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We study the support recovery problem for a high-dimensional signal observed with additive noise. With
suitable parametrization of the signal sparsity and magnitude of its non-zero components, we characterize
a phase-transition phenomenon akin to the signal detection problem studied by Ingster in 1998. Specifi-
cally, if the signal magnitude is above the so-called strong classification boundary, we show that several
classes of well-known procedures achieve asymptotically perfect support recovery as the dimension goes
to infinity. This is so, for a very broad class of error distributions with light, rapidly varying tails which
may have arbitrary dependence. Conversely, if the signal is below the boundary, then for a very broad class
of error dependence structures, no thresholding estimators (including ones with data-dependent thresholds)
can achieve perfect support recovery. The proofs of these results exploit a certain concentration of maxima
phenomenon known as relative stability. We provide a complete characterization of the relative stability
phenomenon for Gaussian triangular arrays in terms of their correlation structure. The proof uses classic
Sudakov–Fernique and Slepian lemma arguments along with a curious application of Ramsey’s coloring
theorem.

We note that our study of the strong classification boundary is in a finer, point-wise, rather than minimax,
sense. We also establish results on the finite-sample Bayes optimality and sub-optimality of thresholding
procedures. Consequently, we obtain a minimax-type characterization of the strong classification boundary
for errors with log-concave densities.

Keywords: concentration of maxima; high–dimensional inference; Ramsey theory; rapid variation; relative
stability; Sudakov–Fernique inequality; support recovery

1. Introduction

Consider the canonical signal-plus-noise model where the observation x is a high-dimensional
vector in R

p ,

x = μ + ε. (1.1)

The signal, μ = (μ(j))
p

j=1, is a vector with s non-zero components supported on the set S = {j :
μ(j) �= 0}; the second term ε is a random error vector. The goal of high-dimensional statistics is
usually two-fold:

1. To detect the presence of non-zero components in μ. That is, to test the global hypothesis
μ = 0, which we call the detection problem, and

2. To estimate the support set S, which we call the support recovery problem.
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An archetypal application where the two problems arise is in cyber security [27]. Internet service
providers routinely collect statistics of network traffic to determine if there are abnormal surges
or blackouts. While this monitoring is performed over a large number of servers, only very few
servers are believed to be experiencing problems at any time. The signal detection problem is
then equivalent to determining if there are any anomalies among all servers; the support recovery
problem is equivalent to identifying the servers with anomalies.

The same two questions are pursued in, for example, large-scale microarray experiments [13],
brain imaging and fMRI analysis [32], and numerous other applications.

A common theme in such applications is that the errors are correlated, and that the signal
vectors are believed to be sparse: the number of non-zero components in μ is small compared to
the number of test performed. Under such dependence and sparsity assumptions, it is natural to
ask if and when one can reliably (1) detect the signals, and (2) recover the support set S. In this
paper, we focus on the support recovery problem, and seek minimal conditions under which the
support set can be consistently estimated, as dimensionality diverges.

1.1. Set-up

We now describe the models and assumptions adopted for the rest of the paper.

1.1.1. Assumptions on the error distributions

We assume that the errors come from a triangular array

E = {(
εp(j)

)p
j=1,p = 1,2, . . .

}
, (1.2)

such that the εp(j)’s have common cumulative distribution function F(x) = P[εp(j) ≤ x]. Note
that the errors are only assumed to have common marginal distributions, and may have potentially
arbitrary dependence.

We shall consider light-tailed error distributions with rapidly varying tails (see, e.g., Defini-
tion 2.1 below). To be concrete and better convey the main ideas, we will focus on the class of
asymptotically generalized Gaussian laws (see Definition 1.1), which is still a fairly general class
of models commonly used in the literature on high-dimensional testing [1,7]. Extensions to other
models are deferred to the supplementary material [18].

Definition 1.1. A distribution F is called asymptotic generalized Gaussian with parameter ν > 0
(denoted AGG(ν)) if

1. F(x) ∈ (0,1) for all x ∈R, and
2. logF(x) ∼ − 1

ν
xν and logF(−x) ∼ − 1

ν
(−x)ν ,

where F(x) = 1−F(x) is the survival function, and a(x) ∼ b(x) is taken to mean limx→∞ a(x)/

b(x) = 1.

The AGG models include, for example, the Gaussian distribution (ν = 2), and the Laplace
distribution (ν = 1) as special cases. Since the requirement is only placed on the tail behavior,
this class encompasses a large variety of light-tailed models.
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Proposition 1.1. The (1/p)th upper quantile of AGG(ν) is

up := F←(1 − 1/p) ∼ (ν logp)1/ν, as p → ∞, (1.3)

where F←(q) = infx{x : F(x) ≥ q}, q ∈ (0,1).

The proof of Proposition 1.1 can be found in Section C of the supplement [18].

1.1.2. Parametrization of the signals

We assume in model (1.1) that μ = (μ(j))
p

j=1 is a sparse signal vector with non-zero entries only
at the support of the signal Sp ⊆ {1, . . . , p}. We denote the size of the support set as s = |Sp|, and
assume that the non-zero entries of μ are positive and take values in the interval [�,�) ⊂ (0,∞).
That is, 0 < � ≤ μ(j) < � ≤ +∞, for all j ∈ S.

Following [1,7,12,22,25], the signal sparsity – with a few exceptions which will be explicitly
stated – is parametrized as

s = s(p) = ⌊
p1−β

⌋
, (1.4)

with 0 < β ≤ 1 fixed. We also parametrize the signal sizes � and � as

� = �(p) = (νr logp)1/ν and � = �(p) = (νr logp)1/ν, (1.5)

with parameters 0 < r ≤ r ≤ +∞.

1.2. Thresholding procedures

We review next four procedures, that is, measurable set-valued functions of the data, commonly
used for support estimation. All of them fall under the general class of thresholding procedures,
studied in this paper.

Definition 1.2 (Thresholding procedures). A thresholding procedure for estimating the support
Sp := {j : μ(j) �= 0} is one that takes on the form

Ŝp = {
j : x(j) > tp(x)

}
. (1.6)

We note here that the threshold tp(x) may depend on the data x.

A well-known (deterministic) thresholding procedure is Bonferroni’s procedure.

Definition 1.3 (Bonferroni’s procedure). Suppose the errors ε(j)’s have a common marginal
distribution F , Bonferroni’s procedure with family-wise error rate (FWER) at most α is the
thresholding procedure (1.6) with

tp = F←(1 − α/p). (1.7)
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A closely related procedure is Sidák’s procedure [37] which is a more aggressive (and also
deterministic) thresholding procedure that uses the threshold

tp = F←(
(1 − α)1/p

)
. (1.8)

Another procedure, which is strictly more powerful (in the context of hypothesis testing) than
Bonferroni’s, is Holm’s procedure [24]. On observing the data x, its coordinates can be ordered
from largest to smallest x(j1) ≥ x(j2) ≥ · · · ≥ x(jp), where (j1, . . . , jp) is a permutation of
{1, . . . , p}.

Definition 1.4 (Holm’s procedure). Let k be the largest index such that

F
(
x(ji)

)≤ α/(p − i + 1), for all i ≤ k.

Holm’s procedure with FWER controlled at α is the thresholding procedure that uses

tp(x) = x(jk), (1.9)

In contrast to the Bonferroni procedure, Holm’s procedure is data-dependent. A closely re-
lated, more aggressive (data-dependent) thresholding procedure is Hochberg’s procedure [23],
which replaces the index k in Holm’s with the largest index i such that

F
(
x(ji)

)≤ α/(p − i + 1).

We will analyze the performance of these thresholding procedures in Section 2. The
(sub)optimality of general data-dependent thresholding procedures will be established in Sec-
tion 4. We now return to the discussion of support recovery.

1.3. Prior work

Recall our goal is to establish minimal conditions under which the support set can be consistently
estimated, that is,

P[Ŝp = Sp] −→ 1 as p → ∞, (1.10)

where Ŝp is an estimate of the true set of signal support Sp . This type of support estimation prob-
lems were pursued by Zhao and Yu [43] and Wasserman and Roeder [42] in the high-dimensional
regression setting (where number of samples n � p), and by Meinshausen and Bühlmann [31] in
graphical models, among many others. While there is a wealth of literature focusing on methods
and conditions sufficient for the consistent estimation of the support set, the study on necessary
conditions is relatively scarce, with notable efforts made by Wainwright [40,41] and Comminges
et al. [8] in the regression context.

Interesting sharp results have been obtained, when we switch the metric from probability of
support recovery, P[Ŝp = Sp], to the Hamming loss, H(Ŝ, S), defined as the number of mis-
matches between the estimated and true support set. In particular, Ji and Jin [26] and Genovese
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et al. [19] studied the problem of support recovery in linear models under the Hamming loss.
Under the sparsity parametrization in (1.4) and assuming equal signal sizes of (2r logp)1/2, a
minimax-type phase-transition result was established. Specifically, it was shown that the Ham-
ming loss diverges to +∞ when r falls below the threshold

g2(β) = (
1 + (1 − β)1/2)2

, (1.11)

for any method of support estimation. Conversely, under orthogonal, or near-orthogonal random
designs, if r > g2(β), their proposed method achieves vanishing Hamming loss.

Very recently, Butucea et al. [6] studied both asymptotics and non-asymptotics of the support
recovery problem in the additive noise model (1.1) with Gaussian errors under the Hamming loss.
It was again shown that the boundary (1.11) exists in a minimax sense. That is, when errors are
independent, the Hamming loss cannot be made to vanish if signal sizes fall below the boundary
(1.11) by any procedure. Conversely, if r > g2(β), the Hamming loss can be made to vanish with
a particular thresholding procedure.

One might expect these sharp results to carry over to the study of the probability of support
recovery. As pointed out in, for example, [6], there is a natural lower bound for the probability
of support recovery by the expected Hamming loss,

P[Ŝ = S] ≥ 1 −E
[
H(Ŝ, S)

]= 1 −
p∑

j=1

E
∣∣1Ŝ (j ) − 1S(j)

∣∣. (1.12)

Unfortunately, vanishing Hamming loss is only sufficient, not necessary for support recovery
(1.10). A key observation in Relation (1.12) is that the expected Hamming loss decouples into p

terms, and dependence of the estimates 1Ŝ (j ) among the p locations no longer plays a role in the
sum. Therefore, studying support recovery problems via the expected Hamming loss is not very
informative especially under severe dependence, as the bound (1.12) may become very loose.

These considerations motivated us to study directly the exact support recovery in the sense of
(1.10), under general distributional and dependence assumptions. The techniques developed in
this paper are entirely different from those in Ji and Jin [26] or Butucea et al. [6]. We also establish
transparent characterizations of the dependence conditions under which a phase transition type
result holds.

1.4. Summary of contributions

Our contribution is three-fold, briefly summarized in this section.

