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We study the problem of sampling from a probability distribution π on R
d which has a density w.r.t. the Lebesgue

measure known up to a normalization factor x �→ e−U(x)/
∫
Rd e−U(y) dy. We analyze a sampling method based on

the Euler discretization of the Langevin stochastic differential equations under the assumptions that the potential
U is continuously differentiable, ∇U is Lipschitz, and U is strongly concave. We focus on the case where the
gradient of the log-density cannot be directly computed but unbiased estimates of the gradient from possibly
dependent observations are available. This setting can be seen as a combination of a stochastic approximation
(here stochastic gradient) type algorithms with discretized Langevin dynamics. We obtain an upper bound of the
Wasserstein-2 distance between the law of the iterates of this algorithm and the target distribution π with constants
depending explicitly on the Lipschitz and strong convexity constants of the potential and the dimension of the
space. Finally, under weaker assumptions on U and its gradient but in the presence of independent observations,
we obtain analogous results in Wasserstein-2 distance.

Keywords: L-mixing; Langevin diffusion; Monte Carlo methods; stochastic approximation

1. Introduction

Sampling target distributions is an important topic in statistics and applied probability. In this paper,
we are concerned with sampling from a distribution π defined by

π(A) :=
∫

A

e−U(θ) dθ
/∫

Rd

e−U(θ) dθ, A ∈ B
(
R

d
)
,

where B(Rd) denotes the Borel sets of Rd and U : Rd → R+ is continuously differentiable.
One of the sampling schemes considered in this paper is the unadjusted Langevin algorithm (a.k.a.

Langevin Monte Carlo). The idea is to construct a Markov chain which is the Euler discretization of a
continuous-time diffusion process that has an invariant distribution π .

We work on a fixed probability space (�,F,P ) throughout the paper. We consider the so-called
overdamped Langevin stochastic differential equation (SDE)

dθt = −h(θt ) dt + √
2 dBt , (1)
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with a (possibly random) initial condition θ0, where h := ∇U and (Bt )t≥0 is a d-dimensional Brownian
motion. It is well known that, under appropriate conditions, the Markov semigroup associated with the
Langevin diffusion (1) is reversible with respect to π , and the rate of convergence to π is geometric
in the total variation norm (see [21,27], Theorem 1.2, and [2], Theorem 1.6). The Euler–Maruyama
discretization scheme for SDE (1), which is referred to as the unadjusted Langevin algorithm (ULA),
is given by

θ
λ

0 := θ0, θ
λ

n+1 := θ
λ

n − λh
(
θ

λ

n

) + √
2λξn+1, (2)

where (ξn)n∈N is a sequence of independent, standard d-dimensional Gaussian random variables, λ > 0
is the step size and θ0 is an R

d -valued random variable denoting the initial values of both (2) and (1).
Under appropriate assumptions on the step size λ and the potential U , the homogeneous Markov chain

(θ
λ

n)n∈N converges to a distribution πλ which differs from π but, for small λ, it is close to π in an
appropriate sense; see [7,8,10], and Section 4.1.

We now adopt a framework where the exact gradient h is unknown, however one can observe at each
iteration an unbiased estimator. Let H : Rd × R

m → R
d be a measurable function and X := (Xn)n∈N

an R
m-valued process adapted to some given filtration Gn, n ∈ N satisfying

h(θ) = E
[
H(θ,Xn)

]
, θ ∈ R

d, n ≥ 1, (3)

where the existence of the expectation is implicitly assumed. Note that (3) holds, in particular, when
(Xn)n≥1 is a strictly stationary process. Denoting by μ the (common) distribution of Xn, n ≥ 1, we
may write

h(θ) =
∫

H(θ, x)μ(dx), (4)

in this case. We also assume henceforth that θ0, G∞, (ξn)n∈N are independent.
For each λ > 0, define an R

d -valued random process (θλ
n )n∈N by recursion:

θλ
0 := θ0, θλ

n+1 := θλ
n − λH

(
θλ
n ,Xn+1

) + √
2λξn+1. (5)

Such a sampling scheme is often called a stochastic gradient Langevin dynamics (SGLD) algorithm;
see [8,30] and [28]. Data sequences (Xn)n∈N are in general not i.d.d., not even Markovian. They may
exhibit strong non-Markovian features as it is observed in various stochastic phenomena. Stochastic
approximation for dependent data sequences (gradient and Kiefer–Wolfowitz procedures) has been
successfully used in financial applications, see [18,32] and the references therein. With these examples
in mind, in the present paper we seek theoretical guarantees for the convergence of the closely related
SGLD procedure to ensure its validity for non-independent data sets, too.

The only instance we know of that provides results in such a setting is Theorem 4 of [8]. The main
condition of that result (Condition N in [8]) requires estimates on the conditional bias and variance of
the updating function with respect to the previous iterate of the recursion (5), see Section 3.3 for exten-
sive discussions. In concrete examples, it seems very difficult to determine the order of these quantities.
We follow a different path. Intuitively, if the signal Xn is “sufficiently ergodic” then one should be able
to estimate the sampling error, without checking conditions on the conditional bias/variance of spe-
cific objects. We will assume a certain mixing condition, conditional L-mixing for the data sequence
(Xn)n∈N; see Section 2 below for technical details. Theorem 3.5 is obtained which guarantees an (es-
sentially) optimal estimate in terms of the stepsize. Our approach involves several new ideas which
serve as a basis for further developments in the case of non-convex U , see [5].

The goal of this work is to establish an upper bound on the Wasserstein distance between the target
distribution π and its approximations (Law(θλ

n ))n∈N generated by the SGLD algorithm (5). This goal
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is achieved while the rate of convergence is improved with respect to the findings in [24], see also
[6,31] and [8]. We stress that we prove the validity of sampling procedures driven by SGLD (5) within
a framework where (Xn)n∈N are not assumed i.d.d. and hence θλ

n fails to be Markovian and related
techniques are not applicable. Algorithms for variance reduction of SGLD have been suggested by
[3,31], however, we do not see for the moment how these could be treated by our methods here.

The paper is organized as follows. Section 2 recalls the theoretical concept of conditional L-mixing
which is required below for the process (Xn)n∈N. This notion accommodates a large class of (possibly
non-Markovian) processes. In Section 3, assumptions and main results are presented in the case where
the process (Xn)n∈N is conditionally L-mixing (Section 3.1) and i.d.d. (Section 3.2), respectively. In
Section 3.3, we discuss the contributions of our work with respect to existing results reported in the
literature. In Section 4.1 and Section 4.2, the properties of (1), (2), and (5) are analyzed. The proofs
of the main theorems are provided in Sections 4 and 5, while certain auxiliary results are presented in
Sections A and B.

Notations and conventions. Scalar product in R
d is denoted by 〈·, ·〉. We use ‖ · ‖ to denote the

Euclidean norm (where the dimension of the space may vary). B(Rd) denotes the Borel σ -field of Rd .
For each x0 ∈ R

d and R ≥ 0, we denote B(x0,R) := {x ∈ R
d : ‖x − x0‖ ≤ R}, the closed ball of radius

R centered at x0. For two sigma algebras F1, F2, we define F1 ∨F2 := σ(F1 ∪F2). The expectation
of a random variable X is denoted by E[X]. For any m ≥ 1, for any R

m-valued random variable X and
for any 1 ≤ p < ∞, we set ‖X‖p := E

1/p[‖X‖p]. We denote by Lp the set of X with ‖X‖p < ∞. The
indicator function of a set A is denoted by 1A. The Wasserstein distance of order p ≥ 1 between two
probability measures μ and ν on B(Rd) is defined by

Wp(μ,ν) =
(

inf
π∈	(μ,ν)

∫
X

‖x − y‖p dπ(x, y)

)1/p

, (6)

where 	(μ,ν) is the set of couplings of (μ, ν), see, for example, [29].

2. Conditional L-mixing

L-mixing processes and random fields were introduced in [12]. They proved to be useful in tack-
ling difficult problems of system identification, see, for example, [13–16,25]. In [4], in the context
of stochastic gradient methods, the related concept of conditional L-mixing was introduced. We now
recall its definition below.

We consider the probability space (�,F,P ), equipped with a discrete-time filtration (Fn)n∈N as
well as with a decreasing sequence of sigma-fields (F+

n )n∈N such that Fn is independent of F+
n , for

all n ∈N.
For a family (Zi)i∈I of real-valued random variables (where the index set I may have arbitrary

cardinality), there exists one and (up to a.s. equality) only one random variable g = ess supi∈I Zi such
that:

(i) g ≥ Zi , a.s. for all i ∈ I ,
(ii) if g′ is a random variable, g′ ≥ Zi , a.s. for all i ∈ I then g′ ≥ g P -a.s.,

see, for example, [23], Proposition VI.1.1.
Fix an integer d ≥ 1 and let D ⊂ R

d be a set of parameters. A measurable function U : N × D ×
� → R

k is called a random field. We drop dependence on ω ∈ � in the notation henceforth and write
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(Un(θ))n∈N,θ∈D . A random process (Un)n∈N corresponds to a random field where D is a singleton. A
random field is Lr -bounded for some r ≥ 1 if

sup
n∈N

sup
θ∈D

∥∥Un(θ)
∥∥

r
< ∞.

Let Un(θ) ∈ L1, n ∈ N, θ ∈ D and Ui
n+m is the i-th coordinate of Un+m. Define, for each n ∈ N,

i = 1, . . . , k, and τ ∈N

M̃n
r (U, i) := ess sup

θ∈D

sup
m∈N

E
1/r

[∣∣Ui
n+m(θ)

∣∣r |Fn

]
, (7)

γ̃ n
r (τ,U, i) := ess sup

θ∈D

sup
m≥τ

E
1/r

[∣∣Ui
n+m(θ) −E

[
Ui

n+m(θ)|F+
n+m−τ ∨Fn

]∣∣r |Fn

]
, (8)

and set


̃n
r (U, i) :=

∞∑
τ=0

γ̃ n
r (τ,U, i), Mn

r (U) :=
k∑

i=1

M̃n
r (U, i), and


n
r (U) :=

k∑
i=1


̃n
r (U, i).

(9)

When necessary, the notations Mn
r (U,D), γ n

r (τ,U,D) and 
n
r (U,D) are used to emphasize depen-

dence of these quantities on the domain D which may vary.

Definition 2.1 (Conditional L-mixing). Let r, s ≥ 1. We say that the random field (Un(θ))n∈N,θ∈D is
uniformly conditionally L-mixing (UCLM) of order (r, s) with respect to (Fn,F+

n )n∈N if (Un(θ))n∈N
is adapted to (Fn)n∈N for any θ ∈ D; it is Lr -bounded; and the sequences (Mn

r (U))n∈N, (
n
r (U))n∈N

are Ls -bounded. When this holds for all r, s ≥ 1 then we call the random field simply “uniformly L-
mixing”. In the case of stochastic processes (when D is a singleton) the terminology “conditionally
L-mixing process (of order (r, s))” is used.

Remark 2.2. The definition of conditional L-mixing in [4] is slightly different from the definition
above but they are clearly equivalent.

Although we do not use the concept of L-mixing in the present paper it is worth noting that the
definition of a uniformly L-mixing process follows naturally from the above definition if one sets
d = 1, n = 0 and Fn is replaced by the trivial σ -algebra in the definitions of Mn

r (U), γ n
r (τ,U) and


n
r (U). Then, one obtains deterministic Mr(U), γr(τ,U), 
r(U) and the required condition for these

quantities becomes Mr(U) + 
r(U) < ∞. For more details, one can consult [4] and [12].

