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Random orthogonal matrices play an important role in probability and statistics, arising in multivariate
analysis, directional statistics, and models of physical systems, among other areas. Calculations involving
random orthogonal matrices are complicated by their constrained support. Accordingly, we parametrize
the Stiefel and Grassmann manifolds, represented as subsets of orthogonal matrices, in terms of Euclidean
parameters using the Cayley transform. We derive the necessary Jacobian terms for change of variables
formulas. Given a density defined on the Stiefel or Grassmann manifold, these allow us to specify the
corresponding density for the Euclidean parameters, and vice versa. As an application, we present a Markov
chain Monte Carlo approach to simulating from distributions on the Stiefel and Grassmann manifolds.
Finally, we establish that the Euclidean parameters corresponding to a uniform orthogonal matrix can be
approximated asymptotically by independent normals. This result contributes to the growing literature on
normal approximations to the entries of random orthogonal matrices or transformations thereof.

Keywords: Gaussian approximation; Grassmann manifold; Jacobian; Markov chain Monte Carlo; Stiefel
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1. Introduction

Random orthogonal matrices play an important role in probability and statistics. They arise, for
example, in multivariate analysis, directional statistics, and models of physical systems. The set
of p × k orthogonal matrices V(k,p) = {Q ∈Rp×k | QT Q = I k}, known as the Stiefel mani-
fold, is a dV = pk − k(k + 1)/2 dimensional submanifold of Rpk . There are two notable special
cases: V(1,p) is equivalent to the unit hypersphere, while V(p,p) is equivalent to the orthogonal
group O(p). Closely related to the Stiefel manifold is the Grassmann manifold G(k,p), the set of
k-dimensional linear subspaces of Rp . The Grassmann manifold has dimension dG = (p − k)k.
Points in the Grassmann manifold are often thought of as equivalence classes of V(k,p), where
two orthogonal matrices belong to the same class if they share the same column space or, equiva-
lently, if one matrix can be obtained from the other through right multiplication by an element of
O(k) [22]. In Section 3.2, we elaborate and expand upon the contributions of Shepard et al. [50]
to provide another representation of the Grassmann manifold G(k,p) as the subset V+(k,p) of
p × k orthogonal matrices having a symmetric positive definite (SPD) top block. In this article,
we focus on orthogonal matrices having fewer columns than rows.

Both the Stiefel and Grassmann manifolds can be equipped with a uniform probability mea-
sure, also know as an invariant or Haar measure. The uniform distribution PV(k,p) on V(k,p)
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is characterized by its invariance to left and right multiplication by orthogonal matrices: If

Q ∼ PV(k,p), then UQV
d= Q for all U ∈ O(p) and V ∈ O(k). Letting l : V(k,p) → G(k,p) be

the function taking an orthogonal matrix to its column space, the uniform distribution PG(k,p)

on G(k,p) is the pushforward measure of PV(k,p) under l. In other words, the measure of
A ⊆ G(k,p) is PG(k,p)[A] = PV(k,p)[l−1(A)]. The uniform distributions on these manifolds have
a long history in probability theory, as we discuss in Section 6, and in statistics, where they appear
in foundational work on multivariate analysis [28].

Non-uniform distributions on the Stiefel and Grassmann manifolds play an important role in
modern statistical applications. They are used to model directions, axes, planes, rotations, and
other data in the field of directional statistics [39]. Also, statistical models having the Stiefel or
Grassmann manifold as their parameter space are increasingly common [10,24,25]. In particular,
Bayesian analyses of multivariate data often involve prior and posterior distributions on V(k,p)

or G(k,p). Bayesian inference typically requires simulating from these posterior distributions,
motivating the development of new Markov chain Monte Carlo (MCMC) methodology [5,25,29,
48].

The challenge of performing calculations with random orthogonal matrices has motivated re-
searchers to parametrize sets of square orthogonal matrices in terms of Euclidean parameters.
We provide a few examples. In what Diaconis and Forester [14] identify as the earliest substan-
tial mathematical contribution to modern random matrix theory, Hurwitz [27] parametrizes the
special orthogonal and unitary groups using Euler angles and computes the volumes of their in-
variant measures. An implication of these computations is that the Euler angles of a uniformly
distributed matrix follow independent beta distributions. Over a century later, connections to an-
alytic number theory [34] have motivated extensions to more general measures and groups [3,4].
Anderson et al. [1] discuss the potential of various parametrizations in the simulation of uni-
formly distributed square orthogonal matrices. Other authors have made use of parametrizations
of square orthogonal or rotation matrices in statistical applications [12,35].

In contrast, the topic of parametrizing random orthogonal matrices having fewer columns than
rows has received little attention. The recent work of Shepard et al. [50] extends four existing
approaches to parametrizing square orthogonal matrices to the case when k < p and to the sce-
nario in which only the column space of the orthogonal matrix is of interest. Naturally, this latter
scenario is closely related to the Grassmann manifold. The tools needed to use these parametriza-
tions in a probabilistic setting are still largely missing.

In this article, we lay foundations for application of the Cayley parametrization of the Stiefel
and Grassmann manifolds in a probabilistic setting. There are three main contributions. First, we
elaborate and expand upon the work of Shepard et al. [50] to show that the Grassmann manifold
G(k,p) can be represented by the subset V+(k,p) of orthogonal matrices having an SPD top
block and that this subset can be parametrized in terms of Euclidean elements using the Cay-
ley transform. Next, we derive the necessary Jacobian terms for change of variables formulas.
Given a density defined on V(k,p) or V+(k,p), these allow us to specify the corresponding
density for the Euclidean parameters, and vice versa. As an application, we present a Markov
chain Monte Carlo approach to simulating from distributions on the Stiefel and Grassmann man-
ifolds. Finally, we establish that the Euclidean parameters corresponding to a uniform orthogonal
matrix can be approximated asymptotically by independent normals. This result contributes to
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the growing literature on normal approximations to the entries of random orthogonal matrices or
transformations thereof.

Code to replicate the figures in this article and to simulate from distributions on V(k,p) is
available at https://github.com/michaeljauch/cayley.

2. Probability distributions on submanifolds of Rn

In this section, we introduce tools for defining and manipulating probability distributions on
an m-dimensional submanifold M of Rn. In particular, we discuss the reference measure with
respect to which we define densities on M, we make precise what it means for us to parametrize
M in terms of Euclidean parameters, and we state a change of variables formula applicable in
this setting. Our formulation of these ideas follows that of Diaconis et al. [16] somewhat closely.
This general discussion will form the basis for our handling of the specific cases in which M is
V(k,p) or V+(k,p).

In order to specify probability distributions on M in terms of density functions, we need
a reference measure on that space, analogous to Lebesgue measure Lm on Rm. We take the
Hausdorff measure as our reference measure. A referee and Diaconis et al. [17] point out that
the Hausdorff measure is a more natural fit for rough sets (see, e.g., the Cantor set or fractional
Brownian motion) or manifolds with kinks (see, e.g., the barbell of Grayson [23]) than for smooth
Riemannian manifolds such as V(k,p) or V+(k,p). Still, the Hausdorff measure is intuitive,
coincides with alternative measures on submanifolds of Rn, allows for a simple statement of the
required results, and appears in related work of Diaconis et al. [16] and Byrne and Girolami [5].

