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When examining dependence in spatial data, it can be helpful to formally assess spatial covariance struc-
tures that may not be parametrically specified or fully model-based. That is, one may wish to test for
general features regarding spatial covariance without presupposing any particular, or potentially restrictive,
assumptions about the joint data distribution. Current methods for testing spatial covariance are often in-
tended for specialized inference scenarios, usually with spatial lattice data. We propose instead a general
method for estimation and testing of spatial covariance structure, which is valid for a variety of inference
problems (including nonparametric hypotheses) and applies to a large class of spatial sampling designs
with irregular data locations. In this setting, spatial statistics have limiting distributions with complex stan-
dard errors depending on the intensity of spatial sampling, the distribution of sampling locations, and the
process dependence. The proposed method has the advantage of providing valid inference in the frequency
domain without estimation of such standard errors, which are often intractable, and without particular dis-
tributional assumptions about the data (e.g., Gaussianity). To illustrate, we develop the method for formally
testing isotropy and separability in spatial covariance and consider confidence regions for spatial param-
eters in variogram model fitting. A broad result is also presented to justify the method for application to
other potential problems and general scenarios with testing spatial covariance. The approach uses spatial
test statistics, based on an extended version of empirical likelihood, having simple chi-square limits for
calibrating tests. We demonstrate the proposed method through several numerical studies.

Keywords: confidence sets; spatial periodogram; spatial testing; spectral moment conditions; stochastic
sampling

1. Introduction

Frequency domain analysis is a well-known approach for examining covariance structures of ran-
dom fields [5,12,37,38]. Recently, a variety of frequency domain methods have been proposed for
problems in assessing spatial covariance, particularly for spatial lattice data. For example, [8,9]
developed a spectral method for testing for nonstationarity, [10] considered an ANOVA-like test
for covariance separability of spatio-temporal processes, and [7] proposed goodness-of-fit tests
based on the spectral density for spatial lattice data. In contrast to regular time series and space
lattice data [14,16,30,36], the spectral analysis of irregularly located spatial data has received less
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attention but is a topic of increasing interest (see, [17] and [24] for spectral density estimation
with Gaussian processes, and [1,4,32] for spectral analysis under more general setup). However,
testing procedures for assessing spatial covariance structure are lacking in the frequency do-
main, particularly with irregularly located spatial observations. To address this gap, we propose
a general spatial methodology for frequency domain estimation and testing of spatial covariance
structures which applies to a large class of spatial processes allowing arbitrary stochastic patterns
in spatial locations and various rates of infill sampling (i.e., spatial sampling of differing intensity
levels).

To describe the methodology, we highlight and explain some of its advantages for such spatial
data. Namely, the methodology

(a) is valid without stringent distributional assumptions on the underlying spatial process,
such as Gaussianity (e.g., [24]), or strong conditions on the generation of spatial sampling
locations, such as uniformity (e.g., isotropy tests of [13] and stationarity tests of [1,4]).

(b) does not require any explicit variance estimation steps for test statistics, where the latter
is extremely difficult given the considerations to be described below.

(c) applies in a unified manner to different spatial sampling regimes which can be hard to
disambiguate in practice and between which the large sample properties of spatial statistics
often differ (i.e., pure increasing domain vs mixed increasing domain structures in the
following).

(d) has a flexible formulation that allows for several types of spatial estimation and testing
problems to be treated in the frequency domain, including assessments about spatial co-
variance that may not be fully parametric in nature.

