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Regime switching processes have proved to be indispensable in the modeling of various phenomena, allow-
ing model parameters that traditionally were considered to be constant to fluctuate in a Markovian manner
in line with empirical findings. We study diffusion processes of Ornstein–Uhlenbeck type where the drift
and diffusion coefficients a and b are functions of a Markov process with a stationary distribution π on a
countable state space. Exact long time behavior is determined for the three regimes corresponding to the ex-
pected drift: Eπa(·) > 0, = 0,< 0, respectively. Alongside we provide exact time limit results for integrals

of form
∫ t

0 b2(Xs)e
−2
∫ t
s a(Xr ) dr ds for the three different regimes. Finally, we demonstrate natural appli-

cations of the findings in terms of Cox–Ingersoll–Ross diffusion and deterministic SIS epidemic models in
Markovian environments. The time asymptotic behaviors are naturally expressed in terms of solutions to
the well-studied fixed-point equation in law X

d= AX + B with X ⊥⊥ (A,B).

Keywords: Cox Ingersoll Ross; long time behavior; Ornstein Uhlenbeck; regime switching; SIS epidemic
model

1. Introduction

Models based on regime switching stochastic processes have received considerable attention for
their applications in quantitative finance, actuarial science, economics, biology and ecology. In
quantitative finance, volatility, interest rates and asset prices are subjects to risky market environ-
ments that fluctuate over different regimes in a Markovian manner. Understanding how critical
parameters (that determine stability or instability of the process of interest) characterizing the
“switching regimes” vary stochastically over time and affect the long time behavior of the overall
process is essential for making short and long term predictions. Examples of such applications
are Ang and Timmermann [2], BenSaida [7], Fink et al. [18] and Genon-Catalot et al. [20] in
the context of stochastic volatility modelling in financial market; Zhang et al. [42] considering
stochastic interest rate models with Markov switching; Hardy [25], Lin et al. [29] and Shen and
Kuen Siu [38] studying long term behavior of stock returns and bond pricing. Similar to quanti-
tative finance, regime switching stochastic processes are frequently used in actuarial science for
solvency investigations, for example, Abourashchi et al. [1], mortality modeling, for example,
Gao et al. [19], and in the context of disability insurance, for example, Djehiche and Löfdahl
[15].

Diffusions with Markov switching were initially introduced in Basak et al. [4] as Brownian
perturbations of piecewise deterministic models. To the best of our knowledge it is one of the
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early references where, under diffusion contexts, stability issues were explored. Monographs
containing both the theoretical foundations and applications of regime switching processes are
Mao and Yuan [31] and Yin and Zhu [41]. Significant contributions to the theoretical foundation
are Shao [35–37]. A common theme of these works is a stochastic dynamical system (Yt ,Xt )t≥0,
where the process of interest Y := (Yt )t≥0 is affected by the process X := (Xt )t≥0 that describes
the dynamics of a switching environment. For a class of general diffusion processes Y the afore-
mentioned works investigated necessary and sufficient conditions under which properties related
to stability/instability such as geometric/polynomial ergodicity in Shao [35,36], positive/null re-
currence or transience in Shao [37], explosivity, existence and uniqueness of moments of sta-
tionary distributions hold. In a similar context Benaïm and Lobry [6] (and references therein)
addresses questions related with survival or extinction of competing species in a Lotka-Volterra
model influenced by switching parameters in terms of the underlying hidden Markov environ-
ment. A main theme is the analysis of persistence (see Section 4 or Theorem 4.1 in [6]) phrased
in terms of so-called Lyapunov drift type criteria and similar concepts. In Cloez and Hairer [12],
a large class of general regime switching Markov processes are considered where a type of con-
dition referred to as geometric contractivity ensures exponential stability of the overall process.
In contrast to the general stability results described above, there are very few works giving exact
characterizations of long time behaviors, which are inevitably model specific. In this paper, we
analyze the long time behavior of processes of Ornstein–Uhlenbeck type and Cox–Ingersoll–
Ross models in a regime switching context, and provide exact explicit characterizations. To our
knowledge, such explicit characterizations have not appeared in the literature.

The initial object of study in this paper is an R-valued Ornstein–Uhlenbeck process in a
Markovian environment, denoted by Y = (Yt )t≥0, defined as the solution to the SDE

dYt = −a(Xt )Yt dt + b(Xt ) dWt , Y0 = y0 ∈R, (1.1)

where (Wt)t≥0 is standard Brownian motion which is independent of X := (Xt )t≥0 that rep-
resents the background environment. X is an S-valued, where S is a countable set, jump type
process with jump intensities λij ∈ R+, for (i, j) ∈ S2 with i �= j , satisfying

P [Xt+δ = j | Xt = i, Yt = x] =
{

λij δ + o(δ), if i �= j,

1 + λiiδ + o(δ), if i = j,
(1.2)

with notation λii := −∑j �=i∈S λij . (A more general setting where state dependent intensities
λij (x) were considered is found in Shao [36] and Cloez and Hairer [12], investigating joint
ergodicity of (Xt , Yt )t≥0.) The process X is a continuous-time Markov chain, with respect to its
natural filtration (FX

t )t≥0, satisfying the hidden Markovian assumption:

Xt ⊥⊥Xs Ys for all t > s, (1.3)

saying that for all t > s, Xt is conditionally independent of Ys given Xs .
The functions a, b : S → R are arbitrary (as long as a pathwise unique weak solution of

(1.1) can be insured) denoting the drift and the diffusion functions, respectively. (Xt , Yt )t≥0

is a Markov process with respect to its natural filtration (FX,Y
t )t≥0.

We say that a stochastic process X := (Xt )t≥0 is ergodic if there exists a probability distri-
bution μ such that, regardless of X0, the distribution of Xt converges weakly to the limiting
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distribution μ as t → ∞. If X is an irreducible and ergodic Markov chain in a countable state
space S, then the limiting distribution μ is its unique stationary distribution (or invariant distri-
bution), see, for example, Norris [33].

Throughout the paper, we assume that the hidden Markov chain X is ergodic with stationary
distribution π := {πj : j ∈ S}. The process Y is attractive or stable if Eπa(·) > 0 holds, other-
wise it is divergent if Eπa(·) < 0 and null recurrent if Eπa(·) = 0 (which can be shown using
the Wasserstein contraction ideas from Hairer [24] or Lyapunov function based constructions in
Shao [37]). Under the stability assumption Eπa(·) > 0, a trichotomy of possible tail behaviors of
the stationary distribution was established in Bardet et al. [3]. Using Fourier analysis techniques,
Zhang and Wang [43] provided precise results on ergodicity when |S| = 2. A key contribution
of our paper is a precise result on ergodicity including an explicit representation for the sta-
tionary distribution when S is a countable state space, allowing computation of probabilities
limt→∞ P [Yt > y]. The result is generalized by generalizing the model (1.1) in different ways.
Under the instability assumption Eπa(·) ≤ 0 no stationary distribution exists and we determine
how Y diverges by providing weak limits for the scaled fluctuations (log |Yt |)/√t which trans-
late to the behavior of |Yt |1/

√
t . In all long time results, we describe how introducing a regime

switching component leads to mixture type representations characterizing the long time behavior.
In parallel to the characterization of the long time behavior of the model (1.1), we provide the

corresponding explicit characterization of the long time behavior of integrals of the type∫ t

0
d(Xs)e

− ∫ t
s c(Xr ) dr ds (1.4)

for the three regimes Eπc(·) > 0, = 0,< 0 corresponding to positive recurrence, null recurrence
and transience.

Several previous works, for example, Gjessing and Paulsen [21], Bertoin and Yor [8], Maulik
and Zwart [32], Behme and Lindner [5], Zhang et al. [42] and Feng et al. [17] have studied expo-
nential functionals of Lévy processes. For instance, in Gjessing and Paulsen [21] the asymptotic
behavior of integrals of the form

∫ t

0 e−Rs dPs as t → ∞ was explored, where P and R are inde-
pendent Lévy processes and the property

(Pt ,Rt )
d= (Ps,Rs) + (P̃t−s , R̃t−s), (P̃ , R̃) is an independent copy of (P,R),

helps the analysis significantly. We derive exact limit results for integrals of the type (1.4), where
X is a continuous time Markov chain on a countable state space. The asymptotic analysis re-
quires quite different methods from those used for the corresponding analysis for exponential
functionals of Lévy processes. Asymptotic analysis similar to the one presented in the current
paper was done in Bardet et al. [3]. Proposition 4.1 in [3] yields asymptotic bounds for (1.4), but
not the exact asymptotic behavior that we present here.

The paper is organized as follows. Section 2 sets notation and presents basic model assump-
tions. In Section 3, exact long time characterizations for the stochastic process (1.1), and dif-
ferent generalizations, are presented under assumptions corresponding to the stable regime of
the aforementioned process (1.1). Section 4 presents long time characterizations corresponding
to the unstable regime when no stationary distribution exists. Section 5 contains applications of
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the findings in Sections 3 and 4 to the CIR model, originally introduced as a model for interest
rates, and to SIS models used in epidemiology. The proofs are found in Section 6 and in the
supplementary material [30].

2. Preliminaries and model assumptions

Whenever relevant, random elements appearing are assumed to be defined on a common prob-
ability space with probability measure P and expectation operator E. Rd denotes the d dimen-
sional Euclidean space with the usual Euclidean norm | · |. The set of natural numbers is denoted
by N. Cardinality of a finite set S is denoted by |S|. For any given sequence (an)n≥1, define
(amax

n )n≥1 as the sequence of running maxima amax
n := max1≤k≤n ak .

For a Polish space S, let B(S) be its Borel σ -field and let P(S) denote the class of probability
measures on S. P(S) is equipped with the topology of weak convergence. For x ∈ S, δx ∈ P(S)

denotes the Dirac measure that puts unit mass at x. The probability distribution of an S-valued
random variable X will be denoted as L(X). X ∼ μ means that μ ∈ P(S) and μ = L(X). Con-
vergence in distribution of an S-valued sequence (Xn)n≥1 to an S-valued random variable X

will be written as Xn
d→ X, or L(Xn)

w→ L(X), where w stands for weak convergence. We write

Xn
a.s.→ X and Xn

P→ X for convergence almost surely and in probability, respectively.
The transition kernels of a Markov process are defined as the maps Ps,t : (S,B(S)) → [0,1]

such that for all t ≥ s ≥ 0, Ps,t (·,A) is B(S)-measurable for each A ∈ B(S) and Ps,t (i, ·) ∈P(S)

for each i ∈ S. The distribution of the Markov process is determined by the transition kernels Ps,t

together with the initial distribution ν0. The marginal distribution of the Markov process at time
t is ν0P0,t (·) = ∫

S
P0,t (x, ·)ν0(dx). We will consider only time-homogeneous Markov processes

corresponding to transition kernels satisfying Ps,t = P0,t−s and use the notation Pt := P0,t .
Ptf (·) is the corresponding transition operator given by Ptf (x) = ∫

S
f (y)Pt (x, dy) for func-

tions f : (S,B(S)) → (R,B(R)). A time-homogeneous Markov process in a countable state
space S is irreducible if for any i, j ∈ S, Pt(i, j) := Pt (i, {j }) > 0 for some t > 0. A time-
homogeneous Markov process with transition kernels Pt has a stationary distribution (or invariant
distribution) μ ∈P(S) if μPt = μ holds for all t > 0. A continuous-time Markov chain is a pure
jump-type time-homogeneous Markov process on a countable state space. An irreducible and
non-explosive continuous-time Markov chain having a stationary distribution is ergodic (Theo-
rem 3.6.2 in Norris [33]).

