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We study some regularity properties in locally stationary Markov models which are fundamental for con-
trolling the bias of nonparametric kernel estimators. In particular, we provide an alternative to the standard
notion of derivative process developed in the literature and that can be used for studying a wide class of
Markov processes. To this end, for some families of V -geometrically ergodic Markov kernels indexed by a
real parameter u, we give conditions under which the invariant probability distribution is differentiable with
respect to u, in the sense of signed measures. Our results also complete the existing literature for the pertur-
bation analysis of Markov chains, in particular when exponential moments are not finite. Our conditions are
checked on several original examples of locally stationary processes such as integer-valued autoregressive
processes, categorical time series or threshold autoregressive processes.
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1. Introduction

The notion of local stationarity has been introduced in Dahlhaus [2] and offers an interesting
approach for the modeling of nonstationary time series for which the parameters are continu-
ously changing with the time. In the literature, several stationary models have been extended to
a locally stationary version, in particular Markov models defined by autoregressive processes.
See, for instance, Subba Rao [33] Moulines et al. [27] and Zhang and Wu [40] for linear au-
toregressive processes, Dahlhaus and Subba Rao [5], Fryzlewicz et al. [16] and Truquet [34] for
ARCH processes and a recent contribution of Dahlhaus et al. [4] for nonlinear autoregressive
processes. In Truquet [35], a new notion of local stationarity was introduced for general Markov
chains models, including most of the autoregressive processes introduced in the references given
above but also finite-state Markov chains or integer-valued time series. To define these models,
we used time-varying Markov kernels. Let {Qu : u ∈ [0,1]} be a family of Markov kernels on
the same topological space (E,E). We assume that for each u ∈ [0,1], Qu has a unique invari-
ant probability measure denoted by πu. For an integer n ≥ 1, we consider n random variables
Xn,1,Xn,2, . . . ,Xn,n such that

P(Xn,t ∈ A|Xn,t−1 = x) = Qt/n(x,A), (x,A) ∈ E × E,1 ≤ t ≤ n, (1)

with the convention Xn,0 ∼ π0. Let us observe that (Xn,t )1≤t≤n is a time-inhomogeneous Markov
chain as for the locally stationary autoregressive processes of order 1 introduced in the aforemen-
tioned references. Then formulation (1) is quite general for a locally stationary processes having
Markov properties (application to p-order Markov process will be also discussed in Section 5,
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but as in the homogeneous case, vectorization can be used to get a Markov chain of order 1).
The main particularity of our approach, which is similar to that used in the literature of locally
stationary processes, is the rescaling by the sample size n, taking Qt/n instead of Qt for the tran-
sition kernel at time t . The aim of this non standard formulation is to overcome a main drawback
of the standard large sample theory, from which it is mainly feasible to estimate parametric mod-
els, leading to very arbitrary statistical models for the time-varying Markov kernels Qt . On the
other hand, this rescaling allows to use a so-called infill asymptotic, from which local inference
of some functional parameters defined on the compact unit interval [0,1] remains possible. We
defer the reader to the monograph of Dahlhaus [3] for a thorough discussion of these asymptotic
problems. One of the main issue for making this approach working is to show that the triangu-
lar array can be approximated marginally (in a sense to precise) by a stationary process with
transition kernel Qu when the ration t/n is close to a point u ∈ [0,1].

The approach used in Truquet [35] is based on Markov chains techniques. Let us introduce
some notations. For two positive integers t , j such that 1 ≤ t ≤ n + 1 − j , let π

(n)
t,j be the proba-

bility distribution of the vector (Xn,t , . . . ,Xn,t+j−1) and πu,j the probability distribution of the
vector (X1(u), . . . ,Xj (u)), where (Xt (u))t∈Z denotes a stationary Markov chain with transition

kernel Qu. Note that πu,0 = πu. It is then possible to study the approximation of π
(n)
t,j by πu,j us-

ing probability metrics. One of main idea of the paper is to use contraction/regularity properties
for the Markov kernels Qu which guarantee at the same time such approximation and the decay
of some specific mixing coefficients. We will recall in Section 4, our approximation result for
total variation type norms, from which a large class of locally stationary models can be studied.
See also Section 4 in Truquet [35] for examples of such models and for results on their statistical
inference.

One of the important issues in the statistical inference of locally stationary processes is the
curve estimation of some parameters of the kernels {Qu : u ∈ [0,1]}. However, some parameters
of the joint distributions and their regularity, e.g.

∫
g dπu for some measurable functionals g :

E → R, have their own interest for two reasons.

1. First, one can be interested in estimating specific local parameters such as the trend of a
time series (which is here the mean of the invariant probability measure) or the local co-
variance function u �→ Cov(X0(u),X1(u)). Nonparametric estimation of such functionals
typically require to know their regularity, for instance the number of derivatives. For ex-
ample, estimating the expectation m(u) := ∫

g dπu = Eg(X0(u)) by a the local linear fit
with a kernel density requires the existence of two derivatives for m. See, for instance, Fan
and Gijbels [12] for an introduction to local polynomial modeling. We will discuss such
a problem in Section 4.3. Typically, if m is k-times continuously differentiable, it can be
estimated by a linear estimator m̂(u) = ∑n

t=1 wn,t (u)g(Xn,t ) with some weights satisfying
satisfying

∑n
t=1 wn,t (u) = 1,

∑n
t=1 wn,t (u)(u − t/n)� = 0 for 1 ≤ � ≤ k − 1 and we have

Em̂(u) − m(u) =
n∑

i=1

wn,t (u)

[∫
g dπ

(n)
t −

∫
g dπt/n

]

+
n∑

i=1

wn,t (u)(u − t/n)k−1 m(k−1)(u + τn,t (t/n − u)) − m(k−1)(u)

(k − 1)! ,
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with τn,t ∈ [0,1]. The first term is of order 1/n while the second one is bounded by bk (up
to a constant) is the weights are such that wn,t (u) = 0 when |u − t/n| > b and b ∈ (0,1)

is a bandwidth parameter. More regularity then entails a lower bias for the nonparametric
estimator.

2. Moreover, as discussed in Truquet [35], Section 4.5, when Qu(x, dy) = Qθ(u)(x, dy) for a
smooth function θ : [0,1] → R

d , getting a bias expression for the local likelihood estimator
of θ requires existence of derivatives for an application of type u �→ ∫

g dπ2,u.

The results stated in Truquet [35] only guarantee Lipschitz continuity of such applications. See
in particular Proposition 2 of that paper. One of the aim of the present paper is to complete such
results by studying differentiability properties.

In the recent work of Dahlhaus et al. [4], the authors study some autoregressive Markov pro-
cesses with time-varying parameters. These processes are defined by

Xn,t = Ft/n(Xn,t−1, . . . ,Xn,t−p, εt ), 1 ≤ t ≤ n.

Using contraction properties of the random maps x �→ Fu(x, ε1) in L
q -norms, they study the

local approximations of Xn,t by a stationary process (Xt (u))t∈Z where

Xt(u) = Fu

(
Xt−1(u), . . . ,Xt−p(u), εt

)
, t ∈ Z.

Differentiability of some functionals of type u �→ Ef (X1(u), . . . ,Xj (u)) for differentiable func-
tions f are then studied through the notion of a derivative process dXt(u)/du which is an almost
sure derivative of the application u �→ Xt(u). See Proposition 3.8, Proposition 2.5 and Theorem
4.8 in Dahlhaus et al. [4]. The notion of derivative process is also fundamental for getting a bias
expression of the local Maximum Likelihood Estimator. See Theorem 5.4 in Dahlhaus et al. [4]
for details.

Note that here, the process ((Xt (u), . . . ,Xt−p+1(u)))t∈Z form a Markov chain with transition
kernel Qu,p defined for (x1, . . . , xp) ∈ Ep and (A1, . . . ,Ap) ∈ Ep by

Qu,p

(
(x1, . . . , xp),A1 × · · · × Ap

) = P
(
Fu(x, ε0) ∈ Ap

) p∏
i=2

δxi
(Ai−1).

The previous functionals are then defined by some integrals of the invariant probability measure
or more generally some integrals of other finite-dimensional distributions of the chain. Note also
that any finite-dimensional distribution of a Markov chain still corresponds to the invariant prob-
ability measure of another Markov chain obtained from a vectorization of the initial stochastic
process. Studying differentiability properties of an invariant probability measure depending on a
parameter is then an important problem.

For the locally stationary models introduced in Truquet [35], the notion of derivative process
is not relevant to evaluate such a regularity in particular when the state space is discrete. For
instance, consider the following example of integer-valued time series, the INAR process with
time-varying parameters. Its local stationary approximations are defined by

Xt(u) =
Xt−1(u)∑

i=0

1{Ut,i≤α(u)} + εt ,
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where Ut,i , εs , (s, t, i) ∈ Z
2 × N are i.i.d. with U0,0 uniform over [0,1]. A more general model

will be discussed in Section 6.2. Here Qu(x, ·) is a convolution between the binomial distribution
of parameters (x,α(u)) and the distribution of ε0. Of course, the usual derivative of u �→ Xt(u)

makes no sense here but when the functional parameter α is differentiable, so is u �→ Qu(x, y).
We then expect that u �→ πu will be also differentiable. The same phenomenon already occurs
for the simple case of a finite-state Markov chains with N states, that is, P(Xt (u) = y|Xt−1(u) =
x) = Qu(x, y), x, y = 1, . . . ,N . This example will be covered by the results given in Section 6.3.

Our aim with this paper is to study directly existence of derivatives for the applications u �→
πu,j under suitable regularity assumptions for u �→ Qu. These derivatives will be understood
in the sense of signed measures and using topologies defined by V -norms, where V denotes a
drift function. See below for further details. Our approach will be applicable whatever the state
space and can also be interesting for the autoregressive processes studied in Dahlhaus et al. [4].
We defer the reader to the Notes after Proposition 3 for a discussion of the differences between
our results and that of Dahlhaus et al. [4] for a time-varying AR(1) process. We also stress that
we study differentiability properties of any order whereas Dahlhaus et al. [4] only considered
differentiability of order 1. The results given in this paper (see in particular Proposition 2 and
Corollary 3) are then an interesting alternative to the existing notion of derivative process.

In what follows, to avoid confusions between the various Markov kernels and invariant prob-
ability measures that will appear in the paper and will depend on the targeted finite-dimensional
distribution of the Markov chain, we adopt a generic notation and consider a topological space G

endowed with its Borel σ -field G and a family of Markov kernels {Pu : u ∈ [0,1]} on (G,G). We
assume that for any u ∈ [0,1], Pu has a unique invariant probability measure denoted by μu. For
the dynamic (1) and j a positive integer, G can then denote a cartesian product Ej , μu the prob-
ability measure πu,j and Pu the transition kernel Qu,j for which πu,j is an invariant probability
measure (see (9) for a precise definition of Qu,j ).