The first three points relate to challenges in the spectral analysis of spatial processes observed
at irregularly spaced locations, which do not exist for the more standard cases of equi-spaced
time series or spatial lattice data. For example, the latter data cases are associated with a sim-
ple compact frequency region (e.g., [0,2π ] with time series), which is not true for spatial data
with irregular locations in R

d (i.e., the frequency regions then becomes R
d ). A more serious

complication is the diversity of sampling schemes for spatial data with irregular locations and its
effect on the large sample properties of spatial statistics. In contrast to spatial lattice data, differ-
ent asymptotic structures can arise with irregularly located spatial data, namely, pure increasing
domain (PID) and mixed increasing domain (MID) asymptotics (cf. [6]), depending on the rel-
ative size of a spatial sampling region to the number n of spatial observations (see Section 2).
The limiting distributions of statistics, and in particular the form of their standard errors, often
change dramatically depending on the PID vs MID frameworks (see [20]) and further depend
intricately on additional factors, such as the (unknown) distribution of sampling locations and
the underlying process dependence structure. Spectral analysis may be simplified by assuming a
Gaussian process or a uniform distribution to spatial locations (see [24]), but the standard errors
involved remain complicated and difficult to estimate directly without restrictive assumptions.
Hence, a motivation for the proposed spatial method with irregular spatial data is its application
without direct variance estimation steps and its robustness to the aforementioned spatial factors.

The main idea of the spatial method, related to the last point (d) above, is to prescribe estima-
tion and testing problems in the frequency domain by formulating spectral estimating equations.
In particular, if θ ∈ R

p denotes a spatial “parameter” (which may not be model-based), then a
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practitioner specifies a set of r ≥ p estimating functions Gθ(ω) to link frequencies ω ∈ R
d and

values θ under a spectral moment condition
∫
Rd Gθ (ω)φ(ω) = 0r , where φ(·) represents the pro-

cess spectral density and d is the dimension of spatial sampling. The choice of functions Gθ(·)
reflects the inference intended in the frequency domain. The method’s generality stems from be-
ing able to formulate estimating functions which satisfy a moment condition under an assumed
spatial covariance form that need not be parametric model-based, even if unknown spatial quan-
tities (as θ above) are involved. For stating such functions, the quantities θ can often be based on
the normalized spectral distribution

�0(t) =
∫
Rd

I(−∞,t](ω)φ(ω) dω/

∫
Rd

φ(ω) dω for t = (t1, . . . , td )′ ∈R
d, (1.1)

where I(·) denotes the indicator function and (−∞, t] = (−∞, t1] × · · · × (−∞, td ], or on pro-
cess autocorrelations ρ(h) = σ(h)/σ (0) where

σ(h) = Cov
[
Z(0),Z(h)

]=
∫
Rd

cos
(
h′ω

)
φ(ω) dω, for h ∈R

d . (1.2)

Hence, tests of spatial covariance are found by assessing whether generic spatial quantities θ ,
related to spectral distributions or correlations, satisfy constraints

∫
Rd Gθ (ω)φ(ω) = 0r imposed

by Gθ(·) under a hypothesized covariance structure. For concreteness, we specifically treat spa-
tial problems in testing isotropy, testing separability, and variogram model fitting in sections to
follow; extensions to other problems are also given. Once estimating functions are prescribed,
log-ratio-type test statistics are computed in a simple and unified manner using an extended
version of spatial empirical likelihood. These statistics are shown to have chi-square limits for
calibrating spatial tests, without specification of a joint data distribution or explicit estimation of
the confounding factors associated with irregularly located spatial data.

The rest of the paper is organized as follows. Section 2 explains the spatial sampling frame-
work as well as an empirical likelihood (EL) scheme for processing estimating functions. Sec-
tions 3–5 develop and numerically illustrate the frequency domain methodology, respectively,
for tests of isotropy, separability, and variogram parameters. In Section 6, a broad and unified
result is further provided to validate the general methodology for testing spatial covariance struc-
ture over a wide range of potential problems. Section 7 highlights some important aspects of the
proofs involved, and Section 8 provides concluding remarks. Proof details and extended numer-
ical results can be found in Supplement A and Supplement B [34].