Consider a probability measure π on a countable set S such that π(A) =∑i∈A πi for any
A ∈ B(S) and a set of probability measures {μj : j ∈ S}. Then∑

j∈S

δU

({j})Zj , U ⊥⊥ (Zj )j∈S, U ∼ π, Zj ∼ μj ,

is a random variable whose distribution is the mixture distribution
∑

j∈S πjμj . For a given bi-
variate random variable (A,B), the following time series is referred to as a stochastic recurrence
equation (in short SRE, also referred to as random coefficient AR(1))

Zn+1 = An+1Zn + Bn+1 with (Ai,Bi)
i.i.d∼ L(A,B), Zn ⊥⊥ (An+1,Bn+1)
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for an arbitrary initial value Z0 = z0 ∈R. Let log+ |a| := log(max(|a|,1)). If

P [A = 0] = 0, E log |A| < 0 and E log+ |B| < ∞, (2.1)

then (Zn) has a unique causal ergodic strictly stationary solution solving the following fixed-
point equation in law:

Z
d=AZ + B with Z ⊥⊥ (A,B). (2.2)

The condition P [Ax + B = x] < 1, for all x ∈ R, rules out degenerate solutions Z = x a.s. We
refer to Corollary 2.1.2 and Theorem 2.1.3 in Buraczewski et al. [9] for further details.

We denote by N(μ,σ 2) and Exp(λ), respectively, the normal distribution with mean μ and
variance σ 2 and the exponential distribution with mean 1/λ.

Throughout the rest of this paper we will assume the following.

Assumption 1. S is a countable set and X := (Xt )t≥0 is an irreducible and ergodic continuous-
time Markov chain in S with stationary distribution π := {πj : j ∈ S}. X satisfies (1.2).

It follows from Assumption 1 that X is positive recurrent and πj > 0 for all j ∈ S. Fix a state
j ∈ S. Let τ

j

0 be the first time X visits state j and let T
j

0 be the amount of time X stays there
before leaving state j . Define recursively, for k ≥ 1,

τ
j
k := inf

{
t > τ

j

k−1 + T
j

k−1 : Xt = j
}
, T

j
k := inf

{
t > τ

j
k : Xt �= j

}− τ
j
k . (2.3)

After (re)visiting state j at time τ
j
k , X stays there for an amount of time denoted by T

j
k . The se-

quence (T
j
k )k≥0 is an i.i.d. sequence with Exp(−λjj )-distributed terms. Define I

j
k := [τ j

k−1, τ
j
k )

and notice that the renewal cycle lengths |I j
k | := τ

j
k − τ

j

k−1 form an i.i.d. sequence (|I j
k |)k≥1.

A consequence of positive recurrence of X is that E|I j
k | < ∞ for any (j, k) ∈ S ×N. Let

g
j
t := max

(
sup
{
n ∈N : τ j

n ≤ t
}
,0
)
, sup∅ := −∞, (2.4)

that is, the number of times the chain X revisits the state j before time t . Positive recurrence of
X implies that g

j
t

a.s.→ ∞ as t → ∞.

3. The stable regime

In this section, we study long time behavior of the joint process (Y,X) := (Yt ,Xt )t≥0 and pro-
cesses defined in terms of certain functionals of (Xt )t≥0 under conditions ensuring that conver-
gence in distribution holds as t → ∞. Together with Assumption 1, the following assumption
ensures the existence of a stationary distribution for (Y,X).

Assumption 2. The S-valued process X and the functions a, b : S →R satisfy

(a) a is integrable with respect to π , and Eπa(·) > 0.
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(b) For every j ∈ S, E[log+ ∫ τ
j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds] < ∞.

Remark 3.1. Assumption 2 corresponds, in the current setting, to the general condition (2.1) for
existence of a stationary solution to the stochastic recurrence equation

Zj,n+1 = e
−2
∫ τ

j
n+1

τ
j
n

a(Xs) ds

Zj,n +
∫ τ

j
n+1

τ
j
n

b2(Xs)e
−2
∫ τ

j
n+1

s a(Xr ) dr ds

with affine invariant solution of the form

Zj
d= e

−2
∫ τ

j
1

τ
j
0

a(Xs) ds

Zj +
∫ τ

j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds.

If Assumption 2(a) holds but not Assumption 2(b), then results similar to Theorem 1.1 in Bu-
raczewski and Iksanov [10] hold. Notice that if supj∈S |a(j)| < ∞ and Eπb2(·) < ∞, then As-
sumption 2(b) follows immediately from Assumption 1 as a consequence of the inequalities
log+ |ab| ≤ log+ |a| + log+ |b| and log+ |a| ≤ |a| for any a, b.

An explicit expression for the stationary distribution of the joint process (Y,X) is the follow-
ing.

Theorem 1. Under Assumptions 1 and 2, the stationary distribution of the joint process (Y,X)

can be expressed as a scale mixture of Gaussians as follows:

(Yt ,Xt )
d→
(∑

j∈S

δU

({j})Zj ,U

)
as t → ∞, (3.1)

where U ⊥⊥ (Zj )j∈S , U ∼ π , Zj
d=√VjN , Vj ⊥⊥ N , N ∼ N(0,1) and

Vj
d= b2(j)

∫ T j

0
e−2a(j)(T j −s) ds + e−2a(j)T j

V ∗
j ,

where T j ∼ Exp(−λjj ) is independent of V ∗
j , and L(V ∗

j ) is the unique solution to (2.2) with
(A,B) having the distribution of

(
e
−2
∫ τ

j
1

τ
j
0

a(Xs) ds

,

∫ τ
j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds

)
.

The proof of Theorem 1 is found in Section 6.1.
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Remark 3.2. Theorem 1 may be generalized by instead of the model (1.1) considering the more
general Ornstein–Uhlenbeck model

dYt = (c(Xt ) − a(Xt )Yt

)
dt + b(Xt ) dWt , Y0 = y ∈R, (3.2)

for an arbitrary function c : S → R. The stationary distribution of (Y,X) can be determined under
the assumptions of Theorem 1 and the additional assumption (ensured by Eπ |c(·)| < ∞):

E log+
∫ τ

j
1

τ
j
0

∣∣c(Xs)
∣∣e−2
∫ τ

j
1

s a(Xr ) dr ds < ∞ for all j ∈ S.

The stationary distribution is given by

(Yt ,Xt )
d→
(∑

j∈S

δU

({j })Zj ,U

)
as t → ∞,

where U ⊥⊥ (Zj )j∈S , U ∼ π , Zj
d= Mj +√VjN , (Mj ,Vj ) ⊥⊥ N , N ∼ N(0,1) and

(
Mj

Vj

)
d=

⎛⎜⎜⎜⎝ c(j)

∫ T j

0
e−a(j)(T j −s) ds + e−a(j)T j

M∗
j

b2(j)

∫ T j

0
e−2a(j)(T j −s) ds + e−2a(j)T j

V ∗
j

⎞⎟⎟⎟⎠ ,

where T j ∼ Exp(−λjj ) is independent of (M∗
j ,V ∗

j ) and L(M∗
j ,V ∗

j ) is the unique solution to(
M∗

j

V ∗
j

)
d=
[√

Aj 0
0 Aj

](
M∗

j

V ∗
j

)
+
(

Cj

Bj

)
,
(
M∗

j ,V ∗
j

)⊥⊥ (Aj ,Bj ,Cj ), (3.3)

with (Aj ,Bj ,Cj ) having the distribution of

(
e
− ∫ τ

j
1

τ
j
0

2a(Xs) ds

,

∫ τ
j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds,

∫ τ
j
1

τ
j
0

c(Xs)e
− ∫ τ

j
1

s a(Xr ) dr ds

)
with notations used in Theorem 1. This generalization of Theorem 1 follows from expressing Y

in (3.2) as

Yt = Y0e
− ∫ t

0 a(Xr ) dr +
∫ t

0
c(Xs)
(
e− ∫ t

s a(Xr ) dr
)
ds +
∫ t

0
b(Xs)e

− ∫ t
s a(Xr ) dr dWs. (3.4)

The characterization (3.3) follows along the lines of the proof of Theorem 1 by modifying the
proof of Lemma 6.1 by determining the weak limit as t → ∞ of(

e− ∫ t
0 a(Xr ) dr ,

∫ t

0
c(Xs)e

− ∫ t
s a(Xr ) dr ds,

∫ t

0
b2(Xs)e

−2
∫ t
s a(Xr ) dr ds

)
.
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Remark 3.3. Theorem 1 can be extended further by replacing the standard Brownian motion W

by an arbitrary Lévy process L in (1.1):

dYt = −a(Xt )Yt dt + b(Xt ) dLt , Y0 = y ∈R. (3.5)

Exact long time behavior can be determined from the expression

Yt = Y0e
− ∫ t

0 a(Xr ) dr +
∫ t

0
b(Xs)e

− ∫ t
s a(Xr ) dr dLs

under the same assumptions as in Theorem 1 except that Assumption 2(b) is replaced by

E log+
∣∣∣∣∫ τ

j
1

τ
j
0

b(Xs)e
− ∫ τ

j
1

s a(Xr ) dr dLs

∣∣∣∣< ∞ for all j ∈ S.

The stationary distribution can be expressed as

(Yt ,Xt )
d→
(∑

j∈S

δU

({j})Zj ,U

)
as t → ∞

where U ⊥⊥ (Zj )j∈S and

Zj
d= b(j)

∫ T j

0
e−a(j)(T j −s) dLs + e−a(j)T j

Z∗
j ,

where T j ∼ Exp(−λjj ), L and Z∗
j are independent, and L(Z∗

j ) is the unique solution to (2.2)
with (A,B) having the distribution of

(
e
− ∫ τ

j
1

τ
j
0

a(Xs) ds

,

∫ τ
j
1

τ
j
0

b(Xs)e
− ∫ τ

j
1

s a(Xr ) dr dLs

)
. (3.6)

More details are found in the supplementary material [30]. The special case L = W corresponds

to Zj
d=√VjN with (Vj ,N) as in Theorem 1.

Remark 3.4. Theorem 1 together with Mill’s ratio inequalities yield tail bounds for the station-

ary distribution L(Y∞), writing Yt
d→ Y∞ as t → ∞ for the marginal convergence in (3.1). With

μj := L(Vj ),

∑
j∈S

πj

∫
R+

tφ(t/
√

σ)

1 + t2
μj (dσ) ≤ P [Y∞ > t] ≤

∑
j∈S

πj

∫
R+

φ(t/
√

σ)

t
μj (dσ ),

where φ is the density function of the standard normal distribution.
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Remark 3.5. Moments for the stationary distribution of Y in (3.5) can be computed recursively

using the representation for (Aj ,Bj ) in (3.6). From Z∗
j

d= AjZ
∗
j + Bj follows that, for m ∈ N,

(
Z∗

j

)m(1 − Am
j

)= m−1∑
k=0

(
m

k

)
Ak

jB
m−k
j

(
Z∗

j

)k
.

If there exists n ∈ N such that EAm
j < ∞ and EAk

jB
m−k
j < ∞ for 0 ≤ k ≤ m ≤ n, then E|Z∗

j |n <

∞ and independence between Z∗
j and (Aj ,Bj ) gives following recursive relation of moments

E
[(

Z∗
j

)m]= 1

1 − EAm
j

m−1∑
k=0

(
m

k

)
E
[
Ak

jB
m−k
j

]
E
[(

Z∗
j

)k]
.