Heuristically, the m-dimensional Hausdorff measure of A ⊂ Rn is the m-dimensional area
of A. More formally, the m-dimensional Hausdorff measure Hm(A) of A is defined

Hm(A) = lim
δ→0

inf
A⊂⋃

i Si

diam(Si )<δ

∑
i

αm

(
diam(Si)

2

)m

,

where the infimum is taken over countable coverings {Si}i∈N of A with

diam(Si) = sup
{|x − y| : x, y ∈ Si

}
and αm = �( 1

2 )m/�(m
2 + 1), the volume of the unit ball in Rm. The dV -dimensional Hausdorff

measure on V(k,p) coincides with PV(k,p) up to a multiplicative constant.
Let g : M → R be proportional to a density with respect to the m-dimensional Hausdorff

measure on M. Furthermore, suppose M can be parametrized by a function f from an open
domain D ∈Rm to I = f (D) ⊆M satisfying the following conditions:

1. Almost all of M is contained in the image I of D under f so that Hm(M \ I) = 0.
2. The function f is injective on D.
3. The function f is continuously differentiable on D with the derivative matrix Df (φ) at

φ ∈ D.

https://github.com/michaeljauch/cayley
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In this setting, we obtain a simple change of variables formula. This formula will be applied to
V(k,p) and V+(k,p) in the derivation of Theorem 4.1. Define the m-dimensional Jacobian of f

at φ as Jmf (φ) = |Df (φ)T Df (φ)|1/2. Like the familiar Jacobian determinant, this term acts as
a scaling factor in a change of variables formula. However, it is defined even when the derivative
matrix is not square. For more details, see the discussion in [16]. The change of variables formula
is given in the following theorem, which is essentially a restatement of the main result of Traynor
[54]:

Theorem 2.1. For all Borel subsets A ⊂D∫
A

Jmf (φ)Lm(dφ) = Hm
[
f (A)

]
and hence ∫

A

g
[
f (φ)

]
Jmf (φ)Lm(dφ) =

∫
f (A)

g(y)Hm(dy).

Naturally, the change of variables formula has an interpretation in terms of random variables.
Let y be a random element of M whose distribution has a density proportional to g. Then

y
d= f (φ) when the distribution of φ ∈ D has a density proportional to g[f (φ)]Jmf (φ).

3. The Cayley parametrizations

The Cayley transform, as introduced in [7], is a map from skew-symmetric matrices to spe-
cial orthogonal matrices. Given X in Skew(p) = {X ∈Rp×p|X = −XT }, the (original) Cayley
transform of X is the special orthogonal matrix

Corig.(X) = (Ip + X)(Ip − X)−1.

We work instead with a modified version of the Cayley transform described in [50]. In this
version, the Cayley transform of X is the p × k orthogonal matrix

C(X) = (Ip + X)(Ip − X)−1Ip×k

where Ip×k denotes the p×k matrix having the identity matrix as its top block and the remaining
entries zero. The matrix Ip − X is invertible for any X ∈ Skew(p), so the Cayley transform is
defined everywhere.

In this section, we parametrize (in the sense of Section 2) the sets V(k,p) and V+(k,p) using
the Cayley transform C. We are able to parametrize these distinct sets by restricting the domain
of C to distinct subsets of Skew(p). The third condition of the previous section requires that C be
continuously differentiable on its domain. We verify this condition by computing the derivative
matrices of C, clearing a path for the statement of change of variables formulas in Section 4.
We also state and discuss an important proposition which justifies our claim that the Grassmann
manifold G(k,p) can be represented by the set V+(k,p).
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3.1. Cayley parametrization of the Stiefel manifold

To parametrize the Stiefel manifold V(k,p), the domain of C is restricted to the subset

DV =
{
X =

[
B −AT

A 0p−k

] ∣∣∣ B ∈ Skew(k),

A ∈Rp−k×k

}
⊂ Skew(p).

Let X ∈ DV and set Q = C(X). Partition Q = [QT
1 QT

2 ]T so that Q1 is square. We can write
the blocks of Q in terms of the blocks of X as

Q1 = (
I k − AT A + B

)(
I k + AT A − B

)−1
,

Q2 = 2A
(
I k + AT A − B

)−1
.

The matrix I k + AT A − B is the sum of a symmetric positive definite matrix and a skew-
symmetric matrix and therefore nonsingular (see the appendix for a proof). This observation
guarantees (again) that the Cayley transform is defined for all X ∈ DV . We can recover the
matrices A and B from Q:

F = (I k − Q1)(I k + Q1)
−1, (3.1)

B = 1

2

(
F T − F

)
, (3.2)

A = 1

2
Q2(I k + F ). (3.3)

We are now in a position to verify the first two conditions of Section 2. The image of DV under
C is the set

IV = {
Q = [

QT
1 QT

2

]T ∈ V(k,p) | I k + Q1 is nonsingular
}
,

which has measure one with respect to PV(k,p). The injectivity of C on DV follows from the ex-
istence of the inverse mapping described in equations (3.1)–(3.3). All that remains to be verified
is the third condition, that C is continuously differentiable on its domain.

As the first step in computing the derivative matrix of C, we define a dV -dimensional vector ϕ

containing each of the independent entries of X. Let b be the k(k − 1)/2-dimensional vector of
independent entries of B obtained by eliminating diagonal and supradiagonal elements from the
vectorization vecB . The vector ϕ = (bT ,vecAT )T then contains each of the independent entries
of X. Let Xϕ ∈ DV be the matrix having ϕ as its corresponding vector of independent entries.

The Cayley transform can now be thought of as a function of ϕ:

C(ϕ) = (Ip + Xϕ)(Ip − Xϕ)−1Ip×k.

As a function of ϕ, the Cayley transform is a bijection between the set Dϕ
V = {ϕ ∈ RdV :

Xϕ ∈ DV } =RdV and IV . The inverse Cayley transform is defined in the obvious way as the
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map C−1 : Q �→ (bT ,vecAT )T where B and A are computed from Q according to equations
(3.1)–(3.3) and b contains the independent entries of B as before.

The next lemma provides an explicit linear map �V sending ϕ to vecXϕ , greatly simplifying
our calculation of the derivative matrix DC(ϕ). The entries of �V belong to the set {−1,0,1}.
The construction of �V involves the commutation matrix Kp,p and the matrix D̃k satisfying
D̃kb = vecB, both of which are discussed in [36] and defined explicitly in Appendix B. Set
�1 = [I k 0k×p−k] and �2 = [0p−k×k Ip−k].

Lemma 3.1. The equation vecXϕ = �Vϕ is satisfied by the matrix

�V = [(
�T

1 ⊗ �T
1

)
D̃k (Ip2 − Kp,p)

(
�T

1 ⊗ �T
2

)]
.

With these pieces in place, we can now identify the derivative matrix C(ϕ).

Proposition 3.1. The Cayley transform is continuously differentiable on Dϕ
V =RdV with deriva-

tive matrix

DC(ϕ) = 2
[
IT

p×k(Ip − Xϕ)−T ⊗ (Ip − Xϕ)−1]�V .