The approach used in this paper has an important connection with the literature of perturba-
tion theory for Markov chains. A central problem in this field is to control an approximation
of the invariant probability measure when the Markov kernel of the chain is perturbed. See,
for instance, the recent contribution of Rudolf and Schweizer [31], motivated by an application
to stochastic algorithms. Many contributions also provide some conditions under which the in-
variant probability has one or more derivatives with respect to an indexing parameter. See, for
instance, Schweitzer [32], Kartashov [22], Pflug [28], Vázquez-Abad and Kushner [38] or Glynn
and L’ecuyer [17]. For general state spaces, these contributions only focus on the existence of
the first derivative. Higher-order differentiability is studied using operator techniques in Heider-
gott and Hordijk [19] or Heidergott et al. [20]. However, as we explain below, these results are
restrictive for application to standard time series models. Let us first introduce some notations.
For a measurable function V : G → [1,∞), we denote by MV (G) the set of signed measures μ

on (E,E) such that

‖μ‖V :=
∫

V d|μ| = sup
|f |≤V

∫
f dμ < ∞,

where |μ| denotes the absolute value of the signed measure μ. We recall that (MV (G),‖ · ‖V ) is
a Banach space. In this paper, we will study differentiability of u �→ μu, as an application from
[0,1] to MV (G). The function V will be mainly a drift function for the Markov chain, as in the
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references mentioned above. We will consider the Markov kernel Pu as an operator Tu acting on
MV (E), i.e. Tuμ = μPu is the measure defined by

μPu(A) =
∫

μ(dx)Pu(x,A), A ∈ E .

For a measurable function g : E → R such that |g|V = supx∈E
|g(x)|
V (x)

< ∞, we set Pug(x) =∫
Pu(x, dy)g(y). The operator norm of the difference Tu − Tv can be defined by the two follow-

ing equivalent expressions

‖Tu − Tv‖V,V := sup
μ∈MV (E):‖μ‖V ≤1

∥∥μ(Pu − Pv)
∥∥

V
= sup

|f |V ≤1
|Puf − Pvf |V .

Differentiability of the application u �→ μu, considered as an application form [0,1] to MV (G)

could be obtained using the results of Heidergott and Hordijk [19] but it is necessary to assume
continuity of the application u �→ Tu for the previous operator norm. Such continuity assumption
is also used in Kartashov [22]. In the literature of perturbation theory, exponential drift functions
V are often used and such continuity property can be checked in many examples, such as for some
queuing systems considered in Heidergott et al. [20]. However, exponential drift functions require
exponential moments for the corresponding Markov chain. In time series analysis, existence
of exponential moments is a serious restriction. On the other hand, for power drift functions
(another classical choice in the literature of Markov chain), this continuity property often fails.
For instance, let us consider the process Xt(u) = uXt−1(u) + εt , u ∈ (0,1), where (εt )t∈Z is
a sequence of i.i.d. integrable random variables having an absolutely continuous distribution
with density fε . Ferré et al. [14] have shown that the corresponding Markov kernel Pu(x, dy) =
fε(y − ux)dy is not continuous with respect to u, when the classical drift function V (x) =
1+|x| is considered. Additional problems also occur in this example for the derivative operators,
obtained by taking the successive derivatives of the conditional density, that is, Q

(�)
u (x, dy) =

(−1)(�)x�fε(y − ux)dy, � = 1,2, . . . , which are not bounded operators for the operator norm
‖ · ‖V,V . Boundedness of the derivative operators are required in Heidergott and Hordijk [19] or
in Heidergott et al. [20] for studying the derivatives of u �→ πu, as an application from [0,1] to
MV (G). Hence, the results of the two previous references cannot be applied here. For studying
differentiability of the invariant probability measure, an alternative result can be found in Hervé
and Pène [21] (see Appendix A of that paper). This result is applied in Ferré et al. [14] to the
AR(1) process. However, it is formulated in a very abstract form, using operator theory and its
application to on a general class of Markov chain models has not been discussed. In contrast,
we provide an approach for studying derivatives of any finite-dimensional distribution for a wide
class of Markov chains. This result has some similarities with that of Hervé and Pène [21] but
our assumptions can be more easily checked and slightly better results can be obtained in the
examples we will consider in Section 6. We defer the reader to the Notes (3.) after Theorem
1 and to the Notes (3.) after Proposition 3 for a discussion. Additionally, for a Markov chain
and more generally a p-order Markov chain, we provide (see Proposition 2 and Corollary 3)
easily verifiable conditions on the density of the transition kernels that guarantee differentiability
properties for any finite-dimensional distribution of the process. To our knowledge, the existing
literature on the perturbation theory of Markov chains does not contain such conditions in a this
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general context. Our approach is particularly useful for models for which some power functions
satisfy a drift condition. See Section 4.3 and Section 5 for details.

Though we motivate our results for bias reduction in nonparametric regression, we also point
out that our results can be interesting for other problems.

1. First, choosing the bandwidth b by cross-validation for parameter estimation in some lo-
cally stationary time series models has been recently justified by Richter and Dahlhaus
[30]. Their asymptotic results requires smoothness properties for some expectations of the
stationary processes (Xt (u))t∈Z. We believe that our results could be used to adapt their ap-
proach for bandwidth selection for general models of the form (1), including integer-valued
or categorical time series models that are not covered by the previous reference.

2. Our results are stated for locally stationary Markov chains, but one can get a straightfor-
ward extension to general parametric models of ergodic Markov processes, using partial
derivatives in the multidimensional case. Such modifications will not change the core of
our arguments and do not present additional difficulties, we then restrict our study to the
case of a parameter u ∈ [0,1]. In operations research, calibrating queuing systems or in-
ventory levels often requires to optimize the expected value of a performance function
θ �→ E[g(X0(θ))] for a Markov chain (Xt (θ))t for which the transition operator depends
on a parameter θ ∈ R

k . Smoothness properties of such functions are then very important.
See for instance Kushner and Yin [23], Section 2.4.3. Our results complement the existing
results in perturbation theory of Markov chains, which are mainly stated when exponential
stability is guaranteed. In particular, we do not exclude many simple Markov chains mod-
els such as the autoregressive process of order 1 whenever the noise has no exponential
moments.

The paper is organized as follows. In Section 2, we give a general result, formulated using
a pure operator-theoretic approach, for getting differentiability properties of an invariant prob-
ability measure depending on a parameter. In Section 3, we give a set of sufficient conditions,
involving the transition densities of the Markov kernels. We also study differentiability of other
finite-dimensional distributions of the Markov chain. Section 4 is devoted to the notion of lo-
cal stationarity and the control of the bias in kernel smoothing. We also give simple sufficient
conditions that ensure both local stationarity and differentiability properties. An extension of our
results to p-order Markov processes is proposed in Section 5. Finally, we check our assumptions
on several examples of locally stationary processes in Section 6. Some of these examples are new
or are p-order extensions of existing Markov chain models. Proofs of some of our results can be
found in the Supplementary Material Truquet [36].

2. Regularity of an invariant probability with respect to an
indexing parameter

In this section, we consider a family {Pu : u ∈ [0,1]} of Markov kernels on a topological space
G endowed with its Borel σ -field B(G). For an integer k ≥ 1, let V0,V1, . . . , Vk be k + 1 mea-
surable functions defined on G, taking values in [1,+∞) and such that V0 ≤ V1 ≤ · · · ≤ Vk .
For simplicity of notations, we set Fs = MVs (G) and ‖ · ‖s = ‖ · ‖Vs for 0 ≤ s ≤ k. We remind
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that {(F�,‖ · ‖�) : 0 ≤ � ≤ k} is a family of Banach spaces. Moreover, 0 ≤ � ≤ k − 1, we have
F�+1 ⊂ F� and the injection i� : (F�+1,‖ · ‖�+1) → (F�,‖ · ‖�) is continuous. For j = 0,1, . . . , k,
we also denote by F0,j the set of measures μ ∈ Fj such that μ(G) = 0. For 0 ≤ i ≤ j ≤ k

and a linear operator T : (Fj ,‖ · ‖j ) → (Fi,‖ · ‖i ), we set ‖T ‖j,i = sup‖μ‖j ≤1 ‖T μ‖i and
‖T ‖0,j,i = sup‖μ‖j ≤1,μ∈F0,j

‖T μ‖i . Finally, for each u ∈ [0,1], we denote by Tu the linear oper-
ator acting on the space F0 defined by Tuμ = μPu. For a positive integer m, T m

u will denote the
iteration of order m of the operator Tu.

A1 We have TuF� ⊂ F� for all 0 ≤ � ≤ k. Moreover, for each � = 0,1, . . . , k, there exists an
integer m� ≥ 1 and a real number κ� ∈ (0,1) such that,

sup
u∈[0,1]

∥∥T m�
u

∥∥
�,�

≤ κ�, sup
u∈[0,1]

‖Tu‖�,� < ∞

and for each μ ∈ F�, the application u �→ Tuμ is continuous from [0,1] to (F�,‖ · ‖�).
A2 For any 1 ≤ � ≤ k, there exists a continuous linear operator T

(�)
u : (F�,‖·‖�) → (F0,‖·‖0)

such that for 0 ≤ s ≤ s + � ≤ k, T
(�)
u Fs+� ⊂ Fs , supu∈[0,1] ‖T (�)

u ‖s+�,s < ∞ and for μ ∈
Fs+�, the function u �→ T

(�−1)
u μ is differentiable as a function from [0,1] to Fs with

continuous derivative u �→ T
(�)
u μ. We use the convention T

(0)
u = Tu.

Theorem 1. Assume Assumptions A1–A2 hold true. Then the following statements are true.

1. • For each u ∈ [0,1], the operator I − Tu defines an isomorphism on each space
(F0,� ‖ · ‖�) for 0 ≤ � ≤ k. Moreover, the inverse of I − Tu is given by (I − Tu)

−1 =∑
k≥0 T k

u .
• We have max0≤�≤k supu∈[0,1] ‖(I − Tu)

−1‖�,� < ∞.
• For 0 ≤ � ≤ k and μ ∈ F0,�, the application u �→ (I − Tu)

−1μ is continuous as an
application from [0,1] to F�.

• Moreover, for each u ∈ [0,1], we have for 0 ≤ � ≤ k − 1 and μ ∈ F�+1,

lim
h→0

∥∥∥∥ (I − Tu+h)
−1μ − (I − Tu)

−1μ

h
− (I − Tu)

−1T (1)
u (I − Tu)

−1μ

∥∥∥∥
�

= 0.