We end this section with background on EL, as a device here for assessing spatial estimating
functions in the frequency domain. EL is a resampling-type method that formulates a likeli-
hood function nonparametrically by probability profiling data ([27,28], for iid data). However,
the application of EL for dependent data, particularly spatial data, is challenging because EL
formulations for independent data typically fail with correlated data [19]. Data blocking is one
approach known for extending EL to spatial lattice data (see [18,25]), but this does not extend
readily to irregularly located spatial data (outside of inference about the marginal distribution
of spatial observations, [35]). See [26] for a review of EL with dependent data. Recently, [3]
(henceforth [BLN]) proposed a frequency domain EL using a spatial periodogram. Our spatial
testing methodology is based on their initial EL approach, but differs by being grounded on point
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estimation (i.e., EL maximization) as well as broader (i.e., potentially over-identified) estimating
functions. These aspects are crucial here for EL assessments of spatial structure, which represent
formal tests of spatial “moment conditions” and require normalizing EL-ratios by their maxi-
mized values. The spatial EL framework of [BLN], in contrast, is restricted to tests of parameter
values; this approach lacks point estimation steps and is invalid for performing moment tests of
spatial structure. However, the proposed spatial method additionally applies to both moment and
parameter tests, where the point estimation steps can also induce better performance for param-
eter testing compared to the EL version of [BLN] (e.g., better power properties in Section 6).
See Section 2.2 for some further comparative details and Section 7 for an outline of technical
arguments needed.

2. Preliminaries

2.1. Spatial sampling scheme

We adopt a general spatial sampling framework as described in [15] and [BLN]. Suppose that
{Z(s) : s ∈ R

d} represents a mean zero, real-valued, second-order stationary process, which is
observed at n irregularly located locations s1, . . . , sn over a sampling region Dn ⊂ R

d . The
spatial region Dn = λnD0 is prescribed by inflating a fixed “template” subset D0 ⊂ (1/2,1/2]d
(containing the origin) by sequence {λn} of scaling factors (λn → ∞ as n → ∞). Note that, this
formulation allows a variety of sampling region shapes, such as polygonal, ellipsoidal, and star-
shaped regions that can be non-convex. In practice, λn can be determined by the diameter of a
sampling region for use here (cf. [11,15,23,24]). Let Z = {0,±1,±2, . . .}. To avoid pathological
cases, we require that for any sequence of real numbers {bn}n≥1 such that bn → 0+ as n → ∞,
the number of cubes of the form bn(j + [0,1)d), j ∈ Z

d that intersect both D0 and Dc
0 is of

the order O([bn]−(d−1)) as n → ∞. This boundary condition holds for most regions of practical
interest.

We next consider specification of the locations s1, . . . , sn within Dn. Independently of {Z(s) :
s ∈ R

d}, let {Xk}k≥1 ⊂ D0 be a sequence of independently and identically distributed (i.i.d.)
R

d -valued random vectors, with probability density function f (x) with support on the clo-
sure of D0. The sampling locations s1, . . . , sn are then generated as si = λnXi , i = 1, . . . , n.
This stochastic sampling design allows sampling sites to have an arbitrary and potentially non-
uniform density over the sampling region, improving upon the common approach of modeling
irregularly spaced sites with a homogeneous Poisson point process. Further, this formulation al-
lows the number n of sampling sites to grow at a different rate than the volume O(λd

n) of the
sampling region Dn = λnD0, leading to different asymptotic structures (see [6,20]). Suppose
c∗ = limn→∞ n/λd

n ∈ (0,∞]. The case of c∗ ∈ (0,∞), in which the number of spatial observa-
tions is proportional to the volume of the region, corresponds to pure increasing domain (PID)
asymptotics. On the other hand, the case c∗ = ∞ corresponds to sampling with a heavy infill
component, whereby the number of spatial observations grows at a faster rate than the size of
the sampling region; we refer to this as mixed increasing domain (MID). As a complication,
limit laws of even simple statistics, such as sample means, typically change with the type of
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spatial asymptotic structure [20]; see also [6,21,24,29] and the references therein for further de-
tails. Note that neither the type of spatial sampling structure (PID/MID) nor the density f (x) of
locations need to be known or estimated in our testing approach to follow.