From the above representations moments of the limit distribution

E
[
Ym∞
]=∑

j∈S

πjE

[(
b(j)

∫ T j

0
e−a(j)(T j −s) dLs + e−a(j)T j

Z∗
j

)m]

can be computed using the independence of T j , L, Z∗
j .

Remark 3.6. Theorem 1 can be generalized by allowing Y to be a vector valued Ornstein–
Uhlenbeck process. In that case, when both drift and diffusion functions a, b are matrix valued
functions of the hidden Markov process X, stability conditions will change in a nontrivial way
which require careful analysis. Theorem 1 and the methodology used for proving the theorem
can be extended to general regime switching dynamics that is marginal of a Markov renewal
process (also known as semi-Markov process), where for every regime j ∈ S the regime process
spends a random time before moving to another regime such that the time it stays there has finite
mean but is not exponentially distributed. Allowing for an infinite mean would make the analy-
sis substantially more complicated. Since a semi-Markov process is in general non-Markovian,
instead of a stationary distribution one should use the similar notion of a limiting distribution for
investigating exact long time behavior.

In many applications integrals of the form

Ft :=
∫ t

0
d(Xs)e

− ∫ t
s c(Xr ) dr ds (3.7)

appear for functions c, d : S → R and X being a regime process satisfying Assumption 1. The
following proposition addresses the long time behavior of Ft under the stability regime Eπc(·) >

0 and a suitable integrability property of d in the form of the following assumption.

Assumption 3. The S-valued process X and the functions c, d : S →R satisfy

(a) c is integrable with respect to π , and Eπc(·) > 0.
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(b) For every j ∈ S, E[log+ | ∫ τ
j
1

τ
j
0

d(Xs)e
− ∫ τ

j
1

s c(Xr ) dr ds|] < ∞.

The difference between Assumption 2 and Assumption 3 is that in the latter the function d can
take negative values in contrast to only positive values for b2 appearing in Assumption 2.

Proposition 3.7. Under Assumptions 1 and 3, Ft in (3.7) satisfies

Ft
d→
∑
j∈S

δU

({j})Vj as t → ∞,

where U ∼ π , U ⊥⊥ (Vj )j∈S and

Vj
d= d(j)

∫ T j

0
e−c(j)(T j −s) ds + e−c(j)Tj V ∗

j ,

where T j ∼ Exp(−λjj ) is independent of V ∗
j , and L(V ∗

j ) is the unique solution to (2.2) with
(A,B) having the distribution of

(
e
− ∫ τ

j
1

τ
j
0

c(Xs) ds

,

∫ τ
j
1

τ
j
0

d(Xs)e
− ∫ τ

j
1

s c(Xr ) dr ds

)
. (3.8)

The proof of Proposition 3.7 is found in the supplementary material [30].

Remark 3.8. The Goldie-Kesten theorem (Theorem 2.4.4 in Buraczewski et al. [9]) character-
izes heavy-tailed behavior of the solution to the fixed-point equation (2.2). If A ≥ 0 a.s. and
L(logA | A > 0) is non-arithmetic, P [Ax + B = x] < 1 for all x ∈ R, and there exists ν > 0
such that

EAν = 1, E|B|ν < ∞, EAν log+ A < ∞,

then there exist constants c+, c− ≥ 0 with c+ + c− > 0 such that

P [X > x] ∼ c+x−ν, P [X < −x] ∼ c−x−ν as x → ∞.

This result is applicable to the stationary distribution of Y in Theorem 1 if infj∈S a(j) < 0. Let

νj := sup
{
c > 0 : Ee

−c
∫ τ

j
1

τ
j
0

a(Xs) ds

< 1
}
, ν∗ := inf

j∈S
νj .

If

sup
j∈S

E

[(∫ τ
j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds

)ν∗/2]
< ∞
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and

sup
j∈S

E
[
e
−ν∗ ∫ τ

j
1

τ
j
0

a(Xs) ds

log+ e
−2
∫ τ

j
1

τ
j
0

a(Xs) ds]
< ∞,

then the left and right tails of the symmetric distribution of∑
j∈S

δU

({j })√VjN

are regularly varying with index ν∗. The statement follows since Vj is a stochastic affine trans-
formation of V ∗

j by random variables having finite moments of all orders, and since the standard
normal distribution has finite moments of all orders. The indices νj can be estimated from the
sample paths of X through the empirical estimator

ν̂n,j := inf

{
c > 0 : 1

n

n∑
i=1

e
−c
∫
I
j
i

a(Xs) ds = 1

}
, inf∅ := +∞,

of νj based on n regenerating intervals (I
j
i )ni=1. Therefore, ν∗ may be estimated iteratively as

the limit of

ν̂∗
n,jk+1

:= min

(̂
ν∗
n,jk

, inf

{
c ∈ (0, ν̂∗

n,jk

) : 1

n

n∑
i=1

e
−c
∫
I
j
i

a(Xs) ds = 1

})
, k = 1, . . . , |S|.

Another representation for the tail index infj∈S νj was presented in Bardet et al. [3] and De
Saporta and Yao [14] for a finite state space S, in terms of the spectral radius of a certain matrix.

4. Transient and null-recurrent regimes

In this section, we study long time behavior of the process Y = (Yt )t≥0 and processes defined
in terms of certain functionals of (Xt )t≥0 under conditions different from Assumption 2 and As-
sumption 3. In particular, it will be assumed that the stability condition Eπa(·) > 0 in Assump-
tion 2(a) does not hold and that instead Eπa(·) ≤ 0. By choosing a suitable Lyapunov function as
done in Shao [37] it follows that Eπa(·) < 0 and Eπa(·) = 0 correspond to transience and null
recurrence, respectively, for the model (1.1).

It can be shown that if Assumption 1 holds and the stability condition Eπa(·) > 0 in Assump-
tion 2(a) is replaced by Eπa(·) < 0, then the long time behavior of Y will be determined by the
first term in the representation

Yt = Y0e
− ∫ t

0 a(Xr ) dr +
∫ t

0
b(Xs)e

− ∫ t
s a(Xr ) dr dWs.

Consequently, the ergodic theorem gives

log |Yt |
t

a.s.→ −Eπa(·) as t → ∞.
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However, it is not well known how scaled fluctuations

log |Yt |√
t

+ √
tEπa(·)

behave for the model (1.1) as t → ∞, and how the regime switching dynamics play a role in that
limit. This is the motivation behind the results of the present section.

Assumption 4. The S-valued process X and the functions a, b : S → R satisfy

(a) a is integrable with respect to π , and Eπa(·) ≤ 0.

(b) For every j ∈ S, σ 2
j := Var(

∫ τ
j
1

τ
j
0

(a(Xs) − Eπa(·)) ds) ∈ (0,∞).

(c) Assumption 2(b) holds.

Assumption 4(b) holds trivially for |S| = 2 or for very simple cyclic Markov chains, but is
needed in the general setting for establishing the central-limit-theorem type results in Theorem 2
below.

Theorem 2. Suppose Assumptions 1 and 4 hold. Let U ∼ π and N ∼ N(0,1) be independent.

(a) (Transient regime) If Eπa(·) < 0, then

log |Yt |√
t

+ √
tEπa(·) d→

∑
j∈S

δU

({j }) σj√
E|I j

1 |
N as t → ∞.

(b) (Null-recurrent regime) If Eπa(·) = 0, b �= 0 and

E

[(
log
∫ τ

j
1

τ
j
0

b2(Xs)e
−2
∫ τ

j
1

s a(Xr ) dr ds

)2]
< ∞, (4.1)

then

log |Yt |√
t

d→
∑
j∈S

δU

({j}) σj√
E|I j

1 |
|N | as t → ∞. (4.2)

The proof of Theorem 2 is found in Sections 6.5 and 6.6. In Theorem 2(b), |N | appears in
the weak limit because the left-hand side in (4.2) asymptotically behaves as a scaled mixture of
maxima of partial sums of random walks for which the long time behavior was characterized by
Erdös and Kac in [16].

Remark 4.1. The result in Theorem 2(a) does not depend on the diffusion function b. In fact,
the result holds for any stochastic process (Yt )t≥0 such that

Yt = Ỹt e
− ∫ t

0 a(Xr ) dr where Ỹ
1/

√
t

t

d→ δ1 as t → ∞.
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An example is

Ỹt = Y0 +
∫ t

0
b(Xs)e

∫ s
0 a(Xr ) dr dLs,

for a Lévy process L together with an associated integrability condition.

For the exponential integral process (Ft )t≥0 in (3.7) results similar to Theorem 2 hold. Similar
results are found in Theorem 2(a) and Theorem 3(a) in Hitczenko and Wesolowski [26].

Assumption 5. The S-valued process X and the functions c, d : S →R satisfy

(a) c is integrable with respect to π , and Eπc(·) ≤ 0.

(b) For every j ∈ S, σ 2
j := Var(

∫ τ
j
1

τ
j
0

(c(Xs) − Eπc(·)) ds) ∈ (0,∞).

(c) Assumption 3(b) holds.

Proposition 4.2. Suppose that Assumptions 1 and 5 hold. Let U ∼ π and N ∼ N(0,1) be inde-
pendent.

(a) (Transient regime) If Eπc(·) < 0, then

log |Ft |√
t

+ √
tEπc(·) d→

∑
j∈S

δU

({j }) σj√
E|I j

1 |
N as t → ∞.

(b) (Null-recurrent regime) If Eπc(·) = 0, d �= 0 and

E

[(
log+
∫ τ

j
1

τ
j
0

d(Xs)e
− ∫ τ

j
k

s c(Xr ) dr ds

)2]
< ∞, (4.3)

then

log |Ft |√
t

d→
∑
j∈S

δU

({j }) σj√
E|I j

1 |
|N | as t → ∞.

Proposition 4.2 can be proved by a minor modification of the proof of Theorem 2. The proof
of Proposition 4.2 is therefore omitted.

5. Applications

The results presented in Sections 3 and 4 have applications in various contexts involving stochas-
tic processes under hidden Markovian environments. We consider two specific applications.
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5.1. The Cox–Ingersoll–Ross process

The Cox–Ingersoll–Ross (CIR) model is a stochastic differential equation introduced in Cox,
Ingersoll and Ross [13] as a model for interest rates (short rates) that has been extensively applied
since then. In Hou and Shao [27] criteria for existence of a stationary distribution of a CIR model
with regime-switching coefficients were determined and tail behavior was analyzed in terms of
existence of moments. In this section, we consider a natural parametrization of the CIR model
with parameters fluctuating according to a hidden Markov chain and derive explicit expressions
for its exact long time behavior. From these explicit expressions the tail behavior of the regime-
switching CIR model can be determined.

Let a, b : S → R, with a(x) �= 0 for all x ∈ S, be arbitrary functions, let n ∈N such that n ≥ 2,
and define

κ, θ, ξ : S → R, κ := 2a, θ := nb2

2a
, ξ := 2b.

Consider the CIR process (Rt )t≥0 defined as the solution to the stochastic differential equation

dRt = κ(Xt )
(
θ(Xt ) − Rt

)
dt + ξ(Xt )

√
Rt dWt , R0 = r0 > 0. (5.1)

The condition 2κθ ≥ ξ2, which holds automatically for the above parametrization since n ≥ 2
regardless of the value of Xt = x ∈ S, ensures that the CIR model with probability 1 takes only
strictly positive values.