1.4.1. A point-wise phase transition phenomena under dependence

Under the scaling described in (1.4) and (1.5), a certain combination of signal sparsity and signal
size (β, r) either leads to exact support recovery, or complete failure, for a large class of de-
pendence structures on the errors, and a large class of error marginal distributions. Consider the
function

g(β) = gν(β) = (
1 + (1 − β)1/ν

)ν
, ν > 0, (1.13)
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which we refer to as the strong classification boundary. In Theorem 2.1 we show that, if the
signal size is above the boundary (i.e., r > g(β)), the procedures described in Section 1.2 with
appropriately calibrated levels achieve exact support recovery, that is,

P[Ŝp = Sp] −→ 1, as p → ∞. (1.14)

Conversely, we show in Theorem 2.2, that for a surprisingly large class of dependence struc-
tures characterized by the concept of uniform relative stability (URS, see Definition 2.3), when
the signal size is below the boundary (i.e., r < g(β)), no thresholding procedure can achieve the
asymptotically perfect support recovery (1.14). In fact,

P[Ŝp = Sp] −→ 0, as p → ∞, (1.15)

for all Ŝp in the form of (1.6).
Complementing results in Butucea et al. [6], these two results show that the thresholding pro-

cedures obey a phase transition phenomenon in a strong, point-wise sense over the class of URS
dependence structures, and over the class of AGG(ν), ν > 0 error distributions.

The strong classification boundary g characterizes a phase-transition phenomenon similar to
that of the signal detection and approximate support recovery. A preview of this result is pre-
sented in Figure 1, which shows the boundaries for signal detection, approximate support recov-

Figure 1. The phase diagrams of the detection, weak classification, and strong classification boundaries
against sparse alternatives under Gaussian (left) and Laplace distributed (right) errors. Here β , r , and r

parametrize the signal sparsity and the lower and upper bounds of the signal sizes, respectively. We study
in this paper the strong classification boundary, above which the support recovery can be achieved exactly
in the Classifiable region {(β, r) : r > g(β)}. In a large class of dependence structures characterized by
URS, when signal sizes fall below the strong classification boundary (1.13), that is, {(β, r) : r < g(β)},
no thresholding procedure succeeds in the exact support recovery problem. For the detection and weak
classification boundaries, see, for example, [1,12,17,22,25], and Section F of the supplement.
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ery, and exact support recovery, in the special case of Gaussian and Laplace errors, respectively.
(For definitions of the detection and weak classification boundaries, see, for example, [1,12,18,
22,25].)

1.4.2. Uniform relative stability and concentration of maxima

The key probabilistic concept behind our characterization of the dependence structure under
which (1.15) takes place is a certain concentration of maxima phenomenon, known as relative
stability (see Section 3). We introduce and study an extension of this concept referred to as
uniform relative stability (URS), which is shown to be extremely mild. Broadly speaking, the
strong classification boundary phenomenon holds for dependent light-tailed errors, provided that
they are uniformly relatively stable.

In the case of dependent Gaussian errors, we establish in Theorem 3.1 a complete character-
ization of URS in terms of a simple condition on the covariance structure, using the Sudakov–
Fernique bounds and a curious application of Ramsey theory. This result may be of independent
interest.

1.4.3. Role of thresholding procedures and minimax optimality

We show in Section 4 that data thresholding procedures are indeed optimal when the errors are
independent and identically distributed (i.i.d.) with log-concave densities. In this case, no esti-
mator can achieve perfect support recovery when the signal is below the strong classification
boundary (1.13). Consequently, in the case of AGG(ν) errors with ν ≥ 1, the strong classifica-
tion boundary is shown to hold in the minimax sense for all procedures. This is formalized in
Theorem 4.1 and Corollary 4.2.

A final surprising result, that had only recently been taken notice of by the statistical commu-
nity, is that thresholding procedures – including data-dependent ones – are not optimal in general
in the support recovery problem when the errors have heavy (regularly-varying) tails. Arias-
Castro et al. [2] noticed the phenomena in approximate support recovery problems. In this case,
we also demonstrate the absence of a phase-transition phenomenon in exact support recovery by
thresholding, in Theorem E.1 of the supplement [18].

The rest of this paper is organized as follows. The results summarized in Section 1.4 are
detailed in Sections 2, 3, and 4. Main ideas of the proof of Theorem 3.1 are sketched in Section 5.
Technical parts of the proof of Theorem 3.1, numerical illustrations, and extensions of the phase
transition phenomenon to other light-tailed and heavy-tailed error models are discussed in the
supplementary material [18].

2. Exact support recovery under dependence

We present the first result in Section 2.1, which states that exact support recovery (1.14) is achiev-
able when signal sizes are above the boundary (1.13).

The behavior of maxima plays a key role in the study of support recovery problems. We show
in Section 2.2 that the maxima of errors with rapidly varying tails can be bounded above using
quantiles of their marginal distribution, regardless of their dependence structure. On the other
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hand, a lower bound for the error maxima can be provided for a very general class of dependence
structures, as we will see in Section 2.3. This will prepare us to state the converse Theorem 2.2
in Section 2.4.

2.1. Sufficient conditions for exact support recovery

Following Butucea et al. [6], we define the parameter space for the signals μ as

�+
p (β, r) = {

μ ∈ R
p : there exists a set Sp ⊆ {1, . . . , p} such that |Sp| ≤ ⌊

p1−β
⌋
,

μ(j) ≥ (νr logp)1/ν for all j ∈ Sp, and μ(j) = 0 for all j /∈ Sp

}
. (2.1)

Our first result states that, when F ∈ AGG(ν) with ν > 0, regardless of the error dependence
structure, (asymptotic) perfect support recovery is achieved by applying Bonferroni’s procedure
with appropriately calibrated FWER, as long as the minimum signal size r is above the strong
classification boundary (1.13).

Theorem 2.1. Let the errors have common marginal distribution F ∈ AGG(ν) with ν > 0. Let
Ŝp be the Bonferroni’s procedure (1.7) with vanishing FWER α = α(p) → 0, such that αpδ → ∞
for every δ > 0. If

r > g(β) = (
1 + (1 − β)1/ν

)ν
, (2.2)

then we have

lim
p→∞ sup

μ∈�+
p (β,r)

P[Ŝp �= Sp] = 0. (2.3)

Corollary 2.1 (Classes of procedures attaining the boundary). Relation (2.3) holds for any
FWER-controlling procedure that is strictly more powerful than Bonferroni’s procedure. This
includes Holm’s procedure [24], and in the case of independent errors, Hochberg’s procedure
[23], and the Šidák procedure [37].

Example 2.1. Under Gaussian errors, the particular choice of the thresholding at tp = √
2 logp

in (1.7) corresponds to a Bonferroni’s procedure with FWER decreasing at a rate of (logp)−1/2,
and hence Theorem 2.1 applies. By Corollary 2.1, Holm’s procedure – and when the errors are
independent, the Šidák, and Hochberg procedures – with FWER controlled at (logp)−1/2 all
achieve perfect support recovery provided that r > g(β).

The claims in Example 2.1 are verified in Section B of the supplement [18]. We now turn to
the proof of Theorem 2.1.

Proof of Theorem 2.1. Throughout the proof, dependence on p will be suppressed to simplify
notations when such omissions do not lead to ambiguity.
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Under the AGG(ν) model, it is easy to see from equation (1.3) that the thresholds in Bonfer-
roni’s procedure are

tp = F←(1 − α/p) = (
ν log (p/α)

)1/ν(1 + o(1)
)
. (2.4)

It is known that Bonferroni’s procedure Ŝp = {j : x(j) > tp} controls the FWER. Indeed,

P[Ŝ ⊆ S] = 1 − P

[
max
j∈Sc

x(j) > tp

]
= 1 − P

[
max
j∈Sc

ε(j) > tp

]
≥ 1 −

p∑
j=1

P
[
ε(j) > tp

]≥ 1 − α(p) → 1, (2.5)

where we used the union bound in the first inequality. Notice that the lower bound (2.5) is inde-
pendent of the parameter μ (as well as the dependence structures), and hence holds uniformly
over the parameter space, that is,

lim
p→∞ inf

μ∈�+
p (β,r)

P [Ŝp ⊆ Sp] = 1. (2.6)

On the other hand, for the probability of no missed detection, we have:

P[Ŝ ⊇ S] = P

[
min
j∈S

x(j) > tp

]
= P

[
min
j∈S

x(j) − (νr logp)1/ν > tp − (νr logp)1/ν
]
.

Since the signal sizes are no smaller than (νr logp)1/ν , we have

x(j) − (νr logp)1/ν ≥ ε(j), for all j ∈ S,

and hence we obtain

P[Ŝ ⊇ S] ≥ P

[
min
j∈S

ε(j) >
(
ν log (p/α)

)1/ν(1 + o(1)
)− (νr logp)1/ν

]
, (2.7)

where we plugged in the expression for tp in (2.4). Now, since the minimum signal size is
bounded below by r > (1 + (1 − β)1/ν)ν , we have r1/ν − (1 − β)1/ν > 1, and so we can pick a
δ > 0 such that

δ <
(
r1/ν − (1 − β)1/ν

)ν − 1. (2.8)

Since by assumption, for all δ > 0, we have p−δ = o(α(p)), there is an M = M(δ) such that
p/α(p) < p1+δ for all p ≥ M . Thus, from (2.7), we further conclude that for p ≥ M we have

P[Ŝ ⊇ S] ≥ P

[
min
j∈S

ε(j) >
(
(1 + δ)ν logp

)1/ν(1 + o(1)
)− (νr logp)1/ν

]
= P

[
max
j∈S

(−ε(j)
)
<
(
r1/ν − (1 + δ)1/ν

)
(ν logp)1/ν

(
1 + o(1)

)︸ ︷︷ ︸
=:A

]
≥ 1 − ⌊

p1−β
⌋× F−(A), (2.9)
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where F−(x) = P[−ε(j) > x] is the survival function of the (−ε(j))’s. Notice that (2.9) follows
from the union bound and the assumption that |Sp| ≤ �p1−β�. Therefore, the lower bound does
not depend on μ (nor on the error dependence structure), and holds uniformly in the parameter
space. In turn, we obtain

inf
μ∈�+

p (β,r)

P[Ŝp ⊇ Sp] ≥ 1 − ⌊
p1−β

⌋× F−(A). (2.10)

If β = 1, we conclude that the right-hand side of (2.10) converges to 1, since A → +∞.
Let now β ∈ (0,1) and u−

p := F←− (1 − 1/p). The fact that pF−(u−
p ) ≤ 1, implies

⌊
p1−β

⌋× F−(A) ≤
F−(B × u−

�p1−β�)

F−(u−
�p1−β�)

, (2.11)

where B := A/u−
�p1−β�.

Notice that by assumption, the −ε(j)’s are also AGG(ν) distributed and by Proposition 1.1,
u−

p := F←− (1 − 1/p) ∼ (ν log(p))1/ν , as p → ∞. Therefore, we have

u−
�p1−β� ∼ (

ν(1 − β) logp
)1/ν (2.12)

and

B = A

u−
�p1−β�

= r1/ν − (1 + δ)1/ν

(1 − β)1/ν

(
1 + o(1)

)→ c > 1

as p → ∞, by our choice of δ in (2.8).
Finally, since the distribution F− has rapidly varying tails (by Definition 2.1 and Example 2.2

below), applying Proposition 2.1 (below in Section 2.2), we conclude that (2.11) vanishes. Con-
sequently, the lower bound on the right-hand-side of (2.10) converges to 1. This, combined
with (2.6), entails limp→∞ infμ∈�+

p (β,r) P[Ŝp = Sp] = 1, and hence the desired conclusion (2.3),
which completes the proof. �

The statements in Theorem 2.1 can be strengthened, to prepare us for a minimax result given
in Section 4 below.