2. For each u ∈ [0,1], there exists a unique probability measure μu such that Tuμu = μu (μu

is an invariant probability for Pu). Moreover, μu ∈ Fk .
3. The application � : [0,1] → Fk defined by �(u) = μu, for u ∈ [0,1], is continuous. More-

over, there exist some functions �(0), . . . ,�(k) such that �(0) = � and

• for 1 ≤ � ≤ k, the application �(�) : [0,1] → F0,k−� is continuous,

• for 1 ≤ � ≤ k and u ∈ [0,1], limh→0 ‖�(�−1)(u+h)−�(�−1)(u)
h

− �(�)(u)‖k−� = 0,
• the derivatives of � are given recursively by

�(�)(u) =
�∑

s=1

(
�

s

)
(I − Tu)

−1T (s)
u �(�−s)(u).
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Notes.

1. When V0 = V1 = · · · = Vk = V , existence of the derivatives for the invariant probability
measures is studied in Heidergott and Hordijk [19]. One can show that the condition Ck

used for stating their result entails A2 because they use a continuity assumption of the
derivative operators with respect to the V -operator norm. On the other hand, their geo-
metric ergodicity result (see Result 2 in their paper) for each kernel Pu, the measure and
the continuity assumption of the kernel for the V -operator norm entails the contraction
A1 (for the contraction coefficient, see Section 3.2 below). We also deduce from our re-
sult the following Taylor-Lagrange formula that will be useful for controlling the bias of
kernel estimators in Section 4.2. For u ∈ [0,1] and h ∈ R such that u + h ∈ [0,1], set
M = supv∈[0,1] ‖�(k)(v)‖0. We then have

∥∥∥∥∥�(u + h) − �(u) −
k−1∑
�=1

�(�)(u)

�! h�

∥∥∥∥∥
0

≤ M|h|k
k! . (2)

2. Let us discuss our assumptions. Assumption A1 guarantees the stability of the spaces
MVs (G) by the application Tu (i.e., μ ∈ MVs (G) → μPu ∈ MVs (G)). The contraction
condition in the second part of this assumption guarantees some invertibility properties of
the operator I − Tu (see point 1 of Theorem 1) that are needed for getting an expression of
the derivatives of u �→ μu. Our assumptions involve some measure spaces with more and
more moment restrictions MVk

(G) ⊂ · · · ⊂ MV0(G). Assumption A2 allows the deriva-
tive operators of the Markov kernel to be only bounded for an operator norm involving
a weaker final topology. This is particularly useful when the derivatives operators do not
preserve a measure space of given regularity. For instance, for the AR(1) process Xk(u) =
a(u)Xk−1(u) + εk with a noise density fε , we have Tuμ(dy) = ∫

μ(dx)fε(y − a(u)x) dy

and a natural candidate for T
(�)
u is

T (�)
u μ(dy) = a(�)(u)

∫
μ(dx)(−x)�f (�)

ε

(
y − a(u)x

)
dy.

Setting Vs = 1 + |x|s , one can see that |T (�)
u μ| · Vs ≤ C|μ| · Vs+� for a positive constant C.

This means that μ has to have a moment of order s+� for getting a finite upper bound in the
previous inequality. This problem does not occur on this example when the V ′

s s are some
exponential functions and the noise density and its derivatives have exponential moments.
See in particular Proposition 7 given in the supplementary material. However, we do not
want to use this restrictive moment condition.

3. The idea of introducing nested spaces (such as MVk
(G) ⊂ · · · ⊂MV0(G) in our result) can

also be found in Hervé and Pène [21] (see Annex A of that paper). In Proposition A of that
paper, the authors study regularity properties of some resolvent operators depending on a
parameter, also using an operator theoretic approach. An application of this result to study
the regularity of the invariant probability measure of an AR(1) process with respect to its
autoregressive coefficient is given in Ferré et al. [14], Proposition 1. However, application
of such a result requires in our context to introduce additional operator norms for getting
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continuity properties of applications u �→ T
(�)
u , as applications form [0,1] to some spaces

of linear operators. See in particular the proof of Proposition 1 in Ferré et al. [14] and the
transformation T0 introduced in the proof of their Lemma 1. Here, in A2, we prefer to use
pointwise continuity/differentiability assumptions for some applications u �→ T

(�)
u μ and

that are sufficient for getting our result. We found our formulation easier to understand. We
also defer the reader to the Notes (3.) after Proposition 3 for a comparison of our result
with that of Ferré et al. [14] for an AR(1) process.

4. In Assumption A2, we assume that the operators T
(�)
u satisfies some kind of weak continuity

or weak differentiability with respect to u, in the sense that continuity and differentiability
do not not hold for operator norms but simply for some applications u �→ T

(�)
u μ. In the

literature of perturbation of Markov chains, a notion of weak continuity or differentiabil-
ity for measures depending on parameters can be found in Pflug [29] (see Section 3.2).
Our condition is stronger since for an individual measure μ, the application u �→ μPug

is required to be continuous or differentiable but uniformly over a class of functions g.
In contrast, Pflug [29] defined these notions for a fixed function g. But note that our final
result entails existence of derivatives for the topology defined by some V -norms, which is
stronger than getting derivatives for u �→ ∫

g dμu for a single function g.

Proof of Theorem 1.

1. First, one can note that (F0,�,‖ · ‖�) is a closed vector subspace of (F�,‖ · ‖�) and then
a Banach space. Moreover, From Assumption A1, the series

∑
k≥0 T k

u , considered as an
operator from F0,� to F0,� is normally convergent for the norm ‖ · ‖0,�,� and is the inverse
of I − Tu. Then I − Tu defines an isomorphism on the space (F0,�,‖ · ‖�).

Using the expression (I − Tu)
−1 = ∑

k≥0 T k
u , the second assertion is a consequence of

Assumption A1.
Next, we show that for 0 ≤ � ≤ k and μ ∈ F0,�, the application u �→ (I − Tu)

−1μ is
continuous as an application from [0,1] to F0,�. Considering all the operators as operators
from F0,� to F0,�, we use the decomposition

(I − Tu+h)
−1 − (I − Tu)

−1 = (I − Tu+h)
−1(Tu+h − Tu)(I − Tu)

−1. (3)

From the previous point, we have supu∈[0,1] ‖(I − Tu)
−1‖0,�,� < ∞ and (I − Tu)

−1μ is
an element of F0,�. Moreover, if ν ∈ F�, Assumption A1 guarantees the continuity of the
application v �→ Tvν as an application from [0,1] to F�. Using (3), the continuity of the
application u �→ (I − Tu)

−1μ follows.
Finally, if μ ∈ F0,�+1, we show that the application u �→ (I −Tu)

−1μ is differentiable as
an application from [0,1] to F0,�. Setting zu,h = h−1(Tu+h − Tu)(I − Tu)

−1μ, we deduce
from Assumption A2 that limh→0 zu,h = zu = T

(1)
u (I −Tu)

−1μ in (F0,�,‖ · ‖�). We use the
decomposition

h−1[(I − Tu+h)
−1x − (I − Tu)

−1x
] = (I − Tu+h)

−1zu,h

= (I − Tu+h)
−1(zu,h − zu) + (I − Tu+h)

−1zu.
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From the previous point, we have limh→0(I − Tu+h)
−1zu = (I − Tu)

−1zu in (F0,�,‖ · ‖�).
Moreover,

∥∥(I − Tu+h)
−1(zu,h − zu)

∥∥
�
≤ sup

u∈[0,1]
∥∥(I − Tu)

−1
∥∥

�,�
‖zu,h − zu‖�

h→0→ 0.

This shows that the application u �→ (I − Tu)
−1μ is differentiable, as an application from

[0,1] to F0,�, with derivative u �→ (I − Tu)
−1T

(1)
u (I − Tu)

−1μ.
2. The space Fk,1 = {μ ∈ Fk : μ is a probability measure } endowed with the norm ‖ · ‖k is

a complete metric space. From Assumption A1 and the fixed point theorem, there exists
a unique probability measure μu in Fk such that μuPu = μu. But μu is in fact the single
invariant probability measure for Pu. Indeed, since for any x ∈ G, we have δx ∈ Fk,1, the
fixed point theorem applied in Fk,1 entails that limn→∞

∫
g(y)P n

u (x, dy) = ∫
g(y)μu(dy)

for all measurable function g : G → R bounded by one. If μu is an invariant probability
measure, we get from the Lebesgue theorem,

∫
g(y)μu(dy) =

∫
g(y)P n

u (x, dy)μ(dx) →n→∞
∫

g(y)μu(dy).

Necessarily, μu = μu and μu is then the unique invariant probability measure for Pu.
3. We first show that � is continuous. We have �(u + h) − �(u) = (I − Tu+h)

−1(Tu+h −
Tu)�(u). From Assumption A1, we have limh→0 ‖Tu+h�(u) − Tu�(u)‖k = 0. Note that
(Tu+h − Tu)�(u) is an element of F0,k . Using the second assertion of point 1. of the theo-
rem, we get limh→0(�(u + h) − �(u)) = 0 in (F0,k,‖ · ‖k).

Next, we prove the existence of the derivatives and their properties by induction on �

with 1 ≤ � ≤ k.
(a) First, we assume that � = 1. Using the same decomposition as for proving continuity

of �, we have

�(u + h) − �(u)

h

= (I − Tu+h)
−1 Tu+h − Tu

h
μu

= (I − Tu+h)
−1

[
Tu+h − Tu

h
μu − T (1)

u μu

]
+ (I − Tu+h)

−1T (1)
u μu.

Here we consider the operators Tu+h − Tu and T
(1)
u as operator from Fk to F0,k−1. The

operators (I − Tu)
−1, u ∈ [0,1], are considered as operators from F0,k−1 to F0,k−1.

From Assumption A2, we have

lim
h→0

∥∥∥∥Tu+hμu − Tuμu

h
− T (1)

u μu

∥∥∥∥
k−1

= 0.
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From the second and the third assertions of the point 1., we get

lim
h→0

∥∥∥∥�(u + h) − �(u)

h
− �(1)(u)

∥∥∥∥
k−1

= 0,

where �(1)(u) = (I − Tu)
−1T

(1)
u μu. It remains to prove the continuity of �(1) as an

application from [0,1] to Fk−1. As previously, it is sufficient to show that

lim
h→0

∥∥T
(1)
u+hμu+h − T (1)

u μu

∥∥
k−1 = 0.