The form of the derivative matrix reflects the composite structure of the Cayley transform as
a function of ϕ. The Kronecker product term arises from differentiating C with respect to Xϕ ,
while the matrix �V arises from differentiating Xϕ with respect to ϕ.

3.2. The Cayley parametrization of the Grassmann manifold

While the definition of the Grassmann manifold as a collection of subspaces is fundamental, we
often need a more concrete representation. One simple idea is to represent a subspace S ∈ G(k,p)

by Q ∈ V(k,p) having S as its column space. However, the choice of Q is far from unique.
Alternatively, the subspace S can be represented uniquely by the orthogonal projection matrix
onto S, as in [9]. We propose instead to represent G(k,p) by the subset of orthogonal matrices

V+(k,p) = {
Q = [

QT
1 QT

2

]T ∈ V(k,p) | Q1 	 0
}
.

As the next proposition makes precise, almost every element of G(k,p) can be represented
uniquely by an element of V+(k,p). Recall that we defined l : V(k,p) → G(k,p) as the map
which sends each element of V(k,p) to its column space.

Proposition 3.2. The map l is injective on V+(k,p) and the image of V+(k,p) under l has
measure one with respect to the uniform probability measure PG(k,p) on G(k,p).

In turn, the set V+(k,p) is amenable to parametrization by the Cayley transform. In this case,
the domain of the Cayley transform C is restricted to the subset

DG =
{
X =

[
0 −AT

A 0p−k

] ∣∣∣ A ∈Rp−k×k,

0 
 A�A ≺ I k

}
⊂ Skew(p).
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Let X ∈ DG and set Q = C(X). Again, partition Q = [QT
1 QT

2 ]T so that Q1 is square. We can
write the blocks of Q in terms of A as

Q1 = (
I k − AT A

)(
I k + AT A

)−1
,

Q2 = 2A
(
I k + AT A

)−1
.

We can recover the matrix A from Q:

F = (I k − Q1)(I k + Q1)
−1, (3.4)

A = 1

2
Q2(I k + F ). (3.5)

We turn to verifying the conditions of Section 2. The first two conditions are satisfied as a
consequence of the following proposition:

Proposition 3.3. The Cayley transform C : DG → G(k,p) is one-to-one.

Only the third condition, that C is continuously differentiable on DG, remains.
The process of computing the derivative matrix is the same as before. We define a dG -

dimensional vector ψ = vecA containing each of the independent entries of X. Let Xψ ∈ DG
be the matrix having ψ as its corresponding vector of independent entries. The Cayley transform
can now be thought of as a function of ψ :

C(ψ) = (Ip + Xψ )(Ip − Xψ )−1Ip×k.

As a function of ψ , the Cayley transform is a bijection between the set Dψ
G = {ψ ∈ RdG :

Xψ ∈ DG} and V+(k,p). The next lemma provides an explicit linear map sending ψ to vecXψ

in the form of a {−1,0,1} matrix �G :

Lemma 3.2. The equation vecXψ = �Gψ is satisfied by the matrix

�G = (Ip2 − Kp,p)
(
�T

1 ⊗ �T
2

)
.

In the next proposition, we identify the derivative matrix DC(φ).

Proposition 3.4. The Cayley transform is continuously differentiable on Dψ
G with derivative ma-

trix

DC(ψ) = 2
[
IT

p×k(Ip − Xψ )−T ⊗ (Ip − Xψ )−1]�G .
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4. Change of variables formulas

We now state change of variables formulas for the Cayley parametrizations of V(k,p) and
V+(k,p). Given the results of the previous section, the formulas follow directly from Theo-
rem 2.1. The dV -dimensional Jacobian JdVC(ϕ) of the Cayley transform C at ϕ is equal to

JdVC(ϕ) = ∣∣DC(ϕ)T DC(ϕ)
∣∣1/2

= ∣∣22�T
V (GV ⊗ HV )�V

∣∣1/2
,

where

GV = (Ip − Xϕ)−1Ip×kI
T
p×k(Ip − Xϕ)−T ,

HV = (Ip − Xϕ)−T (Ip − Xϕ)−1

and �V is defined as in Section 3.1. The equations above hold for the dG -dimensional Jacobian
JdGC(φ) if we replace the symbols V and ϕ with the symbols G and ψ , respectively. In the
supplementary material, we describe how to compute the Jacobian terms, taking advantage of
their block structure. Let g : V(k,p) →R be proportional to a density with respect to the dV -
dimensional Hausdorff measure on V(k,p).

Theorem 4.1 (Change of variables formulas). For all Borel sets A ⊂Dϕ
V∫

A

JdVC(ϕ)LdV (dϕ) = HdV
[
C(A)

]
(4.1)

and hence ∫
A

g
[
C(ϕ)

]
JdVC(ϕ)LdV (dϕ) =

∫
C(A)

g(Q)HdV (dQ). (4.2)

If instead we have g : V+(k,p) →R proportional to a density with respect to the dG -dimensional
Hausdorff measure on V+(k,p), the statement is true when we replace the symbols V and ϕ with
the symbols G and ψ , respectively.

Similarly to Theorem 2.1, Theorem 4.1 has an interpretation in terms of random variables.

Let the distribution of Q ∈ V(k,p) have a density proportional to g. Then Q
d= C(ϕ) when the

distribution of ϕ ∈ Dϕ
V =RdV has a density proportional to g[C(ϕ)]JdVC(ϕ). In particular, let

g ∝ 1 so that Q ∼ PV(k,p). Then Q
d= C(ϕ) when the distribution of ϕ has a density proportional

to JdVC(ϕ). Analogous statements hold when Q is a random element of V+(k,p).

5. Simulating from V(k,p) and V+(k,p)

Practical applications often require simulating a random orthogonal matrix Q whose distribution
has a prescribed density g. For instance, Bayesian analyses of statistical models with an orthog-
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onal matrix parameter yield posterior densities on the Stiefel manifold, and inference typically
requires simulating from these densities. In many cases, generating independent samples is too
challenging and MCMC methods are the most sensible option.

In this section, we present an MCMC approach to simulating from a distribution having a
density on the set V(k,p) or V+(k,p) which takes advantage of the Cayley parametrizations
described in Section 3. The recent work of Pourzanjani et al. [46] explores a similar idea based
on a Givens rotation parametrization of the Stiefel manifold. When it is not too computationally
expensive, our approach may have certain advantages over existing methods. Unlike Hoff [25],
it can be applied regardless of whether conditional distributions belong to a particular parametric
family, and it is arguably simpler to implement than the approach of Byrne and Girolami [5].
In statistical applications where interest lies in a subspace rather than a particular orthogonal
basis, our representation of the Grassmann manifold G(k,p) by the set V+(k,p) may suggest an
appealing parametrization, with the MCMC approach of this section offering the machinery for
Bayesian inference.

We illustrate the basic idea with the Stiefel manifold. (Simulating from V+(k,p) involves
analogous steps.) In order to simulate Q whose distribution has density g on the Stiefel manifold
V(k,p), we construct a Markov chain whose stationary distribution has density g[C(ϕ)]JdVC(ϕ)

on the set Dϕ
V =RdV . Then we simply transform the realized Markov chain back to V(k,p) using

the Cayley transform. By doing so, we avoid the difficulty of choosing and simulating from an
efficient proposal distribution defined on the Stiefel manifold.