Remark 2.1. In the proof of Theorem 2.1, both (2.5) and (2.9) hold uniformly over all error
dependence structures. Therefore, (2.6) and (2.10) may be strengthened to yield

lim
p→∞ sup

μ∈�+
p (β,r)

E∈D(F)

P [Ŝp �= Sp] = 0, (2.13)

for r > g(β), where D(F) is the collection of all arrays with common marginal F , that is,

D(F) = {
E = (

εp(j)
)
p

: εp(j) ∼ F for all j = 1, . . . , p, and p = 1,2, . . .
}
. (2.14)
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Remark 2.2. We emphasize that Theorem 2.1 holds for errors with arbitrary dependence struc-
tures. Intuitively, this is because the maxima of the errors grow at their fastest in the case of in-
dependence. Formally, the light-tailed nature of the error distribution allowed us to obtain sharp
tail estimates via simple union bounds, valid under arbitrary dependence.

We turn next to the study of maxima and present the tools used in the proof of Theorem 2.1.

2.2. Rapid variation and relative stability

The behavior of the maxima of random variables has been studied extensively in the literature
(see, e.g., [10,14,29,34] and the references therein). The concept of rapid variation plays an
important role in the light-tailed case.

Definition 2.1 (Rapid variation). The survival function of a distribution, F(x) = 1 − F(x), is
said to be rapidly varying if

lim
x→∞

F(tx)

F (x)
=

⎧⎪⎨⎪⎩
0, t > 1,

1, t = 1,

∞, 0 < t < 1.

(2.15)

When F(x) < 1 for all finite x, Gnedenko [20] showed that the distribution F has rapidly
varying tails if and only if the maxima of independent observations from F are relatively stable
in the following sense.

Definition 2.2 (Relative stability). Let εp = (εp(j))
p

j=1 be a sequence of random variables with
identical marginal distributions F . Define the sequence (up)∞p=1 to be the (1−1/p)th generalized
quantile of F , that is,

up = F←(1 − 1/p). (2.16)

The triangular array E = {εp,p ∈N} is said to have relatively stable (RS) maxima if

1

up

Mp := 1

up

max
j=1,...,p

εp(j)
P−→ 1, as p → ∞. (2.17)

In the case of independent and identically distributed εp(j)’s, Barndorff-Nielsen [3] and
Resnick and Tomkins [35] obtained necessary and sufficient conditions for the almost sure sta-
bility of maxima, where the convergence in (2.17) holds almost surely.

While relative stability (and almost sure stability) is well-understood in the independent case,
the role of dependence has not been fully explored. We start this exploration with a small refine-
ment of Theorem 2 in Gnedenko [20] valid under arbitrary dependence.

Proposition 2.1 (Rapid variation and relative stability). Assume that the array E consists of
identically distributed random variables with cumulative distribution function F , where F(x) <

1 for all finite x > 0.
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1. If F has rapidly varying right tail, then for all δ > 0,

P

[
1

up

Mp ≤ 1 + δ

]
≥ 1 − F((1 + δ)up)

F (up)
→ 1. (2.18)

2. If, in addition, the array E has independent entries, then it is relatively stable if and only if
F has rapidly varying tail.

Proof of Proposition 2.1. By the union bound and the fact that pF(up) ≤ 1, we have

P
[
Mp > (1 + δ)up

] ≤ pF
(
(1 + δ)up

)≤ F((1 + δ)up)

F (up)
. (2.19)

In view of (2.15) (rapid variation) and the fact that up → ∞, as p → ∞, the right-hand side
of (2.19) vanishes as p → ∞, for all δ > 0. This completes the proof of (2.18). Part 2 is a
re-statement of the classic result due to Gnedenko in [20]. �

We next demonstrate that Gaussian, Exponential, Laplace, and Gamma distributions all have
rapidly varying tails.

Example 2.2 (Generalized AGG). A distribution is said to have Generalized AGG right tail, if
logF is regularly varying,

logF(x) = −xνL(x), (2.20)

where ν > 0 and L : (0,+∞) → (0,+∞) is a slowly varying function. (A function is said
to be slowly varying if limx→∞ L(tx)/L(x) = 1 for all t > 0.) Note that the AGG(ν) model
corresponds to the special case where L(x) → 1/ν, as x → ∞.

Relation (2.18) holds for all arrays E with generalized AGG marginals; if the entries are in-
dependent, the maxima are relatively stable. This follows directly from Proposition 2.1, once we
show that F has rapidly varying tail. Indeed, by (2.20), we have

log
(
F(tx)/F (x)

)= −L(x)xν

(
tν

L(tx)

L(x)
− 1

)
,

which converges to −∞, 0, and +∞, as x → ∞, when t > 1, t = 1, and t < 1, respectively,
since xνL(x) → ∞ as x → ∞ by definition of L.

The AGG class encompasses a wide variety of rapidly varying tail models such as Gaussian
and double exponential distributions. The larger class (2.20) is needed, however, for the Gamma
distribution.

More generally, distributions with heavier tails (e.g., log-normal) and ligher tails (e.g., Gom-
pertz) outside the generalized AGG class (2.20) may also possess rapidly varying tails; heavy-
tailed distributions like the Pareto and t-distributions, on the other hand, do not. Strong classifica-
tion boundaries for these classes of models are discussed in Sections D and E of the supplement
[18]. For brevity, we focus here on the AGG(ν) models.
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2.3. Dependence and uniform relative stability

An important ingredient needed for a converse of Theorem 2.1 is an appropriate characterization
of the error dependence structure under which the strong classification boundary (1.13) is tight.
The notion of uniform relative stability turns out to be the key.

Definition 2.3 (Uniform Relative Stability). Under the notations established in Definition 2.2,
the triangular array E is said to have uniform relatively stable (URS) maxima if for every se-
quence of subsets Sp ⊆ {1, . . . , p} such that |Sp| → ∞, we have

1

u|Sp |
MSp := 1

u|Sp |
max
j∈Sp

εp(j)
P−→ 1, (2.21)

as p → ∞, where uq, q ∈ {1, . . . , p} is the generalized quantile in (2.16). The collection of
arrays E = {εp(j)} with URS maxima is denoted U(F).

Uniform relative stability is, as its name suggests, a stronger requirement on dependence than
relative stability. From the last section we see that, an array with i.i.d. components sharing a
marginal distribution F with rapidly varying tails has relatively stable maxima; it is easy to see
that URS also follows, by independence of the entries.

Corollary 2.2. An independent array E with common marginals F ∈ AGG(ν), ν > 0, is URS; in
this case, URS holds with u|Sp | ∼ (ν log |Sp|)1/ν .

On the other hand, RS and URS hold under much broader dependence structures than just
independent errors. The latter condition is extremely mild and can be shown to hold for many
classes of error models. In Section 3 below, we will focus extensively on the Gaussian case,
which is of great interest in applications and is rather challenging. Specifically, we will provide
simple necessary and sufficient condition for uniform relative stability in terms of their covari-
ance structure.

The relative stability concepts can be used to characterize dependence structures under which
the maxima of error sequences concentrate around the quantiles (2.16) in the sense of (2.17).
This concentration of maxima phenomenon, is the key to the phase-transition results in support
recovery problems, discussed next.

2.4. Necessary conditions for exact support recovery

With the preparations from Section 2.3, we are ready to state the necessary conditions for ex-
act support recovery (1.14) by thresholding procedures. It turns out that the strong classification
boundary (1.13) is tight, under the general dependence structure characterized by URS (Defini-
tion 2.3).

Formally, we define the parameter space for the signals μ to be

�−
p (β, r) = {

μ ∈ R
p : there exists a set Sp ⊆ {1, . . . , p} such that |Sp| = ⌊

p1−β
⌋
,

0 < μ(j) ≤ (νr logp)1/ν for all j ∈ Sp, and μ(j) = 0 for all j /∈ Sp

}
. (2.22)
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Theorem 2.2. Let E be a triangular array with common AGG(ν) marginal F , ν > 0. Assume
further that the errors E have uniform relatively stable maxima and minima, i.e., E ∈ U(F), and
(−E) = {−εp(j)} ∈ U(F). If

r < g(β) = (
1 + (1 − β)1/ν

)ν
, (2.23)

then

lim
p→∞ inf

Ŝp∈T
inf

μ∈�−
p (β,r)

P[Ŝp �= Sp] = 1, (2.24)

where T is the class of all thresholding procedures (1.6).

Our first comment is on the signal sizes, and in particular, the gap between the sufficient
conditions (Theorem 2.1) and the necessary conditions (Theorem 2.2).

Remark 2.3. The sufficient condition in Theorem 2.1 requires that all signals be larger than
the strong classification boundary g(β) in order to achieve exact support recovery (1.14), while
Theorem 2.2 states that exact support recovery fails (in the sense of (1.15)) when all signal
sizes are below the boundary – the two conditions are not complements of each other. This
gap between the sufficient and necessary conditions on signal sizes, however, may be difficult
to bridge. Indeed, in general, when signal sizes straddle the boundary g(β), either outcome is
possible, as we demonstrate in Example 2.3 below.

Example 2.3 (Signals straddling the boundary). Let the signal μ have |Sp| = �p(1−β)� non-

zero entries, composed of two disjoint sets Sp = S
(1)
p ∪S

(2)
p . Let also the magnitude of the signals

be equal within the two sets, that is, μ(j) = √
2r(k) logp if j ∈ S

(k)
p for some constants r(k) > 0

for k = 1,2. For simplicity, assume that the errors are i.i.d. standard Gaussians.
Consider two scenarios

1. r(1) = (1 + δ)g(β), r(2) = (1 + δ) with |S(1)
p | = |Sp| − 1, |S(2)

p | = 1,

2. r(1) = (1 + δ)g(β), r(2) = (1 − δ)g(β) with |S(1)
p | = �|Sp|/2�, |S(2)

p | = |Sp| − |S(1)
p |,

for some constants 0 < δ < 1−β < 1. In both cases, signals in S
(1)
p (respectively, S

(2)
p ) are above

(respectively, below) the strong classification boundary (1.13). However, in the first scenario, we
have P[ŜBonf

p = Sp] → 1 where ŜBonf
p is the Bonferroni’s procedure described in Theorem 2.1,

while in the second scenario, we have P[Ŝp = Sp] → 0 for all thresholding procedures Ŝp .

The claims in Example 2.3 are verified in Section B of the supplement [18].
Our second comment is on the interplay between thresholding procedures and the dependence

class characterized by URS.