Let (Un)n∈N be a conditionally L-mixing process. For later use, we also introduce the quantities for
r, s ≥ 1,

Mr (U) := sup
n∈N

E
[‖Un‖r

]
, Cr,s(U) := sup

n∈N
E

[{

n

r (U)
}s]

. (10)

The interpretation of Mr (U) is straightforward while Cr,s(U) serves as a certain measure of depen-
dence for the process U .

Example 2.3. Let (Xn)n∈N be i.d.d. random variables (d = 1) and set Fn := σ(Xk, k ≤ n), F+
n :=

σ(Xk, k > n), n ∈ N. If E[|X0|r ] < ∞ for any r ≥ 1, then (Xn)n∈N is conditionally L-mixing with
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respect to (Fn,F+
n )n∈N. Moreover,

Mr (X) = E
[|X0|r

]
, Cr,s(X) = E

s/r
[∣∣X0 −E[X0]

∣∣r]r, s ≥ 1. (11)

Example 2.4. Let us consider, for example, a functional of a linear process U := {Un(θ)}n∈N, such
that

Un(θ) := G(θ,Xn), Xn :=
∞∑

k=0

akεn−k, (12)

with scalars (ak)k∈N, some sequence (εk)k∈Z of i.d.d. R-valued random variables satisfying ‖ε0‖p < ∞
for all p ≥ 1 and G : R×R→ R a function satisfying∣∣G(θ, x) − G

(
θ ′, x′)∣∣ ≤ L1

∣∣θ − θ ′∣∣ + L2
∣∣x − x′∣∣.

Let Gn = σ(εj , j ≤ n), and G+
n = σ(εj , j > n) for n ∈ N. If we further assume that |ak| ≤ c(1 +

k)−β , k ∈ N for some c > 0, β > 3/2 then the argument of [4], Lemma 4.2, shows that (Xn)n∈N
is a conditionally L-mixing process with respect to (Gn,G+

n )n∈N. Applying Lemma 4.7 below with
ϑ = 0 shows that for all j ∈N, Mn

r (U,B(0, j))) ≤ L1j +L2M
n
r (X)+|G(0,0)| and 
n

r (U,B(0, j)) ≤
2L2


n
r (X).

Remark 2.5. If (Xn)n∈N is a conditionally L-mixing process with respect to (Fn,F+
n )n∈N then so

is (F (Xn))n∈N for any Lipschitz-continuous function F , see [4], Remark 2.3. Finally, we know from
[11], Example 7.1, that a broad class of functionals of geometrically ergodic Markov chains have the
L-mixing property. It is possible to show, along the same lines, the conditional L-mixing property of
these functionals, too.

3. Assumptions and main results

3.1. Dependent data

Assumption 3.1. Let G0 := {∅,�}. The process (Xn)n∈N is conditionally L-mixing with respect to
(Gn,G+

n )n∈N, where (G+
n )n∈N is some decreasing sequence of sigma-fields with Gn independent of G+

n

for all n ∈N. Furthermore, let ‖θ0‖p < ∞ for all p ≥ 1.

For (x, θ) ∈R
m ×R

d , we denote H(x, θ) = [H 1(x, θ), . . . ,Hd(x, θ)]T .

Assumption 3.2. There exist constants Li
1,L

i
2 > 0, i ∈ {1, . . . , d} such that for all θ, θ ′ ∈ R

d and
x, x′ ∈ R

m, |Hi(θ, x) − Hi(θ ′, x′)| ≤ Li
1‖θ − θ ′‖ + Li

2‖x − x′‖.

We set

L1 =
d∑

i=1

Li
1 and L2 =

d∑
i=1

Li
2. (13)

Note that, under Assumption 3.2, for any (x, θ) ∈R
m ×R

d we get∥∥H(x, θ) − H
(
x, θ ′)∥∥ ≤ L1

∥∥θ − θ ′∥∥ + L2
∥∥x − x′∥∥.
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Assumption 3.1 implies, in particular, that ‖X0‖ ∈ Lr , for any r ≥ 1, thus, under Assumption 3.1 and
3.2, h(θ) := E[H(θ,X0)], θ ∈R

d , is indeed well-defined.

Assumption 3.3. There is a constant a > 0 such that for all θ, θ ′ ∈ R
d and x ∈ R

m,

〈
θ − θ ′,H(θ, x) − H

(
θ ′, x

)〉 ≥ a
∥∥θ − θ ′∥∥2

. (14)

Two important properties immediately follow from Assumptions 3.2 and 3.3.

(B1) For all θ, θ ′ ∈R
d , ‖h(θ) − h(θ ′)‖ ≤ L1‖θ − θ ′‖.

(B2) There exists a constant a > 0 such that, for all θ, θ ′ ∈ R
d , 〈θ − θ ′, h(θ)−h(θ ′)〉 ≥ a‖θ − θ ′‖2.

[22], Theorem 2.1.12, shows that, under these assumptions, for all θ, θ ′ ∈ R
d ,

〈
θ − θ ′, h(θ) − h

(
θ ′)〉 ≥ ã

∥∥θ − θ ′∥∥2 + 1

a + L1

∥∥h(θ) − h
(
θ ′)∥∥2

, (15)

where we have set

ã = aL1

a + L1
. (16)

Our aim initially is to estimate ‖θλ
n − θ

λ

n‖2, uniformly in n ∈ N. To begin with, an example is pre-
sented where explicit calculations are possible.

Example 3.4. Let d := 1, H(θ, x) := θ + x, (Xn)n∈Z be a sequence of satisfying (12) with (εj )j∈Z
an independent sequence of standard Gaussian random variables independent of (ξn)n∈N; and |ak| ≤
c(1 + k)−β , k ∈N for some β > 3/2 and

0 < m := inf
μ∈[−π,π]

∣∣∣∣∣
∞∑

k=0

ake−iμk

∣∣∣∣∣ ≤ sup
μ∈[−π,π]

∣∣∣∣∣
∞∑

k=0

ake−iμk

∣∣∣∣∣ ≤ M < ∞. (17)

We observe that the function H satisfies Assumptions 3.2 and 3.3. Take θ0 := 0. It is straightforward
to check that, for any λ ∈ (0,1),

θ
λ

n − θλ
n =

n−1∑
j=0

(1 − λ)jλXn−j ,

which clearly has variance

E
[(

θ
λ

n − θλ
n

)2] = λ2

2π

∫ π

−π

∣∣∣∣∣
∞∑

k=0

ake−ikμ

∣∣∣∣∣
2∣∣∣∣∣

n−1∑
k=0

(1 − λ)ke−ikμ

∣∣∣∣∣
2

dμ

It follows that, using (17) and the Parseval–Plancherel theorem

m

√
λ{1 − (1 − λ)2n}

2 − λ
≤ ∥∥θ

λ

n − θλ
n

∥∥
2 ≤ M

√
λ{1 − (1 − λ)2n}

2 − λ
.

This shows that the best estimate we may hope to obtain for supn∈N ‖θλ

n − θλ
n ‖2 is of the order

√
λ.

Theorem 3.5 below achieves this bound asymptotically as p → ∞.
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Our main results may be stated as follows.

Theorem 3.5. Let Assumptions 3.1, 3.2 and 3.3 hold. For every even number p ≥ 4 and λ < λ̄, where

λ̄ := 2

a + L1
, (18)

there exists C0(p) > 0 such that

∥∥θλ
n − θ

λ

n

∥∥
2 ≤ C0(p)λ

1
2 − 1

p , n ∈N (19)

holds for a constant C0(p) that is explicitly given in the proof. It depends only on a, L1, L2, d , p and
on the process (Xn)n∈N through the quantities defined in (10).

Proof. The proof of this theorem is postponed to Section 4.3. �

The next result relates our findings in Theorems 3.5 to the problem of sampling from the probability
law π .

Theorem 3.6. Let Assumptions 3.1, 3.2 and 3.3 hold and let λ̄ be given by (18). For each κ > 0, there
exist constants c1(κ), c2(κ) > 0 such that, for each 0 < ε ≤ e−1 one has

W2
(
Law

(
θλ
n

)
,π

) ≤ ε

whenever λ < λ̄ satisfies

λ = c1(κ)ε2+κ and n ≥ c2(κ)

ε2+κ
ln(1/ε), (20)

where c1(κ), c2(κ) (given explicitly in the proof) depend only on κ , d , a, L1, L2 and on the process
(Xn)n∈N through the quantities defined in (10).

Proof. The proof of this theorem is postponed to Section 4.4. �

3.2. Independent data

When the data sequences (Xn)n∈Z are i.d.d., then the full rate is recovered under more relaxed condi-
tions for the unbiased estimator of the gradient of U . More concretely, one may assume the following
assumption.

Assumption 3.7. There exist positive constants L1, L2 and ρ such that, for all x, x′ ∈ R
m and θ, θ ′ ∈

R
d , ∥∥H(θ, x) − H

(
θ ′, x

)∥∥ ≤ L1
(
1 + ‖x‖)ρ∥∥θ − θ ′∥∥,∥∥H(θ, x) − H

(
θ, x′)∥∥ ≤ L2

(
1 + ‖x‖ + ∥∥x′∥∥)ρ(

1 + ‖θ‖)∥∥x − x′∥∥.

Assumption 3.8. The process (Xn)n∈N is i.d.d.with ‖X0‖2(ρ+1) and ‖θ0‖2 being finite.
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Assumption 3.9. There exists a mapping A : Rm →R
d×d such that〈

y,A(x)y
〉 ≥ 0, for any x, y ∈ R

d (positive semidefinite)

and, for all θ, θ ′ ∈ R
d and x ∈ R

m,〈
θ − θ ′,H(θ, x) − H

(
θ ′, x

)〉 ≥ 〈
θ − θ ′,A(x)

(
θ − θ ′)〉

with the smallest eigenvalue of the matrix E[A(X0)] being a positive real number which is denoted
by a.

It is clear then that properties (B1) and (B2) are still valid for the gradient h of U , with the only
difference that the Lipschitz constant in (B1) is given by L1E[(1 + ‖X0‖)ρ]. This allows us to obtain
the following result.

Theorem 3.10. Let Assumptions 3.7, 3.8 and 3.9 hold and let λ̄ be given by (18). There exist constants
c1, c2 > 0 such that, for each 0 < ε ≤ 1/2,

W2
(
Law

(
θλ
n

)
,π

) ≤ ε.

whenever λ ≤ min(a/2L2
1E[(1 + ‖X0‖)2ρ],1/a) satisfies

λ ≤ c1ε
2 and n ≥ c2

ε2
ln(1/ε), (21)

where c1, c2 (given explicitly in the proof) depend only on d , a, E[‖X0‖2ρ+2], L1 and L2. If ρ = 0 in
Assumption 3.7, then the above results are true for λ ≤ 1/2 min(L−1

1 , λ̄).

Proof. The proof of this Theorem is postponed to Section 5. �

3.3. Discussion

Rate of convergence. Theorem 3.6 significantly improves on some of the results in [24] in certain
cases, compare also to [31]. In [24] the monotonicity assumption (14) is not imposed, only a dissipa-
tivity condition is required and a more general recursive scheme is investigated. However, the input
sequence (Xn)n∈N is assumed i.d.d. In that setting, [24], Theorem 2.1, applies to (5) (with the choice
δ = 0, β = 1 and d fixed, see also the last paragraph of Section 1.1 of [24]), which implies that

W2
(
Law

(
θλ
n

)
,π

) ≤ ε

holds whenever λ ≤ c3(ε/ ln(1/ε))4 and n ≥ c4
ε4 ln5(1/ε) with some c3, c4 > 0. For the case of i.d.d.

(Xn)n∈N see also the very recent [19]. Our results provide the sharper estimates (20) in a setting where
(Xn)n∈N may have dependencies.