But this is a consequence of the continuity of � and of Assumption A2, using the
decomposition

T
(1)
u+hμu+h − T (1)

u μu = [
T

(1)
u+h − T (1)

u

]
μu + T

(1)
u+h[μu+h − μu].

This shows the result for � = 1.
(b) Now let us assume that for 1 ≤ � ≤ k − 1, � has � derivatives such that for 1 ≤ s ≤ �

and u ∈ [0,1], the function �(s) : [0,1] → F0,k−s is continuous,

lim
h→0

∥∥∥∥�(s−1)(u + h) − �(s−1)(u)

h
− �(s)(u)

∥∥∥∥
k−s

= 0

and

�(�)(u) =
�∑

s=1

(
�

s

)
(I − Tu)

−1T (s)
u �(�−s)(u).

For 1 ≤ s ≤ �, we set zu = T
(s)
u �(�−s)(u) and we consider T

(s)
u as an operator from

Fk−�+s to Fk−�. We are going to show that the application u �→ zu from [0,1] to F0,k−�

has a derivative. We have

zu+h − zu

h
= T

(s)
u+h − T

(s)
u

h
�(�−s)(u) + T

(s)
u+h

�(�−s)(u + h) − �(�−s)(u)

h
.

Since �(�−s)(u) ∈ Fk−�+s , we have from Assumption A2,

lim
h→0

∥∥∥∥T
(s)
u+h − T

(s)
u

h
�(�−s)(u) − T (s+1)�(�−s)(u)

∥∥∥∥
k−�−1

= 0.

Next, we set wu,h = �(�−s)(u+h)−�(�−s)(u)
h

. By the induction hypothesis, we have

lim
h→0

∥∥wu,h − �(�−s+1)(u)
∥∥

k−�+s−1 = 0.

Using Assumption A2, we have supu∈[0,1] ‖T (s)
u ‖k−�+s−1,k−�−1 < ∞. Then we get

lim
h→0

∥∥T
(s)
u+h

(
wu,h − �(�−s+1)(u)

)∥∥
k−�−1 = 0.
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Using again Assumption A2, we have

lim
h→0

∥∥T
(s)
u+h�

(�−s+1)(u) − T (s)
u �(�−s+1)(u)

∥∥
k−�−1 = 0.

This shows that

lim
h→0

∥∥∥∥zu+h − zu

h
− T (s+1)

u �(�−s)(u) − T (s)
u �(�−s+1)(u)

∥∥∥∥
k−�−1

= 0.

In the sequel, we set z
(1)
u = T

(s+1)
u �(�−s)(u) + T

(s)
u �(�−s+1)(u).

Next, we compute the derivative of u �→ yu = (I − Tu)
−1zu, as an application from

[0,1] to F0,k−�−1. We have

yu+h − yu

h
= (I − Tu+h)

−1 − (I − Tu)
−1

h
zu

+ (I − Tu+h)
−1

(
zu+h − zu

h
− z(1)

u

)
+ (I − Tu+h)

−1z(1)
u .

Using Assumption A2 and some previous results, we get

lim
h→0

∥∥∥∥yu+h − yu

h
− (I − Tu)

−1T (1)
u (I − Tu)

−1zu − (I − Tu)
−1z(1)

u

∥∥∥∥
k−�−1

= 0.

In what follows, we set t (�,s)(u) = (I − Tu)
−1T

(1)
u (I − Tu)

−1zu + (I − Tu)
−1z

(1)
u .

Finally, we get in (Fk−�−1,‖ · ‖k−�−1),

lim
h→0

�(�)(u + h) − �(�)(u)

h
= �(�+1)(u) where �(�+1)(u) =

�∑
s=1

(
�

s

)
t (�,s)u .

The expression for �(�+1)(u) given in the statement of the theorem follows from
straightforward computations.

Finally, using the induction hypothesis, the function �(�+1−s) is continuous as an
application from [0,1] to Fk−�+s−1, for each 1 ≤ s ≤ �+1. The proof of the continuity
of �(�+1) is then similar to the proof of the continuity of �(1).

The properties of the successive derivatives �(1), . . . ,�(k) follow by induction and
the proof of Theorem 1 is now complete. �

3. Sufficient conditions

Assumptions A1–A2 are expressed using an operator point of view and our aim is to provide
sufficient conditions that can be checked on the conditional densities. In what follows, we assume
that the kernel Pu is defined by

Pu(x,A) =
∫

A

f (u, x, y)γ (x, dy), A ∈ B(G),
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where f : [0,1] × G2 → R+ is a measurable function and γ is a kernel not depending on u. We
also provide a natural expression for the derivative operators T

(�)
u . Assumption B1 given below

is related to uniform ergodicity. Since there are several ways of checking this assumption, we
discuss it in Section 3.2.

3.1. Another set of assumptions

Let k be a positive integer and Vk ≥ Vk−1 ≥ · · · ≥ V0 some measurable applications from G to
[1,∞) such that the following conditions are satisfied.

B1 For � = 0,1, . . . , k, the family of Markov kernels {Pu : u ∈ [0,1]} is simultaneously V�-
uniformly ergodic, that is, there exists κ� ∈ (0,1) such that,

sup
u∈[0,1]

sup
x∈G

‖δxP
n
u − μu‖�

V�(x)
= O

(
κn
�

)
,

where the unique invariant probability measure μu of Pu satisfies μuVk < ∞.
B2 For all (x, y) ∈ G2, the function u �→ f (u, x, y) is k-times continuously differentiable and

for 1 ≤ � ≤ k, we denote by ∂
(�)
1 f its partial derivative of order �.

B3 There exist C > 0 such that for integers 0 ≤ s ≤ s + � ≤ k, u ∈ [0,1] and x ∈ G,

sup
u∈[0,1]

∫ ∣∣∂(�)
1 f (u, x, y)

∣∣Vs(y)γ (x, dy) ≤ CVs+�(x), (4)

lim
h→0

∫ ∣∣∂(k−s)
1 f (u + h,x, y) − ∂

(k−s)
1 f (u, x, y)

∣∣Vs(y)γ (x, dy) = 0. (5)

Corollary 1. The assumptions B1–B3 entail the assumptions A1–A2. Moreover the conclusions
of Theorem 1 are valid for the derivative operators

T (�)
u μ =

∫
μ(dx)∂

(�)
1 f (u, x, y)γ (x, dy), 1 ≤ � ≤ k, μ ∈ MV�

(G).

Proof of Corollary 1.

1. We first check A1. If P is a Markov kernel on (G,B(G)), we define the following Do-
brushin contraction coefficient

�V (P ) := sup
μ∈MV (G),μ �=0,μ(G)=0

‖μP‖V

‖μ‖V

= sup
x,y∈G,x �=y

‖δxP − δyP‖V

V (x) + V (y)
. (6)

See, for instance, Douc et al. [9], Lemma 6.18 for the second expression. Note also that,
with the notations of Section 2, we have if T μ = μP , ‖T ‖0,�,� = �V�

(P ).
First, note that from (4) applied with � = 0, we have TuFs ⊂ Fs and supu∈[0,1] ‖Tu‖s,s <

∞ for s = 0,1, . . . , k. Moreover, we have the bound

∥∥T n
u

∥∥
0,�,�

= �V�

(
P n

u

) ≤ sup
x∈G

‖δxP
n
u − μu‖�

V�(x)
. (7)
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This bound can be found for instance in Rudolf and Schweizer [31], Lemma 3.2. For com-
pleteness, we repeat the argument. We have,

�V

(
P n

u

) ≤ sup
x �=y

‖δxP
n
u − δyP

n
u ‖V

V (x) + V (y)
≤ sup

x �=y

‖δxP
n
u − μu‖V + ‖δyP

n
u − μu‖V

V (x) + V (y)
,

which shows (7), using the inequality (a + b)/(c + d) ≤ max{a/c, b/d} which is valid for
all positive real numbers a, b, c, d ,. This entails the existence of an integer m� ≥ 1 such
that supu∈[0,1] ‖T m�

u ‖0,�,� < 1. It remains to show that if μ ∈ F�, u �→ Tuμ is continuous,
as an application from [0,1] to F�. We have

‖Tu+hμ − Tuμ‖� ≤
∫ ∫

|μ|(dx)γ (x, dy)V�(y)
∣∣f (u + h,x, y) − f (u, x, y)

∣∣.
We will use the Lebesgue theorem. Using the inequality V� ≤ Vk and Assumption B3 (5)
with s = k,

lim
h→0

ch(u, x) :=
∫

γ (x, dy)V�(y)
∣∣f (u + h,x, y) − f (u, x, y)

∣∣ = 0, x ∈ G.

Moreover, from B3 (4) applied to the derivative of order 0, we have ch(u, x) ≤ 2CV�(x) and
V� is |μ|-integrable. The Lebesgue theorem then applies and gives limh→0 Tu+hμ = Tuμ

in F� and the last assertion in A1 follows.
2. Next, we check the assumption A2. We first notice that for 0 ≤ s ≤ s + � ≤ k and μ ∈ Fs+�,

we have from B3 (4),

∥∥T (�)
u μ

∥∥
s
≤

∫
|μ|(dx)

∫
γ (x, dy)

∣∣∂(�)
1 f (u, x, y)

∣∣Vs(y)

≤ C

∫
|μ|(dx)Vs+�(x) = C‖μ‖s+�.

This shows that T
(�)
u Fs+� ⊂ Fs and supu∈[0,1] ‖T (�)

u ‖s+�,s ≤ C. Next, for μ ∈ Fs , we show

the continuity of the application u �→ T
(�)
u μ, as an application from [0,1] to Fs+�. We have

∥∥T
(�)
u+hμ − T (�)

u μ
∥∥

s
≤

∫
|μ|(dx)

∫
γ (x, dy)

∣∣∂(�)
1 f (u + h,x, y) − ∂

(�)
1 f (u, x, y)

∣∣Vs(y).

From the assertion (4) in B3 and the Lebesgue theorem, it is enough to prove that for all
x ∈ G,

lim
h→0

∫
γ (x, dy)

∣∣∂(�)
1 f (u + h,x, y) − ∂

(�)
1 f (u, x, y)

∣∣Vs(y) = 0.

We consider two cases. If s + � = k, this continuity is a direct consequence of the assertion
(5) of Assumption B3. Now if s + � + 1 ≤ k, the result follows from the assumption B3 (4)
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and the bound

∫
γ (x, dy)

∣∣∣∣∂
(�)
1 f (u + h,x, y) − ∂

(�)
1 f (u, x, y)

h

∣∣∣∣Vs(y)

≤ sup
v∈[0,1]

∫
γ (x, dy)

∣∣∂(�+1)
1 f (v, x, y)

∣∣Vs(y).