Remark 2.4. Paraphrasing Theorems 2.1 and 2.2: if we consider only thresholding procedures,
then for a very large class of dependence structures, we cannot improve upon the Bonferroni
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procedure ŜBonf
p . Specifically, for all E ∈ U(F) and −E ∈ U(F), and for all Sp ∈ S , where

S = {S ⊆ {1, . . . , p}; |S| = �p1−β�}, we have

lim
p→∞P

[
ŜBonf

p �= Sp

] =

⎧⎪⎨⎪⎩
lim sup
p→∞

inf
Ŝp∈T

P[Ŝp �= Sp] = 0, if r > g(β),

lim inf
p→∞ inf

Ŝp∈T
P[Ŝp �= Sp] = 1, if r < g(β),

(2.25)

where T is the set of all thresholding procedures (1.6).
Theorem 2.2 also yields an answer the question raised in Butucea et al. [6]. In particular, the

authors of [6] commented that independent error is the ‘least favorable model’ in the problem
of support recovery, and conjectured that the support recovery problem may be easier to solve
under dependence, similar to how the problem of signal detection is easier under dependent
errors (see [21]). Surprisingly, our results here state that asymptotically, all error dependence
structures in the large URS class are equally difficult for thresholding procedures. Therefore,
the phase-transition behavior is universal in the class of dependence structures characterized by
URS.

To facilitate comparison with results in existing literature, we will formulate explicit minimax
statements in Section 4.

We must emphasize that the restriction to the URS dependence class is not an assumption of
convenience. The condition on dependence characterized by uniform relative stability is, in fact,
the weakest of its kind in the literature; see Section 3 below.

Our third comment is on the practical implications of the phase transitions.

Remark 2.5. As pointed out by an anonymous referee, the error distributions are seldom known
precisely in practice, and are often only known approximately through large sample properties of
the observations/statistics x. It would be interesting to improve upon the current work, and study
the non-asymptotic properties of the phenomena.

Nevertheless, asymptotic results such as Theorems 2.1 and 2.2 have already led to powerful
insights into applications. For example, it has long been observed, empirically, that there is a
sharp transition in the statistical power of estimating the set of relevant genetic locations in
genome-wide association studies [5]. Using theory established in this paper, we have been able to
show rigorously that such empirically observed “sharp power curves” are simply manifestations
of the phase transition phenomena; we refer readers to the recent work [17] for a dedicated
treatment.

Section F of the supplement [18] offers some further discussions on the statistical implications
of the results in this section.

We conclude with the proof of Theorem 2.2.

Proof of Theorem 2.2. To avoid cumbersome double subscript notations, we will sometimes
suppress dependence on p of the set sequences Ŝp and Sp in the proof.
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Since the estimator Ŝp = {x(j) ≥ tp(x)} is thresholding, exact support recovery takes place if
and only if the threshold separates the signals and null part, that is,

P[Ŝp = Sp] = P

[
max
j∈Sc

x(j) < tp(x) ≤ min
j∈S

x(j)
]

≤ P

[
max
j∈Sc

x(j) < min
j∈S

x(j)
]
.

Since the right-hand side does not depend on the procedure Ŝp , we also have

sup
Ŝp∈T

P[Ŝp = Sp] ≤ P

[
max
j∈Sc

x(j) < min
j∈S

x(j)
]

≤ P

[
max
j∈Sc

ε(j) < � + min
j∈S

ε(j)
]
, (2.26)

where we used the assumption that the signal sizes are no greater than �. Let S∗ = S∗
p be a

sequence of support sets that maximize the right-hand side of (2.26), that is, let

S∗
p ∈ arg max

S⊆{1,...,p}:|S|=�p1−β�
P

[
max
j∈Sc

ε(j) < � + min
j∈S

ε(j)
]
.

Then, we obtain the following bound which only depends on r and the distribution of E ,

sup
Ŝp∈T

sup
μ∈�−

p (β,r)

P[Ŝp = Sp] ≤ P

[
max
j∈S∗c

ε(j) < � + min
j∈S∗ ε(j)

]

= P

[
MS∗c

up

<
� − mS∗

up

]
, (2.27)

where MS∗c = maxj∈S∗c ε(j) and mS∗ = maxj∈S∗(−ε(j)). Since the error arrays E and (−E) are
URS by assumption, using the expression for the AGG quantiles (1.3), we have

MS∗c

up

= MS∗c

u|S∗c|
u|S∗c|
up

P−→ 1 and
mS∗

up

= mS∗

u|S∗|
u|S∗|
up

P−→ (1 − β)1/ν, (2.28)

so that the two random terms in probability (2.27) converge to constants. Notice that the second
relation in (2.28) holds by URS for any β ∈ (0,1); when β = 1, the relation holds since u|S∗|/up

vanishes while {mS∗/u|S∗|} is tight.
Since signal sizes are bounded above by r < (1 + (1 − β)1/ν)ν , we can write r1/ν = 1 + (1 −

β)1/ν − d for some d > 0. By our parametrization of �, we have

�

up

= (
1 + (1 − β)1/ν − d

)(
1 + o(1)

)
. (2.29)

Combining (2.28) and (2.29), we conclude that the right-hand side of the probability (2.27) con-
verges in probability to a constant strictly less than 1, that is,

� − mS

up

P−→ 1 − d, (2.30)

while MS∗c /up
P−→ 1. Therefore, the probability in (2.27) must go to 0. �
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2.5. Dense signals

We treat briefly the case of dense signals, where the size of the support set is proportional to
the problem dimension, that is, s ∼ cp for some constant c ∈ (0,1). We show that in this case, a
phase-transition-type result still holds, independently of the value of c. Analogous to the set-up
of Theorems 2.1 and 2.2, let

�d+
p (c, r) = {

μ ∈ R
p : there exists a set Sp ⊆ {1, . . . , p} such that |Sp| ≤ �cp�,

μ(j) ≥ (νr logp)1/ν for all j ∈ Sp, and μ(j) = 0 for all j /∈ Sp

}
, (2.31)

where “d” in the notation �d+
p stands for “dense”. Similarly, define

�d−
p (c, r) = {

μ ∈R
p : there exists a set Sp ⊆ {1, . . . , p} such that |Sp| = �cp�,

0 < μ(j) ≤ (νr logp)1/ν for all j ∈ Sp, and μ(j) = 0 for all j /∈ Sp

}
. (2.32)

Theorem 2.3. Let c ∈ (0,1) be a fixed constant. In the context of Theorem 2.1, if r > 1, then we
have

lim
p→∞ sup

μ∈�d+
p (c,r)

P[Ŝp �= Sp] = 0. (2.33)

While in the context of Theorem 2.2, if r < 1, then

lim
p→∞ inf

Ŝp∈T
inf

μ∈�d−
p (c,r)

P[Ŝp �= Sp] = 1, (2.34)

where T is the class of all thresholding procedures (1.6).

Remark 2.6. Notice that the boundary for the signal size parameter is identically 1 in this dense
regime. Therefore, if we interpret β = 0 of the parametrization (1.4) as s ∼ cp, where c ∈ (0,1),
then the strong classification boundary (1.13) may be continuously extended to the left-end point
where g(0) = 1.

Proof of Theorem 2.3. The proof is entirely analogous to that of Theorems 2.1 and 2.2. Specif-
ically, (2.33) follows by replacing �p1−β� with �cp� in Relation (2.9) onward, and replacing
(2.12) with

u−
s ∼ (ν log cp)1/ν ∼ (ν logp)1/ν .

in the proof of Theorem 2.1. Similarly, (2.34) follows the proof of Theorem 2.2. Indeed, by using
the fact that

u|S∗c|
up

∼ (ν log (1 − c)p)1/ν

(ν logp)1/ν
→ 1

and u|S∗|/up → 1 for all c ∈ (0,1), we see that Relation (2.28) holds with β = 0, and the rest of
Theorem 2.2 applies. �
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3. Characterization of URS for Gaussian arrays

As promised, we characterize in this section the URS class of dependence structures in the case
of Gaussian errors with a transparent necessary and sufficient condition in terms of their covari-
ances.

Definition 3.1 (Uniformly decreasing dependence (UDD)). Consider a triangular array of
jointly Gaussian distributed errors E = {(εp(j))

p

j=1,p = 1,2, . . .} with unit variances,

εp ∼ N(0,	p), p = 1,2, . . . .

The array E is said to be uniform decreasingly dependent (UDD) if for every δ > 0 there exists a
finite N(δ) < ∞, such that for every j ∈ {1, . . . , p}, and p ∈ N, we have∣∣{k ∈ {1, . . . , p} : 	p(j, k) > δ

}∣∣≤ N(δ) for all δ > 0. (3.1)

That is, for every coordinate j , the number of elements which are more than δ-correlated with
εp(j) does not exceed N(δ).

Note that the bound in (3.1) holds uniformly in j and p, and only depends on δ. Also observe
that on the left-hand side of (3.1), we merely count in each row of 	p the number of exceedances
of covariances (not their absolute values!) over level δ.

Remark 3.1. Without loss of generality, we may require that N(δ) be a monotone non-
increasing function of δ, for we can take

N(δ) = sup
p,j

∣∣{k : 	p(j, k) > δ
}∣∣,

which is non-increasing in δ. Definition 3.1 therefore states that the array is UDD when N(δ) <

∞ for all δ > 0.

Observe that the UDD condition does not depend on the order of the coordinates in the error
vector εp = (εp(j))

p

j=1. Often times, however, the errors are thought of coming from a stochastic
process indexed by time or space. To illustrate the generality of the UDD condition, we formulate
next a simple sufficient condition (UDD′) that is easier to check in a time-series context.

Definition 3.2 (UDD′). For εp ∼ N(0,	p) with unit variances, an array E = (εp(j))
p

j=1 is said
to satisfy the UDD′ condition if there exist:

(i) permutations l = lp of {1, . . . , p}, for all p ∈ N, and
(ii) a non-negative sequence (rn)

∞
n=1 converging to zero rn → 0, as n → ∞,

such that

sup
p∈N

∣∣	p

(
i′, j ′)∣∣≤ r|i−j |, (3.2)

where i′ = l(i), j ′ = l(j), for all i, j ∈ {1, . . . , p}.
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Remark 3.2. Without loss of generality, we may also require that rn be non-increasing in n, for
we can replace rn with the non-increasing sequence r ′

n = supm≥n rm.

Proposition 3.1. UDD′ implies UDD.

Proof. Since rn → 0, for any δ > 0, there exists an integer M = M(δ) < ∞ such that rn ≤ δ, for
all n ≥ M . Thus, by (3.2), for every fixed j ′ ∈ {1, . . . , p}, we can have |Cov(εp(k′), εp(j ′))| > δ,
only if k′ belongs to the set:{

k′ ∈ {1, . . . , p} : j − M ≤ k := l−1
p

(
k′)≤ j + M

}
,

where j := l−1
p (j ′). That is, there are at most 2M +1 < ∞ indices k′ ∈ {1, . . . , p}, whose covari-

ances with ε(j ′) may exceed δ. Since this holds uniformly in j ′ ∈ {1, . . . , p}, Condition UDD
follows with N(δ) = 2M + 1. �

We now state the main result of this section: a Gaussian sequence is URS if and only if it is
UDD. The URS condition essentially requires that the dependencies decay in a uniform fashion,
the rate at which dependence decay does not matter.

Theorem 3.1. Let E be a Gaussian triangular array with standard normal marginals. The ar-
ray E has uniformly relatively stable (URS) maxima if and only if it is uniformly decreasing
dependent (UDD).