Comparison with [8]. One notes, further, that a noisy Langevin Monte Carlo algorithm (nLMC) with
inaccurate drift is proposed in [8], where the drift is assumed to be a linear combination of the original
gradient and of random noise represented by a dependent sequence of random vectors with non-zero
means. Thus, a particular form of dependency is included in this approach. A convergence result, [8],
Theorem 4, in Wasserstein-2 distance between nLMC and the target distribution π is provided, which
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is in agreement with our findings, that is, rate of convergence equal to 1/2 is given when the bias term
is eliminated.

In [8], Condition N, two quantities enter into play: the upper bound L2-norm of the conditional bias,
E[‖E[H(θλ

k ,Xk+1)|θλ
k ] − h(θλ

k )‖2] and the variance E[‖H(θλ
k ,Xk+1) − E[H(θλ

k ,Xk+1)|θλ
k ]‖2]. We

stress that, when the process (Xk)k∈N is actually dependent, θλ
k and Xk+1 are dependent and therefore

E[H(θλ
k ,Xk+1)|θλ

k ] �= h(θλ
k ) in general. With the exception of a few very simple cases, a precise com-

putation of conditional bias E[H(θλ
k ,Xk+1)|θλ

k ] − h(θλ
k ) (or of a tight upper bound for the L2 norm of

this quantity) is out of reach. Using (3) and Assumption 3.2, we get that, for all k ∈N,

∥∥E[
H

(
θλ
k ,Xk+1

)|θλ
k

] − h
(
θλ
k

)∥∥2 ≤ L2
2

∫
E

[‖Xk − x‖2|θλ
k

]
μ(dx),

where μ denotes the common law of the Xk . This implies that E[‖E[H(θλ
k ,Xk+1)|θλ

k ] − h(θλ
k )‖2] ≤

δ2d with

δ2 ≤ 2d−1L2
2

{
M2(X) +

∫
‖x‖2μ(dx)

}
.

Similarly, using again Assumption 3.2, we get

E
[∥∥H

(
θλ
k ,Xk+1

) −E
[
H

(
θλ
k ,Xk+1

)|θλ
k

]∥∥2]
≤ 2E

[∥∥H
(
θλ
k ,Xk+1

) − H
(
θλ
k ,0

)∥∥2] + 2E
[∥∥E[

H
(
θλ
k ,Xk+1

) − H
(
θλ
k ,0

)|θλ
k

]∥∥2]
≤ 4L2

2M2(X) =: σ 2d.

Our assumptions therefore imply [8], Condition N, but the conclusions that we reach in Theorems 3.5
and 3.6 are sharper (note that the bias term in [8], Theorem 4, does not vanish as λ ↓ 0+).

Choice of step size. It is pointed out in [27] that the ergodicity property of (2) is sensitive to the step
size λ. Moreover, [20], Lemma 6.3, gives an example in which the Euler–Maruyama discretization is
transient. As pointed out in [20], under discretization, the minorization condition is insensitive with
appropriate sampling rate while the Lyapunov condition may be lost. An invariant measure exists if
the two conditions hold simultaneously, see [20], Theorem 7.3, and also [27], Theorem 3.2, for similar
discussions. In this work, an approach similar to [7] is chosen, in that strong convexity of U is assumed
together with Lipschitzness of its gradient and, thus, the ergodicity of (2) is obtained.

4. Proof of main results: Dependent data

4.1. The Langevin SDE and its discretization: The strongly convex case

Before proceeding to the demonstrations of the main results, we recall here some recent results on the
diffusion of Langevin and its discretization for strongly convex potentials. All the results presented
here are classic and can be found in either [9,10] or [8].

By [22], Theorem 2.1.8, U has a unique minimum at some point θ∗ ∈ R
d . Note that due to the

Lipschitz condition (B1), the SDE (1) has a unique strong solution. It is a well-known result that
the Langevin SDE (1) admits a unique invariant measure π . By [17], Theorem 4.20, one constructs
the associated strongly Markovian semigroup (Pt )t≥0 given for all t ≥ 0, x ∈ R

d and A ∈ B(Rd) by
Pt(x,A) = P(θt ∈ A|θ0 = x).
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The following lemma from [10] with adapted statement provides the explicit bound of the second
moment of the Langevin diffusion, which allows the analysis of the Wasserstein-2 distance between π

and the aforementioned sampling algorithms.

Lemma 4.1 (Proposition 1 in [10]). Let Assumptions 3.2 and 3.3 hold and thus (B1), (B2) are thereby
implied.

(i) For all t ≥ 0 and ϑ ∈ R
d ,∫

Rd

∥∥ϑ − θ∗∥∥2
Pt(θ,dϑ) ≤ ∥∥θ − θ∗∥∥2e−2at + (d/a)

(
1 − e−2at

)
.

(ii) The stationary distribution π satisfies∫
Rd

∥∥ϑ − θ∗∥∥2
π(dϑ) ≤ d/a.

For a fixed step size λ ∈ (0,1], consider the Markov kernel Rλ given for all A ∈ B(Rd) and θ ∈ R
d

by

Rλ(θ,A) =
∫

A

(4πλ)−d/2 exp
(−(4λ)−1

∥∥ϑ − θ + λh(θ)
∥∥2)dϑ. (22)

The discrete-time Langevin recursion (2) defines a time-homogeneous Markov chain, and for any n ≥
1, and for any bounded (or non-negative) Borel function f :Rd → R,

E
[
f

(
θ

λ

n

)|θλ

n−1

] = Rλf
(
θ

λ

n−1

) =
∫
Rd

f (ϑ)Rλ

(
θ

λ

n−1,dϑ
)
.

Lemma 4.2 below is also a result from [10] and along with Lemma 4.1 are presented here for com-
pleteness by using the notation of this article. In particular, Lemma 4.2 states that Rλ admits a unique
stationary distribution πλ, which may differ from π .

Lemma 4.2. Let Assumption 3.3 hold and thus (B2) is thereby implied. Then, for all λ < λ̄, where λ̄ is
defined in (18), the following hold:

(i) For all θ ∈ R
d , n ≥ 1,∫

Rd

∥∥ϑ − θ∗∥∥2
Rn

λ(θ,dϑ) ≤ (1 − 2ãλ)n
∥∥θ − θ∗∥∥2 + (d/ã)

(
1 − (1 − 2ãλ)n

)
.

(ii) The Markov kernel Rλ has a unique stationary distribution πλ which satisfies∫
Rd

∥∥θ − θ∗∥∥2
πλ(dθ) ≤ d/ã.

where ã is defined in (16).
(iii) For all θ ∈ R

d , n ≥ 1,

W2
(
δθR

n
λ,πλ

) ≤ e−ãλn
√

2
(∥∥θ − θ∗∥∥2 + d/ã

)1/2
.
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(iv) For all n ∈ N and square-integrable R
d -valued random variables η1, η2 with σ(η1, η2) inde-

pendent of ξk , k ∈N

E
[∥∥θ

λ

n(1) − θ
λ

n(2)
∥∥2] ≤ e−2ãλn

E
[‖η1 − η2‖2],

where θ
λ

n(i), i = 1,2 denote the solutions of the recursion (2) with the respective initial condi-
tions θ0 = ηi , i = 1,2.

Proof. For the first three statements, see [10], Propositions 2 and 3. For iv, see the proof of [10],
Proposition 3. �

Note that by Lemma 4.2, a Foster–Lyapunov type drift condition is satisfied with V1(θ) := ‖θ −
θ∗‖2, which yields that supn≥0 ‖θλ

n‖2 < ∞. This allows the analysis of the convergence between the
recursive scheme (2) and the stationary distribution π in Wasserstein-2 distance (see Theorem 4.11
below). However, in order to obtain the rate of convergence between (2) and the SGLD scheme (5), the
finiteness of higher moments is required. In the following lemma, one obtains the drift condition with
Vp(θ) := ‖θ − θ∗‖2p , p ∈N \ {0}.
Lemma 4.3. Let Assumptions 3.1, 3.2 and 3.3 hold. For any integer p ≥ 1, let Vp(θ) := ‖θ − θ∗‖2p .

Then, the process θ
λ

satisfies, for any n ∈ N and λ < λ̄, where λ̄ is defined in (18),

E
[
Vp

(
θ

λ

n+1

)|θλ

n

] ≤ ρλVp

(
θ

λ

n

) + λC′(p), (23)

where ρλ = 1 − ãλ ∈ (0,1) and

C′(p) := dp(2p − 1)ppp2p(2p−1)ã1−p + (2p − 1)p23p−222pdpp
3
2 p. (24)

Moreover,

sup
λ<λ̄

sup
n

E
[
Vp

(
θ

λ

n

)] ≤ E
[
Vp(θ0)

] + C′(p)/ã. (25)

and C′(p)1/2p ≤ c′(p) holds with

c′(p) = p
√

d
(
2p+1/2ã

1
2p

− 1
2 + 24

)
. (26)

Proof. Recall equation (2) and define

�n := θ
λ

n − θ∗ − λ
(
h
(
θ

λ

n

) − h
(
θ∗)), for every n ≥ 0.

Then, one calculates

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

] = E
[‖�n + √

2λξn+1‖2p|θλ

n

]
= E

[(‖�n‖2 + 2〈�n,
√

2λξn+1〉 + ‖√2λξn+1‖2)p|θλ

n

]
≤ E

[ ∑
i+j+k=p

{i≤p−1}∩{j �=1}

p!
i!j !k! ‖�n‖2i

(
2〈�n,

√
2λξn+1〉

)j‖√2λξn+1‖2k
∣∣∣θλ

n

]

+E
[
2p‖�n‖2(p−1)〈�n,

√
2λξn+1〉|θλ

n

]
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where the last term is clearly zero. Thus, due to Lemma A.3,

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

]

≤ E

[ 2p∑
k=0
k �=1

(
2p

k

)
‖�n‖2p−k‖√2λξn+1‖k

∣∣∣θλ

n

]

≤ ‖�n‖2p +E

[ 2p∑
k=2

(
2p

k

)
‖�n‖2p−k‖√2λξn+1‖k

∣∣∣θλ

n

]

= ‖�n‖2p +E

[( 2p∑
k=2

(
2p

k

)
‖�n‖2p−k‖√2λξn+1‖k−2

)
‖√2λξn+1‖2

∣∣∣θλ

n

]

= ‖�n‖2p +E

[(2(p−1)∑
l=0

(
2p

l + 2

)
‖�n‖2(p−1)−l‖√2λξn+1‖l

)
‖√2λξn+1‖2

∣∣∣θλ

n

]

≤ ‖�n‖2p

+E

[(
2p

2

)(2(p−1)∑
l=0

(
2(p − 1)

l

)
‖�n‖2(p−1)−l‖√2λξn+1‖l

)
‖√2λξn+1‖2

∣∣∣θλ

n

]

= ‖�n‖2p + (2p − 1)pE
[(‖�n‖ + ‖√2λξn+1‖

)2(p−1)‖√2λξn+1‖2|θλ

n

]
≤ ‖�n‖2p + (2p − 1)p22(p−1)‖�n‖2(p−1)

E
[‖√2λξn+1‖2]

+ (2p − 1)p22(p−1)
E

[‖√2λξ1‖2p
]
. (27)

Moreover, one recalls that for λ < 2/(a + L1)

‖�n‖2 ≤ (1 − 2ãλ)
∥∥θ

λ

n − θ∗∥∥2
.