Finally, we show the differentiability property of the operators. For μ ∈ Fs+�, we have,
using the mean value theorem,

∥∥∥∥T
(�−1)
u+h μ − T

(�−1)
u μ

h
− T (�)

u μ

∥∥∥∥
s

≤ sup
v∈[u,u+h]

∫
|μ|(dx)

∫
γ (x, dy)

∣∣∂(�)
1 f (v, x, y) − ∂

(�)
1 f (u, x, y)

∣∣Vs(y).

The result follows by using the same arguments as in the proof of the continuity of the
application u �→ T

(�)
u μ. This completes the proof of Corollary 1.

�

Note. When φ : G → [1,∞) is a measurable function such that for some d ≤ d0, 0 ≤ � ≤
k and q0, q1, . . . , qk > 0,

∫
γ (x, dy)|∂(�)

1 f (u, x, y)|φ(y)d ≤ Cφ(x)d+q� , Assumption B3 (4) is
checked by setting V�(x) = φ(x)d+q� with q = max(q1, q2/2, . . . , qk/k) and assuming that d +
qk ≤ d0.

3.2. Simultaneous uniform ergodicity

Assumption B1 is related to a simultaneous V -uniform ergodicity condition. Let us first give a
precise definition of this notion.

Definition 1. We will say that a family of Markov kernel {Pu : u ∈ [0,1]} satisfies a simultaneous
V -uniform ergodicity condition if there exists C > 0 and κ ∈ (0,1) such that for all u ∈ [0,1]
and all x ∈ G, ∥∥δxP

n
u − μu

∥∥
V

≤ CV (x)κn.

This notion plays a central rule in our results and it is then important to provide sufficient
conditions for B1. We also point out that this notion of simultaneous uniform ergodicity replaces
stronger assumptions made in Heidergott and Hordijk [19]. These authors used pointwise uni-
form ergodicity and a continuity property for the application u �→ Pu, in the sense that

lim
h→0

‖Pu+h − Pu‖V,V = 0.
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See in particular Definition 3 and Condition 1–4 of that paper. We justify why the two previous
conditions imply simultaneous uniform ergodicity in Proposition 8 given in the supplementary
material.

For a single Markov kernel, V -uniform ergodicity is generally obtained under a drift condition
and a small set condition. See Meyn and Tweedie [26], Chapter 16 for details. Let us first recall
the definition of a small set. For a Markov kernel P on (G,B(G)), a set C ∈ B(G) is called a
(η, ν)-small set, where η a positive real number and ν a probability measure on (G,B(G)) if
P(x,A) ≥ ην(A), for all A ∈ B(G) and all x ∈ C.

We now present two approaches for getting simultaneous uniform ergodicity.

3.2.1. Simultaneous V -uniform ergodicity via drift and small set conditions

When simultaneous drift and small set conditions are satisfied, a result of Hairer and Mattingly
[18] can be used to check simultaneous V -uniform ergodicity. For simplicity, we introduce the
following condition.

Definition 2. For λ ∈ (0,1), b,η, r > 0 and ν a probability measure on (G,B(G)), we will say
that a Markov kernel P satisfies the condition C(V ,λ, b, r, η, ν) if

PV ≤ λV + b and
{
x ∈ G : V (x) ≤ r

}
is a (η, ν) small set. (8)

The following result guarantees simultaneous uniform ergodicity.

Lemma 1. Assume that

• there exists an integer m ≥ 1 such that all the Markov kernels P m
u , u ∈ [0,1], satisfy the

condition C(V ,λ, b, r, η, ν) for r > 2b
1−λ

,
• there exists K > 0 such that PuV ≤ KV for all u ∈ [0,1].

Then the family of Markov kernels {Pu : u ∈ [0,1]} is simultaneously V -uniformly ergodic.

Proof of Lemma 1. Using Theorem 1.3 in Hairer and Mattingly [18], our assumptions entail
the existence of α ∈ (0,1) and δ > 0, not depending on u ∈ [0,1] such that �Vδ (P

m
u ) ≤ α with

Vδ = 1 + δV (see (6) for the definition of �V ). The result of Hairer and Mattingly [18] is in fact
stated for a single Markov kernel but inspection its proof shows that the coefficients α and δ only
depends on λ, b, r and η and the later constants are the same for the P ′

us. Extension of this result
to a family of Markov kernels {Pu : u ∈ [0,1]} is then immediate.

Next, using the equivalence of the norms ‖ · ‖V and ‖ · ‖Vδ , one can show as in Proposition 2
in Truquet [35] that there exists C > 0 and ρ ∈ (0,1) such that supu∈[0,1] ‖δxP

n
u − πu‖V ≤

CV (x)ρj . This completes the proof of the lemma. �

The following result will be particularly important for checking simultaneous uniform ergod-
icity when the Vs ’s are a power of a given function φ, the most interesting case for our examples.

Proposition 1. Let φ : G → [1,∞) be a measurable function and Vs = φqs for s = 0, . . . , k and
0 < q0 < · · · < qk . One can then obtain simultaneous Vs -uniform ergodicity for s = 0,1, . . . , k

if
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1. there exists a positive real number K such that for all u ∈ [0,1], PuVk ≤ KVk ,
2. there exist an integer m ≥ 1, two real numbers λ ∈ (0,1), b > 0, a family of positive real

numbers {ηr : r > 0} and a family {νr : r > 0} of probability measures on G such that for
all r > 0 and all u ∈ [0,1], the Markov kernel P m

u satisfies Condition C(Vk, λ, b, r, ηr , νr ).

Proof of Proposition 1. Let s ∈ {0,1, . . . , k −1}. From the assumptions and Jensen’s inequality,
we have PuVs ≤ Kqs/qkVs for any s = 0, . . . , k. Moreover for any r > 0, the family of Markov
kernels {P m

u : u ∈ [0,1]} satisfies Condition C(Vs, λ
qs , bqs , rqs/qk , ηr , νr ). The result is then a

consequence of Lemma 1. �

3.2.2. Other approach

Simultaneous uniform ergodicity can also be obtained from other conditions. For instance, if
each kernel Pu is V -uniformly ergodic, then perturbation methods can be applied to get a local
simultaneous V -uniform ergodicity property which can easily be extended to the interval [0,1]
by compactness. When the Markov kernel is not continuous with respect to the operator norm,
but satisfies some weaker continuity properties, Ferré et al. [14] (see Theorem 1) obtained a
nice result based on the Keller-Liverani perturbation theorem. However, construction of locally
stationary Markov chain models considered in Truquet [35] is based on the simultaneous drift
and small set conditions and we will not use this approach in the rest of the paper. The interested
reader is deferred to Section 1 in the supplementary material for a discussion.

3.3. Regularity of higher-order finite dimensional distributions

We now study existence of some derivatives for u �→ πu,j (j ≥ 2) in model (1). We remind
that πu,j (dx) = πu(dx1)Qu(x1, dx2) · · ·Qu(xj−1, dxj ). For x1, . . . , xj ∈ E and 0 ≤ � ≤ k, we

set V�,j (x1, . . . , xj ) = ∑j

i=1 V�(xi). For an integer j ≥ 1, we denote by MV (Ej ) the space of
signed measures on Ej such that

‖μ‖V := sup

{∫
f dμ : ∣∣f (x1, . . . , xj )

∣∣ ≤ V (x1) + · · · + V (xj )

}
.

Finally, let M�(x1) = supu∈[0,1]
∫ |∂(�)

1 f (u, x1, y1)|γ (x1, dy1).
The following additional assumption will be needed.

B4 There exists C > 0 such that for 0 ≤ s ≤ s + � ≤ k and all x1, x2 ∈ E, we have

Vs(x1)M�(x2) ≤ C
(
Vs+�(x1) + Vs+�(x2)

)
.

Constant C can be the same as in assumption B2, this is why we use the same notation. The
following result is a consequence of Corollary 1.

Corollary 2. Let {Qu : u ∈ [0,1]} be a family of Markov kernels on E satisfying the assump-
tions B1–B4. Then the application u �→ πu,j from [0,1] to MV0(E

j ), is k-times continuously
differentiable.
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Note. Assumption B4 will be satisfied if there exists a function φ : E → [1,∞) such that∫
φ(yj )

d
∣∣∂(�)

1 f (u, xj , yj )
∣∣γ (xj , dyj ) ≤ Cφ(xj )

d+r�

for 0 ≤ d ≤ d0. Indeed in this case, one can take (up to a constant) V�(xj ) = φ(xj )
d+r� with

r = max(r1, r2/2, . . . , rk/k) and k such that d + rk ≤ d0.

Proof of Corollary 2. Here we set for x ∈ Ej and A ∈ E⊗j ,

Qu,j (x,A) =
∫

A

f (u, xj , yj )γj (x, dy) with γj (x, dy) = γ (xj , dyj )

j−1∏
i=1

δxi+1(dyi). (9)

Let us first check that Qu,j satisfies assumption B1. Let 1 ≤ s ≤ k. For an integer h ≥ j and a
measurable function g : Ej → R such that |g| ≤ Vs,j , we have

∣∣Qj
u,j g(x)

∣∣ ≤
∫ ∣∣g(y1, . . . , yj )

∣∣Qu(xj , dy1)Qu(y1, dy2) · · ·Qu(yj−1, dyj )

≤
j∑

i=1

Qi
uVs(xj ) ≤ CjVs(xj ),

with Cj = ∑j

i=1 Ci and C defined in (4). We then get

sup
|g|≤Vs,j

∣∣Qh
u,j g(x) − πu,j g

∣∣ ≤ sup
|g|≤Cj Vs

∣∣Qh−j
u g(xj ) − πug

∣∣ ≤ Cj sup
|g|≤Vs

∣∣Qh−j
u g(xj ) − πug

∣∣.
From the simultaneous Vs -uniform ergodicity property for {Qu : u ∈ [0,1]}, the previous bounds
entail automatically B1.

Now assume that the family {Qu : u ∈ [0,1]} satisfies the assumptions B2–B3. Then the family
{Qu,j : u ∈ [0,1]} automatically satisfies the assumption B2 and B3 (5). Let us check assumption
B3 (4). We have

∫
Vs,j (y)

∣∣∂(�)
1 f (u, xj , yj )

∣∣γj (x, dy) ≤ C

[
Vs+�(xj ) +

j∑
i=2

Vs(xi)M�(xj )

]
,

Using assumption B4, we have Vs(xi)M�(xj ) ≤ C(Vs+�(xi) + Vs+�(xj )) and B3 (4) is also
satisfied for the family {Qu,j : u ∈ [0,1]}. This completes the proof. �

4. Locally stationary Markov chains

In this section, we consider a topological space E endowed with its Borel σ -field B(E) and a
triangular array of Markov chains {Xn,t : 1 ≤ t ≤ n,n ≥ 1} defined by (1).
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4.1. Some results about locally stationary Markov chains

We first recall some results obtained in Truquet [35]. For simplicity, we introduce the two follow-
ing conditions. For ε > 0, we denote Im(ε) the subsets of [0,1]m such that (u1, . . . , um) ∈ Im(ε)

if and only if |ui − uj | < ε for 1 ≤ i, j ≤ m.