The proof of Theorem 3.1 is given in Section 5.
Returning again to the study of support recovery problems, Theorems 3.1 and 2.2 yields the

following corollary.

Corollary 3.1. For UDD Gaussian errors, the result in Theorem 2.2 holds.

As a counterpart to Remark 2.4, we demonstrate the tightness of the dependence conditions
in Theorem 2.2. Specifically, we demonstrate that if the URS dependence condition is violated,
then it may be possible to recover the support of weaker signals below the boundary.

Example 3.1. Suppose E = (εp(j))
p

j=1 is Gaussian, and is comprised of �p1−β� blocks, each of
size at least �pβ�; let the elements of each block have correlation 1, and let elements from differ-
ent blocks be independent. If r ≥ 4(1 −β), then the procedure Ŝ = {j : x(j) >

√
2(1 − β) logp}

yields P[Ŝ = S] → 1. This requirement on signal size is strictly weaker than that of the strong
classification boundary, since 4(1 − β) < (1 + √

1 − β)2 on β ∈ (0,1).

The above example shows that if the correlations of the Gaussian errors do not decay in a
uniform fashion (UDD fails), then we can do substantially better in terms of support recovery.
The claims in the example are verified in Section B of the supplementary material [18], while
numerical simulations of this example can be found in Section A therein.
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We conclude this section with a brief discussion on the relationships between UDD and other
dependence conditions in the context of extreme value theory.

Suppose that the array of errors E comes from a stationary Gaussian time series ε(j), j ∈ N,
with auto-covariance rp = Cov(ε(j + p), ε(j)). One is interested in the asymptotic behavior of
the maxima Mp := maxj=1,...,p ε(j).

In this setting, the Berman’s condition, introduced in [4], requires that

rp logp → 0, as p → ∞. (3.3)

This condition entails that

ap(Mp − bp)
d−→ Z, as p → ∞, (3.4)

with the Gumbel limit distribution P[Z ≤ x] = exp{−e−x}, x ∈R, where

ap =√
2 logp, bp =√

2 logp − 1

2
(
√

2 logp)−1(log log(p) + log(4π)
)
,

are the same centering and normalization sequences as in the case of iid ε(j)’s. Berman’s con-
dition is one of the weakest dependence conditions in the literature for which this result holds.
See, for example, Theorem 4.4.8 in [14], where (3.3) is described as “very weak”.

For dependence conditions weaker than (3.3), the sequences of normalizing and centering
constants in (3.4) are different from the i.i.d. case, and the corresponding limit is no longer
Gumbel; see, for example, Theorems 6.5.1 and 6.6.4 in [29], and [30].

On the other hand, in our high dimensional support estimation context, the notion of relative
stability is sufficient and more natural than the finer notions of distributional convergence. If one
is merely interested in the asymptotic relative stability of the Gaussian maxima, then Berman’s
condition can be relaxed significantly (see also, Theorem 4.1 of [4]). Observe that by Proposi-
tion 3.1, the Berman condition (3.3) implies UDD and hence relative stability (Theorem 3.1),
that is,

1

bp

Mp
P→ 1, as p → ∞. (3.5)

This concentration of maxima property can be readily deduced from (3.4), since apbp ∼
2 log(p) → ∞ as p → ∞. Theorem 3.1 shows that (3.5) holds if the much weaker uniform
dependence condition UDD holds. Note that our condition is coordinate free – neither mono-
tonicity of the sequence rp nor stationarity of the underlying array is required.

4. Minimax optimality, and Bayes (sub)optimality of
thresholding procedures

To facilitate comparison with the literature, we establish in this section minimax versions of our
results from Section 2. Specifically, if we restrict ourselves to the class of thresholding procedures
T (defined in (1.6)), then Bonferroni’s procedure is minimax optimal, for any fixed dependence
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structures in the URS class. This is formalized in Corollary 4.1 in Section 4.1. We refer to this
result as point-wise minimax, to emphasize the fact that this optimality holds for every fixed URS
array.

Meanwhile, if we search over all procedures, but expand the parameter space to include all
dependence structures, then a different minimax optimality statement holds for Bonferroni’s pro-
cedure. With a careful study of the finite-sample Bayes optimality of thresholding procedures in
Sections 4.2 and 4.3, we establish this minimax statement in Section 4.4.

Finally, we offer some insights into the support recovery problem in the case when errors have
heavier-than-exponential tails in Section 4.5.

4.1. Point-wise minimax optimality

Theorems 2.1 and 2.2 can be cast in the form of an asymptotic minimax statement.

Corollary 4.1 (Point-wise minimax). Let ŜBonf be the sequence of Bonferroni’s procedure de-
scribed in Theorem 2.1. Let also the errors have common AGG(ν) distribution F with parameter
ν > 0, and �+

p be as defined in (2.1). If r > g(β), then we have

lim sup
p→∞

sup
μ∈�+

p (β,r)

P
(
ŜBonf

p �= Sp

)= 0, (4.1)

for arbitrary dependence structure of the error array E = {εp(j)}p . Let T be the class of thresh-
olding procedures (1.6). If r < g(β), then we have

lim inf
p→∞ inf

Ŝp∈T
sup

μ∈�+
p (β,r)

P(Ŝp �= Sp) = 1, (4.2)

for any error dependence structure such that E ∈ U(F) and (−E) ∈ U(F).

Proof of Corollary 4.1. The first conclusion (4.1) is a restatement of Theorem 2.1.
For the second statement (4.2), since r < g(β), we can pick a sequence μ∗ ∈ �+

p (β, r) such

that |Sp| = �p1−β�, with signals having the same signal size μ(j) = (2r logp)1/ν for all j ∈
Sp , where r < r < g(β). For this particular choice of μ∗ we have μ∗ ∈ �−

p (β, r) where r <

r < g(β), and according to Theorem 2.2, we obtain limp→∞ infŜp∈T P[Ŝp �= Sp] = 1, for all
dependence structures in the URS class. �

Remark 4.1. Theorem 2.2 is a stronger result than the traditional minimax claim in Relation
(4.2). Indeed, (2.24) involves an infimum (over the class �−

p ) while (4.2) has a supremum (over
the class �+

p ).
On the other hand, Corollary 4.1 is more informative than many minimax-type statements,

since it applies “point-wise” to any fixed error dependence structure in the URS class.

Remark 4.2. Corollary 4.1 echoes Remark 2.4: for a very large class of dependence structures,
we cannot improve upon Bonferroni’s procedure in exact support recovery problems (asymptot-
ically), unless we look beyond thresholding procedures.
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4.2. Bayes optimality in support recovery problems

In studying support recovery problems (e.g., Arias-Castro and Chen [1]), restrictions to the
thresholding procedures are sometimes justified by arguing that such procedures are the “rea-
sonable” choice for estimating the support set. We show in this section that, perhaps surprisingly,
for general error models, thresholding procedures are not always optimal, even when the obser-
vations are independent.

We shall study the optimal procedure for support recovery problems under a Bayesian set-
ting with general distributional assumptions (including but not limited to additive models (1.1)).
Specifically, we assume that there is an ordered set P = (j1, . . . , js), ji ∈ {1, . . . , p}, and s (not
necessarily equal) densities f1, . . . , fs , such that the observations indexed by P have correspond-
ing densities. That is,

x(ji) ∼ fi, i = 1, . . . , s. (4.3)

Let also the rest (p − s) observations have common density f0, that is, x(j) ∼ f0 for j /∈ S. We
further assume that the observations x are mutually independent.

We adopt here a Bayesian framework to measure statistical risks. Let the ordered support
P = (j1, . . . , js) have prior

π
(
(j1, . . . , js)

) := P
[
P = (j1, . . . , js)

] = (p − s)!/p!, (4.4)

for all distinct 1 ≤ j1, . . . , js ≤ p. Consequently, the unordered support S = {j1, . . . , js} is dis-
tributed uniformly in the collection of all set of size s, with the unordered uniform distribution
πu. That is, for all for all S ∈ S := {S ⊆ {1, . . . , p}; |S| = s}, we have

πu({j1, . . . , js}
) := P

[
S = {j1, . . . , js}

]= (p − s)!s!/p!. (4.5)

Consider the loss function,

�(Ŝ, S) := P[Ŝ �= S] = PP [Ŝ �= S],
where the probability is taken over the randomness in the observations for a fixed configuration
P , the Bayes optimal procedures should minimize

EπP[Ŝ �= S], (4.6)

where the expectation is taken over the random configurations P , with a uniform distribution π

as specified in (4.4).
If, however, the sparsity s = |S| of the problem is known, then a natural estimator for S would

be based on the set of top s order statistics.

Definition 4.1 (Oracle data thresholding). We call Ŝ∗ = {j | x(j) ≥ x[s]} the oracle data
thresholding procedure, where x[1] ≥ · · · ≥ x[p] are the order statistics of x.

The finite-sample optimality of the oracle thresholding procedure Ŝ∗ is intimately linked with
the monotone likelihood ratio (MLR) property.
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Definition 4.2 (Monotone Likelihood Ratio). A family of positive densities on R, {fδ, δ ∈ U},
is said to have the MLR property if, for all δ0, δ1 ∈ U ⊆ R such that δ0 < δ1, the likelihood ratio
(fδ1(x)/fδ0(x)) is an increasing function of x.

Their relationship is summarized in the following lemma.

Proposition 4.1. Let the observations x(j), j = 1, . . . , p be as prescribed as in (4.3) through
(4.4). If each of {f0, f1}, . . . , {f0, fs} form an MLR family, then the oracle data thresholding
procedure Ŝ∗ = {j | x(j) ≥ x[s]} is finite-sample optimal in terms of Bayes risk EπP[Ŝ �= S].
That is,

Ŝ∗ ∈ arg min
Ŝ

EπP[Ŝ �= S]. (4.7)

for all s and p.

The proof of Proposition 4.1 is found in Section B of the supplement [18].
We emphasize that the oracle thresholding procedures are in fact finite-sample optimal in the

above Bayesian context. Further, our setup allows for different alternative distributions, and re-
laxes the assumptions of Butucea et al. [6] when studying distributional generalizations, where
the alternatives are assumed to be identically distributed.

It remains to understand when the key MLR property holds. We elaborate on this question
next.

4.3. Bayes optimality under sub-exponential errors

Returning to the more concrete signal-plus-noise model (1.1), it turns out that the error tail be-
havior is what determines the optimality of data thresholding procedures. In this setting, log-
concavity of the error densities is equivalent to the MLR property (Lemma 4.1). This, in turn,
yields the finite-sample optimality of data thresholding procedures (Proposition 4.2).

Lemma 4.1. Let δ be the magnitude of the non-zero signals in the signal-plus-noise model (1.1)
with positive error density f0, and let fδ(x) = f0(x − δ). The family {fδ, δ ∈ R} has the MLR
property if and only if the error density f0 is log-concave.