Consequently

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

]
≤ (1 − 2ãλ)p

∥∥θ
λ

n − θ∗∥∥2p + (2p − 1)p22p−1λd(1 − 2ãλ)p−1
∥∥θ

λ

n − θ∗∥∥2(p−1)

+ (2p − 1)p22(p−1)
E

[‖√2λξ1‖2p
]

≤ (1 − ãλ)(1 − 2ãλ)p−1
∥∥θ

λ

n − θ∗∥∥2p − ãλ(1 − 2ãλ)p−1
∥∥θ

λ

n − θ∗∥∥2p

+ (2p − 1)p22p−1λd(1 − 2ãλ)p−1
∥∥θ

λ

n − θ∗∥∥2(p−1)

+ (2p − 1)p22(p−1)
E

[‖√2λξ1‖2p
]
. (28)

As a result, for ‖θλ

n − θ∗‖ ≥ M , where M = √
d(2p − 1)p22p−1/ã, one obtains

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

] ≤ (1 − ãλ)
∥∥θ

λ

n − θ∗∥∥2p + λ(2p − 1)p23p−2
E

[‖ξ1‖2p
]
,
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whereas, for ‖θλ

n − θ∗‖ ≤ M one obtains

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

] ≤ (1 − ãλ)
∥∥θ

λ

n − θ∗∥∥2p + λdp(2p − 1)ppp2p(2p−1)ã1−p

+ λ(2p − 1)p23p−2
E

[‖ξ1‖2p
]

which yields (23). Consequently, by Lemma A.4 below,

E
[∥∥θ

λ

n+1 − θ∗∥∥2p|θλ

n

] ≤(1 − ãλ)2p
∥∥θ0 − θ∗∥∥2p + C′(p)

ã
.

Thus, one obtains the desired result regarding the uniform bounds. The estimate C′(p)1/2p ≤ c′(p)

follows, noting the trivial inequalities: p1/p ≤ 2, p ∈ N \ {0}; (x + y)1/2p ≤ x1/2p + y1/2p , x, y ≥ 0. �

4.2. Analysis for the SGLD scheme

One notes initially that the process in (2) is Markovian while the one in (5) is not. However, uniform
bounds are obtained in Lemma 4.4, below, for the 2p-th moment of the SGLD scheme (5), for any
p ≥ 1. This result complements the findings of Lemma 4.3 and is used in the proof of Theorem 3.5,
which examines the convergence between the two sampling algorithms, ULA (2) and SGLD (5), in
Wasserstein-2 distance.

The following inequalities, derived from Assumptions 3.2 and 3.3, are often used:

∥∥H(θ, x)
∥∥ ≤ L1

∥∥θ − θ∗∥∥ + L2‖x‖ + H ∗, H ∗ =
d∑

i=1

∣∣Hi
(
θ∗,0

)∣∣,
〈
θ − θ∗,H(θ, x)

〉 ≥ a
∥∥θ − θ∗∥∥2 + 〈

θ − θ∗,H
(
θ∗, x

)〉
.

(29)

Lemma 4.4. Let Assumptions 3.1, 3.2 and 3.3 hold. Let Vp(θ) = ‖θ − θ∗‖2p for some integer p ≥ 1.
The process θλ satisfies, for any n ∈ N and λ < λ̄, where λ̄ is defined in (18),

E
[
Vp

(
θλ
n

)] ≤ (ρλ)
n
E

[
Vp

(
θλ

0

)] + λC′′(p), (30)

where ρλ = 1 − ãλ ∈ (0,1) and

C′′(p) := (
22pdp(2p − 1)

)p
(2/ã)p−1 + 25p−4p(2p − 1)22pdpp

3
2 p

+ 22p−1{(2p)2p(2/ã)2p−1 + (
22p−1p(2p − 1)

)p
(2/ã)p−1

+ 24p−4p(2p − 1)
}{

22p−1L
2p

1

∥∥θ∗∥∥2p + 22p−1L
2p

2 M2p(X) + {
H ∗}2p}

.

As a result,

sup
λ<λ̄

sup
n

E
[
Vp

(
θλ
n

)] ≤ E
[
Vp(θ0)

] + C′′(p)

ã
. (31)

It follows also that C′′(p)1/2p ≤ c′′(p) where

c′′(p) := p
√

d
(
2p+1/2ã

1
2p

− 1
2 + 48

)
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+ 2
{
4p/ã1−1/2p + 2pp

√
2(2/ã)1/2−1/(2p)

+ 12
}{

2L1
∥∥θ∗∥∥ + 2L2M1/2p

2p (X) + H ∗}. (32)

Proof. For each n ∈ N, denote by �n = θλ
n − θ∗ − λ(H(θλ

n ,Xn+1) − H(θ∗,Xn+1)). By direct calcu-
lations, one obtains,

E
[∥∥θλ

n+1 − θ∗∥∥2p|θλ
n

]
= E

[∥∥�n + √
2λξn+1 − λH

(
θ∗,Xn+1

)∥∥2p|θλ
n

]
= E

[(‖�n‖2 + ∥∥√
2λξn+1 − λH

(
θ∗,Xn+1

)∥∥2

+ 2
〈
�n,

√
2λξn+1 − λH

(
θ∗,Xn+1

)〉)p|θλ
n

]
= E

[ ∑
k1+k2+k3=p

p!
k1!k2!k3! ‖�n‖2k1

∥∥√
2λξn+1 − λH

(
θ∗,Xn+1

)∥∥2k2

× (
2
〈
�n,

√
2λξn+1 − λH

(
θ∗,Xn+1

)〉)k3
∣∣∣θλ

n

]

≤ E
[‖�n‖2p|θλ

n

] + 2pE
[‖�n‖2p−2〈�n,

√
2λξn+1 − λH

(
θ∗,Xn+1

)〉|θλ
n

]

+
2p∑
k=2

(
2p

k

)
E

[‖�n‖2p−k
∥∥√

2λξn+1 − λH
(
θ∗,Xn+1

)∥∥k|θλ
n

]
,

where the last inequality holds due to Lemma A.3, and further calculations yield

E
[∥∥θλ

n+1 − θ∗∥∥2p|θλ
n

]
≤ E

[‖�n‖2p|θλ
n

] + 2pλE
[‖�n‖2p−1

∥∥H
(
θ∗,Xn+1

)∥∥|θλ
n

]

+
2p∑
k=2

(
2p

k

)
E

[‖�n‖2p−k
∥∥√

2λξn+1 − λH
(
θ∗,Xn+1

)∥∥k|θλ
n

]

≤
(

1 + ãλ

2

)
E

[‖�n‖2p|θλ
n

] + λ(2p)2p

(
2

ã

)2p−1

E
[∥∥H

(
θ∗,Xn+1

)∥∥2p|θλ
n

]
+ 22p−3p(2p − 1)E

[‖�n‖2p−2
∥∥√

2λξn+1 − λH
(
θ∗,Xn+1

)∥∥2|θλ
n

]
+ 22p−3p(2p − 1)E

[∥∥√
2λξn+1 − λH

(
θ∗,Xn+1

)∥∥2p|θλ
n

]
≤ (1 + ãλ)E

[‖�n‖2p|θλ
n

] + λ(2p)2p

(
2

ã

)2p−1

E
[∥∥H

(
θ∗,Xn+1

)∥∥2p|θλ
n

]

+ λ
(
22p−1p(2p − 1)

)p
(

2

ã

)p−1

E
[∥∥H

(
θ∗,Xn+1

)∥∥2p|θλ
n

]

+ λ
(
22pdp(2p − 1)

)p
(

2

ã

)p−1

+ λ25p−4p(2p − 1)E
[‖ξn+1‖2p

]
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+ λ24p−4p(2p − 1)E
[∥∥H

(
θ∗,Xn+1

)∥∥2p|θλ
n

]
, (33)

where the second inequality follows the same argument as in the proof of Lemma 4.3. Moreover, for
λ < 2/(a + L1),

E
[‖�n‖2p|θλ

n

] = E
[(∥∥θλ

n − θ∗∥∥2 − 2λ
〈
θλ
n − θ∗,H

(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)〉
+ λ2

∥∥H
(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)∥∥2)p|θλ
n

]
≤ (1 − 2ãλ)p

∥∥θλ
n − θ∗∥∥2p

.

Then, substituting the above estimate into (33) yields

E
[∥∥θλ

n+1 − θ∗∥∥2p|θλ
n

] ≤ (1 − ãλ)
∥∥θλ

n − θ∗∥∥2p + λE
[
g(Xn+1)|θλ

n

]
,

where

g(Xn+1) = (
22pdp(2p − 1)

)p
(2/ã)p−1 + 25p−4p(2p − 1)E

[‖ξn+1‖2p
]

+ 22p−1{(2p)2p(2/ã)2p−1 + (
22p−1p(2p − 1)

)p
(2/ã)p−1

+ 24p−4p(2p − 1)
}{(

L1
∥∥θ∗∥∥ + L2‖Xn+1‖

)2p + ∥∥H
(
θ∗,0

)∥∥2p}
.

Using the trivial (x + y)2p ≤ 22p−1(x2p + y2p), x, y ≥ 0 and Lemma A.4, we have

E
[
g(Xn+1)

] ≤ C′′(p).

Finally, denote by ρλ = 1 − ãλ ∈ (0,1), then by induction, one obtains

E
[∥∥θλ

n+1 − θ∗∥∥2p] ≤ (ρλ)
n+1

E
[∥∥θ0 − θ∗∥∥2p] + C′′(p)

ã
,

which implies supλ<λ̄ supn E[‖θλ
n+1 − θ∗‖2p] ≤ E[‖θ0 − θ∗‖2p] + C′′(p)/ã. It is easy to check

C′′(p)1/2p ≤ c′′(p), too. �

Uniform L2 bounds for the process in (5) are obtained in [24] under dissipativity condition on ∇U

and the L2 error of the stochastic gradient, that is, E[‖H(θ,Xn) − h(θ)‖2], see their Assumptions
(A.3), (A.4). In that paper a large size mini-batch could be used to reduce the variance of the estimator,
which requires more computational costs. We could also incorporate mini-batches in our algorithm but
this is not pursued here. For stability, the variance of the estimator has to be controlled, see [28].

4.3. Proof of Theorem 3.5

We now sketch a roadmap for the proof of Theorem 3.5. The time axis is cut into intervals of size T . An
auxiliary process zλ is introduced which equals θλ at the points nT , n ∈ N but it follows the averaged
dynamics on [nT , (n + 1)T ), see (2).

Using the conditional L-mixing property, one obtains estimates for the L2-distance between zλ and
θλ. If zλ were uniformly bounded, these would be of the order

√
λ. However, zλ is unbounded hence

its maximal process needs to be controlled which leads to the somewhat weaker rate λ
1
2 −ε , for ε > 0

arbitrarily small.
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Next, estimates for the difference between zλ and θ
λ

are derived using the contraction property of the

dynamics of θ
λ
, see Lemma 4.2. It follows that this is of the same order as zλ − θλ. These observations

then allows us to conclude.
We proceed now with the rigorous arguments. Let

Hn := Gn ∨ σ(ξj , j ∈ N), H+
n := G+

n , n ∈N.

Observe first that, since (Xn)n∈N is conditionally L-mixing with respect to (Gn,G+
n )n∈N, it is condi-

tionally L-mixing with respect to (Hn,H+
n )n∈N, too, and the corresponding quantities (M , 
, C, M)

remain the same.
For each θ ∈ R

d , 0 ≤ i ≤ j , one recursively defines

zλ(i, i, θ) := θ, zλ(j + 1, i, θ) := zλ(j, i, θ) − λh
(
zλ(j, i, θ)

) + √
2λξj+1.

Let T := �1/λ�, then for each n ∈N and for each nT ≤ k < (n + 1)T , one defines

zλ
k := zλ

(
k,nT , θλ

nT

)
.

Consequently, zλ
k is defined for all k ∈ N; zλ

nT = θλ
nT for n ∈N and θ

λ

k = zλ(k,0, θ0). Next, some simple
but essential moment estimates are derived.