The spatial testing method uses a periodogram for irregularly located spatial data, which we
define next. Denote the discrete Fourier transform (DFT) of the spatial data {Z(s1), . . . ,Z(sn)}
at a frequency ω ∈ R

d as

dn(ω) = λ
d/2
n n−1

n∑
j=1

Z(sj ) exp
(
ıω′sj

)
, ı ≡ √−1

and define the (raw) periodogram as In(ω) = |dn(ω)|2. Unlike the (equi-spaced) time series set-
ting, the spatial periodogram here can have a nontrivial bias depending on the spatial asymptotic
structure and the spatial sampling density f (cf. [2]). Indeed, [24] showed that

lim
n→∞ EIn(ω) = c−1∗ σ(0) + Kφ(ω) for ω ∈ R

d,

where φ(·) is the spectral density of the process Z(·), σ(·) denotes the process covariance func-
tion, K = (2π)d

∫
Rd f 2 and limn→∞ n/λd

n = c∗. Under PID (c∗ ∈ (0,∞)), there exists a non-
trivial bias component, which vanishes asymptotically in the MID case (c∗ = ∞). To address
this, we use a bias-corrected periodogram as

Ĩn(ω) = In(ω) − n−1λd
nσ̂n(0), ω ∈ R

d

where σ̂n(0) = n−1 ∑n
j=1 (Z(sj ) − Z̄n)

2 is the sample variance with Z̄n = n−1 ∑n
i=1 Z(si ).

2.2. Spectral estimating functions

We next describe a framework for setting spectral estimating functions and the device for as-
sessing these with EL for later spatial testing. Suppose a spatial parameter θ ∈ 	 ⊂ R

p is con-
nected to the spectral density φ(·) of the process Z(·) through a system of estimating equations.
Specifically, let G : Rd × 	 → R

r be a vector of r ≥ p estimating functions (i.e., functions of
frequencies and parameters) such that Gθ(ω) ≡ G(ω; θ) satisfies a spectral moment condition∫

Rd

Gθ (ω)φ(ω) dω = 0r , (2.1)

at a true parameter θ0 ∈ 	, where 0r ∈ R
r denotes the zero vector. Because the spectral density

φ(·) is symmetric, we assume that Gθ(·) is also symmetric, that is, one may replace Gθ(ω)

with [Gθ(ω) + Gθ(−ω)]/2, ω ∈ R
d . The case of “over-identified” estimating functions, with r

functions for p < r parameters, will be used to assess whether the spectral moment (2.1) holds
for some parameter θ0 ∈ 	, thereby providing tests of spatial covariance structures. Sections 3–5
illustrate such testing problems.

To assess estimating functions satisfying (2.1), we compute the (bias-corrected) spatial peri-
odogram along a discretized set of frequencies in order to mimic the spectral mean (2.1). Such
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frequencies are selected on a grid in a way that ensures the corresponding periodogram variants
are approximately uncorrelated. That is, by evaluating the spatial periodogram on a frequency
grid with appropriate frequency spacing, we may obtain an important spatial analog of the in-
dependence (or “whitening”) property associated with the typical periodogram for regular time
series. At the same time, the frequency grid needs to be large enough to adequately approximate
the spatial integral in the spectral moment (2.1). To formulate the frequency grid, for κ ∈ (0,1),
η ∈ (κ,∞), and C ∈ (0,∞), define a set of Fourier frequencies as

N =Nn = {
jλ−κ

n : j ∈ Z
d ,j ∈ [−Cλη

n,Cλη
n

]d}
.