Proof of Lemma 4.1. Suppose MLR holds, we will show that f0(t) = exp{φ(t)} for some
concave function φ. By the assumption of MLR, for any x1 < x2, setting δ0 = 0, and δ1 =
(x2 − x1)/2 > 0, we have

log
fδ1(x2)

fδ0(x2)
= φ

(
(x1 + x2)

2

)
− φ(x2) ≥ φ(x1) − φ

(
(x1 + x2)

2

)
= log

fδ1(x1)

fδ0(x1)
.

This implies that the log-density φ(t) is midpoint-concave, i.e., for all x1 and x2, we have,

φ

(
(x1 + x2)

2

)
≥ 1

2
φ(x1) + 1

2
φ(x2). (4.8)
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For Lebesgue measurable functions, midpoint concavity is equivalent to concavity by the Sier-
pinki Theorem (see, e.g., Sec I.3 in [11]). This proves the ‘only-if’ part.

For the ‘if’ part, when φ(t) = log (f0(t)) is log-concave, then for any δ0 < δ1, and any x < y,
we have

log
fδ1(y)

fδ0(y)
− log

fδ1(x)

fδ0(x)
= φ(y − δ1) − φ(y − δ0) − φ(x − δ1) + φ(x − δ0) ≥ 0, (4.9)

where the last inequality is a simple consequence of concavity (see Lemma B.4 in the supplement
[18]). This proves the ‘if’ part. �

Proposition 4.1 and Lemma 4.1 yield immediately the following.

Proposition 4.2. Consider the additive error model (1.1). Let the errors ε be independent with
common distribution F . Let the signal μ have s positive entries with magnitudes 0 < δ1 ≤ · · · ≤
δs , located on {1, . . . , p} as prescribed in (4.4). If F has a positive, log-concave density f ,
then the oracle thresholding procedure Ŝ∗ = {j ;x(j) ≥ x[s]} is finite-sample optimal in terms of
Bayes risk in the sense of (4.7).

Notice that under MLR (or equivalently, log-concavity of the errors in additive models), the
oracle thresholding procedure is finite-sample optimal even in the case where the signals have
different (positive) sizes.

The assumption of log-concavity of the densities is compatible with the AGG model when
ν ≥ 1, as demonstrated in the next example.

Example 4.1. The generalized Gaussian density f (x) ∝ exp{−|x|ν/ν} is log-concave for all
ν ≥ 1. Therefore in the additive error model (1.1), according to Proposition 4.2, the oracle thresh-
olding procedure is Bayes optimal in the sense of (4.7).

Consider the asymptotic Bayes risk as defined in (4.6), the statement for the necessary con-
dition of support recovery, with the help of Proposition 4.2, can be strengthened to include all
procedures (in the Bayesian context), regardless of whether they are thresholding.

Theorem 4.1. Consider the additive model (1.1) where the εp(j)’s are independent and identi-
cally distributed with log-concave densities in the AGG class. Let the signals be as prescribed in
Proposition 4.2. If the signal sizes fall below the strong classification boundary (1.13), that is,
r < g(β), then we have

lim inf
p→∞ inf

Ŝp

EπP[Ŝp �= Sp] = 1, (4.10)

where the infimum on Ŝp is taken over all procedures.

Proof of Theorem 4.1. When errors are independent with log-concave density, the oracle thresh-
olding procedure Ŝ∗

p , by Proposition 4.2, minimizes the Bayes risk (4.6) among all procedures.
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That is,

lim inf
p→∞ inf

Ŝp

EπP[Ŝp �= Sp] ≥ lim inf
p→∞ EπP

[
Ŝ∗

p �= Sp

]
.

Since Ŝ∗
p belongs to the class of all thresholding procedures, we have

lim inf
p→∞ EπP

[
Ŝ∗

p �= Sp

]≥ lim inf
p→∞ inf

Ŝp∈T
EπP[Ŝp �= Sp]

≥ lim inf
p→∞ inf

Ŝp∈T
inf
Sp

P[Ŝp �= Sp] = 1,

when r < g(β), where the last line follows from Theorem 2.2. �

4.4. Minimax optimality over all procedures

Theorem 4.1 allows us to state another minimax conclusion – one in which we search over all
procedures, by allowing the supremum in the minimax statement to be taken over the dependence
structures.

Corollary 4.2. Let D(F) be the the collection of error arrays with common marginal F as
defined in (2.14) where F is an AGG(ν) distribution. Let also ŜBonf

p be Bonferroni’s procedure
as described in Theorem 2.1. If r > g(β), then we have

lim sup
p→∞

sup
μ∈�+

p (β,r)

E∈D(F)

P
(
ŜBonf

p �= Sp

)= 0. (4.11)

Further, when r < g(β), and F has a positive log-concave density f , we have

lim inf
p→∞ inf

Ŝp

sup
μ∈�+

p (β,r)

E∈D(F)

P(Ŝp �= Sp) = 1, (4.12)

where the infimum on Ŝp is taken over all procedures.

Remark 4.3. Since the class AGG(ν), ν ≥ 1 contains distributions with log-concave densities
(Example 4.1), the minimax statement (4.12) continues to hold if the supremum is taken over the
entire class F ∈ AGG(ν), ν ≥ 1. We opted for a more informative formulation which emphasizes
the log-concavity condition on the density of F .

Remark 4.4. Corollary 4.2 is no stronger than Corollary 4.1. In Corollary 4.1 we search over
only the class of thresholding procedures, but offer a tight, point-wise lower bound on the asymp-
totic risk over the class of URS dependence structures. On the other hand, Corollary 4.2 provides
a uniform lower bound for the asymptotic risk over all dependence structures, which may not be
tight except in the case of independent errors.
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Proof of Corollary 4.2. Relation (4.11) is a re-statement of Remark 2.1.
For any distribution π (with a slight abuse of notation) over the parameter space �+

p × D(F),
we have

lim inf
p→∞ inf

Ŝp

sup
μ∈�+

p (β,r)

E∈D(F)

P(Ŝp �= Sp) ≥ lim inf
p→∞ inf

Ŝp

EπP(Ŝp �= Sp), (4.13)

since the supremum is bounded from below by expectations. In particular, define π to be the
uniform distribution over the configurations �∗

p × I (f ), where

�∗
p = {

μ ∈R
d : |Sp| = ⌊

p1−β
⌋
,μ(j) = 0 for all j /∈ S, and

μ(j) = (νr logp)1/ν for all j ∈ S,where r < r < g(β)
}
,

and

I (f ) = {
E = (

εp(j)
)
p

: εp(j) are independently and identically distributed

with density f (x) ∝ exp
{−|x|ν/ν}}.

Since the density f of F is log-concave, the distribution of the signal configurations satisfies the
conditions in Theorem 4.1. Thus, the desired conclusion (4.12) follows from Theorem 4.1 and
(4.13). �

4.5. Bayes optimality of likelihood ratio thresholding

The following result provides the general form of finite-sample Bayes optimal procedures. It
turns out that in general, likelihood ratio thresholding is optimal.

Proposition 4.3. Let the observations x(j), j = 1, . . . , p have s signals as prescribed in (4.4)
having common density fa , and let the rest (p − s) locations have common density f0. Define
the likelihood ratios

L(j) := fa

(
x(j)

)
/f0

(
x(j)

)
,

and let L[1] ≥ L[2] ≥ · · · ≥ L[p] be the order statistics of the L(j)’s. Then the procedure Ŝopt =
{j | L(j) ≥ L[s]} is finite-sample optimal in terms of Bayes risk. That is,

Ŝopt ∈ arg min
Ŝ

EπP[Ŝ �= S]. (4.14)

for all s and p, where the infimum on Ŝp is taken over all procedures.

The proof of Proposition 4.3 is found in Section B of the supplement [18].
The characterization of optimal likelihood ratio thresholding procedures in Proposition 4.3

may not always yield practical estimators, as the density of alternatives, and number of signals are
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typically unknown. Nevertheless, some insights can still be gained by virtue of Proposition 4.3.
In particular, when MLR fails (or equivalently, when the errors in model (1.1) do not have log-
concave densities), data thresholding is sub-optimal.

Example 4.2 (Sub-optimality of data thresholding). Let the errors have i.i.d. generalized
Gaussian density with ν = 1/2, that is, logf0(x) ∝ −x1/2. Let dimension p = 2, sparsity s = 1
with uniform prior, and signal size δ = 1. That is, P[μ = (0,1)T] = P[μ = (1,0)T] = 1/2. If the
observations take on values x = (x1, x2)

T = (1,2)T, we see from a comparison of the likelihoods
(and hence, the posteriors),

log
f (x|{1})
f (x|{2}) = 2x

1/2
1 + 2(x2 − 1)1/2 − 2x

1/2
2 − 2(x1 − 1)1/2 = 4 − 2

√
2 > 0,

that even though x1 < x2, the set {1} is a better estimate of support than {2}, i.e., P[S = {1} | x] >

P[S = {2} | x].

This simple example shows that, in the case when the errors have super-exponential tails, the
optimal procedures are in general not data thresholding. A slightly more general conclusion can
be found in Corollary B.2 in the supplement [18].

Remark 4.5. Consider the model (1.1) with independent errors, Proposition 4.3, and indeed,
Example 4.2 demonstrate that thresholding procedures are in fact sub-optimal for AGG(ν) mod-
els with ν < 1. Therefore, the optimality of thresholding procedures (specifically, Bonferroni’s
procedure) only applies to AGG(ν) models with ν ≥ 1.

If we restrict the space of methods to only thresholding procedures, then results in Section 4.1
state that the phase-transition phenomenon – the 0-1 law in the sense of Corollary 4.1 – is univer-
sal in all error models with rapidly varying tails. This includes AGG(ν) models for all ν > 0. In
contrast, models with heavy (regularly varying) tailed errors do not exhibit this phenomenon (see
Theorem E.1 in the supplementary material [18]). We summarize the properties of thresholding
procedures in Table 1.

Table 1. Properties of thresholding procedures under different error distributions when errors are indepen-
dent. Properties of the error distributions are listed in brackets

Thresholding procedure Bayes optimality Phase-transition
(Error distributions) (Log-concave density) (Rapidly-varying tails)

AGG(ν), ν ≥ 1 Yes (Yes) Yes (Yes)
AGG(ν), 0 < ν < 1 No (No) Yes (Yes)
Power laws No (No) No (No)
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5. Proof of Theorem 3.1

We now prove the main result in Section 3. We first introduce a key lemma regarding the structure
of correlation matrix of high-dimensional random variables. The proof uses a surprising, yet
elegant application of Ramsey’s theorem from the study of combinatorics. The ‘only if’ part of
Theorem 3.1 follows from this lemma, in Section 5.2.

The proof of the ‘if’ part is postponed until Section B of the supplement [18]. The arguments
there was recently extended to establish bounds on the rate of concentration of maxima in [28];
see also, [39] and references therein for related work on this topic.

5.1. Ramsey’s coloring theorem and structure of correlation matrices

Given any integer k ≥ 1, there is always an integer R(k, k) called the Ramsey number:

k ≤ R(k, k) ≤
(

2k − 2
k − 1

)
(5.1)

such that the following property holds: every undirected graph with at least R(k, k) vertices will
contain either a clique of size k, or an independent set of k nodes. Recall that a clique is a
complete sub-graph where all pairs of nodes are connected, and an independent set is a set of
nodes where no two nodes are connected.

