| ≤ 5

4
· 1

8dM
≤ 1

6dM

as claimed. The proof is complete. �

6. Applications

In this section, we state and prove a full version of Theorem 1.6 that states that random tensors
are well conditioned. But before we do so, let us prove a result that may have an independent
interest, namely a concentration inequality for the distance between a random tensor X and a
given subspace L.
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Corollary 6.1 (Distance to a subspace). Let n and d be positive integers and L ⊂ R
nd

be a
linear subspace with k := codim(L). Consider a simple random tensor X := x1 ⊗ · · · ⊗ xd in
R

nd
, where all xk are independent random vectors in R

n whose coordinates are independent,
mean zero, unit variance, sub-Gaussian random variables. Then, for every 0 ≤ t ≤ 2

√
k, we have

P
{∣∣dist(X,L) − √

k
∣∣ ≥ t

} ≤ 2 exp

(
− ct2

dnd−1

)
.

Here c > 0 depends only on the bound on the sub-Gaussian norms.

Proof. Apply Theorem 1.4 for the orthogonal projection P in R
nd

onto L⊥ and note that
‖P‖op = 1 and ‖P‖HS = √

dim(L⊥) = √
k. �

For d = 1, Corollary 6.1 recovers the known optimal concentration inequalities for the distance
between a random vector and a fixed subspace are known (see, e.g., [29], Corollary 2.1.19, [27,
35], Exercise 6.3.4), which are frequently used in random matrix theory. Some previously known
extensions for tensors of degrees d ≥ 2 were given in [1,8,9,11].

Now, we are ready to state and prove a rigorous version of Theorem 1.6.

Corollary 6.2 (Random tensors are well conditioned). Consider independent simple sub-
Gaussian random tensors X1, . . . ,Xm (defined like a tensor X in Corollary 6.1). Let ε be such
that Cd2 log(n)/n ≤ ε ≤ 1/2. If m ≤ (1−ε)nd then, with probability at least 1−2 exp(−cεn/d),
we have ∥∥∥∥∥

m∑
i=1

aiXi

∥∥∥∥∥
2

≥
√

ε

2
‖a‖2 for all a = (a1, . . . , am) ∈ R

m.

Note that this result is nontrivial for d = O(
√

n/ logn), because only in this range is the range
of ε nonempty.

Proof. We can assume that ‖a‖2 = 1 without loss of generality. A simple “leave-one-out” bound
gives ∥∥∥∥∥

m∑
i=1

aiXi

∥∥∥∥∥
2

≥ 1√
m

min
j=1,...,m

dist(Xj ,Lj ) (6.1)

where Lj is the linear span of the m − 1 vectors (Xi)i �=j . Since dim(Lj ) ≤ m − 1 ≤ (1 − ε)nd ,
we have codim(Lj ) ≥ εnd .

Fix j and apply Corollary 6.1 with t = √
εnd/2 conditionally on (Xi)i �=j . It gives

d(Xj ,Lj ) ≥ εnd

2
(6.2)
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with probability at least 1 − 2 exp(−cεn/2d). Taking the union bound over j = 1, . . . ,m, we
conclude that all events (6.2) hold simultaneously with probability at least

1 − 2m exp

(
−cεn

2d

)
≥ 1 − 2 exp

(
−cεn

4d

)
,

where we used that m ≤ nd and the assumption on ε. Substitute this into the leave-one-out bound
(6.1) to complete the proof. �
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