L1 There exist a measurable function V : E → [1,∞), an integer m ≥ 1, some positive
real numbers ε, K , λ, b, r , η with λ < 1, r > 2b/(1 − λ) and a probability measure ν

such that for all (u1, u2, . . . , um) ∈ Im(ε), the kernel Qu1Qu2 · · ·Qum satisfies Condition
C(V ,λ, b, r, η, ν). Moreover, there exists K > 0 such that QuV ≤ KV for all u ∈ [0,1].

L2 There exists a measurable function V ′ : E → [1,∞) such that supu∈[0,1] πuV
′ < ∞ and

for all x ∈ E, ‖δxQu − δxQv‖V ≤ V ′(x)|u − v|.
L3 For all (u, v) ∈ [0,1]2, we have

‖δxQu − δxQv‖1 ≤ L(x)|u − v|, with sup
u∈[0,1]
1≤�′≤�

E
[
L

(
X�(u)

)
V

(
X�′(u)

)]
< ∞.

Here, (Xt (u))t∈Z denotes a stationary time-homogeneous Markov chain with transition
kernel Qu.

Under the conditions L1–L3, it is shown in Truquet [35] (see Theorem 3) that for all integer
j ≥ 1, the distribution π

(n)
t,j of (Xn,t , . . . ,Xn,t+j−1) satisfies

∥∥π
(n)
t,j − πu,j

∥∥
V

≤ Cj

[∣∣∣∣u − t

n

∣∣∣∣ + 1

n

]
, (10)

where Cj > 0 does not depend on u, n, t and Vj (x1, . . . , xj ) = V (x1) + · · · + V (xj ). Note that
under Assumption L1 entails simultaneous V -uniform ergodicity for the family {Qu : u ∈ [0,1]}
(see Section 3.2.1). Condition L1 is useful to guarantee some β-mixing properties for the trian-
gular array. See Proposition 3 in Truquet [35] for details. Note also that condition L2 is always
satisfied for (V ,V ′) = (V0,V1) if assumption B3 (4) holds true. In Truquet [35], Proposition 2
and its proof, it has been shown that Assumptions L1–L3 entail, for each u ∈ [0,1], geometric
ergodicity of a Markov chain with transition kernel Qu. Moreover, the finite dimensional distri-
bution πu,j are shown to be Lipschitz with respect to u, when the space of signed measure on
Ej is endowed with the V -norm. However higher-order regularity (such as differentiability) has
not been studied and this is precisely the aim of this paper.

For more clarity, we introduce the following terminology.

Definition 3. A triangular array of Markov chains {Xn,t : 1 ≤ t ≤ n,n ≥ 1} associated to a family
of Markov kernel {Qu : u ∈ [0,1]} will be said V -locally stationary if (10) is satisfied.

4.2. Simple sufficient conditions

In order to check more easily our assumptions for specific examples, we give below a set of
conditions that guarantee, for the same topology, local stationarity as well as differentiability of
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the applications u �→ πu,j for j ≥ 1. In particular, the following set of assumptions will imply
at the same time L1–L3 and B1–B3. Proposition 2 given below is then important for practical
applications of our results to locally stationary Markov models. We only consider the case of
power functions, that is, for each integer s, Vs is a power of a measurable function φ : E →
[1,∞). This is the most interesting case in practice.

SC1 There exist an integer m ≥ 1, some positive real numbers d0, ε, K , λ, b with λ < 1,
d0 ≥ 1, a family of positive real number {ηr : r > 0} and a family {νr : r > 0} of prob-
ability measures on E such that for all r > 0 and for all (u1, u2, . . . , um) ∈ Im(ε), the
kernel Qu1Qu2 · · ·Qum satisfies Condition C(φd0 , λ, b, r, ηr , νr ). Moreover, there exists
K > 0 such that QuV ≤ KV for all u ∈ [0,1].

SC2 There exists an integer k ≥ 1 such that for all (x, y) ∈ E2, the function u �→ f (u, x, y)

is k-times continuously differentiable.
SC3 There exist some real numbers d1 > 0 and q ≥ 0 such that d1 + kq ≤ d0 and for all

1 ≤ � ≤ k and d ≤ d1 + (k − �)q ,∫
φd(y)

∣∣∂(�)
1 f (u, x, y)

∣∣γ (x, dy) ≤ Cφd+q�(x).

Moreover, for s = 0, . . . , k,

lim
h→0

∫
φd1+qs(y)

∣∣∂(k−s)
1 f (u + h,x, y) − ∂

(k−s)
1 f (u, x, y)

∣∣γ (x, dy) = 0.

Proposition 2. Assume that SC1–SC3 hold true. Set V0 = φd1 . The triangular array of Markov
chain {Xn,t : 1 ≤ t ≤ n,n ≥ 1} is V0-locally stationary. Moreover, for any integer j ≥ 1, the
application u �→ πu,j , from [0,1] to MV0(E

j ), is k-times continuously differentiable.

Proof of Proposition 2. For s = 0, . . . , k, we set Vs = φd1+qs . Note that from SC1, Assump-
tion L1 is automatically satisfied for each function Vs , s = 0, . . . , k. This is a consequence of
Proposition 1.

Moreover, from SC3 (set d = d1 and � = 1), Assumption L2 holds true for V = V0 and V ′ =
V1.

Next, we check L3. Using SC3 with d = 0 and � = 1, we see that one can choose L = Cφq .
Setting V = V0, we know from L1–L2 that supu∈[0,1]

∫
φd1+q dπu < ∞. See Truquet [35],

Proposition 2. This shows that the integrability condition in L3 is satisfied. The proof of local
stationary then follows.

We next check B1–B4. B1 follows from L1 which holds true for all the functions Vs ,
s = 0, . . . , k. See the discussion of Section 3.2 for details. Finally, B2–B4 follow directly from
SC2–SC3. See also the Note after Corollary 2 for checking B4. Differentiability of the marginal
distributions then follows from Corollary 2. The proof is now complete. �

4.3. Application to bias control in nonparametric estimation

In this section, we discuss why differentiability properties of the application u �→ πu,j are fun-
damental for controlling the bias in nonparametric estimation of some parameter curves. Let
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{Xn,t : 1 ≤ t ≤ n,n ≥ 1} be a triangular array of V -locally stationary Markov chains. For a given
integer 1 ≤ j ≤ n and 1 ≤ t ≤ n − j + 1, set Zn,t = (Xn,t , . . . ,Xn,t+j−1). We also assume that
the application u �→ πu,j is k-times continuously differentiable, as an application from [0,1] to
MV (Ej ). If Assumptions SC1–SC3 are satisfied, Proposition 2, given in the previous section,
guarantees V0-local stationarity and also that u �→ πu,j is k-times continuously differentiable, as
an application from [0,1] to MV0(E

j ).
Let g : Ej → R be a measurable function such that |g|V < ∞. We want to estimate the quan-

tity ψg(u) = ∫
g dπu,j using local polynomials. We precise that the approach used here is very

classical in nonparametric estimation and, except for the local approximation, is identical to that
used for i.i.d. data. See Tsybakov [37], Section 1.8, for a general approach for studying of the
bias of local polynomial estimators. Let K be a continuous probability density, bounded and sup-
ported on [−1,1] and b ∈ (0,1) a bandwidth parameter such that b = bn → 0 and nb → ∞. We
set Kb = 1

b
K(·/b). An estimator ψ̂g(u) of ψg(u) is given by the first component of the vector

Ĥg(u) := (
ψ̂g(u), bψ̂ ′

g(u), . . . , bk−1ψ̂(k−1)
g (u)

)′

= arg min
α0,...,αk−1∈R

n∑
t=1

Kb

(
u − t

n

)[
g(Zn,t ) −

k−1∑
i=0

αi

(t/n − u)i

bii!

]2

.

For 1 ≤ t ≤ n, we set vt (u) = (1,
t/n−u

b
, . . . ,

(t/n−u)k−1

bk−1(k−1)! )
′ and

D(u) =
n−j+1∑

t=1

Kb(t/n − u)

n − j + 1
vt (u)vt (u)′, N̂g(u) =

n−j+1∑
t=1

Kb(t/n − u)

n − j + 1
vt (u)f (Zn,t ).

From (10), we have max1≤t≤n−j+1 sup|g|V ≤1 |Eg(Zn,t ) − ψg(t/n)| = O(1/n). Next, setting

Hg(u) = (ψg(u), bψ ′
g(u), . . . , bk−1ψ

(k−1)
g (u))′ and using the differentiability properties of φ,

one can apply the bound (2). There exists C > 0 such that for all n ≥ 1, 1 ≤ t ≤ n − j + 1 and
u ∈ [0,1],

sup
|g|V ≤1

∣∣ψg(t/n) −Hg(u)′vt (u)
∣∣ ≤ C(u − t/n)k.

We deduce that supu∈[0,1] sup|g|V ≤1 |EN̂g(u) − D(u)Hg(u)| = O(bk + 1
n
). The rest of the proof

consists in bounding the matrix D(u)−1 using very classical arguments available in the literature.
Using our assumptions on the kernel and on the design Xi = i/n, the assumptions LP(1)-LP(3)
of Tsybakov [37] are satisfied and Lemma 1.5 and Lemma 1.7 in Tsybakov [37] guaranty that
maxu∈[0,1] ‖D(u)−1‖ = O(1). Then we get

sup
u∈[0,1]

sup
|g|V ≤1

∣∣EĤg(u) −Hg(u)
∣∣ = O

(
bk + 1

n

)
.

In conclusion, up to a term of order 1/n which is negligible and can be interpreted as a devi-
ation term with respect to stationarity, the bias is of order bk when ψg is k-times continuously
differentiable. We then recover a classical property of local polynomial estimators.
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Notes.

1. We will not discuss the variance of the estimator Ĥg(u). As shown in Truquet [35], Propo-
sition 3, Assumption SC1 ensures geometric β-mixing properties for the triangular array of
Markov chains {Xn,t : 1 ≤ t ≤ n,n ≥ 1}. Using standard arguments, one can then show that
such variance is of order 1/nb, as usual for nonparametric curve kernel estimators. Since
this problem is not the scope of this paper, we omit the details.