This result is a consequence of the celebrated work of Ramsey [33], which gave birth to Ram-
sey Theory (see, e.g., Conlon, Fox and Sudakov [9]). The Ramsey theorem and the upper bound
(5.1) (established first in [15]) are at the heart of the proof of the following result.

Proposition 5.1. Fix γ ∈ (0,1) and let P = (ρ(i, j))n×n be an arbitrary correlation matrix. If

k := ⌊
log2(n)/2

⌋ ≥ �1/γ � + 1, (5.2)

then there is a set of k indices K = {l1, . . . , lk} ⊆ {1, . . . , n} such that

ρ(i, j) ≥ −γ, for all i, j ∈ K. (5.3)

Proof of Proposition 5.1. By using (5.1) and a refinement of the Stirling’s formula, we will
show at the end of the proof that for k ≤ log2(n)/2, we have

R(k, k) ≤ n, (5.4)

where R(k, k) is the Ramsey number.
Now, construct a graph with vertices {1, . . . , n} such that there is an edge between nodes i and

j if and only if ρ(i, j) > −γ . In view of (5.4) and Ramsey’s theorem (see, e.g., Theorem 1 in
[16] or [9] for a recent survey on Ramsey theory), there is a subset of k nodes K = {l1, . . . , lk},
which is either a complete graph or an independent set.

If K is a complete graph, then by our construction of the graph, Relation (5.3) holds.
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Now, suppose that K is a set of independent nodes. This means, again by the construction of
our graph, that

ρ(i, j) < −γ, for all i �= j ∈ K.

Let Zi, i ∈ K be zero-mean random variables such that ρ(i, j) = E[ZiZj ]. Observe that

Var

(∑
i∈K

Zi

)
=
∑
i∈K

Var(Zi) +
∑
i �=j

i,j∈K

Cov(Zi,Zj ) < k − k(k − 1)γ, (5.5)

since Var(Zi) = 1 and ρ(i, j) < −γ for i �= j . By our assumption, k ≥ (�1/γ � + 1), or equiva-
lently, (k − 1) ≥ 1/γ , the variance in (5.5) is negative. This is a contradiction showing that there
are no independent sets K with cardinality k.

To complete the proof, it remains to show that Relation (5.4) holds. In view of the upper bound
on the Ramsey numbers (5.1), it is enough to show that k ≤ log2(

√
n) implies(

2k − 2
k − 1

)
≤ n.

This follows from a refinement of the Stirling formula, due to Robbins [36]:

√
2πmm+1/2e−me

1
(12m+1) ≤ m! ≤ √

2πmm+1/2e−me
1

12m .

Indeed, letting k̃ := k − 1, and applying the above upper and lower bounds to the terms (2̃k)! and
k̃!, respectively, we obtain:(

2k − 2
k − 1

)
≡ (2̃k)!

(̃k!)2
≤ 22̃k

√
πk̃

exp

{
1

24̃k
− 2

12̃k + 1

}
< 22k,

where the last two inequalities follow by simply dropping positive factors less than 1. Since
2k ≤ log2(n), the above bound implies Relation (5.4) and the proof is complete. �

Using Proposition 5.1, we establish the key lemma used in the proof of Theorem 3.1.

Lemma 5.1. Let c ∈ (0,1), and P = (ρ(i, j))(n+1)×(n+1) be a correlation matrix such that

ρ(1, j) > c for all j = 1, . . . , n + 1. (5.6)

If n ≥ 22�2/c2�+4, then there is a set of indices K = {l1, . . . , lk} ⊆ {2, . . . , n + 1} of cardinality
k = |K| = �log2

√
n�, such that

ρ(i, j) >
c2

2
for all i, j ∈ K. (5.7)

That is, all entries of the k × k sub-correlation matrix PK := (ρ(i, j))i,j∈K are larger than c2/2.
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Proof of Lemma 5.1. Let Z1, . . . ,Zn+1 be random variables with covariance matrix P . Denote
ρj = ρ(1, j) and define

R(j) =

⎧⎪⎨⎪⎩
1√

1 − ρ2
j

(
Z(j) − ρjZ(1)

)
, if ρj < 1,

R∗, if ρj = 1,

(5.8)

where R∗ is an arbitrary zero-mean, unit-variance random variable. It is easy to see that
Var(R(j)) = 1, and

Cov
(
Z(i),Z(j)

) = Cov
(
ρiZ(1) +

√
1 − ρ2

i R(i), ρjZ(1) +
√

1 − ρ2
j R(j)

)
= ρiρj +

√
1 − ρ2

i

√
1 − ρ2

j Cov
(
R(i),R(j)

)
≥ c2 + min

{
Cov

(
R(i),R(j)

)
,0
}
.

Therefore, Relation (5.7) would hold if we can find a set of indices K = {l1, . . . , lk} such that
Cov(R(i),R(j)) > −c2/2 for all i, j ∈ K , where k = |K| = �log2

√
n�. This, however, follows

from Proposition 5.1 applied to (R(j))n+1
j=2 with γ = c2/2, provided that

k = �log2
√

n� ≥ ⌈
2/c2⌉+ 1.

The last inequality indeed follows form the assumption that n ≥ 22�2/c2�+4. �

5.2. URS implies UDD (‘only if’ part of Theorem 3.1)

In view of Remark 3.1, UDD is equivalent to the requirement that N(δ) := 1 + supp Np(δ) < ∞
for all δ ∈ (0,1), where

Np(δ) := max
j∈{1,...,p}

∣∣{i : i �= j,	p(j, i) > δ
}∣∣. (5.9)

Therefore, if E is not UDD, then there must exist a constant c ∈ (0,1) for which N(c) is infinite,
that is, there is a subsequence p̃ → ∞ such that Np̃(c) → ∞. Without loss of generality, we may
assume that p̃ = p.

Let jp(c) be the maximizers of (5.9), and let

Sp(c) := {
i ∈ {1, . . . , p} : 	p

(
jp(c), i

)
> c

}
. (5.10)

Observe that |Sp(c)| = Np(c) + 1 → ∞, as p → ∞ (note jp(c) ∈ Sp(c)).
Applying Lemma 5.1 to the set of random variables indexed by Sp(c), we conclude, for

Np(c) ≥ 22�2/c2�+4, there must be a further subset

Kp(c) ⊆ Sp(c), (5.11)



Exact support recovery in high dimensions 2635

of cardinality

kp(c) := ∣∣Kp(c)
∣∣ ≥ log2

√
Np(c), (5.12)

such that all pairwise correlations of the random variables indexed by Kp(c) are greater than
c2/2. Since the sequence Np(c) → ∞, by (5.12), we have kp(c) → ∞ as p → ∞.

Therefore, we have identified a sequence of subsets Kp(c) ⊆ {1, . . . , p} with the following
two properties:

1. kp(c) := |Kp(c)| → ∞, as p → ∞, and
2. For all i, j ∈ Kp(c), we have

	p(i, j) > c2/2. (5.13)

Without loss of generality, we may assume Kp(c) = {1, . . . , kp(c)} ⊆ {1, . . . , p}, upon re-
labeling of the coordinates.

Now consider a Gaussian sequence ε∗ = {ε∗(j), j = 1,2, . . .}, independent of E , defined as
follows:

ε∗(j) := Z(c/
√

2) + Z(j)

√
1 − c2/2, j = 1,2, . . . ,

where Z and Z(j), j = 1,2, . . . are independent standard normal random variables. Hence,

Var
(
ε∗(j)

) = 1 = Var
(
εp(j)

)
, (5.14)

and

Cov
(
ε∗(i), ε∗(j)

)= c2

2
≤ Cov

(
εp(i), εp(j)

)
, (5.15)

for all p, and all i �= j , i, j ∈ Kp(c). Thus we have, as p → ∞,

1

ukp(c)

max
j∈Kp(c)

ε∗(j) = c/
√

2

ukp(c)

Z +
√

1 − c2/2

ukp(c)

max
j∈Kp(c)

Z(j)
P→
√

1 − c2

2
, (5.16)

where the convergence in probability follows from Proposition 2.1 part 2.
Relations (5.14) and (5.15), by Slepian’s lemma [38], also imply,

1

ukp(c)

max
j∈Kp(c)

ε∗(j)
d≥ 1

ukp(c)

max
j∈Kp(c)

εp(j). (5.17)

Therefore, by (5.17) and (5.16), for all
√

1 − c2/2 ≤ δ < 1, we have,

P

[
1

ukp(c)

max
j∈Kp(c)

εp(j) < δ

]
→ 1 as p → ∞.

This contradicts the definition of URS (with the particular choice of Sp := Kp(c)), and the proof
of the ‘only if’ part is complete.



2636 Z. Gao and S. Stoev

Acknowledgements

We thank the Associate Editor and two anonymous referees for their constructive feedback,
which helped improve the manuscript, and inspired the study on minimax optimality in Sec-
tion 4.

This work was partially supported by the NSF ATD grant DMS-1830293.

Supplementary Material

Supplement to “Fundamental limits of exact support recovery in high dimensions” (DOI:
10.3150/20-BEJ1197SUPP; .pdf). Supplementary material [18] contains extensive numerical
simulations of the main results (Section A), additional proofs (Section B), auxiliary results (Sec-
tion C), generalizations of the phase transition phenomena to other classes of error distributions
(Sections D), analysis of thresholding procedures under heavy, regularly varying tails (Section E),
and further discussions on the statistical implications (Section F).

References

[1] Arias-Castro, E. and Chen, S. (2017). Distribution-free multiple testing. Electron. J. Stat. 11 1983–
2001. MR3651021 https://doi.org/10.1214/17-EJS1277

[2] Arias-Castro, E. and Ying, A. (2019). Detection of sparse mixtures: Higher criticism and scan statistic.
Electron. J. Stat. 13 208–230. MR3899951 https://doi.org/10.1214/18-ejs1512

[3] Barndorff-Nielsen, O. (1963). On the limit behaviour of extreme order statistics. Ann. Math. Stat. 34
992–1002. MR0150889 https://doi.org/10.1214/aoms/1177704022

[4] Berman, S.M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat.
35 502–516. MR0161365 https://doi.org/10.1214/aoms/1177703551

[5] Bush, W.S. and Moore, J.H. (2012). Genome-wide association studies. PLoS Comput. Biol. 8
e1002822. https://doi.org/10.1371/journal.pcbi.1002822

[6] Butucea, C., Ndaoud, M., Stepanova, N.A. and Tsybakov, A.B. (2018). Variable selection with Ham-
ming loss. Ann. Statist. 46 1837–1875. MR3845003 https://doi.org/10.1214/17-AOS1572

[7] Cai, T.T., Jin, J. and Low, M.G. (2007). Estimation and confidence sets for sparse normal mixtures.
Ann. Statist. 35 2421–2449. MR2382653 https://doi.org/10.1214/009053607000000334

[8] Comminges, L. and Dalalyan, A.S. (2012). Tight conditions for consistency of variable selection in
the context of high dimensionality. Ann. Statist. 40 2667–2696. MR3097616 https://doi.org/10.1214/
12-AOS1046