Lemma 4.5. Let q ≥ 1 be an integer. Then, for all λ < λ̄, where λ̄ is defined in (18),

sup
k∈N

∥∥zλ
k − θ∗∥∥

2q
≤ C(q)

holds for

C(q) := ∥∥θ0 − θ∗∥∥
2q

+ c′(q) + c′′(q)

ã1/(2q)
, (34)

where c′(q), c′′(q) are as in Lemmata 4.3 and 4.4.

Proof. Define Vq(θ) := ‖θ − θ∗‖2q , θ ∈ R
d . Let k ∈ N be arbitrary and let n ∈ N be such that nT ≤

k < (n + 1)T . Note that (25) and (31) imply

sup
nT ≤k<(n+1)T

∥∥zλ
k − θ∗∥∥

2q
≤

[
E

[
Vq

(
θλ
nT

)] + C′(q)

ã

]1/(2q)

≤ ∥∥θ0 − θ∗∥∥
2q

+ C′(q)1/(2q) + C′′(q)1/(2q)

ã1/(2q)
. �

Lemma 4.6. For all λ < λ̄, where λ̄ is defined in (18), it holds that

sup
n∈N

[∥∥H
(
θλ
n ,Xn+1

)∥∥
2 + ∥∥h

(
zλ
n

)∥∥
2

] ≤ C�,

where

C� = L1

[∥∥θ0 − θ∗∥∥
2 + C′′(1)

ã

]
+ 2L2M1/2

2 (X) + 2H ∗ + C(1)L1. (35)
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Proof. The first inequality of (29) implies∥∥H
(
θλ
n ,Xn+1

)∥∥
2 ≤ L1

∥∥θλ
n − θ∗∥∥

2 + L2‖Xn‖2 + H ∗.

Combining this with Lemma 4.4 (applied with p = 1) shows that

sup
λ<λ

sup
n

∥∥H
(
θλ
n ,Xn+1

)∥∥
2 ≤ L1

[
E

1/2[V1(θ0)
] + C′′(1)1/2

ã1/2

]
+ L2M1/2

2 (X) + H ∗.

A similar argument can be applied to h(zλ
n), in view of (11),∥∥h

(
zλ
n

)∥∥
2 ≤ L1

∥∥zλ
n − θ∗∥∥

2 + L2M1/2
2 (X) + H ∗

≤ C(1)L1 + L2M1/2
2 (X) + H ∗,

where C(1) is given by (34). �

Lemma 4.7. For each j ∈N, the random field H(θ,Xn), n ∈ N, θ ∈ B(θ∗, j) satisfies

Mn
r

(
H(θ,X),B

(
θ∗, j

)) ≤ L1j + L2M
n
r (X) + H ∗, (36)


n
r

(
H(θ,X),B

(
θ∗, j

)) ≤ 2L2

n
r (X). (37)

Proof. Let θ ∈ B(θ∗, j). The Minkowski’s inequality imply for k ≥ n and i ∈ {1, . . . ,m},
E

1/r
[∣∣Hi(θ,Xk)

∣∣r |Hn

] ≤ Li
1j + Li

2E
1/r

[‖Xk‖r |Hn

] + ∣∣Hi
(
θ∗,0

)∣∣.
Hence, using ‖Xk‖ ≤ ∑m

j=1 |Xj
k | and the Minkowski’s inequality again, we obtain

Mn
r

(
H(θ,X),B

(
θ∗, j

)
, i

) ≤ Li
1j + Li

2M
n
r (X) + ∣∣Hi

(
θ∗,0

)∣∣.
Summing the above relation over the indices i ∈ {1, . . . ,m} we get (36). One also notes that, due to
Lemma A.2,

E
1/r

[∣∣Hi(θ,Xk) −E
[
Hi(θ,Xk)|Hn ∨H+

n−τ

]∣∣r |Hn

]
≤ 2E1/r

[∣∣Hi(θ,Xk) − Hi
(
θ,E

[
Xk|Hn ∨H+

n−τ

])∣∣r |Hn

]
≤ 2Li

2E
1/r

[∥∥Xk −E
[
Xk|Hn ∨H+

n−τ

]∥∥r |Hn

] ≤ 2Li
2

m∑
j=1

γ n
r (X, τ, j),

which implies (37). �

We shall also need the following measure-theoretical lemma.

Lemma 4.8. Let k ≥ nT be an integer. There exists a version hk,nT : � × R
d → R

d of
E[H(θ,Xk)|HnT ], θ ∈ R

d which is jointly measurable.

Proof. For a fixed θ ∈R
d , the conditional expectation E[H(θ,Xk)|HnT ], θ ∈ R

d is a HnT -measurable
random variable. We will construct a function hk,nT : � × R

d → R
d that is measurable in its sec-

ond variable and, for all θ ∈ R
d , hk,nT is a version of E[H(θ,Xk)|HnT ]. The case k = nT is
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trivial. Let k > nT . It is enough to construct hk,nT (θ), θ ∈ B(θ∗,N) for each N ∈ N. Consider
B(N) := C(B(θ∗,N);Rd), the usual Banach space of continuous, Rd -valued functions defined on
B(θ∗,N), equipped with the maximum norm. The function

ω ∈ � → GN(ω) := (
H

(
θ,Xk(ω)

)
θ∈B(θ∗,N)

)
, ω ∈ �,

is a B(N)-valued random variable and, by (29),

sup
θ∈B(θ∗,N)

∥∥H(θ,Xk)
∥∥ ≤ L1N + L2‖Xk‖ + H ∗,

which clearly has finite expectation as the process Xn, n ∈ N is conditionally L-mixing. Moreover,
[23], Proposition V.2.5, implies the existence of a B(N)-valued random variable GN such that, for
each b in the dual space B

′(N) of B(N),

E
[
b(GN)|HnT

] = b(GN).

This implies, in particular, that for all θ ∈ B(θ∗,N), E[H(θ,Xk)|HnT ] = GN(θ). We may thus set
hk,nT (ω, θ) := GN(ω, θ). Since (ω, θ) → GN(ω, θ) is measurable in its first variable and continuous
in the second, it is, in particular, jointly measurable, see, for example, [1], Lemma 4.50. �

Lemma 4.9. Assume 3.1 and 3.1 and let p ≥ 1.

sup
n∈N

E
1/p

[( ∞∑
k=nT

sup
θ∈Rd

∥∥hk,nT (θ) − h(θ)
∥∥)p]

≤ 2L2Cp,1(X),

where Cp,1(X) is defined in (10).

Proof. Let k ≥ nT . Notice that, since Xk and G+
nT are independent of σ(ξj , j ∈ N), E[Xk|H+

nT ] =
E[Xk|G+

nT ], P-a.s. Since G+
nT and GnT are independent, we get that, for all k ≥ nT , P-a.s.,

E
[
H

(
θ,E

[
Xk|G+

nT

])|HnT

] = E
[
H

(
θ,E

[
Xk|G+

nT

])|GnT

] = E
[
H

(
θ,E

[
Xk|G+

nT

])]
.

This implies that, for all k ≥ nT ,∥∥hk,nT (θ) − h(θ)
∥∥ ≤ ∥∥E[

H(θ,Xk)|GnT

] −E
[
H

(
θ,E

[
Xk|G+

nT

])|GnT

]∥∥
+ ∥∥E[

H
(
θ,E

[
Xk|G+

nT

])] −E
[
H(θ,Xk)

]∥∥
≤ L2E

[∥∥Xk −E
[
Xk|G+

nT

]∥∥|GnT

] + L2E
[∥∥Xk −E

[
Xk|G+

nT

]∥∥]
.

Using the Minkowski inequality, we get

E
1/p

[
sup
θ∈Rd

∥∥hk,nT (θ) − h(θ)
∥∥p

]

≤ L2E
1/p

[∥∥Xk −E
[
Xk|G+

nT

]∥∥p] + L2E
[∥∥Xk −E

[
Xk|G+

nT

]∥∥]
≤ 2L2

m∑
i=1

γ 0
p(X, k − nT , i),

noting that G0 is the trivial sigma algebra. This concludes the proof since E[
0
p(X)] ≤ Cp,1(X). �
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Proof of Theorem 3.5. Fix n ∈ N and let nT ≤ k < (n + 1)T be an arbitrary integer. By the triangle

inequality, the difference of θλ and θ
λ

is decomposed into two parts∥∥θλ
k − θ

λ

k

∥∥ ≤ ∥∥θλ
k − zλ

k

∥∥ + ∥∥zλ
k − θ

λ

k

∥∥. (38)

Let hk,nT be the functional constructed in Lemma 4.8. Then, one estimates

∥∥θλ
k − zλ

k

∥∥ ≤ λ

∥∥∥∥∥
k−1∑
i=nT

(
H

(
θλ
i ,Xi

) − h
(
zλ
i

))∥∥∥∥∥
≤ λ

k−1∑
i=nT

∥∥H
(
θλ
i ,Xi

) − H
(
zλ
i ,Xi

)∥∥ + λ

∥∥∥∥∥
k−1∑
i=nT

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
+ λ

k−1∑
i=nT

∥∥hi,nT

(
zλ
i

) − h
(
zλ
i

)∥∥

≤ λL1

k−1∑
i=nT

∥∥θλ
i − zλ

i

∥∥ + λ max
nT ≤m<(n+1)T

∥∥∥∥∥
m∑

i=nT

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
+ λ

∞∑
i=nT

∥∥hi,nT

(
zλ
i

) − h
(
zλ
i

)∥∥
due to Assumption 3.2. Thanks to Lemmas 4.4, 4.5, 4.6, and 4.9 all the terms on the RHS of the
previous inequality are almost surely finite. A discrete-time version of Grönwall’s lemma and taking
squares lead to

∥∥θλ
k − zλ

k

∥∥2 ≤ 2λ2e2L1T λ

[
max

nT ≤m<(n+1)T

∥∥∥∥∥
m∑

i=nT

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
2

+
( ∞∑

i=nT

∥∥hi,nT

(
zλ
i

) − h
(
zλ
i

)∥∥)2]
,

noting also (x + y)2 ≤ 2(x2 + y2), x, y ∈R. Let us define the HnT -measurable random variable

NnT := max
nT ≤k<(n+1)T

∥∥zλ
k − θ∗∥∥.