To make things more concrete, we describe the approach with the Metropolis–Hastings algo-
rithm as our MCMC method. We start with an initial value ϕ0 ∈ Dϕ

V for our chain and a density
q(ϕ′|ϕ) for the proposal ϕ′ given the previous value ϕ. The Metropolis–Hastings algorithm for
simulating from the distribution having density g[C(ϕ)]JdVC(ϕ) on Dϕ

V proceeds as follows.
For t = 0, . . . , T :

1. Generate ϕ′ from q(ϕ′|ϕt ).
2. Compute the acceptance ratio

r = g[C(ϕ′)]JdVC(ϕ′)
g[C(ϕt )]JdVC(ϕt )

q(ϕt |ϕ′)
q(ϕ′|ϕt )

.

3. Sample u ∼ Unif(0,1). If u ≤ r , set ϕt+1 = ϕ′. Otherwise, set ϕt+1 = ϕt .

For a broad class of g and q , the orthogonal matrices {C(ϕt )}Tt=0 approximate the distribution
having density g when T is large enough.

In place of this simple Metropolis–Hastings algorithm, we can substitute other MCMC meth-
ods. Hamiltonian Monte Carlo (HMC) [44], with implementations in software such as [6] and
[49], is a natural choice. For settings in which evaluation of the Jacobian term is not prohibitively
expensive, the Cayley transform approach offers a relatively straightforward path to MCMC sim-
ulation on the sets V(k,p) and V+(k,p).

5.1. Example: The uniform distribution on V(k,p)

Using the MCMC approach described above, we simulate from the uniform distribution on
V(k,p). Specifically, we use HMC as implemented in Stan [6] to simulate Q ∼ PV(k,p). Of
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Figure 1. The top left panel is a histogram of the top left entry of simulated values of Q ∼ PV(3,5) plotted
against the exact density. The bottom left panel is the analogous plot for Q ∼ PV(3,50). The top right panel

is a histogram of the first entry, rescaled by
√

p/2, of ϕ = C−1(Q) when p = 5 and k = 3. The histogram
is plotted against a standard normal density. The bottom right panel is the analogous plot for the case when
p = 50 and k = 3.

course, there exist many algorithms for the simulation of independent, uniformly distributed or-
thogonal matrices. The uniform distribution only serves as a starting point for illustrating the
proposed approach.

Figure 1 provides plots based on 10,000 simulated values of Q ∼ PV(k,p). The top row of the
figure deals with the case p = 5 and k = 3, while the bottom row deals with the case p = 50 and
k = 3. The histograms on the left show the top left entry of the simulated values of Q plotted
against the exact density, given in Proposition 7.3 of [21]. As we expect, there is close agreement
between the histogram density estimate and the exact density. The histograms on the right show
the first entry, rescaled by

√
p/2, of the simulated values of the vector ϕ = C−1(Q). These

are plotted against a standard normal density. Theorem 6.1 tells us that the histogram density
estimate and the standard normal density should agree when p is large (both in an absolute sense
and relative to k), which is what we observe in the plot on the bottom right. When k is similar
in magnitude to p, the standard normal density is a poor approximation, as we see in the plot on
the top right.

5.2. Example: Bayesian inference for the spiked covariance model

Suppose the rows of an n × p data matrix Y are independent samples from a mean zero mul-
tivariate normal population with covariance matrix �. The spiked covariance model, consid-
ered by Johnstone [33] and others, assumes the covariance matrix � can be decomposed as
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� = σ 2(Q�QT + Ip) with Q ∈ V(k,p) and � = diag(λ1, . . . , λk) where λ1 > · · · > λk > 0.
Under this model, the covariance matrix is partitioned into the low rank “signal” component
σ 2Q�QT and the isotropic “noise” component σ 2Ip .

Given priors for the unknown parameters, a conventional Bayesian analysis will approximate
the posterior distribution by a Markov chain having the posterior as its stationary distribution.
Inference for the trivially constrained parameters σ 2 and � is easily handled by standard MCMC
approaches, so we treat these parameters as fixed and focus on inference for the orthogonal
matrix parameter Q. With a uniform prior for Q, the posterior distribution is matrix Bingham
[25], having density

p
(
Q | Y , σ 2,�

) ∝ etr
{[(

�−1 + I k

)−1
/
(
2σ 2)]QT

[
Y T Y

]
Q

}
.

We compare two MCMC approaches to simulating from the matrix Bingham distribution:
the Gibbs sampling method of Hoff [25] and the Cayley transform approach (again, with HMC
as implemented in Stan). The dimensions are chosen as n = 100,p = 50, and k = 3. We set
σ 2 = 1,� = diag(5,3,1.5), and choose a true value of Q uniformly from V(3,50). We then
generate a data matrix according to the model vecY ∼ N [0, σ 2(Q�QT + Ip) ⊗ I 100]. We
run each Markov chain for 12,000 steps and discard the first 2000 steps as burn-in. In order to
summarize the high-dimensional posterior simulations in terms of lower dimensional quantities,
we compute the principal angles between the columns of the simulated Q matrices and the
corresponding columns of the posterior mode V , computed from the eigendecomposition A =
V DV T . For j = 1, . . . ,3, the principal angles are

θj = cos−1
( |qT

j vj |
‖qj‖‖vj‖

)
,

where qj and vj are the j th columns of Q and V , respectively.
Figure 2 displays the principal angles calculated from the two Markov chains. The plots in

the bottom half of the figure compare histogram approximations of the marginal posterior dis-
tributions of the principal angles. There is considerable overlap, suggesting that the two chains
have found their way to equivalent modes of their matrix Bingham stationary distribution. The
plot in the top left of the figure overlays trace plots of the first principal angle calculated from
a portion of each of the chains. The black line corresponds to our MCMC approach, while the
gray line corresponds to that of Hoff [25]. The plot in the top right shows the correlation between
lagged values of the first principal angle. Again, the black dots correspond to our MCMC ap-
proach, while the gray dots correspond to that of Hoff [25]. Together, the plots in the top half of
the figure indicate that, compared to the approach of Hoff [25], the Cayley transform approach
produces a Markov chain with less autocorrelation, reducing Monte Carlo error in the resulting
posterior inferences.

6. An asymptotic independent normal approximation

In Section 4, we derived the density for the distribution of ϕ = C−1(Q) when Q is distributed
uniformly on the Stiefel manifold. However, the expression involves the rather opaque Jacobian
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Figure 2. The plot in the top left overlays trace plots of the first principal angle calculated from a portion
of each of the chains, while the plot in the top right shows the correlation between lagged values of the first
principal angle. The black lines and dots correspond to our MCMC approach, while the gray lines and dots
correspond to that of [25]. The plots in the bottom half compare histogram approximations of the marginal
posterior distributions of the principal angles.

term JdVC(ϕ). Instead of analyzing the density function, we can gain insight into the distribu-
tion of ϕ by other means. The critical observation, evident in simulations, is the following: If
Q ∼ PV(k,p) with p large and p � k then, in some sense, the elements of ϕ = C−1(Q) are
approximately independent and normally distributed. Theorem 6.1 of this section provides a
mathematical explanation for this empirical phenomenon.