Proposition 5.1. Consider the CIR model (5.1) with the above parametrization and X as defined
in (1.2). Let U ∼ π and N1, . . . ,Nn ∼ N(0,1) be independent.

(a) Suppose Assumptions 1 and 2 hold (Eπκ(·) > 0 and integrability of ξ ). Then

Rt
d→
∑
j∈S

δU

({j})Vj

n∑
i=1

N2
i as t → ∞, (5.2)

where Vj is independent of U,N1, . . . ,Nn and L(Vj ) is given in Theorem 1.
(b) Suppose Assumptions 1 and 4 hold. If Eπκ(·) < 0, then

logRt√
t

+ √
tEπκ(·) d→

∑
j∈S

δU

({j }) 2σj√
E|I j

1 |
N as t → ∞.

(c) Suppose Assumptions 1 and 4 hold. If Eπκ(·) = 0, ξ �= 0 and (4.1) holds, then

logRt√
t

d→
∑
j∈S

δU

({j}) 2σj√
E|I j

1 |
|N | as t → ∞.

The proof of Proposition 5.1 is found in the supplementary material [30].
Notice that the limit laws in Proposition 5.1(b) and (c) do not depend on n. We conjecture that

part (b) and (c) hold also for noninteger n. For noninteger n, the solution to the CIR process can
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be written as a sum of a squared Ornstein–Uhlenbeck processes and a squared Bessel process
(Chapter 6 in Jeanblanc et al. [28]). Therefore, one needs to investigate long time behavior of
Bessel process under Markovian regime switching in order to generalize Proposition 5.1 further.

5.2. The SIS model in epidemiology

We consider deterministic SIS epidemic models under Markov modulated environments similar
to the one considered in Gray et al. [22], but with |S| ≥ 2 number of regimes instead of just
two. Let α,β : S → (0,∞) be functions denoting the rate of infection and recovery, respectively.
Consider a fixed population of size n and subpopulation sizes It and St at times t ≥ 0, satisfying
It + St = n, of infectious and susceptible individuals, respectively. The model is determined by
the system of equations

dSt

dt
= −β(Xt)St It + α(Xt )It ,

dIt

dt
= β(Xt )St It − α(Xt)It , It + St = n, I0 > 0,

where It , St may take arbitrary real values in [0, n]. If α,β > 0 were constants instead of func-
tions, then one would have, with γ := βn − α,

It =
[
e−γ t

(
1

I0
− β

γ

)
+ β

γ

]−1

1{γ �=0} +
[

1

I0
+ βt

]−1

1{γ=0}

which would lead to

lim
t→∞ It = γ

β
if γ > 0, lim

t→∞ It = 0 if γ ≤ 0.

Notice that γ ≤ 0 is equivalent to R0 ≤ 1, where R0 is the reproduction number. For |S| = 2,
results from Gray et al. [22] suggest the following:

(a) If Eπγ (·) > 0, then persistence holds for the infected population size:

lim inf
t→∞ It ≤ Eπγ (·)

Eπβ(·) a.s., lim sup
t→∞

It ≥ Eπγ (·)
Eπβ(·) a.s.

(b) For Eπγ (·) = 0 it is conjectured that It → 0 in probability (Example 6.3.1 in [22] sup-
ported by a simulation study).

(c) If Eπγ (·) < 0, then It → 0 exponentially fast: lim supt→∞(log It )/t ≤ Eπγ (·) a.s.

The following proposition provides sharper asymptotic distributional results.

Proposition 5.2. Suppose that Assumption 3(b) holds with (c, d) = (γ,β). For the model de-
scribed above the following statements hold:

(a) If Eπγ (·) > 0, then for a, b ∈ R with a < b,

lim
t→∞P

[
1

It

∈ (a, b)

]
=
∑
j∈S

πjP
[
Vj ∈ (a, b)

]
,

where Vj is given in Proposition 3.7 when (c, d) = (γ,β).



Long time behavior under regime switching 2587

(b) If Eπγ (·) = 0, β �= 0, (4.3) holds with (c, d) = (γ,β), and σ 2
j := Var(

∫ τ
j
1

τ
j
0

γ (Xs) ds) ∈
(0,∞), then, for a, b ∈R with 0 ≤ a < b and N ∼ N(0,1),

lim
t→∞P

[
It ∈ (e−b

√
t , e−a

√
t
)]=∑

j∈S

πjP

[
|N | ∈

√
E|I j

1 |
σj

(a, b)

]
.

(c) If Eπγ (·) < 0 and σ 2
j := Var(

∫ τ
j
1

τ
j
0

(γ (Xs) − Eπγ (·)) ds) ∈ (0,∞), then, for a, b ∈ R with

a < b and N ∼ N(0,1),

lim
t→∞P

[
It ∈ (etEπγ (·)−b

√
t , etEπγ (·)−a

√
t
)]=∑

j∈S

πjP

[
N ∈
√

E|I j

1 |
σj

(a, b)

]
.

The proof of Proposition 5.2 is found in the supplementary material [30].
Similar results can be obtained for Markov modulated deterministic SIR models as integrals

of type
∫ t

0 e− ∫ t
s γ (Xr ) drβ(Xs) ds show up as a consequence of the Markovian environment in the

transition rates.

6. Proofs

We use the convention
∑k

i=j ai = 0 and
∏k

i=j ai = 1 if j > k for any ai . For functions c, d :
S →R and j ∈ S, define

G
c,d
j (x) :=

∫ x

0
d(j)e−c(j)(x−s) ds = x d(j)1{c(j)=0} + d(j)

c(j)

(
1 − e−xc(j)

)
1{c(j)�=0}. (6.1)

6.1. Proof of Theorem 1

Proof. We prove the statement in a number of steps. The marginal distribution of the regime
process X in S with initial distribution δi , i ∈ S, is denoted

Pij (0, t) := P [Xt = j | X0 = i] = Pt

(
i, {j }).

Let the transition kernels of the time-homogeneous Markov process (Xt , Yt )t≥0 be the maps
Pt : (S ×R) ×B(S ×R) → [0,1]. Then, for any (i, y0) ∈ S ×R and I × A ∈ B(S ×R),

Pt
(
(i, y0), I × A

)=∑
j∈I

P
[
(Xt , Yt ) ∈ ({j },A) | (X0, Y0) = (i, y0)

]
=
∑
j∈I

Pij (0, t)P [Yt ∈ A | Y0 = y0,X0 = i,Xt = j ], (6.2)
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since, by (1.3),

P
[
Xt = j | (X0, Y0) = (i, y0)

]= P [Xt = j | X0 = i] = Pij (0, t).

If we can show that there exists a μ∞ ∈ P(S × R) such that

δ(i,y0)P
t w→μ∞ as t → ∞ for all (i, y0) ∈ (S ×R), (6.3)

then as a consequence of the strong Feller property, satisfied trivially by (X,Y ), one can deduce
that μ∞ is the unique invariant distribution. The strong Feller property ensures that one may
interchange the order of limit and expectation in

μ∞Psf = lim
t→∞ δ(i,y0)P

tPsf = lim
t→∞ δ(i,y0)P

t+sf = μ∞f for all s > 0.

We find μ∞ using (6.3).
Lemma 6.1 below provides a representation of the second factor in the product in (6.2). The

representation is expressed in terms of an (FX
t )t≥0-adapted stochastic process (Q

(1)
t ,Q

(2)
t )t≥0.

Fix two arbitrary states i, j ∈ S and suppose that X0 = i. Recall that τ
j

0 is the first time X visits

state j and define τ
j
k and T

j
k for k ≥ 0 recursively as in (2.3). For j ∈ S, define

(
J

j
k ,K

j
k

) := (e− ∫ τ
j
k

τ
j
k−1

a(Xs) ds

,

∫ τ
j
k

τ
j
k−1

b2(Xs)e
−2
∫ τ

j
k

s a(Xr ) dr ds

)
, k ≥ 1,

(
J

j

0 ,K
j

0

) := (e− ∫ τ
j
0

0 a(Xs) ds,

∫ τ
j
0

0
b2(Xs)e

−2
∫ τ

j
0

s a(Xr ) dr ds

)
.

Notice that if X0 = j , then τ
j

0 = 0 and (J
j

0 ,K
j

0 ) = (1,0). The sequence (I
j
k )k≥1 of renewal

cycles is an i.i.d. sequence and therefore also (J
j
k ,K

j
k )∞k=1 is an i.i.d. sequence. However, for a

fixed t > 0, (J
j
k ,K

j
k )

g
j
t

k=1 is not an i.i.d. sequence since g
j
t , defined in (2.4), is a renewal time

which depends on the sum of all renewal cycle lengths before time t .

Lemma 6.1. Suppose Assumptions 1 and 2 hold. Then, for any t > 0 and A ∈ B(R),

P [Yt ∈ A | Y0 = y0,X0 = i,Xt = j ] = P
[
y0Q

(1)
t +
√

Q
(2)
t N ∈ A | X0 = i,Xt = j

]
,

where N ∼ N(0,1), N ⊥⊥ (FX
t )t≥0 and (Q

(1)
t ,Q

(2)
t )t≥0 is an (FX

t )t≥0-adapted process given by

Q
(1)
t = e

−a(j)(t−τ
j

g
j
t

)
( g

j
t∏

k=1

J
j
k

)
J

j

0 ,

Q
(2)
t = G

2a,b2

j

(
t − τ

j

g
j
t

)+ e
−2a(j)(t−τ

j

g
j
t

)
[( g

j
t∏

k=1

J
j
k

)2

K
j

0 +
g

j
t∑

k=1

( g
j
t∏

l=k+1

J
j
l

)2

K
j
k

]
.

(6.4)
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The proof of Lemma 6.1 is found in Section 6.2.
Now, using Lemma 6.1, we prove the main result by finding μ∞ by computing the limit as

t → ∞ for a term in the sum (6.2). Note that Pij (0, t) → πj as t → ∞ by the ergodicity property
in Assumption 1. Using Lemma 6.1 it remains to show that

P
[
y0Q

(1)
t +
√

Q
(2)
t N ∈ A | X0 = i,Xt = j

]→ P [√VjN ∈ A], (A, j) ∈ B(R) × S. (6.5)

Let us summarize the steps. (6.5) follows if we show

L
((

Q
(1)
t ,Q

(2)
t

) | X0 = i,Xt = j
) w→ δ0 ⊗L(Vj ) as t → ∞. (6.6)

The result above is observed by taking the limit as t → ∞ of the expression on the right-hand
side of (6.4). Set

Rt := (R(1)
t ,R

(2)
t

) := (( g
j
t∏

k=1

J
j
k

)
J

j

0 ,

( g
j
t∏

k=1

J
j
k

)2

K
j

0 +
g

j
t∑

k=1

( g
j
t∏

l=k+1

J
j
l

)2

K
j
k

)
(6.7)

and notice that, on {X0 = i,Xt = j},

(
Q

(1)
t ,Q

(2)
t

)= (e−a(j)(t−τ
j

g
j
t

)

R
(1)
t ,G

2a,b2

j

(
t − τ

j

g
j
t

)+ e
−2a(j)(t−τ

j

g
j
t

)

R
(2)
t

)
. (6.8)

Next we determine the weak limit, as t → ∞, of L(((t − τ
j

g
j
t

),Rt ) | X0 = i,Xt = j) and in

particular show that (t − τ
j

g
j
t

) and Rt are asymptotically independent, given {X0 = i,Xt = j}.
Take x ∈ (0, t) and set Bt,x := {X makes no jump in (t − x, t]}. Then,{

Xt = j, t − τ
j

g
j
t

> x,Rt ∈ A
}= {Bt,x,Xt−x = j,Rt−x ∈ A}, A := A1 × A2 ∈ B

(
R

2),
since τ

j

g
j
t

< t −x implies τ
j

g
j
t−x

= τ
j

g
j
t

which further implies Rt = Rt−x . Using the above equality,

P
[
t − τ

j

g
j
t

> x,Rt ∈ A | X0 = i,Xt = j
]

= P [Bt,x,Xt−x = j,Rt−x ∈ A | X0 = i,Xt = j ]
= P [Bt,x | Xt−x = j,Rt−x ∈ A,X0 = i]P [Rt−x ∈ A | Xt−x = j,X0 = i]

× P [Xt−x = j,X0 = i]
P [Xt = j,X0 = i] . (6.9)

Since Rt−x is FX
t−x -measurable, the Markov property of X implies

P [Bt,x | Xt−x = j,Rt−x ∈ A,X0 = i] = P [Bt,x | Xt−x = j ] = eλjj x .
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Moreover,

lim
t→∞

P [Xt−x = j,X0 = i]
P [Xt = j,X0 = i] = 1.