Now, by recalling the definition of T and taking HnT -conditional expectations, one obtains

E
1/2[∥∥θλ

k − zλ
k

∥∥2|HnT

] ≤ √
2λeL1

∞∑
j=1

1{j−1≤NnT <j}

×E
1/2

[
max

nT ≤m<(n+1)T

∥∥∥∥∥
m∑

i=nT

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
2∣∣∣HnT

]

+ √
2λeL1 sup

θ∈Rd

∞∑
i=nT

∥∥hi,nT (θ) − h(θ)
∥∥.
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Define for n ∈N,

Z̃λ
n,k(j) :=

{
H

(
zλ
k ,Xk

)
1{‖zλ

k−θ∗‖≤j}, nT ≤ k < (n + 1)T ,

0, otherwise.
(39)

Recalling the HnT -measurability of zλ
k , nT ≤ k < (n+1)T , and arguing like in Lemma 4.7, one obtains

MnT
r

(
Z̃λ

n(j)
) ≤ L1j + L2M

nT
r (X) + H ∗,


nT
r

(
Z̃λ

n(j)
) ≤ 2L2


nT
r (X). (40)

With these notation, for each j ∈N, the process defined by

Zλ
n,k(j) := (

H
(
zλ
k ,Xk

) − hk,nT

(
zλ
k

))
1{‖zλ

k−θ∗‖≤j} = Z̃λ
n,k(j) −E

[
Z̃λ

n,k(j)|HnT

]
, (41)

for nT ≤ k < (n + 1)T , n ∈ N satisfies

MnT
r

(
Zλ

n(j)
) ≤ 2

[
L1j + L2M

nT
r (X) + H ∗],


nT
r

(
Zλ

n(j)
) ≤ 2L2


nT
r (X). (42)

Notice that Zλ
n,nT (j) = 0 hence the maximum can be taken over nT < m < (n + 1)T instead of

nT ≤ m < (n + 1)T . One then applies Theorem B.4 with the choice n = nT , r = 3, bi ≡ 1, Xk :=
Zλ

n,k(j) to obtain

1{NnT ≤j}E1/2

[
max

nT <m<(n+1)T

∥∥∥∥∥
m∑

i=nT +1

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
2∣∣∣HnT

]

≤ 1{NnT ≤j}E1/3

[
max

nT <m<(n+1)T

∥∥∥∥∥
m∑

i=nT +1

(
H

(
zλ
i ,Xi

) − hi,nT

(
zλ
i

))∥∥∥∥∥
3∣∣∣HnT

]

≤ 101{NnT ≤j}
√

T
[

nT

3

(
Zλ

n(j)
) + MnT

3

(
Zλ

n(j)
)]

, (43)

noting that C′(3) ≤ 10 holds for the constant C′(3) appearing in Theorem B.4.
Now we turn to estimating NnT . Let q > 1 be an arbitrary integer. Let us apply Lemma A.1 with the

choice r := 2 and p := 2q to obtain

E
[
N2

nT

] ≤ T 2/(2q) sup
nT ≤k<(n+1)T

E
2/(2q)

[∥∥zλ
k − θ∗∥∥2q]

, (44)

which implies, by Lemma 4.5,

E
[
(NnT + 1)2] ≤ 2

[
1 + T 2/(2q)C2(q)

]
. (45)

By the Cauchy–Schwarz inequality, (42) and (45) we can perform the auxiliary estimate

∞∑
j=1

E
[
1{j−1≤NnT <j}

[

nT

3

(
Zλ

n(j)
) + MnT

3

(
Zλ

n(j)
)]2]

≤ 8
∞∑

j=1

E[1{j−1≤NnT <j}
[
L2

2

(

nT

3 (X)
)2 + [

L1j + L2M
nT
3 (X) + H ∗]2]
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≤ 8L2
2E

[(

nT

3 (X)
)2] + 24[E[

L2
1(NnT + 1)2 + L2

2

(
MnT

3 (X)
)2 + (

H ∗)2]
≤ 8L2

2C3,2 + 24
[
L2

2M
2/3
3 + (

H ∗)2] + 48L2
1

[
1 + T 2/2q

]
C2(q)

≤ 96T 2/p
[
L2

1C
2(q) + L2

2C3,2 + L2
2M

2/3
3 + (

H ∗)2]
, (46)

using the notation introduced for conditionally L-mixing processes in (10) and the trivial T ≥ 1 (in the
last inequality). We define

C�(p) := 96
[
L2

1C
2(p/2) + L2

2C3,2 + L2
2M

2/3
3 + (

H ∗)2] + 4L2
2C2

2,1.

Notice that (C�)1/2 ≤ C�, where the latter constant is given by

C�(p) := 10
[
L1C(p/2) + L2C1/2

3,2 + L2M1/3
3 + H ∗] + 2L2C2,1. (47)

We conclude from (43), (46) and (47) that

E
1/2

∥∥θλ
k − zλ

k

∥∥2 ≤ 15eL1C�(p)
[
λ
√

T T 1/p + λ
] ≤ 30eL1C�(p)λ

1
2 − 1

p ,

for all k ∈ N, noting also that
√

2 ≤ 3/2.

Now we turn to estimating ‖zλ
k − θ

λ

k‖ for nT ≤ k < (n + 1)T . We compute

∥∥zλ
k − θ

λ

k

∥∥
2 ≤

n∑
i=1

∥∥zλ
(
k, iT , θλ

iT

) − zλ
(
k, (i − 1)T , θλ

(i−1)T

)∥∥
2

=
n∑

i=1

∥∥zλ
(
k, iT , θλ

iT

) − zλ
(
k, iT , zλ

(
iT , (i − 1)T , θλ

(i−1)T

))∥∥
2.

By Lemma 4.2-iv, we estimate∥∥zλ
(
k, iT , θλ

iT

) − zλ
(
k, iT , zλ

(
iT , (i − 1)T , θλ

(i−1)T

))∥∥
2

≤ (1 − 2ãλ)k−iT
∥∥θλ

iT − zλ
(
iT , (i − 1)T , θλ

(i−1)T

)∥∥
2

≤ (1 − 2ãλ)k−iT
∥∥θλ

iT −1 − λH
(
θλ
iT −1,XiT

) − zλ
iT −1 + λh

(
zλ
iT −1

)∥∥
2

≤ (1 − 2ãλ)k−iT
[∥∥θλ

iT −1 − zλ
iT −1

∥∥
2 + λ

∥∥H
(
θλ
iT −1,XiT

) − h
(
zλ
iT −1

)∥∥
2

]
.

Using Lemma 4.6, the estimation continues as follows

∥∥zλ
k − θ

λ

k

∥∥
2 ≤

n∑
i=1

e−2ãλ(k−iT )
[∥∥θλ

iT −1 − zλ
iT −1

∥∥
2 + λ

∥∥H
(
θλ
iT −1,XiT

) − h
(
zλ
iT −1

)∥∥
2

]

≤
n∑

i=1

e−2aλ(n−i)T
[
30eL1C�(p)λ

1
2 − 1

p + C�λ
]

≤ 30eL1C�(p) + C�

1 − e−2ãλT
λ

1
2 − 1

p ≤ 30eL1C�(p) + C�

1 − e−ã
λ

1
2 − 1

p .
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The proof is completed by setting

C0(p) := 30eL1C�(p) + C�

1 − e−ã
+ C�(p) (48)

and noting (38). �

Remark 4.10. We track the dependence of the constant C0(p) (appearing in Theorem 3.5) on the
dimension d . Notice that Lemmata 4.3 4.4 provide c′(p) and c′′(p), both of which of the order

√
d .

This order is inherited by C(q) in Lemma 4.5 and thus results in d1/2 in C�(p) and C�, see (47) and
(35). We finally get that C0(p) is of the order d1/2.

4.4. Proof of Theorem 3.6

To prove Theorem 3.6, another convergence result is needed, which is the rate of convergence to sta-
tionarity of the recursive scheme (2) in Wasserstein-2 distance. Note that with Lemma 4.1 and 4.2, the
convergence in Wasserstein-2 distance can be considered. The following is the adapted statement in
[10], Corollary 7, using the notation of this article.

Theorem 4.11 ([10], Corollary 7). Let Assumptions 3.1, 3.2, 3.3 hold and let λ < λ̄ where λ̄ is defined

in (18). Then, the Markov chain (θ
λ

n)n∈N admits an invariant measure πλ such that, for all n ∈N;

W2
(
Law

(
θ

λ

n

)
,πλ

) ≤ ĉe−aλn, n ∈N,

where ĉ is coming from (iii) Lemma 4.2:

ĉ := √
2
(‖θ0 − θ‖2 + d/ã

)1/2
.

Furthermore,

W2(π,πλ) ≤ c
√

λ,

where

c =
(

L2
1ã

−1(2λ + ã−1)(d + 1

12
λ2L2

1d + 1

2
L2

1λd/a

))1/2

with ã defined in (15).

Note that for the Langevin SDE (1), the Euler and Milstein schemes coincide, which implies that the
optimal rate of convergence for scheme (2) is 1 instead of 1/2. The bound provided in Theorem 4.11 can
thus be improved under an additional smoothness assumption for the drift coefficient of (1). However,
as our main focus is the behaviour of the SGLD algorithm (5) and, in view of Example 3.4, it is known
that its optimal rate of convergence is 1/2, any improvement on the behaviour of scheme (2) does not
change this fact.

Proof of Theorem 3.6. Take p large enough so that κ > 2/(p − 1) and thus 1/p ≤ κ/(κ + 2) holds.
Denote by C̃ = max{C0(p), ĉ, c}. Theorems 3.5 and 4.11 imply that

W2
(
Law

(
θλ
n

)
,π

) ≤ W2
(
Law

(
θλ
n

)
,Law

(
θ

λ

n

)) + W2
(
Law

(
θ

λ

n

)
,πλ

) + W2(πλ,π)
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≤ C̃
[
λ

1
2 − 3

2p + e−aλn + λ
1
2
]

≤ 2C̃
[
λ

1
2+κ + e−aλn

]
.

For 0 < ε < e−1, choosing λ := ε2+κ/(4C̃)2+κ , 2C̃λ
1

2+κ ≤ ε/2 holds. Now it remains to choose n

large enough to have C̃e−aλn ≤ ε/2 or, equivalently, aλn ≥ ln(2C̃/ε). Noting the choice of λ and
ln(1/ε) ≥ 1, this is possible if

n ≥ c2(κ)

ε2+κ
ln(1/ε),

where c2(κ) = (4C̃)2+κ

a
(1 + ln(2C̃)). �

5. Proof of main results: Independent data

For the case of independent data, it is enough to obtain the second moment of the SGLD scheme (5)
before considering the convergence in Wasserstein-2 distance. The following lemma provides an upper
bound for the second moment of the scheme (5) with explicit constants.

Lemma 5.1. Let Assumptions 3.7, 3.8 and 3.9 hold. Let

λ0 := min
(
a/2L2

1E
[(

1 + ‖X0‖
)2ρ]

,1/a
)
. (49)

For λ ≤ λ0, the function V1(θ) := ‖θ − θ∗‖2 satisfies

E
[
V1

(
θλ
n

)|θλ
n−1

] ≤ (1 − aλ)V1
(
θλ
n−1

) + λC,

where

C := 4L2
2

(
1 + ∥∥θ∗∥∥)2

E
[(

1 + ‖X0‖
)2ρ+2] + 4

{
H ∗}2 + 2d.

As a result, supλ≤λ0
supn∈NE[V1(θ

λ
n )] < ∞. Moreover, if ρ = 0 in Assumption 3.7, then the above

result is true for λ ≤ min(1/2L1,1/(a + L1)).