In order to understand Theorem 6.1 and its broader context, it is helpful to review the literature
relating to normal approximations to the entries of random orthogonal matrices or transforma-
tions thereof. For the sake of consistency and clarity, the notation and formulation of the relevant
results have been modified slightly. Let {Qp} be a sequence of random orthogonal matrices with
each element Qp uniform on V(kp,p). The notation kp indicates that the number of columns
may grow with the number of rows. For each p, let qp be the top left entry of Qp (any other
entry would also work). It has long been observed that qp is approximately normal when p is
large. The earliest work in this direction relates to the equivalence of ensembles in statistical
mechanics and is due to Mehler [43], Maxwell [40,41], and Borel [2]. A theorem of Borel shows
that Pr(

√
pqp ≤ x) → 	(x) as p grows, where 	 is the cumulative distribution function of a

standard normal random variable. Since then, a large and growing literature on this sort of nor-
mal approximation has emerged. A detailed history is given in [15], while an overview is given
in [13] and [30].
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Much of this literature is devoted to normal approximations to the joint distribution of entries
of random orthogonal matrices. Letting qp be the first column of Qp for each p (again, any
other column would also work), Stam [51] proved that the total variation distance between the
distribution of the first mp coordinates of

√
pqp and the distribution of mp independent standard

normal random variables converges to zero as p gets large so long as mp = o(
√

p). Diaconis and
Freedman [15] strengthened this result, showing that it holds for mp = o(p). Diaconis et al. [19]
prove that the total variation distance between the distribution of the top left mp × np block of√

pQp and the distribution of mpnp independent standard normals goes to zero as p → ∞ if
mp = o(pγ ) and np = o(pγ ) for γ = 1/3. (Clearly, we must have np ≤ kp for this result to
make sense.) Their work drew attention to the problem of determining the largest orders of mp

and np such that the total variation distance goes to zero. Jiang [30] solved this problem, finding
the largest orders to be o(p1/2). Recent work has further explored this topic [31,53].

Many authors have also considered transformations of random orthogonal matrices or notions
of approximation not based on total variation distance. In the former category, D’Aristotile et
al. [13] and Meckes [42] study the convergence of linear combinations of the entries of matri-
ces in the sequence {Qp} to normality as p → ∞. Diaconis and Shahshahani [18], Stein [52],
Johansson [32], and Rains [47] address the normality of traces of powers of random orthogonal
and unitary matrices. In the latter category, Chatterjee and Meckes [8] and Jiang and Ma [31]
consider probability metrics other than total variation distance. Jiang [30] also considers a notion
of approximation other than total variation distance, and Theorem 3 in that work is particularly
important in understanding our Theorem 6.1.

Theorem 3 of [30] tells us that the distribution PV(kp,p) can be approximated by the distribution
of pkp independent normals provided that p is sufficiently large (both in an absolute sense and
relative to kp). The form of approximation in the theorem is weaker and likely less familiar than
one based on total variation distance. Define the max norm ‖ · ‖max of a matrix as the maximum
of the absolute values of its entries. Jiang [30] shows that one can construct a sequence of pairs
of random matrices {Zp,Qp} with each pair defined on the same probability space such that

(i) The entries of the p × kp matrix Zp are independent standard normals.
(ii) The matrix Qp is uniform on V(kp,p).

(iii) The quantity εp = ‖√pQp − Zp‖max → 0 in probability as p → ∞ provided that kp =
o(p/ logp), and this is the largest order of kp such that the result holds.

The coupling is constructed by letting Qp be the result of the Gram–Schmidt orthogonalization
procedure applied to Zp .

To better understand this type of approximation, which we refer to as ‘approximation in proba-
bility,’ consider the problem of simulating from the distribution of the random matrix

√
pQp on

a computer with finite precision. One could simulate a matrix Zp of independent standard nor-
mals, obtain Qp using Gram–Schmidt, then multiply by

√
p to arrive at

√
pQp . However, for

a fixed machine precision and p sufficiently large (again, both in an absolute sense and relative
to kp), the matrix

√
pQp would be indistinguishable from Zp with high probability.

Our Theorem 6.1 establishes that the distribution of ϕp = C−1
p (Qp), which we know to have

a density proportional to JdVCp(ϕ), can be approximated in probability by independent nor-
mals. (Since we now have a sequence of matrices of different dimensions, we denote the Cayley
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transform parametrizing V(kp,p) by Cp .) For each p, define the diagonal scale matrix

	p =
[√

p/2I kp(kp−1)/2 0

0
√

pI (p−kp)kp

]
,

and recall that the infinity norm ‖ · ‖∞ of a vector is equal to the maximum of the absolute values
of its entries.

Theorem 6.1. One can construct a sequence of pairs of random vectors {zp,ϕp} such that

(i) The entries of the vector zp are independent standard normals.

(ii) The vector ϕp
d= C−1

p (Qp) where Qp ∼ PV(kp,p).
(iii) The quantity εp := ‖	pϕp − zp‖∞ → 0 in probability as p → ∞ provided kp =

o(
p1/4√
logp

).

The construction of the coupling is more elaborate than in Theorem 3 of [30]. We first
introduce a function C̃−1

p which approximates the inverse Cayley transform. Given a matrix
M ∈Rp×kp having a square top block M1 and a bottom block M2, the vector b̃p(M) contains
the independent entries of B̃p(M) = M1 − MT

1 obtained by eliminating diagonal and supradi-
agonal entries from vec B̃p(M) while Ãp(M) = M2. The approximate inverse Cayley transform
is then

C̃−1
p (M) =

[
b̃p(M)

vec Ãp(M)

]
.

Now let Zp be a p × kp matrix of independent standard normals and let Qp be the result of
applying the Gram–Schmidt orthogonalization procedure to Zp . It follows that Qp ∼ PV(kp,p).
Finally, set

zp = 	pC̃−1
p

(
p−1/2Zp

)
,

ϕp = C−1
p (Qp).

The details of the proof of Theorem 6.1 appear in the appendix, but we provide a sketch here.
Part (i) is straightforward to verify and (ii) is immediate. Part (iii) requires more work. The
proof of (iii) involves verifying the following proposition, which involves a third random vector
ϕ̃p = C̃−1

p (Qp):

Proposition 6.1. (i) The quantity ‖	pϕ̃p − 	pϕp‖∞ → 0 in probability as p → ∞ provided

kp = o(
p1/4√
logp

), and (ii) the quantity ‖	pϕ̃p − zp‖∞ → 0 in probability as p → ∞ provided

kp = o(
p

logp
).

Part (iii) then follows from the proposition by the triangle inequality.
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Whether kp = o(
p1/4√
logp

) is the largest order for kp such that the approximation in Theorem 6.1
holds is an open question. As we saw in the literature review, approximation results like The-
orem 6.1 are often strengthened in subsequent work using different techniques. We believe, at
least, that we have found the largest order for kp that our proof strategy allows. For a more
detailed discussion of the condition on kp , see the proof of Lemma A.2 in Section A.6.