It remains to show the existence of

lim
t→∞P [Rt−x ∈ A | Xt−x = j,X0 = i] = lim

t→∞P [Rt−x ∈ A | Xt−x = j ]

and determine the limit explicitly. Clearly, if the limit exists, then it coincides with
limt→∞ P [Rt ∈ A | Xt = j ]. We will show the convergence by first proving (in Lemma 6.2
below) that L(Rt )

w→ L(R∞) as t → ∞ and determine L(R∞), and then (by combining Lem-
mas 6.3 and 6.4 below) prove that

L(Rt )
w→ L(R∞) as t → ∞ implies L(Rt | Xt = j)

w→ L(R∞) as t → ∞,

where L(R∞) is described as L(0,V ∗
j ) in Lemma 6.2. Notice that once the latter convergence is

shown, the asymptotic independence of (t − τ
j

g
j
t

) and Rt given Xt = j is established from (6.9)

and that L(t − τ
j

g
j
t

| Xt = j)
w→ Exp(−λjj ) as t → ∞.

Recall that Rt in (6.7) is defined for an arbitrary but fixed j ∈ S.

Lemma 6.2. Under Assumptions 1 and 2, Rt in (6.7) satisfies Rt
d→ (0,V ∗

j ) as t → ∞, where
V ∗

j satisfies

g
j
t∑

k=1

( g
j
t∏

l=k+1

J
j
l

)2

K
j
k

d→ V ∗
j as t → ∞,

V ∗
j

d= (J j

1

)2
V ∗

j + K
j

1 , V ∗
j ⊥⊥ (J j

1 ,K
j

1

)
.

(6.10)

The proof of Lemma 6.2 is found in Section 6.3.

Lemma 6.3. Consider an (FX
t )t≥0-adapted process (Ht )t≥0, and suppose there exist a random

variable H∞ and an increasing function t 
→ ε(t) such that

Ht
d→ H∞, ε(t) → ∞,

ε(t)

t
→ 0 and Ht − Ht−ε(t)

P→ 0 as t → ∞. (6.11)

Suppose further that (L
(1)
t ,L

(2)
t )t≥0 satisfies (L

(1)
t ,L

(2)
t )

P→ (0,1) as t → ∞. Then, for any A

such that P [H∞ ∈ ∂A] = 0,

lim
t→∞P

[
L

(1)
t + L

(2)
t Ht ∈ A | Xt = j

]= P [H∞ ∈ A].

The proof of Lemma 6.3 is found in Section 6.4.
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Lemma 6.4. There exists an (FX
t )t≥0-adapted process (R∗

t )t≥0 such that (Rt )t≥0 in (6.7) satis-
fies L(R∗

t ) = L(Rt ) and L(R∗
t | Xt = j) = L(Rt | Xt = j), and (R∗

t )t≥0 satisfies the conditions
for (Ht )t≥0 in (6.11) in Lemma 6.3 with (0,V ∗

j ) as H∞.

The proof of Lemma 6.4 is found in the supplementary material [30].
Notice that for establishing weak convergence it is sufficient to restrict attention to continuity

sets, that is, here sets satisfying P [H∞ ∈ ∂A] = 0. The part of (6.11) involving ε(t) resembles
Anscombe’s condition (Gut [23], page 16).

Using Lemmas 6.2, 6.3 and 6.4 together with (6.8) prove that

L
((

Q
(1)
t ,Q

(2)
t

) | X0 = i,Xt = j
) w→ δ0 ⊗L

(
G

2a,b2

j

(
T j
)+ e−2a(j)T j

V ∗
j

)
as t → ∞,

where T j ∼ Exp(−λjj ) is independent of V ∗
j . This proves (6.6) and concludes the proof of

Theorem 1. �

6.2. Proof of Lemma 6.1

Proof. The process (Yt )t≥0 in (1.1) has the representation

Yt = �(0, t)Y0 +
∫ t

0
b(Xs)�(s, t) dWs, �(s, t) := e− ∫ t

s a(Xr ) dr . (6.12)

Define (
Q

(1)
t ,Q

(2)
t

) := (�(0, t),

∫ t

0
b2(Xs)�

2(s, t) ds

)
. (6.13)

Note that on {X0 = i,Xt = j} := {ω ∈ � : X0(ω) = i,Xt (ω) = j},

Q
(1)
t = �(0, t) = �

(
τ

j

g
j
t

, t
)( g

j
t∏

l=1

�
(
τ

j

l−1, τ
j
l

))
�
(
0, τ

j

0

)

= e
−a(j)(t−τ

j

g
j
t

)
( g

j
t∏

l=1

J
j
l

)
J

j

0 , (6.14)

where the identity �(τ
j

g
j
t

, t) = e
−a(j)(t−τ

j

g
j
t

)

on {X0 = i,Xt = j} follows from the fact that if

s ∈ [τ j

g
j
t

, t), then Xs = j .

We now consider the second term in (6.12). Notice that by Itô isometry

L
(∫ t

0
b(Xs)�(s, t) dWs

∣∣∣X0 = i,Xt = j

)
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= L
([∫ t

0
b2(Xs)�

2(s, t) ds

]1/2

N

∣∣∣X0 = i,Xt = j

)
.

Partitioning [0, t] into [0, t] = [0, τ
j

0 ) ∪⋃g
j
t

k=1[τ j

k−1, τ
j
k ) ∪ [τ j

g
j
t

, t], we may write Q
(2)
t as

∫ t

0
b2(Xs)�

2(s, t) ds =
∫ τ

j
0

0
b2(Xs)�

2(s, t) ds +
g

j
t∑

k=1

∫ τ
j
k

τ
j
k−1

b2(Xs)�
2(s, t) ds

+
∫ t

τ
j

g
j
t

b2(Xs)�
2(s, t) ds. (6.15)

Expanding one term in the middle sum∫ τ
j
k

τ
j
k−1

b2(Xs)�
2(s, t) ds =

∫ τ
j
k

τ
j
k−1

�2(τ j
k , t
)
b2(Xs)�

2(s, τ j
k

)
ds

= �2(τ j

g
j
t

, t
)(g

j
t −1∏
i=k

�2(τ j
i , τ

j

i+1

))∫ τ
j
k

τ
j
k−1

b2(Xs)�
2(s, τ j

k

)
ds

for some k ≤ g
j
t . Putting these expressions in (6.15) gives

∫ t

0
b2(Xs)�

2(s, t) ds = �2(τ j

g
j
t

, t
)[(g

j
t −1∏
l=0

�2(τ j
l , τ

j

l+1

))∫ τ
j
0

0
b2(Xs)�

2(s, τ j

0

)
ds

+
g

j
t∑

k=1

(g
j
t −1∏
l=k

�2(τ j
l , τ

j

l+1

))∫ τ
j
k

τ
j
k −1

b2(Xs)�
2(s, τ j

k

)
ds

]

+
∫ t

τ
j

g
j
t

b2(Xs)�
2(s, t) ds.

On {X0 = i,Xt = j},∫ t

τ
j

g
j
t

b2(Xs)�
2(s, t) ds = b2(j)

∫ t

τ
j

g
j
t

e−2(t−s)a(j) ds = G
2a,b2

j

(
t − τ

j

g
j
t

)
.

Moreover, on {X0 = i,Xt = j},
∫ τ

j

g
j
t

0
b2(Xs)�

2(s, t) ds = e
−2a(j)(t−τ

j

g
j
t

)
[( g

j
t∏

k=1

J
j
k

)2

K
j

0 +
g

j
t∑

k=1

( g
j
t∏

l=k+1

J
j
l

)2

K
j
k

]
.
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Combining the above gives, on {X0 = i,Xt = j},

Q
(2)
t = G

2a,b2

j

(
t − τ

j

g
j
t

)+ e
−2a(j)(t−τ

j

g
j
t

)
[( g

j
t∏

k=1

J
j
k

)2

K
j

0 +
g

j
t∑

k=1

( g
j
t∏

l=k+1

J
j
l

)2

K
j
k

]
. (6.16)

The assertion of Lemma 6.1 follows by combining (6.14) and (6.16). �

6.3. Proof of Lemma 6.2

In this section, we prove Lemma 6.2 by first proving (6.10) and then

( g
j
t∏

k=1

J
j
k

)
J

j

0
d→ 0,

( g
j
t∏

k=1

J
j
k

)2

K
j

0
d→ 0 as t → ∞. (6.17)

Proof of (6.10). To simplify the notation we omit the superscript j in this subsection. Main
technical difficulty here is to obtain a similar version of Vervaat’s Theorem 1.5 in [40] but in a
continuous time context driven by the renewal time gt . For n ≥ 1, define

S̃n :=
n∑

k=1

(
n∏

i=k+1

Ji

)2

Kk = Kn + J 2
n Kn−1 + · · · + (J2 · · ·Jn

)2
K1.

Note that S̃n+1 = S̃nJ
2
n+1 + Kn+1 and therefore (S̃n)n≥1 is Markovian. For n ≥ 1, define

Sn :=
n∑

k=1

(
k−1∏
i=1

Ji

)2

Kk = K1 + J 2
1 K2 + · · · + (J1 · · ·Jn−1)

2Kn.

Note that Sn+1 = Sn + (J 2
1 · · ·J 2

n )Kn+1 and therefore (Sn)n≥1 is not Markovian but Sn is a partial
sum of the infinite sum

S∞ :=
∞∑

k=1

(
k−1∏
i=1

Ji

)2

Kk.

We will show that S̃gt

d→ S∞ as t → ∞ where S∞ satisfies S∞
d= (J1)

2S∞+K1, S∞ ⊥⊥ (J1,K1).
From uniqueness of the solution we will conclude that L(S∞) = L(V ∗

j ). We will prove (6.10) in
the following steps.

• Step 1: S̃gt

d= Sgt for any t > 0.

• Step 2:
logKgt+1

gt

a.s.→ 0 as t → ∞.

• Step 3: S∞
d=∑∞

k=1(
∏k−1

i=1 Ji+gt+1)
2Kk+gt+1.