Proof. By using the SGLD scheme (5), one calculates

∥∥θλ
n+1 − θ∗∥∥2 = ∥∥θλ

n − θ∗∥∥2 + 2
〈
θλ
n − θ∗,−λH

(
θλ
n ,Xn+1

) + √
2λξn+1

〉
+ ∥∥−λH

(
θλ
n ,Xn+1

) + √
2λξn+1

∥∥2

= ∥∥θλ
n − θ∗∥∥2 − 2λ

〈
θλ
n − θ∗,H

(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)〉
+ 2

〈
θλ
n − θ∗,

√
2λξn+1

〉 − 2λ
〈
θλ
n − θ∗,H

(
θ∗,Xn+1

)〉
+ λ2

∥∥H
(
θλ
n ,Xn+1

)∥∥2 − 2λ
〈
H

(
θλ
n ,Xn+1

)
,
√

2λξn+1
〉 + 2λ‖ξn+1‖2

and thus

E
[∥∥θλ

n+1 − θ∗∥∥2|θλ
n

]
≤ ∥∥θλ

n − θ∗∥∥2 − 2λE
[〈
θλ
n − θ∗,A(Xn+1)

(
θλ
n − θ∗)〉|θλ

n

] − 2λ
〈
θλ
n − θ∗, h

(
θ∗)〉
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+ λ2
E

[∥∥H
(
θλ
n ,Xn+1

)∥∥2|θλ
n

] + 2λd

≤ ∥∥θλ
n − θ∗∥∥2 − 2λa

∥∥θλ
n − θ∗∥∥2 + 2λ2

E
[∥∥H

(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)∥∥2|θλ
n

]
+ 2λ2

E
[∥∥H

(
θ∗,Xn+1

)∥∥2] + 2λd. (50)

Hence, for λ ≤ min(a/2L2
1E[(1 + ‖X0‖)2ρ],1/a)

E
[∥∥θλ

n+1 − θ∗∥∥2|θλ
n

] ≤ (1 − λa)
∥∥θλ

n − θ∗∥∥2 + 4λ2L2
2

(
1 + ∥∥θ∗∥∥)2

E
[(

1 + ‖X0‖
)2ρ+2]

+ 4λ2{H ∗}2 + 2λd

⇒ E
(∥∥θλ

n+1 − θ∗∥∥2|θλ
n

) ≤ (1 − λa)
∥∥θλ

n − θ∗∥∥2 + λC,

where C = 4L2
2(1 + ‖θ∗‖)2

E[(1 + ‖X0‖)2ρ+2] + 4{H ∗}2 + 2d . Consequently, for any n ≥ 1,

E
[∥∥θλ

n − θ∗∥∥2] ≤ (1 − λa)nE
[∥∥θ0 − θ∗∥∥2] + C

a
< ∞.

Crucially, one observes here that if ρ = 0 in Assumption 3.7, then H is co-coercive with the following
property, for every x ∈R

m and all θ, θ∗ ∈R
d

〈
θ − θ ′,H(θ, x) − H

(
θ ′, x

)〉 ≥ 1

L1

∥∥H(θ, x) − H
(
θ ′, x

)∥∥2
. (51)

It follows that, in view of (51), one rewrites (50) as follows

E
[∥∥θλ

n+1 − θ∗∥∥2|θλ
n

]
≤ ∥∥θλ

n − θ∗∥∥2 − λE
[〈
θλ
n − θ∗,A(Xn+1)

(
θλ
n − θ∗)〉|θλ

n

]
− λ

L1

∥∥H
(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)∥∥2 + 2λ
〈
θλ
n − θ∗, h

(
θ∗)〉

+ λ2
E

[∥∥H
(
θλ
n ,Xn+1

)∥∥2|θλ
n

] + 2λd

≤ ∥∥θλ
n − θ∗∥∥2 − λa

∥∥θλ
n − θ∗∥∥2 +

(
2λ2 − λ

L1

)
E

[∥∥H
(
θλ
n ,Xn+1

) − H
(
θ∗,Xn+1

)∥∥2]
+ 2λ2

E
[∥∥H

(
θ∗,Xn+1

)∥∥2] + 2λd,

which yields, for λ ≤ 1/2L1

E
[∥∥θλ

n+1 − θ∗∥∥2|θλ
n

] ≤ (1 − λa)
∥∥θλ

n − θ∗∥∥2 + 4λ2L2
2

(
1 + ∥∥θ∗∥∥)2

E
[(

1 + ‖X0‖
)2]

+ 4λ2{H ∗}2 + 2λd

⇒ E
(∥∥θλ

n+1 − θ∗∥∥2|θλ
n

) ≤ (1 − λa)
∥∥θλ

n − θ∗∥∥2 + λC,

where C = 4L2
2(1 + ‖θ∗‖)2

E[(1 + ‖X0‖)2] + 4{H ∗}2 + 2d . �

Proof of Theorem 3.10. One notes that (B1) is still valid, with the only difference that the Lipschitz
constant in (B1) is given by L1E[(1 + ‖X0‖)ρ], and (B2) holds with a. Consequently, Theorem 4.11
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is still true. The main steps of the proof of Theorem 3.5 need to be reformulated for the i.d.d. case.
Initially, one notes that the following result holds due to Lemma 5.1

sup
λ∈(0,λ0)

sup
n≥0

E
[∥∥θλ

n

∥∥2]
< c0,

where c0 = 2E‖θ0 − θ∗‖2 + 2C/a + 2‖θ∗‖2, and C is given explicitly in Lemma 5.1. Then, using
synchronous coupling for the schemes (2) and (5), one obtains

∥∥θλ
n+1 − θ̄ λ

n+1

∥∥2

= ∥∥θλ
n − θ̄ λ

n − λ
(
H

(
θλ
n ,Xn+1

) − h
(
θ̄ λ
n

))∥∥2

≤ ∥∥θλ
n − θ̄ λ

n

∥∥2 − 2λ
〈
θλ
n − θ̄ λ

n ,H
(
θλ
n ,Xn+1

) − h
(
θ̄ λ
n

)〉 + λ2
∥∥H

(
θλ
n ,Xn+1

) − h
(
θ̄ λ
n

)∥∥2

≤ ∥∥θλ
n − θ̄ λ

n

∥∥2 − 2λ
〈
θλ
n − θ̄ λ

n , h
(
θλ
n

) − h
(
θ̄ λ
n

)〉 − 2λ
〈
θλ
n − θ̄ λ

n ,H
(
θλ
n ,Xn+1

) − h
(
θλ
n

)〉
+ 2λ2

∥∥H
(
θλ
n ,Xn+1

) − h
(
θλ
n

)∥∥2 + 2λ2
∥∥h

(
θλ
n

) − h
(
θ̄ λ
n

)∥∥2
.

Taking expectations on both sides and using (15) yields

E
[∥∥θλ

n+1 − θ̄ λ
n+1

∥∥2|θλ
n , θ̄λ

n

]
≤ ∥∥θλ

n − θ̄ λ
n

∥∥2 − 2λã
∥∥θλ

n − θ̄ λ
n

∥∥2 − 2λ

a + L1

∥∥h
(
θλ
n

) − h
(
θ̄ λ
n

)∥∥2

+ 2λ2
E

[∥∥H
(
θλ
n ,Xn+1

) − h
(
θλ
n

)∥∥2|θλ
n , θ̄λ

n

] + 2λ2
∥∥h

(
θλ
n

) − h
(
θ̄ λ
n

)∥∥2
,

where ã is defined in (16). Hence, for λ ≤ 1/(a + L1),

E
[∥∥θλ

n+1 − θ̄ λ
n+1

∥∥2|θλ
n , θ̄λ

n

] ≤ (1 − λã)
∥∥θλ

n − θ̄ λ
n

∥∥2

+ 2λ2
E

[‖H (
θλ
n ,Xn+1

) −E
[
H

(
θλ
n ,Xn+1

)]|θλ
n , θ̄λ

n

]‖2|θλ
n , θ̄λ

n ].

Thus, due to Lemma A.2,

E
[∥∥θλ

n+1 − θ̄ λ
n+1

∥∥2|θλ
n , θ̄λ

n

]
≤ (1 − λã)

∥∥θλ
n − θ̄ λ

n

∥∥2 + 8λ2
E

[∥∥H
(
θλ
n ,Xn+1

) − H
(
θλ
n ,E

[
Xn+1|θλ

n , θ̄λ
n

])∥∥2|θλ
n , θ̄λ

n

]
≤ (1 − λã)

∥∥θλ
n − θ̄ λ

n

∥∥2 + 8λ2L2
2

(
1 + ∥∥θλ

n

∥∥)2 VarW (X0)

which implies that

E
[∥∥θλ

n+1 − θ̄ λ
n+1

∥∥2] ≤ 8λL2
2

(
1 + sup

n≥0
E

[∥∥θλ
n

∥∥2])]VarW (X0)
1

ã
,

where

VarW (X0) := E
[(

1 + ‖X0‖ + ∥∥E[X0]
∥∥)2ρ∥∥X0 −E[X0]

∥∥2]
.



26 M. Barkhagen et al.

Denote by c̄ =
√

8L2
2(1 + c0)]VarW (X0)

1
ã

, one obtains W2(Law(θλ
n ),Law(θ

λ

n)) ≤ c̄λ1/2. Then, to-
gether with Theorem 4.11, the following result can be obtained

W2
(
Law

(
θλ
n

)
,π

) ≤ W2
(
Law

(
θλ
n

)
,Law

(
θ

λ

n

)) + W2
(
Law

(
θ

λ

n

)
,πλ

) + W2(πλ,π)

≤ C̄
[
λ

1
2 + e−aλn

]
,

where C̄ = max{c̄, c1, c}. For any 0 < ε < 1/2, by letting C̄λ
1
2 < ε/2, and C̄e−aλn ≤ ε/2, one obtains

λ < c1ε
2 and n > c2ε

−2 ln(1/ε) with c1 = (4C̄)−1, c2 = (ac1)
−1(ln(2C̄) + 1). �

Appendix A: Technical results

Lemma A.1. Let (Xi)i∈N be a sequence of random variables such that for some p > 0, M =
supi∈NE[‖Xi‖p] < ∞. Then for 0 < r < p, E[sup1≤i≤j ‖Xi‖r ] ≤ j r/pMr/p .

Proof. One has

E
p/r

[
sup

1≤i≤j

‖Xi‖r
]

≤ E

[
sup

1≤i≤j

‖Xi‖p
]

≤ E

[
j∑

i=1

‖Xi‖p

]
≤ jM,

by Jensen’s inequality. �

Lemma A.2. Let G,H ⊂F be sigma-algebras. Let p ≥ 1. Let X, Y be R-valued random variables in
Lp such that Y is measurable with respect to H∨ G. Then

E
1/p

[∥∥X −E[X|H∨ G]∥∥p|G] ≤ 2E1/p
[‖X − Y‖p|G]

.

Proof. See [4], Lemma 6.1. �

Lemma A.3. Let x, y ∈ R
d , then

∑
i+j+k=p

{i �=p−1}∩{j �=1}

p!
i!j !k! ‖x‖2i

(
2〈x, y〉)j‖y‖2k ≤

2p∑
k=0
k �=1

(
2p

k

)
‖x‖2p−k‖y‖k.

Proof. Note that ∑
i+j+k=p

{i �=p−1}∩{j �=1}

p!
i!j !k! ‖x‖2i

(
2〈x, y〉)j‖y‖2k

≤
∑

i+j+k=p
{i �=p−1}∩{j �=1}

p!
i!j !k! ‖x‖2i

(
2‖x‖‖y‖)j‖y‖2k. (A.1)

Moreover,

2p∑
k=0

(
2p

k

)
‖x‖2p−k‖y‖k = (‖x‖ + ‖y‖)2p = (‖x‖2 + 2‖x‖‖y‖ + ‖y‖2)p
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=
∑

i+j+k=p

p!
i!j !k! ‖x‖2i

(
2‖x‖‖y‖)j‖y‖2k.

Consequently,

2p∑
k=0
k �=1

(
2p

k

)
‖x‖2p−k‖y‖k =

∑
i+j+k=p

{i �=p−1}∩{j �=1}

p!
i!j !k! ‖x‖2i

(
2‖x‖‖y‖)j‖y‖2k. (A.2)

Thus, in view of (A.1) and (A.2), the desired result is obtained. �

Lemma A.4. For each integer r ≥ 1, E[‖ξ1‖2r ] ≤ 22rdr r3r/2.