Appendix A: Proofs

A.1. The sum of a symmetric positive definite matrix and skew-symmetric
matrix is nonsingular

Let � and S be symmetric positive definite and skew-symmetric, respectively, of equal dimen-
sion. Their sum can be written

� + S = �1/2(I + �−1/2S�−1/2)�1/2.

The matrix �−1/2S�−1/2 is skew-symmetric, which implies that I + �−1/2S�−1/2 is non-
singular. Because it can be written as the product of nonsingular matrices, the sum � + S is
nonsingular.

A.2. Proof of Proposition 3.1

One can compute, following [38], that

dQ = 2(Ip − Xϕ)−1 dXϕ(Ip − Xϕ)−1Ip×k,

so that

d vecQ = 2
[
IT

p×k(Ip − Xϕ)−T ⊗ (
Ip − X−1

ϕ

)]
d vecXϕ .

By Lemma 3.1, we have that vecXϕ = �Vϕ. Thus,

d vecQ = 2
[
IT

p×k(Ip − Xϕ)−T ⊗ (Ip − Xϕ)−1]�V dϕ.

Using the first identification table of [38], we identify the derivative matrix

D CayV (ϕ) = 2
[
IT

p×k(Ip − Xϕ)−T ⊗ (Ip − Xϕ)−1]�V .

A.3. Proof of Proposition 3.2

We first show that l is injective on V+(k,p). Let Q = [QT
1 QT

2 ]T ,Q′ = [Q′T
1 Q′T

2 ]T ∈ V+(k,p)

and suppose that l(Q) = l(Q′), i.e. the columns of Q and Q′ span the same subspace. There
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must exist R ∈ O(k) such that Q = Q′R so that Q1 = Q′
1R. Because the matrix Q1 is nonsin-

gular, its left polar decomposition into the product of a symmetric positive definite matrix and an
orthogonal matrix is unique (see, for example, Proposition 5.5 of [20]). We conclude that R = I k

and Q1 = Q′
1. Thus, l is injective on V+(k,p).

Next, we prove that the image of V+(k,p) under l has measure one with respect to the uniform
probability measure PG(k,p) on G(k,p). Define VN(k,p) as the set

VN(k,p) = {
Q = [

QT
1 QT

2

]T ∈ V(k,p) : Q1 is nonsingular
}
.

The set VN(k,p) has measure one with respect to PV(k,p) and the following lemma holds:

Lemma A.1. The images of V+(k,p) and VN(k,p) under l are equal.

Proof. The direction l[V+(k,p)] ⊆ l[VN(k,p)] is immediate. Now, let S ∈ l[VN(k,p)]. There
must exist Q = [QT

1 QT
2 ]T ∈ VN(k,p) having S as its column space. Let Q1 = UDV T be the

singular value decomposition of Q1 and set Q′ = QV UT . Then l(Q′) = S because V UT ∈
O(k) and Q′ ∈ V+(k,p) because its square top block UDUT is symmetric positive definite.
Thus S ∈ l[V+(k,p)] and we conclude that l[VN(k,p)] ⊆ l[V+(k,p)]. �

Recall that the measure PG(k,p) is the pushforward of PV(k,p) by l, i.e. for a subset A ⊂ G(k,p)

we have PG(k,p)(A) = PV(k,p)[l−1(A)]. Thus,

PG(k,p)

{
l
[
V+(k,p)

]} = PG(k,p)

{
l
[
VN(k,p)

]}
= PV(k,p)

{
VN(k,p)

}
= 1.

A.4. Proof of Proposition 3.3

We begin with Q = [QT
1 QT

2 ] ∈ V+(k,p) and we want to verify that the matrix A obtained by
equations (3.4)–(3.5) satisfies 0 
 A�A ≺ I k . Let Q1 = V diag(λ1, . . . , λk)V

T be the eigende-
composition of Q1. That each eigenvalue of Q1 is positive follows from the condition Q1 	 0.
We know that each eigenvalue is less than or equal to one because

0k 
 QT
2 Q2

= I k − QT
1 Q1

= V diag
(
1 − λ2

1, . . . ,1 − λ2
k

)
V T .

Therefore, λi ∈ (0,1] for each i. As in equations (3.4)–(3.5), set

F = (I k − Q1)(I k + Q1)
−1,

A = 1

2
Q2(I k + F ).
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We can write AT A as

AT A = 1

4
(I k + F )T QT

2 Q2(I k + F )

= 1

4
(I k + F )T

(
I k − QT

1 Q1
)
(I k + F )

from which it follows that

evali
(
AT A

) = 1

4

(
1 − λ2

i

)(
1 + 1 − λi

1 + λi

)2

for each i. The notation evali (AT A) indicates the ith eigenvalue of AT A. Since the eigenvalues
of Q1 lie in the interval (0,1], the eigenvalues of AT A lie in the interval [0,1).

Now we start with A such that δi = evali (AT A) ∈ [0,1) for each i and we want to check that
Q1 = (I k − AT A)(I k + AT A)−1 	 0. Let AT A = W diag(δ1, . . . , δk)W

T be the eigendecom-
position of AT A. Then

Q1 = W diag

(
1 − δ1

1 + δ1
, . . . ,

1 − δk

1 + δk

)
W T 	 0.

A.5. Proof of Proposition 3.4

The proof is nearly identical to that of Proposition 3.1. We simply replace ϕ with ψ and �V
with �G .

A.6. Proof of Proposition 6.1 part (i)

Denote the square top block of Qp by Qp,1 and the bottom block by Qp,2. Define matrices

Fp = (I kp − Qp,1)(I kp + Qp,1)
−1,

Bp = 1

2

(
F T

p − F p

)
,

Ap = 1

2
Qp,2(I kp + Fp)

as in equations (3.1)–(3.3). Let bp be the vector of independent entries of Bp obtained by elim-
inating diagonal and supradiagonal elements from vecBp . When the Frobenius norm ‖Qp,1‖F

is less than one, the matrices admit series representations:

Fp = I kp − 2Qp,1 + 2Q2
p,1 − 2Q3

p,1 + · · · ,

Bp = (
Qp,1 − QT

p,1

) − (
Q2

p,1 − Q2T
p,1

) + (
Q3

p,1 − Q3T
p,1

) − · · · ,

Ap = Qp,2 − Qp,2Qp,1 + Qp,2Q
2
p,1 − Q2Q

3
p,1 + · · · .
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It follows that

B̃p(Qp) − Bp =
∞∑
i=2

(−1)i
(
Qi

p,1 − QiT
p,1

)
,

Ãp(Qp) − Ap =
∞∑
i=1

(−1)i−1Qp,2Q
i
p,1,

when ‖Qp,1‖F < 1. See [26] for a discussion of matrix geometric series.
Inequalities relating the Frobenius and max norms will prove useful. Let W 1,W 2 be d1 × d2

and d2 × d3 dimensional matrices, respectively. Then

‖W 1‖F ≤ √
d1d2‖W 1‖max,

‖W 1W 2‖max ≤ d2‖W 1‖max‖W 2‖max.