2. Differentiability of u �→ πu,2 is also important for deriving an expression of the bias for
the local maximum likelihood estimator of some parameter curves. We defer the reader to
Section 4.5 in Truquet [35] for a discussion of this problem.

5. Extension to p-order Markov chains

Let us now give an extension of our results to p-order Markov processes. We choose here to
present a version which can be applied directly to the examples of the last section of the paper. We
consider a family {Ru : u ∈ [0,1]} of probability kernel from (Ep,E⊗p) to (E,E). We assume
that for u ∈ [0,1], Ru(x,A) = ∫

f (u,x, y)γ (dy), for a measurable function f : [0,1]×Ep+1 →
R and a measure γ on E. We also consider a triangular array {Yn,t : 1 ≤ t ≤ n,n ≥ 1} of p-order
Markov processes such that

P(Yn,t ∈ A|Yn,t−1, . . . , Yn,t−p) = Rt/n(Yn,t−p, . . . , Yn,t−1,A), A ∈ B(E),1 ≤ t ≤ n.

For simplicity, we also define a sequence (Yn,t )t≤0 which is a time-homogeneous Markov pro-
cess with transition kernel R0. Note that setting Xn,t = (Yn,t−p+1, . . . , Yn,t ), one can define a
triangular array {Xn,t : 1 ≤ t ≤ n,n ≥ 1} of Markov chains. To this end, let Qu be the Markov
kernel on Ep defined by

Qu(x, dy) = Ru(x, dyp)

p−1∏
i=1

δxi+1(dyi).

We then have P(Xn,t ∈ A|Xn,t−1) = Qt/n(Xn,t−1,A), A ∈ E⊗p , 1 ≤ t ≤ n. One can then use the
results available for locally stationary Markov chains to define and study some locally stationary
Markov processes of order p ≥ 2. For convenience, we give below a set of assumptions on the
family of kernels {Ru : u ∈ [0,1]} which ensure local stationary and differentiability properties
of u �→ πu,j for Markov chains with local transition kernels {Qu : u ∈ [0,1]}. These properties
will be derived using Proposition 1.

Now let φ : E → [1,∞) a measurable function satisfying the following properties.

SCp1 There exists a real number d0 ≥ 1 and some positive real numbers α1,u, . . . , αp,u,α0
such that supu∈[0,1]

∑p

i=1 αi,u < 1 and

Ruφ
d0(x) ≤

p∑
i=1

αi,uφ
d0(xi) + α0, x ∈ Ep,u ∈ [0,1].
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Moreover, for each r > 0, there exist a positive real number ηr and a probability mea-
sure νr on E such that,

Ru(x,A) ≥ ηrνr(A), A ∈ E, max
1≤i≤p

φ(xi)
d0 ≤ r.

SCp2 There exists an integer k ≥ 1 such that for all (x, y) ∈ Ep × E, the function u �→
f (u,x, y) is k-times continuously differentiable.

SCp3 There exist some real numbers d1 > 0 and q ≥ 0 such that d1 + kq ≤ d0 and for all
1 ≤ � ≤ k and d ≤ d1 + (k − �)q ,

∫
φd(y)

∣∣∂(�)
1 f (u,x, y)

∣∣γ (dy) ≤ C

p∑
i=1

φd+q�(xi).

Moreover, limh→0
∫

φd1+qs(y)|∂(k−s)
1 f (u + h,x, y) − ∂

(k−s)
1 f (u,x, y)|γ (dy) = 0.

Corollary 3. Assume that assumptions SCp1–SCp3 hold true. The triangular array of Markov
chains {Xn,k : 1 ≤ k ≤ n,n ≥ 1} is V0-locally stationary, with V0(x1, . . . , xp) = ∑p

i=1 φd1(xi).
Moreover, for each integer j ≥ 1, the finite dimensional distribution u �→ πu,j of the Markov
chains with transition Qu it k-times continuously differentiable, as an application from [0,1] to
MV0(E

pj ).

6. Examples

In this section, we consider several examples of locally stationary Markov processes satisfying
our assumptions and for which some parameter curves u �→ ∫

g dπu,j (j ≥ 1) can be estimated
with local polynomials as explained in Section 4.3. We precise that our goal is not to estimate
some parameter curves for the Markov kernel Qu = Qθ(u). However, as explained in Section 4.3,
the results stated below are essential for getting an expression of the bias for minimum contrast
estimators of θ(·). With respect to the examples discussed in Truquet [35], Section 6.3 provide a
new example of locally stationary processes whereas Section 6.1 and Section 6.2 give extensions
to the order p of some existing models. A comparison of our results with that of Dahlhaus et al.
[4] is given in Section 6.1.

6.1. Nonlinear autoregressive process

We consider the following real-valued autoregressive process

Xn,t = m(t/n,Xn,t−1, . . . ,Xn,t−p) + σ(t/n)εt , 1 ≤ t ≤ n,

where m : [0,1] × R
p → R and σ : [0,1] → R+ are two measurable functions and (εt )t∈Z is

a sequence of i.i.d. random variables. In what follows, we set E = R and for y ∈ R
p , |y| =∑p

i=1 |yi |. We will use the following assumptions.
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E21 The function u �→ σ(u) is k-times continuously differentiable. Moreover, σ− :=
infu∈[0,1] σ(u) > 0 and max0≤�≤k supu∈[0,1] |σ (�)(u)| < ∞.

E22 For all y ∈ R
p , the function u �→ m(u,y) is k-times continuously differentiable. More-

over, there exists a family of nonnegative real numbers {βi,u : 1 ≤ i ≤ p,u ∈ [0,1]} such
that supu∈[0,1]

∑p

i=1 βi,u < 1 and four positive real numbers β0, q ′, C1, C2 such that for
all (u,y) ∈ [0,1] ×R

p ,

∣∣m(u,y)
∣∣ ≤

p∑
i=1

βi,u|yi | + β0, max
1≤�≤k

sup
u∈[0,1]

∣∣∂(�)
1 m(u,y)

∣∣ ≤ C1|y|q ′ + C2.

E23 The noise ε1 has a moment of order d0 such that d0 − q ′k > 0 and has a density fε ,
k-times continuously differentiable, positive everywhere and such that∫

|y|d0+(1−q ′)s∣∣f (s)
ε (y)

∣∣dy < ∞, s = 0, . . . , k.

Setting Ru(x, dy) = 1
σ(u)

fε(
y−m(u,x)

σ (u)
) dy, the family {Yn,k : 1 ≤ k ≤ n,n ≥ 1} is a triangular

array of time-inhomogeneous p-order Markov processes associated to the transition kernels Ru,
u ∈ [0,1].

Proposition 3. Under the assumptions E21–E24, the conclusions of Corollary 3 hold true with
q = q ′, d1 = d0 − q ′k and φ(y) = 1 + |y|, y ∈ E.

Example. Consider the case for p = 1 with m(u,x) = ∑I
i=1(ai(u)x + bi(u))1x∈Ri

, {R1, . . . ,

RI } a partition of R and ai , bi are functions k-times continuously differentiable with
max1≤i≤I maxu∈[0,1] |ai(u)| < 1. This corresponds to a threshold model with non time-varying
regions for the different regimes. If E21 holds true, E22 follows with q ′ = 1. If Assumption
E23 is also valid for some q0 > 1, Proposition 3 applies. This example is a generalization of the
SETAR model discussed in Truquet [35] (see Example 3 in Section 4.4).

Notes.

1. Let us compare our result with that of Dahlhaus et al. [4] who studied nonlinear autoregres-
sive processes. For simplicity, we restrict the study to p = 1. Suppose that for some d0 ≥ 1,
we have E|ε1|d0 < ∞ and there exist c > 0 and β ∈ (0,1) such that

sup
u∈[0,1]

∣∣m(u,x) − m
(
u,x′)∣∣ ≤ β

∣∣x − x′∣∣,
max
i=1,2

sup
u∈[0,1]

∣∣∂im(u, x) − ∂im
(
u,x′)∣∣ ≤ C

∣∣x − x′∣∣.
Theorem 4.8 and Proposition 3.8 in Dahlhaus et al. [4] show that the function u �→∫

g dπu,j is continuously differentiable whenever the function g : Ej → R is continuously
differentiable and satisfies for some C > 0,∣∣g(z) − g

(
z′)∣∣ ≤ C

(
1 + |z|d0−1 + ∣∣z′∣∣d0−1)∣∣z − z′∣∣.



2900 L. Truquet

These authors also prove that there exists some positive constants C1 and C2 such that for
t ∈ Z,

E
1/d0

∣∣Xn,t − Xt(u)
∣∣d0 ≤ C1

[|u − t/n| + 1/n
]

with Xt(u) = m
(
u,Xt (u)

) + σ(u)εt

and | ∫ g dπ
(n)
t,j − ∫

g dπu,j | ≤ C2[|u − t/n| + 1/n].
In contrast, when d0 > 1,

∫ |y|d0 [fε(y) + |f ′
ε(y)|]dy < ∞ and there exist β ∈ (0,1),

β ′,C > 0 such that

sup
u∈[0,1]

∣∣m(u,x)
∣∣ ≤ β|x| + β ′, sup

u∈[0,1]
∣∣∂1m(u,x)

∣∣ ≤ C
(
1 + |x|),

Proposition 3 guarantees that u �→ ∫
gdπu,j is continuously differentiable, provided that

|g(z)| ≤ C(1 + |z|) for some constant C > 0.
Contrarily to [4], differentiability and even continuity of the application x �→ m(u,x)

is not required for applying our results. Moreover, one can consider very irregular func-
tions g (see, e.g., the indicator of any Borel set). On the other hand, we impose much more
regularity assumptions on the noise distribution (existence of a smooth density and a mo-
ment condition for its derivative). Our approach is then more interesting for non smooth
regression functions.

To illustrate the benefit of our results for a model discussed in Dahlhaus et al. [4], we
consider the threshold model with m(u,x) = a1(u)max(x,0)+ a2(u)max(−x,0) with a1,
a2 continuously differentiable and maxu∈[0,1] |ai(u)| < 1, i = 1,2. In this case, Lemma 4.5
and Theorem 4.8 in Dahlhaus et al. [4] guaranty Lipschitz continuity of u �→ ∫

g dπu,j

but not its differentiability because the application x �→ m(u,x), which is required to be
continuously differentiable, is not differentiable at point x = 0. In contrast, we can prove
differentiability u �→ ∫

g dπu,j for a different class of functions g. More general threshold
models with a discontinuous regression function can also be considered with our approach,
some of them are given after the statement of Proposition 3.