Proof. Let ζ1, . . . , ζd denote the coordinates of ξ1. It is well known that E[ζ 2r
1 ] = 2r
([2r +

1]/2)/
√

π . Clearly,

‖ξ1‖2r ≤
(

d∑
i=1

E
1/r

[
ζ 2r
i

])1/2

= (
2d
1/r

([2r + 1]/2
)
π−1/(2r)

)1/2

≤ √
2d
1/2r (r + 1)π−1/4r ≤ √

2d
(√

2πrr+1/2e−re1/(12r)
)1/2r

π−1/4r ,

where an estimate for the gamma function from [26] is used in the last inequality. Continuing in a
somewhat rough way, one obtains

‖ξ1‖2r ≤ 2
√

dr1/2+(1/4r)e−1/2e1/2 ≤ 2
√

dr3/4. �

Appendix B: Proof of a pivotal inequality

In this section we prove the analogues of two moment inequalities from [12] for conditional L-mixing
processes. One of these has already been shown in [4] but only under specific assumptions on the
filtration. Our proofs (which mostly take place in continuous time) follow closely the arguments of
[12]. There are, however, a number of small modifications that need to be pointed out.

We consider a continuous-time filtration (Rt )t∈R+ as well as a decreasing family of sigma-fields
(R+

t )t∈R+ . We assume that Rt is independent of R+
t , for all t ∈ R+.

We consider an R
d -valued continuous-time stochastic process (Xt )t∈R+ which is progressively mea-

surable (i.e., X : [0, t] × � →R
d is B([0, t]) ⊗Rt -measurable for all t ∈ R+).

From now on we assume that Xt ∈ L1, t ∈R+. We define the quantities

M̃i
r := ess sup

t∈R+
E

1/r
[∣∣Xi

t

∣∣r |R0
]
,

γ̃ i
r (τ ) := ess sup

t≥τ
E

1/r
[∣∣Xi

t −E
[
Xi

t |R+
t−τ ∨R0

]∣∣r |R0
]
, τ ∈ R+,

and set Mr := ∑d
i=1 M̃i

r , 
̃i
r := ∑∞

τ=0 γ i
r (τ ) and 
r := ∑d

i=1 
̃i
r where Xi

t refers to the ith coordinate
of Xt .
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Remark B.1. If d = 1, R0 is trivial and R+
t , t ∈ R+ is right-continuous then we get back to the

setting of [12]. It is shown in Lemma 9.1 of [12] that the (non-random) function τ → γr(τ ), τ ∈
R+ is measurable hence 
r := ∫ ∞

0 γr(τ )dτ can be defined. [12], Theorems 1.1 and 5.1, formulate
inequalities in terms of 
r instead of 
r .

We could attempt to define 
r for general R0 as a random variable but it requires further assumptions
and tedious arguments which we do not pursue here. We stay with 
r which is easier to handle and it
suffices for our purposes.

Theorem B.2. Let (Xt )t∈R+ be Lr -bounded for some r ≥ 2 and let Mr + 
r < ∞ a.s. Assume

E[Xt |R0] = 0 a.s. for t ∈ R+. Let f : [0, T ] → R be B([0, T ])-measurable with
∫ T

0 f 2
t dt < ∞. Then

there is a constant C(r) such that

E
1/r

[∣∣∣∣
∫ T

0
ftXt dt

∣∣∣∣
r ∣∣∣R0

]
≤ C(r)

(∫ T

0
f 2

t dt

)1/2

[Mr + 
r ], (B.1)

almost surely. We can actually take C(r) = √
r − 1.

Theorem B.3. Let the conditions of Theorem B.2 hold for some r > 2. Then there is a constant C′(r)
such that

E
1/r

[
sup

s∈[0,T ]

∣∣∣∣
∫ s

0
ftXt dt

∣∣∣∣
r ∣∣∣R0

]
≤ C′(r)

(∫ T

0
f 2

t dt

)1/2

[Mr + 
r ], (B.2)

almost surely. We can actually take

C′(r) =
√

r − 1

21/2 − 21/r
.

Note that the supremum in (B.2) can be taken along rationals hence it defines a random variable. We
now state the corresponding results for conditionally L-mixing processes.

Theorem B.4. Let (Xn)n∈N be conditionally L-mixing of order (r,1) for some r ≥ 2. Let bi , 1 ≤ i ≤ m

be real numbers. Then for each n ∈N

E

[∣∣∣∣∣
m∑

i=1

biXn+i

∣∣∣∣∣
r ∣∣∣Fn

]
≤ C(r)

(
m∑

i=1

b2
i

)1/2[
Mn

r (X) + 
n
r (X)

]
,

almost surely. If r > 2, then also

E

[∣∣∣∣∣ max
1≤k≤m

k∑
i=1

biXn+i

∣∣∣∣∣
r ∣∣∣Fn

]
≤ C′(r)

(
m∑

i=1

b2
i

)1/2[
Mn

r (X) + 
n
r (X)

]
(B.3)

holds.

We are proceeding to the proofs of the above results. Since E[Xt |R+
t−τ1

∨ R0] is R+
t−τ2

∨ R0-
measurable for t ≥ τ2 ≥ τ1, we obtain from Lemma A.2 with the choice X = Xt , Y = E[Xt |R+

t−τ1
∨

R0], H =R+
t−τ2

, G =R0 that

γr(τ2) ≤ 2γr(τ1). (B.4)
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We need a measure-theoretical lemma about real-valued random variables Y and Z.

Lemma B.5. Let r > 1, 1/r + 1/q = 1 and let Y ∈ Lr be R0 ∨R+
s -measurable for some s ≥ 0. Then

for all Rs -measurable Z ∈ Lq ,

E[YZ|R0] = E[Y |R0]E[Z|R0].

Proof. Let A ∈ R0 be arbitrary. We assume Y = 1B1C with B ∈ R0, C ∈ R+
s and Z = 1D with

D ∈Rs . Then we find that, by independence of Rs from R+
s and by R0 ⊂Rs ,

E[1AYZ] = P(C)P(A ∩ B ∩ D) = P(C)E
[
1A∩BE[1D|R0]

]
= E

[
1A1BP(C)E[1D|R0]

] = E
[
1AE[Y |R0]E[Z|R0]

]
,

which proves the statement for this Y and Z. Now, by standard arguments, one can extend these to
Y = 1G for all G ∈ R0 ∨ R+

s . We thus obtain the result for step functions Y , Z; then for bounded
measurable functions and finally we arrive at the general statement. �

Now we formulate, in the present setting, the analogue of [12], Lemma 2.3.

Lemma B.6. Let the assumptions of Theorem B.2 be in force. Let d = 1 and 1/r + 1/q = 1. We have,
for all 0 ≤ s ≤ t , ∣∣E[Xtη|R0]

∣∣ ≤ γr(t − s)E1/q
[|η|q |R0

]
for each η ∈ Lq which is Rs -measurable.

Proof. Using Lemma B.5,

E[Xtη|R0] = E
[
E

[
Xt |R+

s ∨R0
]|R0

]
E[η|R0] +E

[(
Xt −E

[
Xt |R+

s ∨R0
])

η|R0
]
.

Note that E[E[Xt |R+
s ∨R0]|R0] = E[Xt |R0] = 0. The conditional Hölder inequality implies that∣∣E[(

Xt −E
[
Xt |R+

s ∨R0
])

η|R0
]∣∣ ≤ γr(t − s)E1/q

[|η|q |R0
]
,

showing the statement. �

Proof of Theorem B.2. First let d := 1. For t ∈ [0, T ], define It := ∫ t

0 fsXs ds and gt := E[|It |r |R0].
Following verbatim the arguments in the proof of [12], Theorem 1.1, we arrive at

|IT |r =
∫ T

0

∫ t

0
r(r − 1)ftXtfsXs |Is |r−2 ds dt.

Hence, using Lemma B.6, �t − s� ≤ t − s and (B.4),

gT ≤
∫ T

0

∫ t

0
r(r − 1)

∣∣ftfsE
[
XtXs |Is |r−2|R0

]∣∣ds dt

≤
∫ T

0

∫ t

0
r(r − 1)|ftfs |2γr

(�t − s�)Mrg
1−2/r
s ds dt

=
∫ T

0
g

1−2/r
s r(r − 1)|fs |

∫ T

s

|ft |2γr

(�t − s�)Mr dt ds
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almost surely, whereupon Lemma 2.5 of [12] implies

g
1/r
T ≤

(
1

r/2

∫ T

0
r(r − 1)|fs |

∫ T

s

|ft |2γr

(�t − s�)Mr dt ds

)1/2

almost surely. The Cauchy inequality leads to

g
1/r
T ≤ 2

√
r − 1M

1/2
r

(∫ T

0
f 2

s ds

)1/4(∫ T

0

(∫ T

s

|ft |γr

(�t − s�)dt

)2

ds

)1/4

.

Moreover, by the Minkowski inequality for the Hilbert space L2([0, T ],B([0, T ]),Leb),

(∫ T

0

(∫ T

s

|ft |γr

(�t − s�)dt

)2

ds

)1/2

=
(∫ T

0

( ∞∑
k=0

γr(k)

∫ 1

0
|fs+k+u|1{s+k+u≤T } du

)2

ds

)1/2

≤
∞∑

k=0

γr(k)

(∫ T

0

(∫ 1

0
|fs+k+u|1{s+k+u≤T } du

)2

ds

)1/2

≤
∞∑

k=0

γr(k)

(∫ T

0

∫ 1

0
f 2

s+k+u1{s+k+u≤T } duds

)1/2

=
∞∑

k=0

γr(k)

(∫ 1

0

∫ T

0
f 2

s+k+u1{s+k+u≤T } ds du

)1/2

≤
∞∑

k=0

γr(k)

(∫ 1

0

∫ T

min{k+u,T }
f 2

t dt du

)1/2

≤
∞∑

k=0

γr(k)

(∫ T

0
f 2

t dt

)1/2

.

Thus, we finally arrive at

g
1/r
T ≤ 2

√
r − 1M

1/2
r

(∫ T

0
f 2

s ds

)1/4(∫ T

0
f 2

t dt

)1/4



1/2
r ,

which allows to conclude since
√


rMr ≤ [
r + Mr ]/2. Now let d be arbitrary. Applying the one-
dimensional result componentwise gives the result, noting the the Minkowski inequality and the defi-
nitions of Mr , 
r as sums of Mi

r , 
i
r , respectively. �

Proof of Theorem B.3. Again, let d := 1. Let I := {(a, b) : 0 ≤ a < b ≤ T ,
∫ b

a
f 2

s ds > 0} and define,
for (a, b) ∈ I ,

Ka,b := supt∈[a,b] |
∫ t

a
fsXs ds|r∫ b

a
f 2

s ds
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which is a random variable since the supremum can be taken along the rational numbers. Set Ma,b :=
E

1/r [Ka,b|R0]. Define, furthermore

M∗
T := ess sup

(a,b)∈I
Ma,b.

Noting Theorem B.2 and following verbatim the arguments in the proof of Theorem 5.1 in [12] we
arrive at

M∗
T ≤

√
r − 1[Mr + 
r ]√

2
+ 21/r

√
2

M∗
T

almost surely, which implies

M∗
T ≤

√
r − 1[Mr + 
r ]
21/2 − 21/r

,

showing the statement. The case d > 1 follows by a componentwise application of the one-dimensional
result. �

Proof of Theorem B.4. Fix n ∈ N. We define the continuous-time process X̃0 := Xn,

X̃t := Xn+k+1 for k < t ≤ k + 1, k ∈ N.

Set Rt := Fn+�t� and R+
t := F+

n+�t� for t ∈ R+. Notice that, for τ ∈ N, γr(τ ) calculated for

(X̃t ,Rt ,R+
t )t∈R+ coincides with γ n

r (τ,X) as defined in (8) and (9) for (Xn,Fn,F+
n )n∈N. Similarly,

Mr calculated for X̃ coincides with Mn
r (X). Let T := m, define ft := bi , i − 1 < t ≤ i, i = 1, . . . ,m

and f0 = 0. Clearly, ∫ T

0
ft X̃t dt =

m∑
i=1

biXn+i

An application of Theorems B.2 and B.3 to X̃ yield the result. �
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