The first inequality implies that the condition ‖Qp,1‖F < 1 under which our series repre-
sentations converge is satisfied when kp‖Qp,1‖max < 1. The second inequality implies that

‖Qi
p,1‖max ≤ ki−1

p ‖Qp,1‖i
max for each natural number i.

We will also need the following somewhat technical lemma.

Lemma A.2. The following quantities, which will appear in later inequalities, go to zero in

probability as p grows provided that kp = o(
p1/4√
logp

):

(i)
∥∥p1/2Qp − Zp

∥∥
max,

(ii) kp‖Qp,1‖max,

(iii) k2
pp1/2‖Qp,1‖2

max,

(iv) kpp1/2‖Qp‖2
max.

Proof. Suppose kp = o(
p1/4√
logp

). This implies that kp = o(
p

logp
) and quantity (i) goes to zero

in probability as p grows by Theorem 3 of [30]. The quantities (ii)–(iv) are nonnegative and
bounded above by either k2

pp1/2‖Qp‖2
max or its square root. It is sufficient to bound the square

root above and show that the upper bound goes to zero in probability. The square root satisfies

kpp1/4‖Qp‖max = kpp1/4
∥∥Qp − p−1/2Zp + p−1/2Zp

∥∥
max

≤ kpp1/4(∥∥Qp − p−1/2Zp

∥∥
max + ∥∥p−1/2Zp

∥∥
max

)
= kpp−1/4

∥∥p1/2Qp − Zp

∥∥
max + kpp−1/4‖Zp‖max.

The first summand goes to zero in probability by the condition on kp and part (i) of the lemma.
The expected value of the second summand can be bounded above using a well-known inequality
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involving the maximum of independent standard normal random variables (see Problem 5.1 in
[55]):

kpp−1/4E‖Zp‖max ≤ kpp−1/4
√

2 logpkp

≤ kpp−1/4
√

2 logp2

= 2
kp

(
p1/4√
logp

)
. (A.1)

The condition on kp implies that the second summand goes to zero in mean and thus in proba-
bility. The upper bound for the square root of k2

pp1/2‖Qp‖2
max goes to zero in probability as p

grows and thus quantities (ii)–(iv) do as well.

One may wonder whether we can relax the condition kp = o(
p1/4√
logp

) by treating quantities
(ii)–(iv) separately or by being more careful in inequality (A.1). It turns out we cannot. For the
proof to hold, we would still need that kp

√
logkp = o(p1/4) or, equivalently, that

kp = o
[
eW0(2

√
p)/2],

where W0 is the principal branch of Lambert’s W function [11]. This is not an improved order
for kp , because

lim
p→∞

eW0(2
√

p)/2

(
p1/4√
logp

)
= 2.

�

Now set ap = ‖	pϕ̃p − 	pϕp‖∞, assume that kp = o(
p1/4√
logp

), and let ε > 0 be given. We
want to show that Pr{ap > ε} → 0 as p gets large. We express this probability as

Pr{ap > ε} = Pr
{
ap > ε | kp‖Qp,1‖max < 1

}
Pr

{
kp‖Qp,1‖max < 1

}
+ Pr

{
ap > ε | kp‖Qp,1‖max ≥ 1

}
Pr

{
kp‖Qp,1‖max ≥ 1

}
≤ Pr

{
ap > ε | kp‖Qp,1‖max < 1

} + Pr
{
kp‖Qp,1‖max ≥ 1

}
.

Lemma A.2 implies that Pr{kp‖Qp,1‖max ≥ 1} goes to zero. It follows that Pr{ap > ε} goes to
zero if Pr{ap > ε | kp‖Qp,1‖max < 1} does. Therefore, we only need to verify this condition.

For each p, we have

ap = ‖	pϕ̃p − 	pϕp‖∞

=
∥∥∥∥∥
[ √

p/2̃bp(Qp)√
p vec Ãp(Qp)

]
−

[ √
p/2bp√

p vecAp

]∥∥∥∥∥∞
= max

{√
p/2

∥∥B̃p(Qp) − Bp

∥∥
max,

√
p
∥∥Ãp(Qp) − Ap

∥∥
max

}
≤ √

p/2
∥∥B̃p(Qp) − Bp

∥∥
max + √

p
∥∥Ãp(Qp) − Ap

∥∥
max.
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When kp‖Qp,1‖max < 1, we have

√
p/2

∥∥B̃p(Qp) − Bp

∥∥
max = √

p/2

∥∥∥∥∥
∞∑
i=2

(−1)i
(
Qi

p,1 − QiT
p,1

)∥∥∥∥∥
max

≤ √
p/2

∞∑
i=2

∥∥Qi
p,1 − QiT

p,1

∥∥
max

≤ √
p/2

∞∑
i=2

2
∥∥Qi

p,1

∥∥
max

= √
2p

∞∑
i=2

∥∥Qi
p,1

∥∥
max

≤ √
2p

∞∑
i=2

ki−1
p ‖Qp,1‖i

max

= √
2p

∞∑
i=2

(
k

i−1
i

p ‖Qp,1‖max
)i

≤ √
2p

∞∑
i=2

(
kp‖Qp,1‖max

)i

= √
2p

(
1

1 − kp‖Qp,1‖max
− kp‖Qp,1‖max − 1

)

= √
2

k2
p

√
p‖Qp,1‖2

max

1 − kp‖Qp,1‖max

and

√
p
∥∥Ãp(Qp) − Ap

∥∥
max = √

p

∥∥∥∥∥
∞∑
i=1

(−1)i−1Qp,2Q
i
p,1

∥∥∥∥∥
max

≤ √
p

∞∑
n=1

∥∥Qp,2Q
n
p,1

∥∥
max

≤ √
p

∞∑
n=1

kp‖Qp,2‖max
∥∥Qn

p,1

∥∥
max

≤ √
p‖Qp,2‖max

∞∑
n=1

(
kp‖Qp,1‖max

)n
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= √
p‖Qp,2‖max

(
1

1 − kp‖Qp,1‖max
− 1

)

= √
p‖Qp,2‖max

(
kp‖Qp,1‖max

1 − kp‖Qp,1‖max

)

≤ kp
√

p max{‖Qp,1‖max,‖Qp,2‖max}2

1 − kp‖Qp,1‖max

= kp
√

p‖Qp‖2
max

1 − kp‖Qp,1‖max
.

Thus, the upper bound

ap ≤ √
p/2

∥∥B̃p(Qp) − Bp

∥∥
max + √

p
∥∥Ãp(Qp) − Ap

∥∥
max

≤ √
2

k2
p

√
p‖Qp,1‖2

max

1 − kp‖Qp,1‖max
+ kp

√
p‖Qp‖2

max

1 − kp‖Qp,1‖max
:= up

is valid when kp‖Qp,1‖max < 1. Then

Pr
{
ap > ε | kp‖Qp,1‖max < 1

} ≤ Pr
{
up > ε | kp‖Qp,1‖max < 1

}
= Pr{up > ε ∩ kp‖Qp,1‖max < 1}

Pr{kp‖Qp,1‖max < 1}

≤ Pr{up > ε}
Pr{kp‖Qp,1‖max < 1} .