• Step 4: L(S∞) is the unique solution of (6.10).
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The proof of Steps 1–4 is found in the supplementary material [30]. These results can be obtained
from Vervaat’s Theorem 1.5 in [40] where discrete times are replaced by the renewal time gt .
Given Steps 1–4, the proof of (6.10) is completed as follows.

Notice that

S∞ − Sgt = J 2
1 J 2

2 · · ·J 2
gt

Kgt+1 + J 2
1 J 2

2 · · ·J 2
gt+1

( ∞∑
k=1

(
k−1∏
i=1

Ji+gt+1

)2

Kk+gt+1

)
. (6.18)

We will prove that the right-hand side in (6.18) converges to zero in probability as t → ∞. Since

by Step 1, L(S̃gt ) = L(Sgt ) holds. Then the assertion S̃gt

d→ S∞ will follow immediately. The
first term on the right-hand side in (6.18) may be written as

J 2
1 J 2

2 · · ·J 2
gt

Kgt+1 = exp

{
t

(
2
∑gt

i=1 logJi

gt

+ logKgt+1

gt

)
gt

t

}
.

By the renewal theorem,

gt

t

a.s.→ 1

E|I1| as t → ∞
and by Assumption 2(a), as t → ∞,∑gt

i=1 logJi

gt

a.s.→ E logJ1 = −E

∫ τ1

τ0

a(Xs) ds = −E|I1|Eπa(·) < 0.

Together with Step 2, we have therefore(
2
∑gt

i=1 logJi

gt

+ logKgt+1

gt

)
gt

t

a.s.→ −2Eπa(·) < 0 as t → ∞

from which J 2
1 J 2

2 · · ·J 2
gt

Kgt+1
a.s.→ 0 as t → ∞ follows. For the second term on the right-hand

side in (6.18), by Step 3,

L
( ∞∑

k=1

(
k−1∏
i=1

Ji+gt+1

)2

Kk+gt+1

)
= L(S∞)

and

J 2
1 J 2

2 · · ·J 2
gt+1 = exp

{
t

(
2
∑gt+1

i=1 logJi

gt + 1

)
gt + 1

t

}
a.s.→ 0 as t → ∞,

from which Slutsky’s theorem gives

J 2
1 J 2

2 · · ·J 2
gt+1

( ∞∑
k=1

(
k−1∏
i=1

Ji+gt+1

)2

Kk+gt+1

)
P→ 0 as t → ∞.

Given Steps 1–4 we have thus shown (6.10). �
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Given the proof of (6.17) in the supplementary material [30], the proof Lemma 6.2 is complete.

Remark 6.1. We acknowledge that Lemma 6.2 can be shown using Anscombe’s condition

(page 16 in Gut [23]) for gt
P→ ∞ as t → ∞, together with

Rτn :=
((

n∏
k=1

J
j
k

)
J

j

0 ,

(
n∏

k=1

J
j
k

)2

K
j

0 +
n∑

k=1

(
n∏

l=k+1

J
j
l

)2

K
j
k

)
d→ (0,V ∗

j

)
as n → ∞.

Verification of the above convergence and Anscombe’s condition for (Rτn)n≥1 lead to arguments
similar to Steps 1–4 above.

6.4. Proof of Lemma 6.3

Proof. The main assertion will follow if we prove that, for any A with P [H∞ ∈ ∂A] = 0,

lim
t→∞P [Ht ∈ A,Xt = j ] = πj lim

t→∞P [Ht ∈ A] = πjP [H∞ ∈ A]. (6.19)

Then, by Slutsky’s theorem,

lim
t→∞P

[
L

(1)
t + L

(2)
t Ht ∈ A,Xt = j

]= lim
t→∞P [Ht ∈ A,Xt = j ].

We prove (6.19) in the following two steps:

• Step 1: limt→∞ P [Ht−ε(t) ∈ A | Xt = j ] = P [H∞ ∈ A].
• Step 2: limt→∞ P [Ht ∈ A | Xt = j ] = limt→∞ P [Ht−ε(t) ∈ A | Xt = j ].
Step 1: Notice that

P [Ht−ε(t) ∈ A | Xt = j ]

=
∑
j ′∈S

P
[
Ht−ε(t) ∈ A | Xt−ε(t) = j ′,Xt = j

]P [Xt−ε(t) = j ′,Xt = j ]
P [Xt = j ]

=
∑
j ′∈S

P
[
Ht−ε(t) ∈ A | Xt−ε(t) = j ′]P [Xt = j | Xt−ε(t) = j ′]P [Xt−ε(t) = j ′]

P [Xt = j ]

=
∑
j ′∈S

P
[
Ht−ε(t) ∈ A,Xt−ε(t) = j ′]Pj ′j (0, ε(t))

P [Xt = j ]

= P [Ht−ε(t) ∈ A] +
∑
j ′∈S

P
[
Ht−ε(t) ∈ A,Xt−ε(t) = j ′](Pj ′j (0, ε(t))

P [Xt = j ] − 1

)
. (6.20)

The second equality follows by observing Ht−ε(t) is conditionally independent of Xt given
Xt−ε(t). The third equality follows since the Markov chain X is time homogenous. Observe that
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irreducibility implies that πj > 0 for all j ∈ S. By ergodicity of X, limt→∞ Pj ′j (0, ε(t))/P [Xt =
j ] = 1 since both the numerator and denominator converge to πj . For a fixed j ∈ S and any
δ ∈ (0,πj ), there exists tδ > 0 such that |P [Xt = j ] − πj | ≤ δ for t ≥ tδ . Notice that each term
in the sum (6.20) converges to 0 as t → ∞. Notice also that, for t ≥ tδ ,

P
[
Ht−ε(t) ∈ A,Xt−ε(t) = j ′]∣∣∣∣Pj ′j (0, ε(t))

P [Xt = j ] − 1

∣∣∣∣≤ P
[
Xt−ε(t) = j ′] 2

P [Xt = j ]

≤ P
[
Xt−ε(t) = j ′] 2

πj − δ

and that the upper bound is summable over j ′ ∈ S and has a limit as t → ∞ which is also
summable over j ′ ∈ S. Hence, by Pratt’s lemma (page 101 in Schilling [34]), the sum in (6.20)

converges to 0 as t → ∞. Since Ht−ε(t)
d→ H∞ as t → ∞ the proof of Step 1 is complete.

Step 2: Take any δ > 0 and define Aδ := {x : d(x,A) < δ}, A−δ := {x ∈ A : d(x,Ac) > δ} and
note that A−δ ⊆ A ⊆ Aδ . Denoting Bt := Ht − Ht−ε(t) one has

P [Ht ∈ A | Xt = j ] = P
[
Ht−ε(t) + Bt ∈ A, |Bt | ≤ δ | Xt = j

]+ Ct , (6.21)

where

lim sup
t→∞

Ct ≤ lim sup
t→∞

P [|Bt | > δ]
P [Xt = j ] = 0.

The first term on the right-hand side in (6.21) satisfies

P
[
Ht−ε(t) ∈ A−δ | Xt = j

]≤ P
[
Ht−ε(t) + Bt ∈ A, |Bt | ≤ δ | Xt = j

]
≤ P
[
Ht−ε(t) ∈ Aδ | Xt = j

]
.

The assertion follows from Step 1 together with letting δ → 0. �

6.5. Proof of Theorem 2(a)

Proof. Set Ỹt := Y0 + ∫ t

0 b(Xs)�
−1(0, s) dWs and notice that Yt = �(0, t)Ỹt . Fix an arbitrary

j ∈ S and set

C
(1)
t := (

∏g
j
t

l=1 J
j
l )1/

√
t

e−√
tEπa(·) , C

(2)
t := (e−a(j)(t−τ

j

g
j
t

)

J
j

0

)1/
√

t

and

C
(3)
t :=
∣∣∣∣y0 +
(G

2a,b2

j (t − τ
j

g
j
t

)

�2(0, t)
+

K
j

0 + S∗
g

j
t

(J
j

0 )2

)1/2

N

∣∣∣∣1/
√

t

,
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where N ∼ N(0,1), N ⊥⊥ X, and

S∗
n :=

n∑
i=1

K
j
i

(J
j
i )2

i−1∏
k=1

(
1

J
j
k

)2

, n ≥ 1.

Notice that

L
(|Ỹt |1/

√
t | X0 = i,Xt = j,Y0 = y0

)
= L
(∣∣∣∣y0 +

(
�−2(0, t)

∫ t

0
b2(Xs)�

2(s, t) ds

)1/2

N

∣∣∣∣1/
√

t ∣∣∣X0 = i,Xt = j,Y0 = y0

)
= L
(
C

(3)
t | X0 = i,Xt = j,Y0 = y0

)
and

L
( |Yt |1/

√
t

e−√
tEπa(·)

∣∣∣X0 = i,Xt = j,Y0 = y0

)
= L
(
C

(1)
t C

(2)
t C

(3)
t | X0 = i,Xt = j,Y0 = y0

)
. (6.22)

For any A ∈ B(R),

P

[ |Yt |1/
√

t

e−√
tEπa(·) ∈ A

∣∣∣X0 = i, Y0 = y0

]
=
∑
j∈S

P
[
C

(1)
t C

(2)
t C

(3)
t ∈ A,Xt = j | X0 = i, Y0 = y0

]
=
∑
j∈S

Pij (0, t)P
[
C

(1)
t C

(2)
t C

(3)
t ∈ A | X0 = i,Xt = j,Y0 = y0

]
.

By the ergodic theorem and the renewal theorem, E logJ
j

1 = −E|I j

1 |Eπa(·), g
j
t /t

a.s.→ 1/E|I j

1 |
as t → ∞. Therefore, by applying the central limit theorem for the renewal reward process (see,
e.g., Theorem 2.2.5 in Tijms [39]), when the reward is logJ

j
l for the l-th interval I

j
l , together

with the continuous mapping theorem using the map x 
→ ex , with N ∼ N(0,1),

L
(
C

(1)
t | X0 = i, Y0 = y0

) w→ L
(

exp

{
σj√
E|I j

1 |
N

})
as t → ∞. (6.23)

Applying arguments similar to those in Step 4 in the proof of Lemma 6.2, using

E log
1

(J
j

1 )2
< 0, E log+ K

j

1

(J
j

1 )2
< ∞,
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we find that

S∗
g

j
t

d→ S∗ as t → ∞, S∗ d= 1

(J
j

1 )2
S∗ + K

j

1

(J
j

1 )2
, S∗ ⊥⊥

(
1

J
j

1

,
K

j

1

(J
j

1 )2

)
.