2. Exponential stability can be used for such models provided that f
(s)
ε has some exponential

moments for s = 0, . . . , k. In this case, one can take Vs(y) = exp(κ|y|) for all s. A precise
result is given in Proposition 7 given in the supplementary material. In this case, the ap-
proach of Heidergott and Hordijk [19] can also be used for studying existence of derivatives
and our general result, which also covers this case, is not useful (except that we provide a
criterion for p-order Markov chain, which is new). These exponential moments induce a
serious restriction on the noise distribution because fatter tails distributions such as Student
distributions are excluded. However, the local stationarity property of this model, resulting
from Proposition 7, is a new result.

3. Our result can be also applied to the AR(1) process Xt = αXt−1 +εt for getting derivatives
of the applications α �→ πα , as in Ferré et al. [14]. The index u is replaced with α and the
interval [0,1] with I = [−1+ε,1−ε] for some ε ∈ (0,1). Let Qα(x, dy) = fε(y−αx)dy.
In this case, one can take q ′ = 1, φ(x) = 1 + |x| and if k < d0 < k + 1, d1 = d0 − k.
Under some assumptions that guaranty E23, Ferré et al. [14] showed in their Proposition
1 that α �→ πα , considered as an application from I to φβ(R), is k-times continuously
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differentiable, provided that 0 < β < d1. See their condition on β given after the statement
of their Lemma 1. One can then see that our result is stronger. We claim that the slight
difference between the two results is explained by the additional topologies used in their
Lemma 1 for studying continuity of the application

α �→ Q(�)
α (x, dy) = (−1)�x�f (�)

ε (y − αx)dy.

Let us enlighten why by supposing that k = 1. From Theorem 1, we have, using our nota-
tions T

(�)
α μ = μQ

(�)
α ,

π(1)
α = (I − Tα)−1T (1)

α πα.

Denoting by L(φd1 , φd ′
1) the set of bounded linear operators from Mφd1 (R) to M

φ
d′
1
(R),

the application α �→ T
(1)
α , as an application from I to L(φd1 , φd ′

1) is only continuous when
d ′

1 < d1. This shows that one can only get continuity α �→ π
(1)
α for ‖·‖

φ
d′
1

if we use operator

norms. On the other hand, if μ ∈ Mφd1 (R), one can show that the application α �→ T
(1)
α μ,

as an application from I to Mφd1 (R) is continuous. As shown in Theorem 1, this weaker

continuity condition is sufficient for getting continuity of α �→ π
(1)
α , as an application from

I to Mφd1 (R).

6.2. Integer-valued time series

For u ∈ [0,1] and 1 ≤ i ≤ p, let ζi,u and ξu be some probability distributions supported on the
nonnegative integers and for x ∈ Z

p
+, Ru(x, ·) will denote the probability distribution given by

the convolution product ζ
∗x1
1,u ∗ ζ

∗x2
2,u ∗ · · · ∗ ζ

∗xp
p,u ∗ ξu with ζ ∗x

i,u = ζ
∗(x−1)
i,u ∗ ζi,u if x ≥ 1, ζ ∗1

i,u = ζi,u

and the convention ζ ∗0
i,u = δ0.

Let us comment this Markov structure. When p = 1, Ru is the transition matrix of a Galton-
Watson process with immigration. Such Markov processes are also used in time series analysis
of discrete data. For instance, if ζi,u denotes the Bernoulli distribution of parameter αi,u, such
Markov processes are called INAR processes and were studied by McKenzie [25], Al-Osh and
Alzaid [1] and Jin-Guan and Yuan [10] among others. Note that in this case, we have the autore-
gressive representation Xk = ∑p

i=1 αi,u ◦ Xk−i + εk , where α ◦ x denotes a random variable fol-
lowing a binomial distribution of parameters (x,α) and independent from εk , an integer-valued
random variable with probability distribution qu. When ζi,u denotes the Poisson distribution of
parameter αi,u and ξu denotes the Poisson distribution of parameter α0,u, then Ru(x, ·) is the
Poisson distribution of parameter α0,u + ∑p

i=1 αi,u and the Markov process coincides with the
INARCH process studied in Ferland et al. [13]. The distributions ζi,u and ξu can also have a
general form as in the generalized INAR processes studied by Latour [24] and are not required to
have exponential moments. For instance the log-logistic distribution ζ with parameters α,β > 0
and defined by ζ(x) = (β/α)(x/α)β(1 + (x/α)β)−2 for x ∈ Z+, has only a finite moment of
order k < β . When p = 1, conditions ensuring local stationarity for the INARCH and INAR
processes are discussed in Truquet [35]. Here, we propose an extension to the case p ≥ 1, with
general probability distributions ζi,u and ξu. We will use the following assumptions.
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E31 We have α := supu∈[0,1]
∑p

i=1

∑
x≥0 xζi,u(x) < 1 and there exists an integer x0 such that

β := infu∈[0,1] ξu(x0) > 0.
E32 For each integer x ≥ 0, the applications u �→ ζi,u(x) and u �→ ξu(x) are of class Ck .

Moreover, there exists a positive integer d1 such that for s = 0,1, . . . , k,

lim
M→∞ sup

u∈[0,1]

p∑
i=1

∑
x≥M

xd1+k−s
[∣∣ζ (s)

i,u (x)
∣∣ + ∣∣ξ (s)

u (x)
∣∣] = 0.

Proposition 4. Assume that the assumptions E31–E32 hold true and set φ(x) = 1 + x for x ∈N

and d0 = d1 + k. Then the conclusions of Corollary 3 hold true.

Note. Assumption E32 is satisfied for Bernoulli, Poisson or negative binomial distributions
provided the real-valued parameter of these distributions is a k-times continuously differentiable
function taking values in the usual intervals (0,1) (for the Bernoulli or negative binomial distri-
bution) or (0,∞) (for the Poisson distribution).

6.3. Markov chain in a Markovian random environment

We consider a state space E = E1 × E2 with E1 a finite set and E2 an arbitrary metric space.
Let {P(u, ·, ·; z) : u ∈ [0,1], z ∈ E2} is a family of stochastic matrices on E1 and {Qu : u ∈
[0,1]} a family of Markov kernels on E2. We assume that for all u ∈ [0,1], Qu(x2, dy2) =
f (u, x2, y2)γ (x2, dy2) for a measurable function f : [0,1] × E2

2 → R+ and a measure kernel γ

on E2. We consider the family of Markov kernels {Qu : u ∈ [0,1]} such that

Qu

(
(y1, z1), (dy2, dz2)

) = P(u,y1, y2; z2)Qu(z1, dz2), u ∈ [0,1]. (11)

Setting f (u, (y1, z1), (y2, z2)) = P(u,y1, y2; z2)f (u, z1, z2) we have

Qu

(
(y1, z1), (dy2, dz2)

) = f
(
u, (y1, z1), (y2, z2)

)
c(dy2)γ (z1, dz2),

where c denotes the counting measure on E1. We then set γ ((y1, z1), (dy2, dz2)) = c(dy2)γ (z1,

dz2).
For u ∈ [0,1], P(u, ·, ·; z) is the transition matrix of a process in a Markovian random envi-

ronment. The kernels Qu can also be seen as a transition operator for a categorical time series
with exogenous covariates. Indeed, if {Xn,t = (Yn,t ,Zn,t ) : 1 ≤ t ≤ n,n ≥ 1} is a triangular array
associated to the family {Qu : u ∈ [0,1]}, we have

P
(
Yn,t = y′|Yn,t−1,Zn,1, . . . ,Zn,n

) = P
(
t/n, y, y ′;Zn,t

)
, 1 ≤ t ≤ n,n ≥ 1.

In the time-homogeneous case, Fokianos and Truquet [15] recently studied Markov chains mod-
els with exogenous covariates of a general form and discussed their link with Markov chains in
a random environment for studying ergodicity properties. We provide here a locally stationary
analogue but with a restriction on the covariate process which is given by a locally stationary



A perturbation analysis of Markov chains models 2903

Markov chain. An important important example of such models is the autoregressive logistic
model with E1 = {0,1}, E2 =R

g and

P(u,y,1, z) = exp(a0(u) + a1(u)y + z′β(u))

1 + exp(a0(u) + a1(u)y + z′β(u))

for some continuous functions a0, a1 : [0,1] →R and β : [0,1] → R
g .

We will use the following set of assumptions.

E41 For all (y1, y2, z2) ∈ E2
1 × E2, the functions u �→ Pu(y1, y2; z2) is k-times continuously

differentiable and positive.
E42 The family of Markov kernels {Qu : u ∈ [0,1]} satisfies Assumptions SC1–SC3. We

denote the different constants involved in the assumptions by an overline.
E43 For � = 0, . . . , k, we have

sup
u∈[0,1]

max
y,y′∈E1

∣∣∂(�)
1 P

(
u,y, y′; z)∣∣ ≤ Cφ(z)q�.

Proposition 5. Under the assumptions E41–E43, the conclusions of Proposition 1 are valid for
(d0, d1, q) = (d0, d1, q) and φ(y, z) = φ(z).

Note. Discrete-valued time series have been extensively studied. See for instance Weiß [39] for
a recent overview of the literature on this topic. Let us mention two additional classes of time
series models. One important class concerns the models of Durbin and Koopman [11] which
are defined by a conditional distribution depending on a latent process parameter. See equations
(3,4) in Durbin and Koopman [11] for a precise definition. Let us mention that for categorical
time series, (11) contains a time-varying version of such models as a special case. To this end, it
is necessary to assume that P(u,y1, y2; z2) does not depend on y1 and Qu is the transition of an
AR(1) process, Zt(u) = a(u)Zt−1(u) + σ(u)εt . To check E42, the noise εt is required to have a
sufficiently smooth density.

The second class concern observation-driven models for time series of counts as in Davis
et al. [6] or Davis and Liu [7]. In this class of model, the conditional distribution of the process
(Yt )t∈Z at time t depends on a random parameter, say λt , which is a function of the lag values
λt−j , Yt−j , 1 ≤ j ≤ p. While the bivariate process ((λt , Yt ))t∈Z has Markovian properties, the
usual irreducibility condition does not hold in general and the small set assumption used in the
present paper is not valid. Different techniques are then employed for studying such models, for
instance the contraction in average method used by Davis and Liu [7] or other methods for non
irreducible Markov chains, as in Douc et al. [8]. It is then not possible to use our results for
studying time-varying versions of such processes.
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Supplement to “A perturbation analysis of Markov chains models with time-varying pa-
rameters” (DOI: 10.3150/20-BEJ1210SUPP; .pdf). We provide additional proofs that are not
given in the paper.
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