Because Pr{kp‖Qp,1‖max < 1} → 1, we only need to show Pr{up > ε} → 0 as p grows. Since
ε is arbitrary, this is equivalent to showing that up goes to zero in probability, which fol-
lows from the continuous mapping theorem and Lemma A.2. We have shown that Pr{ap > ε |
kp‖Qp,1‖max < 1} goes to zero as p gets large, which is sufficient to prove part (i) of the propo-
sition.

A.7. Proof of Proposition 6.1 part (ii)

Assume that kp = o(
p

logp
). For each p, we have:

‖	pϕ̃p − zp‖∞ = ∥∥	pC̃−1
p (Qp) − 	pC̃−1

p

(
p−1/2Zp

)∥∥∞

=
∥∥∥∥∥
[ √

p/2b̃p(Qp)√
p vec Ãp(Qp)

]
−

[ √
p/2b̃p

(
p−1/2Zp

)
√

p vec Ãp

(
p−1/2Zp

)]∥∥∥∥∥∞
= max

{√
p/2

∥∥B̃p(Qp) − B̃p

(
p−1/2Zp

)∥∥
max,
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√
p
∥∥Ãp(Qp) − Ãp

(
p−1/2Zp

)∥∥
max

}
≤ √

p/2
∥∥B̃p(Qp) − B̃p

(
p−1/2Zp

)∥∥
max

+ √
p
∥∥Ãp(Qp) − Ãp

(
p−1/2Zp

)∥∥
max

= √
p/2

∥∥Qp,1 − p−1/2Zp,1 + p−1/2ZT
p,1 − QT

p,1

∥∥
max

+ √
p
∥∥Qp,2 − p−1/2Zp,2

∥∥
max

≤ √
p/2

(∥∥Qp,1 − p−1/2Zp,1
∥∥ + ∥∥p−1/2ZT

p,1 − QT
p,1

∥∥
max

)
+ √

p
∥∥Qp,2 − p−1/2Zp,2

∥∥
max

= 2
√

p/2
∥∥Qp,1 − p−1/2Zp,1

∥∥
max + √

p
∥∥Qp,2 − p−1/2Zp,2

∥∥
max

= √
2‖√pQp,1 − Zp,1‖max + ‖√pQp,2 − Zp,2‖max

≤ √
2‖√pQp − Zp‖max + ‖√pQp − Zp‖max

= (
√

2 + 1)‖√pQp − Zp‖max.

Theorem 3 of [30] implies that this upper bound goes to zero in probability as p grows. Therefore,
the quantity ‖	pϕ̃p − zp‖∞ does as well.

Appendix B: Special matrices

In constructing the linear transformations given in Lemmas 3.1 and 3.2, we rely upon two special
matrices: the commutation matrix Km,n and the matrix D̃n. An early reference related to the
matrix Km,n is [37], while the matrix D̃n was introduced in [45]. Our presentation follows that
of [36].

B.1. The commutation matrix Km,n

Let A be an m × n matrix and B be a p × q matrix. The commutation matrix Km,n is the unique
mn × mn permutation matrix with the property that Km,n vecA = vecAT . The critical property
of the commutation matrix is that it allows us to exchange the order of the matrices in a Kronecker
product. Theorem 3.1 of [36] states that Kp,m(A⊗B) = (B ⊗A)Kq,n. Section 3.3 of [36] gives
an explicit expression for the commutation matrix Km,n. Let H i,j be the m × n matrix having a
1 in the i, j th position and zeros everywhere else. Then Theorem 3.2 of [36] tells us that

Km,n =
m∑

i=1

n∑
j=1

(
H i,j ⊗ H T

i,j

)
.
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B.2. The matrix ˜Dn

The matrix D̃n proves useful when differentiating expressions involving skew-symmetric ma-
trices. Let A be an n × n matrix and let ṽ(A) be the n(n − 1)/2-dimensional vector obtained
by eliminating diagonal and supradiagonal elements from the vectorization vecA. Definition 6.1
of [36] defines D̃n as the unique n2 × n(n − 1)/2 matrix with the property D̃nṽ(A) = vecA

for every skew-symmetric matrix A. Theorem 6.1 of [36] gives an explicit expression for D̃n.
Let Ei,j be the n × n matrix with 1 in the i, j th position and zeros everywhere else and
set T̃ i,j = Ei,j − Ej,i . Also, let ũi,j be the n(n − 1)/2-dimensional vector having 1 in its
(j − 1)n + i − j (j + 1)/2 place and zeros everywhere else. Then Theorem 6.1 tells us that

D̃n =
∑
i>j

(vec T̃ i,j )ũ
T
i,j .

Appendix C: Evaluating the Jacobian terms

Taking a naive approach to evaluating the Jacobian term JdVC(ϕ) becomes prohibitively expen-
sive for even small dimensions. Recall that

JdVC(ϕ) = ∣∣DC(ϕ)T DC(ϕ)
∣∣1/2

= ∣∣22�T
V (GV ⊗ HV )�V

∣∣1/2
,

where

GV = (Ip − Xϕ)−1Ip×kI
T
p×k(Ip − Xϕ)−T ,

HV = (Ip − Xϕ)−T (Ip − Xϕ)−1.

The Kronecker product GV ⊗ HV has dimension p2 × p2. Evaluating this Kronecker product
and computing its matrix product with �V is extremely costly for large p. In this section, we
describe a more efficient approach which takes advantage of the block stucture of the matrices
involved. (The Jacobian term JdGC(ψ) can be evaluated analogously.)

Let CV = (I − Xϕ)−1. Then

CV =
[
C11 C12
C21 C22

]
,

where

C11 = (
I k − B + AT A

)−1
, C12 = −C11A

T ,

C21 = AC11, C22 = Ip−k − AC11A
T .
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The blocks of the matrices

GV =
[
G11 G12
G21 G22

]
, HV =

[
H 11 H 12
H 21 H 22

]
can be written in terms of the blocks of CV as

H 11 = CT
11C11 + CT

21C21, H 12 = CT
11C12 + CT

21C22,

H 21 = CT
12C11 + CT

22C21, H 22 = CT
12C12 + CT

22C22

and

G11 = C11C
T
11, G12 = C11C

T
21,

G21 = C21C
T
11, G22 = C21C

T
21.

We can express the matrix DC(ϕ)T DC(ϕ) in blocks as

DC(ϕ)T DC(ϕ) = 22�T
V (GV ⊗ HV )�V

= 22
[

11 
12

21 
22

]
,

where


11 = D̃
T
k (G11 ⊗ H 11)D̃k,


12 = D̃
T
k (G11 ⊗ H 12) − D̃

T
k (G12 ⊗ H 11)Kp−k,k,


21 = 
T
12,


22 = (G11 ⊗ H 22 + H 11 ⊗ G22) − (G12 ⊗ H 21 + H 12 ⊗ G21)Kp−k,k.

Then

JdVC(ϕ) =
∣∣∣∣22

[

11 
12

21 
22

]∣∣∣∣1/2

= 2dV |
22|
∣∣
11 − 
12


−1
22 
21

∣∣.
The Kronecker products in the formulas for 
11,
12,
21, and 
22 are much smaller than GV ⊗
HV , which leads to a significant computational savings compared to the naive approach.
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