In the transient regime,

log |�2(0, t)|
t

a.s.→ −2Eπa(·) > 0 as t → ∞,

so �(0, t) diverges exponentially fast as t → ∞. Moreover, G
2a,b2

j (t − τ
j

g
j
t

) is OP (1). Using that

S∗
g

j
t

d→ S∗ as t → ∞ now leads to

L
((

C
(3)
t

)√t | X0 = i, Y0 = y0
) w→ P

[∣∣∣∣y0 +
(

K
j

0 + S∗

(J
j

0 )2

)1/2

N

∣∣∣∣ ∈ ·
]

as t → ∞ (6.24)

which implies that

L
(
C

(3)
t | X0 = i, Y0 = y0

) w→ δ1 as t → ∞. (6.25)

Moreover, since both t − τ
j

g
j
t

and J
j

0 are OP (1),

L
(
C

(2)
t | X0 = i, Y0 = y0

) w→ δ1 as t → ∞. (6.26)

Therefore combining (6.23), (6.25) and (6.26), and applying Lemma 6.3, taking

L
(1)
t := 0, L

(2)
t := C

(2)
t C

(3)
t , Ht := C

(1)
t

in the statement of Lemma 6.3, show that

L
(
C

(1)
t C

(2)
t C

(3)
t | X0 = i,Xt = j,Y0 = y0

) w→ L
(

exp

{
σj√
E|I j

1 |
N

})
as t → ∞

given that C
(1)
t satisfies condition (6.11) imposed on Ht in Lemma 6.3. C

(1)
t satisfies condition

(6.11) if Mt := logC
(1)
t satisfies (6.11), that is, for some increasing function t 
→ ε(t) such that

ε(t) → ∞ and ε(t)/t → 0 as t → ∞,

Mt − Mt−ε(t)
P→ 0 as t → ∞. (6.27)
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Lemma 6.5 below verifies this condition. Finally, since limt→∞ Pij (0, t) = πj , the dominated
convergence theorem applied to

P

[ |Yt |1/
√

t

e−√
tEπa(·) ∈ A

∣∣∣X0 = i, Y0 = y0

]
=
∑
j∈S

Pij (0, t)P
[
C

(1)
t C

(2)
t C

(3)
t ∈ A | X0 = i,Xt = j,Y0 = y0

]
,

using the trivial upper bound 1 for the second factor of terms in the above sum, completes the
proof. �

Lemma 6.5. There exists an increasing function t 
→ ε(t) such that ε(t) → ∞ and ε(t)/t → 0
as t → ∞ such that (6.27) holds.

The proof of Lemma 6.5 is found in the supplementary material [30].

6.6. Proof of Theorem 2(b)

Before proving Theorem 2(b) we introduce some notations useful for random walk related
arguments. Fix two arbitrary states i, j ∈ S. Given Eπa(·) = 0, the random walk (S

⊗j
n )n≥0

given by S
⊗j

0 := 0 and S
⊗j
n :=∑n

k=1 logJ
j
k for n ≥ 1 is null-recurrent. Recall that logJ

j
k =

− ∫ τ
j
k

τ
j
k−1

a(Xs) ds with mean −Eπa(·)E|I j

1 | = 0 and variance σ 2
j . For this random walk we de-

fine the sequence (Z
⊗j
k )k≥1 of ladder variables as follows. Define the sequence (T

⊗j
k )k≥1 such

that

T
⊗j

1 := inf
{
m : S⊗

m > 0
}
, T

⊗j
k := inf

{
m > T

⊗j

k−1 : S⊗j
m > S

⊗j
Tk−1

}
.

The ladder variables are defined as Z
⊗j
k := S

⊗j

T
⊗j
k

− S
⊗j

T
⊗j
k−1

. Let M
⊗j
n := max1≤k≤n

∑k
i=1 logJ

j
i .

Proof. We begin by expanding (6.12) differently from what was done in the proof of Theo-
rem 2(a). Since Eπa(·) = 0, instead of extracting �(0, t) as in the proof of Theorem 2(a), we
will extract Z∗

n := max1≤k≤n(
∏k−1

i=1 J
j
i )2K

j
k , for n = g

j
t . Note that all J

j
k , K

j
k are non-negative.

Let N ∼ N(0,1) and recall notations Q
(1)
t and Q

(2)
t in (6.13) and Sn :=∑n

k=1(
∏k−1

i=1 J
j
i )2K

j
k .

Using that S̃
g

j
t

d= S
g

j
t

for all t > 0 (Step 1 in the proof of (6.10)), on {X0 = i,Xt = j},

Yt
d= Y0Q

(1)
t +
√

Q
(2)
t N

= Y0e
−a(j)(t−τ

j

g
j
t

)
( g

j
t∏

k=1

J
j
k

)
J

j

0
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+
(

G
2a,b2

j

(
t − τ

j

g
j
t

)+ e
−2a(j)(t−τ

j

g
j
t

)
[( g

j
t∏

k=1

J
j
k

)2

K
j

0 + S̃
g

j
t

])1/2

N

d=√Z∗
g

j
t

(
Y0B

(1)
t +
(

B
(2)
t + B

(3)
t

S
g

j
t

Z∗
g

j
t

)1/2

N

)
, (6.28)

where

B
(1)
t := 1√

Z∗
g

j
t

e
−a(j)(t−τ

j

g
j
t

)
( g

j
t∏

k=1

J
j
k

)
J

j

0 ,

B
(2)
t := 1

Z∗
g

j
t

(
G

2a,b2

j

(
t − τ

j

g
j
t

)+ e
−2a(j)(t−τ

j

g
j
t

)
( g

j
t∏

k=1

J
j
k

)2

K
j

0

)
,

B
(3)
t := e

−2a(j)(t−τ
j

g
j
t

)

.

Denote the second factor in the product (6.28) by Bt . Since K
j
n(
∏n−1

i=1 J
j
i )2 ≤ Z∗

n for all n ≥ 1,

B
(1)
t , B

(2)
t , B

(3)
t are all OP (1). Since Z∗

n ≤ Sn ≤ nZ∗
n for all n ≥ 1, |Bt | = OP (

√
t) and is strictly

positive. Moreover,

|Bt |1/
√

t = exp

{
1√
t

log

∣∣∣∣Y0B
(1)
t +
(

B
(2)
t + B

(3)
t

S
g

j
t

Z∗
g

j
t

)1/2

N

∣∣∣∣} P→ 1 as t → ∞.

Consider the probability

P
[|Yt |1/

√
t ∈ A | X0 = i, Y0 = y0

]
=
∑
j∈S

Pij (0, t)P
[(

Z∗
g

j
t

) 1
2
√

t |Bt |
1√
t ∈ A | X0 = i,Xt = j,Y0 = y0

]
. (6.29)

We want to let t → ∞ in (6.29) and in order to get rid of conditioning on Xt = j on the right-
hand side we apply Lemma 6.3 with(

L
(1)
t ,L

(2)
t ,Ht

) := (0, |Bt |1/
√

t ,
(
Z∗

g
j
t

)1/(2
√

t))
.

This leads to

lim
t→∞P

[|Yt |1/
√

t ∈ A | X0 = i, Y0 = y0
]

=
∑
j∈S

πj lim
t→∞P

[(
Z∗

g
j
t

)1/(2
√

t) ∈ A | X0 = i
]

(6.30)
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if the right-hand limit in (6.30) exists and (logZ∗
g

j
t

)/
√

t satisfies condition (6.27) in the role of

Mt . Lemma 6.6 below verifies that. Immediately from the definitions of M
⊗j
n and Z∗

n (see also
(4.4) in Hitczenko and Wesolowski [26]) follow

2M
⊗j

g
j
t

− max
1≤k≤g

j
t

logK
j
k ≤ logZ∗

g
j
t

≤ 2M
⊗j

g
j
t

+ max
1≤k≤g

j
t

logK
j
k .

It is shown in [26] that

M
⊗j
n√
n

d→ σj |N | and
max1≤k≤n logK

j
k√

n

P→ 0 as n → ∞.

Lemma 6.6 below gives the renewal time version of the above convergence. In particular,

logZ∗
g

j
t

2
√

t

d→ σj |N | as t → ∞,

which concludes the proof of Theorem 2(b). �

Lemma 6.6. Under the assumptions of Theorem 2(b), as t → ∞,

(a)
max

1≤k≤g
j
t

logK
j

g
j
t√

g
j
t

a.s.→ 0, (b)

M
⊗j

g
j
t√

g
j
t

d→ σj |N |,

(c)
logZ∗

g
j
t√

t
satisfies (6.27) in the role of Mt.

The proof of Lemma 6.6 is found in the supplementary material [30].

Acknowledgements

The authors thank the two anonymous reviewers for comments and suggestions that significantly
improved the paper. The second author thanks Daniele Cappelletti and Carsten Wiuf for several
illuminating discussions on a related problem in Cappelletti et al. [11].

Supplementary Material

Supplement: Proofs of some of the results (DOI: 10.3150/20-BEJ1196SUPP; .pdf). The sup-
plementary material contains the proofs of Propositions 3.7, 5.1 and 5.2, proof of a part of
Lemma 6.2, proofs of Lemmas 6.4, 6.5 and 6.6, and additional details for Remark 3.3.

https://doi.org/10.3150/20-BEJ1196SUPP


2602 F. Lindskog and A. Pal Majumder

References

[1] Abourashchi, N., Clacher, I., Freeman, M.C., Hillier, D., Kemp, M. and Zhang, Q. (2016). Pension
plan solvency and extreme market movements: A regime switching approach. Eur. J. Finance 22
1292–1319.

[2] Ang, A. and Timmermann, A. (2012). Regime changes and financial markets. Annu. Rev. Financ.
Econ. 4 313–337.

[3] Bardet, J.-B., Guérin, H. and Malrieu, F. (2010). Long time behavior of diffusions with Markov switch-
ing. ALEA Lat. Am. J. Probab. Math. Stat. 7 151–170. MR2653702

[4] Basak, G.K., Bisi, A. and Ghosh, M.K. (1996). Stability of a random diffusion with linear drift. J.
Math. Anal. Appl. 202 604–622. MR1406250 https://doi.org/10.1006/jmaa.1996.0336

[5] Behme, A. and Lindner, A. (2015). On exponential functionals of Lévy processes. J. Theoret. Probab.
28 681–720. MR3370671 https://doi.org/10.1007/s10959-013-0507-y

[6] Benaïm, M. and Lobry, C. (2016). Lotka–Volterra with randomly fluctuating environments or “How
switching between beneficial environments can make survival harder”. Ann. Appl. Probab. 26 3754–
3785. MR3582817 https://doi.org/10.1214/16-AAP1192

[7] BenSaida, A. (2015). The frequency of regime switching in financial market volatility. J. Empir. Fi-
nance 32 63–79.

[8] Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Probab. Surv. 2 191–212.
MR2178044 https://doi.org/10.1214/154957805100000122

[9] Buraczewski, D., Damek, E. and Mikosch, T. (2016). Stochastic Models with Power-Law Tails.
Springer Series in Operations Research and Financial Engineering. Cham: Springer. MR3497380
https://doi.org/10.1007/978-3-319-29679-1

[10] Buraczewski, D. and Iksanov, A. (2015). Functional limit theorems for divergent perpetuities in the
contractive case. Electron. Commun. Probab. 20 no. 10, 14. MR3314645 https://doi.org/10.1214/ECP.
v20-3915

[11] Cappelletti, D., Pal Majumder, A. and Wiuf, C. (2019). Long time asymptotics of stochastic reaction
systems. Preprint. Available at arXiv:1912.00401.