[9] Conlon, D., Fox, J. and Sudakov, B. (2015). Recent developments in graph Ramsey theory. In Surveys
in Combinatorics 2015. London Mathematical Society Lecture Note Series 424 49–118. Cambridge:
Cambridge Univ. Press. MR3497267

[10] de Haan, L. and Ferreira, A. (2007). Extreme Value Theory: An Introduction. Springer Series in Op-
erations Research and Financial Engineering. New York: Springer. MR2234156 https://doi.org/10.
1007/0-387-34471-3

[11] Donoghue, W.F. Jr. (2014). Distributions and Fourier Transforms. Pure and Applied Mathematics 32.
New York: Academic Press. MR3363413

[12] Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann.
Statist. 32 962–994. MR2065195 https://doi.org/10.1214/009053604000000265

https://doi.org/10.3150/20-BEJ1197SUPP
http://www.ams.org/mathscinet-getitem?mr=3651021
https://doi.org/10.1214/17-EJS1277
http://www.ams.org/mathscinet-getitem?mr=3899951
https://doi.org/10.1214/18-ejs1512
http://www.ams.org/mathscinet-getitem?mr=0150889
https://doi.org/10.1214/aoms/1177704022
http://www.ams.org/mathscinet-getitem?mr=0161365
https://doi.org/10.1214/aoms/1177703551
https://doi.org/10.1371/journal.pcbi.1002822
http://www.ams.org/mathscinet-getitem?mr=3845003
https://doi.org/10.1214/17-AOS1572
http://www.ams.org/mathscinet-getitem?mr=2382653
https://doi.org/10.1214/009053607000000334
http://www.ams.org/mathscinet-getitem?mr=3097616
https://doi.org/10.1214/12-AOS1046
http://www.ams.org/mathscinet-getitem?mr=3497267
http://www.ams.org/mathscinet-getitem?mr=2234156
https://doi.org/10.1007/0-387-34471-3
http://www.ams.org/mathscinet-getitem?mr=3363413
http://www.ams.org/mathscinet-getitem?mr=2065195
https://doi.org/10.1214/009053604000000265
https://doi.org/10.1214/12-AOS1046
https://doi.org/10.1007/0-387-34471-3


Exact support recovery in high dimensions 2637

[13] Dudoit, S., Shaffer, J.P. and Boldrick, J.C. (2003). Multiple hypothesis testing in microarray experi-
ments. Statist. Sci. 18 71–103. MR1997066 https://doi.org/10.1214/ss/1056397487

[14] Embrechts, P., Klüppelberg, C. and Mikosch, T. (2013). Modelling Extremal Events: For Insur-
ance and Finance. Applications of Mathematics (New York) 33. Berlin: Springer. MR1458613
https://doi.org/10.1007/978-3-642-33483-2

[15] Erdös, P. and Szekeres, G. (1935). A combinatorial problem in geometry. Compos. Math. 2 463–470.
MR1556929

[16] Fox, J. (2009). Lecture 5: Ramsey theory. In MAT 307: Combinatorics (Spring 2009), MIT Lecture
Notes. Available at http://math.mit.edu/~Fox/MAT307.html.

[17] Gao, Z. (2019). Five shades of grey: Phase transitions in high-dimensional multiple testing. Preprint.
Available at arXiv:1910.05701.

[18] Gao, Z. and Stoev, S. (2020). Supplement to “Fundamental limits of exact support recovery in high
dimensions.” https://doi.org/10.3150/20-BEJ1197SUPP

[19] Genovese, C.R., Jin, J., Wasserman, L. and Yao, Z. (2012). A comparison of the lasso and marginal
regression. J. Mach. Learn. Res. 13 2107–2143. MR2956354

[20] Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. of Math.
(2) 44 423–453. MR0008655 https://doi.org/10.2307/1968974

[21] Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting sparse signals in correlated noise.
Ann. Statist. 38 1686–1732. MR2662357 https://doi.org/10.1214/09-AOS764

[22] Haupt, J., Castro, R.M. and Nowak, R. (2011). Distilled sensing: Adaptive sampling for sparse detec-
tion and estimation. IEEE Trans. Inf. Theory 57 6222–6235. MR2857969 https://doi.org/10.1109/TIT.
2011.2162269

[23] Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75
800–802. MR0995126 https://doi.org/10.1093/biomet/75.4.800

[24] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 65–70.
MR0538597

[25] Ingster, Y.I. (1998). Minimax detection of a signal for ln-balls. Math. Methods Statist. 7 401–428.
MR1680087

[26] Ji, P. and Jin, J. (2012). UPS delivers optimal phase diagram in high-dimensional variable selection.
Ann. Statist. 40 73–103. MR3013180 https://doi.org/10.1214/11-AOS947

[27] Kallitsis, M., Stoev, S.A., Bhattacharya, S. and Michailidis, G. (2016). AMON: An open source archi-
tecture for online monitoring, statistical analysis, and forensics of multi-gigabit streams. IEEE J. Sel.
Areas Commun. 34 1834–1848.

[28] Kartsioukas, R., Gao, Z. and Stoev, S. (2019). On the rate of concentration of maxima in Gaussian
arrays. Preprint. Available at arXiv:1910.04259.

[29] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (2012). Extremes and Related Properties of Random
Sequences and Processes. New York: Springer.

[30] McCormick, W. and Mittal, Y. (1976). On Weak Convergence of the Maximum. Stanford Univ. De-
partment of Statistics.

[31] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the
lasso. Ann. Statist. 34 1436–1462. MR2278363 https://doi.org/10.1214/009053606000000281

[32] Nichols, T. and Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging:
A comparative review. Stat. Methods Med. Res. 12 419–446. MR2005445 https://doi.org/10.1191/
0962280203sm341ra

[33] Ramsey, F.P. (2009). On a problem of formal logic. In Classic Papers in Combinatorics 1–24. New
York: Springer.

[34] Resnick, S.I. (2013). Extreme Values, Regular Variation and Point Processes. Springer Series in Op-
erations Research and Financial Engineering. New York: Springer. MR2364939

http://www.ams.org/mathscinet-getitem?mr=1997066
https://doi.org/10.1214/ss/1056397487
http://www.ams.org/mathscinet-getitem?mr=1458613
https://doi.org/10.1007/978-3-642-33483-2
http://www.ams.org/mathscinet-getitem?mr=1556929
http://math.mit.edu/~Fox/MAT307.html
http://arxiv.org/abs/arXiv:1910.05701
https://doi.org/10.3150/20-BEJ1197SUPP
http://www.ams.org/mathscinet-getitem?mr=2956354
http://www.ams.org/mathscinet-getitem?mr=0008655
https://doi.org/10.2307/1968974
http://www.ams.org/mathscinet-getitem?mr=2662357
https://doi.org/10.1214/09-AOS764
http://www.ams.org/mathscinet-getitem?mr=2857969
https://doi.org/10.1109/TIT.2011.2162269
http://www.ams.org/mathscinet-getitem?mr=0995126
https://doi.org/10.1093/biomet/75.4.800
http://www.ams.org/mathscinet-getitem?mr=0538597
http://www.ams.org/mathscinet-getitem?mr=1680087
http://www.ams.org/mathscinet-getitem?mr=3013180
https://doi.org/10.1214/11-AOS947
http://arxiv.org/abs/arXiv:1910.04259
http://www.ams.org/mathscinet-getitem?mr=2278363
https://doi.org/10.1214/009053606000000281
http://www.ams.org/mathscinet-getitem?mr=2005445
https://doi.org/10.1191/0962280203sm341ra
http://www.ams.org/mathscinet-getitem?mr=2364939
https://doi.org/10.1109/TIT.2011.2162269
https://doi.org/10.1191/0962280203sm341ra


2638 Z. Gao and S. Stoev

[35] Resnick, S.I. and Tomkins, R.J. (1973). Almost sure stability of maxima. J. Appl. Probab. 10 387–401.
MR0350828 https://doi.org/10.2307/3212355

[36] Robbins, H. (1955). A remark on Stirling’s formula. Amer. Math. Monthly 62 26–29. MR0069328
https://doi.org/10.2307/2308012

[37] Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions.
J. Amer. Statist. Assoc. 62 626–633. MR0216666

[38] Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41 463–501.
MR0133183 https://doi.org/10.1002/j.1538-7305.1962.tb02419.x

[39] Tanguy, K. (2015). Some superconcentration inequalities for extrema of stationary Gaussian pro-
cesses. Statist. Probab. Lett. 106 239–246. MR3389997 https://doi.org/10.1016/j.spl.2015.07.028

[40] Wainwright, M.J. (2009). Information-theoretic limits on sparsity recovery in the high-dimensional
and noisy setting. IEEE Trans. Inf. Theory 55 5728–5741. MR2597190 https://doi.org/10.1109/TIT.
2009.2032816

[41] Wainwright, M.J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using
�1-constrained quadratic programming (Lasso). IEEE Trans. Inf. Theory 55 2183–2202. MR2729873
https://doi.org/10.1109/TIT.2009.2016018

[42] Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection. Ann. Statist. 37 2178–
2201. MR2543689 https://doi.org/10.1214/08-AOS646

[43] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541–
2563. MR2274449

Received April 2019 and revised September 2019

http://www.ams.org/mathscinet-getitem?mr=0350828
https://doi.org/10.2307/3212355
http://www.ams.org/mathscinet-getitem?mr=0069328
https://doi.org/10.2307/2308012
http://www.ams.org/mathscinet-getitem?mr=0216666
http://www.ams.org/mathscinet-getitem?mr=0133183
https://doi.org/10.1002/j.1538-7305.1962.tb02419.x
http://www.ams.org/mathscinet-getitem?mr=3389997
https://doi.org/10.1016/j.spl.2015.07.028
http://www.ams.org/mathscinet-getitem?mr=2597190
https://doi.org/10.1109/TIT.2009.2032816
http://www.ams.org/mathscinet-getitem?mr=2729873
https://doi.org/10.1109/TIT.2009.2016018
http://www.ams.org/mathscinet-getitem?mr=2543689
https://doi.org/10.1214/08-AOS646
http://www.ams.org/mathscinet-getitem?mr=2274449
https://doi.org/10.1109/TIT.2009.2032816

	Introduction
	Set-up
	Assumptions on the error distributions
	Parametrization of the signals

	Thresholding procedures
	Prior work
	Summary of contributions
	A point-wise phase transition phenomena under dependence
	Uniform relative stability and concentration of maxima
	Role of thresholding procedures and minimax optimality


	Exact support recovery under dependence
	Sufﬁcient conditions for exact support recovery
	Rapid variation and relative stability
	Dependence and uniform relative stability
	Necessary conditions for exact support recovery
	Dense signals

	Characterization of URS for Gaussian arrays
	Minimax optimality, and Bayes (sub)optimality of thresholding procedures
	Point-wise minimax optimality
	Bayes optimality in support recovery problems
	Bayes optimality under sub-exponential errors
	Minimax optimality over all procedures
	Bayes optimality of likelihood ratio thresholding

	Proof of Theorem 3.1
	Ramsey's coloring theorem and structure of correlation matrices
	URS implies UDD (`only if' part of Theorem 3.1)

	Acknowledgements
	Supplementary Material
	References