[12] Cloez, B. and Hairer, M. (2015). Exponential ergodicity for Markov processes with random switching.
Bernoulli 21 505–536. MR3322329 https://doi.org/10.3150/13-BEJ577

[13] Cox, J.C., Ingersoll, J.E. Jr. and Ross, S.A. (1985). A theory of the term structure of interest rates.
Econometrica 53 385–407. MR0785475 https://doi.org/10.2307/1911242

[14] de Saporta, B. and Yao, J.-F. (2005). Tail of a linear diffusion with Markov switching. Ann. Appl.
Probab. 15 992–1018. MR2114998 https://doi.org/10.1214/105051604000000828

[15] Djehiche, B. and Löfdahl, B. (2018). A hidden Markov approach to disability insurance. N. Am. Ac-
tuar. J. 22 119–136. MR3774616 https://doi.org/10.1080/10920277.2017.1387570

[16] Erdös, P. and Kac, M. (1946). On certain limit theorems of the theory of probability. Bull. Amer. Math.
Soc. 52 292–302. MR0015705 https://doi.org/10.1090/S0002-9904-1946-08560-2

[17] Feng, R., Kuznetsov, A. and Yang, F. (2019). Exponential functionals of Lévy processes and variable
annuity guaranteed benefits. Stochastic Process. Appl. 129 604–625. MR3907011 https://doi.org/10.
1016/j.spa.2018.03.011

[18] Fink, H., Klimova, Y., Czado, C. and Stöber, J. (2017). Regime switching vine copula models for
global equity and volatility indices. Econometrics 5 3–17.

[19] Gao, H., Mamon, R., Liu, X. and Tenyakov, A. (2015). Mortality modelling with regime-switching
for the valuation of a guaranteed annuity option. Insurance Math. Econom. 63 108–120. MR3372586
https://doi.org/10.1016/j.insmatheco.2015.03.018

[20] Genon-Catalot, V., Jeantheau, T. and Larédo, C. (2000). Stochastic volatility models as hidden Markov
models and statistical applications. Bernoulli 6 1051–1079. MR1809735 https://doi.org/10.2307/
3318471

http://www.ams.org/mathscinet-getitem?mr=2653702
http://www.ams.org/mathscinet-getitem?mr=1406250
https://doi.org/10.1006/jmaa.1996.0336
http://www.ams.org/mathscinet-getitem?mr=3370671
https://doi.org/10.1007/s10959-013-0507-y
http://www.ams.org/mathscinet-getitem?mr=3582817
https://doi.org/10.1214/16-AAP1192
http://www.ams.org/mathscinet-getitem?mr=2178044
https://doi.org/10.1214/154957805100000122
http://www.ams.org/mathscinet-getitem?mr=3497380
https://doi.org/10.1007/978-3-319-29679-1
http://www.ams.org/mathscinet-getitem?mr=3314645
https://doi.org/10.1214/ECP.v20-3915
http://arxiv.org/abs/arXiv:1912.00401
http://www.ams.org/mathscinet-getitem?mr=3322329
https://doi.org/10.3150/13-BEJ577
http://www.ams.org/mathscinet-getitem?mr=0785475
https://doi.org/10.2307/1911242
http://www.ams.org/mathscinet-getitem?mr=2114998
https://doi.org/10.1214/105051604000000828
http://www.ams.org/mathscinet-getitem?mr=3774616
https://doi.org/10.1080/10920277.2017.1387570
http://www.ams.org/mathscinet-getitem?mr=0015705
https://doi.org/10.1090/S0002-9904-1946-08560-2
http://www.ams.org/mathscinet-getitem?mr=3907011
https://doi.org/10.1016/j.spa.2018.03.011
http://www.ams.org/mathscinet-getitem?mr=3372586
https://doi.org/10.1016/j.insmatheco.2015.03.018
http://www.ams.org/mathscinet-getitem?mr=1809735
https://doi.org/10.2307/3318471
https://doi.org/10.1214/ECP.v20-3915
https://doi.org/10.1016/j.spa.2018.03.011
https://doi.org/10.2307/3318471


Long time behavior under regime switching 2603

[21] Gjessing, H.K. and Paulsen, J. (1997). Present value distributions with applications to ruin theory
and stochastic equations. Stochastic Process. Appl. 71 123–144. MR1480643 https://doi.org/10.1016/
S0304-4149(97)00072-0

[22] Gray, A., Greenhalgh, D., Mao, X. and Pan, J. (2012). The SIS epidemic model with Markovian
switching. J. Math. Anal. Appl. 394 496–516. MR2927473 https://doi.org/10.1016/j.jmaa.2012.05.029

[23] Gut, A. (2009). Stopped Random Walks: Limit Theorems and Applications, 2nd ed. Springer Series in
Operations Research and Financial Engineering. New York: Springer. MR2489436 https://doi.org/10.
1007/978-0-387-87835-5

[24] Hairer, M. (2010). Convergence of Markov processes. Lecture notes.
[25] Hardy, M.R. (2001). A regime-switching model of long-term stock returns. N. Am. Actuar. J. 5 41–53.

MR1988438 https://doi.org/10.1080/10920277.2001.10595984
[26] Hitczenko, P. and Wesołowski, J. (2011). Renorming divergent perpetuities. Bernoulli 17 880–894.

MR2817609 https://doi.org/10.3150/10-BEJ297
[27] Hou, T. and Shao, J. (2019). Heavy tail and light tail of Cox–Ingersoll–Ross processes with regime-

switching. Sci. China Math.. https://doi.org/10.1007/s11425-017-9392-5.
[28] Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Mar-

kets. Springer Finance. London: Springer London, Ltd. MR2568861 https://doi.org/10.1007/
978-1-84628-737-4

[29] Lin, X.S., Tan, K.S. and Yang, H. (2009). Pricing annuity guarantees under a regime-switching model.
N. Am. Actuar. J. 13 316–338. MR2579569 https://doi.org/10.1080/10920277.2009.10597557

[30] Lindskog, F. and Pal Majumder, A. (2020). Supplement to “Exact long time behavior of some regime
switching stochastic processes.” https://doi.org/10.3150/20-BEJ1196SUPP

[31] Mao, X. and Yuan, C. (2006). Stochastic Differential Equations with Markovian Switching. London:
Imperial College Press. MR2256095 https://doi.org/10.1142/p473

[32] Maulik, K. and Zwart, B. (2006). Tail asymptotics for exponential functionals of Lévy processes.
Stochastic Process. Appl. 116 156–177. MR2197972 https://doi.org/10.1016/j.spa.2005.09.002

[33] Norris, J.R. (1998). Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics
2. Cambridge: Cambridge Univ. Press. MR1600720

[34] Schilling, R.L. (2005). Measures, Integrals and Martingales. New York: Cambridge Univ. Press.
MR2200059 https://doi.org/10.1017/CBO9780511810886

[35] Shao, J. (2014). Ergodicity of one-dimensional regime-switching diffusion processes. Sci. China
Math. 57 2407–2414. MR3266501 https://doi.org/10.1007/s11425-014-4853-8

[36] Shao, J. (2015). Ergodicity of regime-switching diffusions in Wasserstein distances. Stochastic Pro-
cess. Appl. 125 739–758. MR3293301 https://doi.org/10.1016/j.spa.2014.10.007

[37] Shao, J. (2015). Criteria for transience and recurrence of regime-switching diffusion processes. Elec-
tron. J. Probab. 20 no. 63, 15. MR3361251 https://doi.org/10.1214/EJP.v20-4018

[38] Shen, Y. and Siu, T.K. (2013). Longevity bond pricing under stochastic interest rate and mortality
with regime-switching. Insurance Math. Econom. 52 114–123. MR3023660 https://doi.org/10.1016/
j.insmatheco.2012.11.006

[39] Tijms, H.C. (2003). A First Course in Stochastic Models. Chichester: Wiley. MR2190630
https://doi.org/10.1002/047001363X

[40] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely
divisible random variables. Adv. in Appl. Probab. 11 750–783. MR0544194 https://doi.org/10.2307/
1426858

[41] Yin, G.G. and Zhu, C. (2010). Hybrid Switching Diffusions: Properties and Applications. Stochas-
tic Modelling and Applied Probability 63. New York: Springer. MR2559912 https://doi.org/10.1007/
978-1-4419-1105-6

http://www.ams.org/mathscinet-getitem?mr=1480643
https://doi.org/10.1016/S0304-4149(97)00072-0
http://www.ams.org/mathscinet-getitem?mr=2927473
https://doi.org/10.1016/j.jmaa.2012.05.029
http://www.ams.org/mathscinet-getitem?mr=2489436
https://doi.org/10.1007/978-0-387-87835-5
http://www.ams.org/mathscinet-getitem?mr=1988438
https://doi.org/10.1080/10920277.2001.10595984
http://www.ams.org/mathscinet-getitem?mr=2817609
https://doi.org/10.3150/10-BEJ297
https://doi.org/10.1007/s11425-017-9392-5
http://www.ams.org/mathscinet-getitem?mr=2568861
https://doi.org/10.1007/978-1-84628-737-4
http://www.ams.org/mathscinet-getitem?mr=2579569
https://doi.org/10.1080/10920277.2009.10597557
https://doi.org/10.3150/20-BEJ1196SUPP
http://www.ams.org/mathscinet-getitem?mr=2256095
https://doi.org/10.1142/p473
http://www.ams.org/mathscinet-getitem?mr=2197972
https://doi.org/10.1016/j.spa.2005.09.002
http://www.ams.org/mathscinet-getitem?mr=1600720
http://www.ams.org/mathscinet-getitem?mr=2200059
https://doi.org/10.1017/CBO9780511810886
http://www.ams.org/mathscinet-getitem?mr=3266501
https://doi.org/10.1007/s11425-014-4853-8
http://www.ams.org/mathscinet-getitem?mr=3293301
https://doi.org/10.1016/j.spa.2014.10.007
http://www.ams.org/mathscinet-getitem?mr=3361251
https://doi.org/10.1214/EJP.v20-4018
http://www.ams.org/mathscinet-getitem?mr=3023660
https://doi.org/10.1016/j.insmatheco.2012.11.006
http://www.ams.org/mathscinet-getitem?mr=2190630
https://doi.org/10.1002/047001363X
http://www.ams.org/mathscinet-getitem?mr=0544194
https://doi.org/10.2307/1426858
http://www.ams.org/mathscinet-getitem?mr=2559912
https://doi.org/10.1007/978-1-4419-1105-6
https://doi.org/10.1016/S0304-4149(97)00072-0
https://doi.org/10.1007/978-0-387-87835-5
https://doi.org/10.1007/978-1-84628-737-4
https://doi.org/10.1016/j.insmatheco.2012.11.006
https://doi.org/10.2307/1426858
https://doi.org/10.1007/978-1-4419-1105-6


2604 F. Lindskog and A. Pal Majumder

[42] Zhang, Z., Tong, J. and Hu, L. (2016). Long-term behavior of stochastic interest rate models with
Markov switching. Insurance Math. Econom. 70 320–326. MR3543055 https://doi.org/10.1016/j.
insmatheco.2016.06.017

[43] Zhang, Z. and Wang, W. (2017). The stationary distribution of Ornstein–Uhlenbeck process with
a two-state Markov switching. Comm. Statist. Simulation Comput. 46 4783–4794. MR3672577
https://doi.org/10.1080/03610918.2015.1132321

Received April 2019 and revised October 2019

http://www.ams.org/mathscinet-getitem?mr=3543055
https://doi.org/10.1016/j.insmatheco.2016.06.017
http://www.ams.org/mathscinet-getitem?mr=3672577
https://doi.org/10.1080/03610918.2015.1132321
https://doi.org/10.1016/j.insmatheco.2016.06.017

	Introduction
	Preliminaries and model assumptions
	The stable regime
	Transient and null-recurrent regimes
	Applications
	The Cox-Ingersoll-Ross process
	The SIS model in epidemiology

	Proofs
	Proof of Theorem 1
	Proof of Lemma 6.1
	Proof of Lemma 6.2
	Proof of Lemma 6.3
	Proof of Theorem 2(a)
	Proof of Theorem 2(b)

	Acknowledgements
	Supplementary Material
	References