Let N = |N | be the cardinality of N , and let ωkn, k = 1, . . . ,N (with arbitrary ordering) denote
the elements of N . The set or grid N has two relevant properties. First, the frequencies {ωkn}Nk=1

form a regular lattice over the set [−Cλ
η−κ
n ,Cλ

η−κ
n ] ↑R

d as n → ∞, which expands to cover the
entire frequency domain R

d asymptotically. Additionally, any pair of frequencies ωkn,ωjn ∈ N
in the set is asymptotically distant (i.e., λn‖ωkn −ωjn‖ ≥ λ1−κ

n → ∞), implying their associated
periodogram values are approximately independent by results in [2]. It is also worth mentioning
that from the above formulation, it is evident that the frequency grid depends directly on the
size of the spatial region λn but not the spatial sample size n. That is, in large samples and with
an increasing sampling region (λn → ∞ as n → ∞), a grid specified on the basis of spatial
region size λn along with tuning parameters (e.g., C, κ , and η), should provide valid inference,
regardless of the ratio of n and λd

n . Hence, our simulation studies presented in Sections 3–5 and
in Supplement B are designed to reflect the theory where we always consider basing the grid
choice on the spatial region size (not given the sample size n).

To assess the plausibility of a parameter θ , using an estimating function Gθ(·) fulfilling (2.1),
the corresponding (normalized) EL function for θ is defined as

Rn(θ) = sup

{
N∏

k=1

Npk :
N∑

k=1

pk = 1,pk ≥ 0,

N∑
k=1

pkGθ(ωkn)Ĩn(ωkn) = 0r

}
,

based on spatial periodogram along the frequency grid. The EL function is a multinomial like-
lihood found by probability profiling the (approximately independent) periodogram variants un-
der a constraint that imitates the moment condition (2.1). This provides a nonparametric way of
measuring the strength of evidence in support of θ , analogously to parametric likelihood, and
the numeric computation of Rn(θ) follows well-known recipes (see [27,28]). Maximizing the
function Rn(θ) over the parameter space 	 ⊂ R

p produces a point estimator θ̂n ∈ 	 (or the
maximum EL estimator (MELE) of θ ). In what follows, our frequency domain tests are based on
modified log-ratio statistics, −2̂an log[Rn(θ)/Rn(θ̂n)] and −2̂an logRn(θ̂n), involving a simple
scaling factor

ân =
∑N

j=1 ‖Gθ̂n
(ωjn)‖2Ĩ 2

n (ωjn)∑N
j=1 ‖Gθ̂n

(ωjn)‖2I 2
n (ωjn)

. (2.2)

We mention some relevant EL context to compare our testing results to follow to the spatial EL
version of [BLN]. The latter method involves statistics based on the form −2a(θ) logRn(θ) for
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testing claims about parameter values θ , where a(θ) is defined by substituting θ for θ̂n in (2.2).
These statistics are not valid, however, for testing moment conditions (i.e., testing if the spectral
moment (2.1) holds for some θ0), for which −2̂an logRn(θ̂n) is valid in contrast. This is because
their EL work does not consider steps of point estimation/maximization θ̂n, which are essential
to general test statistics of spatial covariance (e.g., Rn(θ̂n)-based). The EL methodology changes
dramatically by involving maximizers θ̂n and Section 7 briefly outlines some issues in establish-
ing distributional theory for our frequency domain test statistics, where complications arise in
that correct “scaling” of test statistics depends intricately on the underlying type of spatial sam-
pling asymptotics (e.g., PID/MID). By using a single data-based factor ân based on the MELE
θ̂n in (2.2), test statistics self-adjust to any effect of the spatial asymptotics and retain simple
chi-square limits in both PID/MID sampling regimes. In addition to tests of spatial structure,
statistics based on θ̂n can also be formulated here to test hypotheses about parameter values θ ,
where the EL approach of [BLN] is also applicable. Compared to the latter method, however,
test statistics based on θ̂n, given by the log-ratio −2̂an log[Rn(θ)/Rn(θ̂n)], can exhibit better
performance (cf. Section 5.2) and have increased power properties (cf. Section 6) in parameter
testing cases.

3. Assessing spatial isotropy

Consider the problem of assessing whether the underlying process exhibits isotropy. Recall the
spatial process Z(·) is isotropic if its covariance is only a function of distance, that is, σ(h1) =
σ(h2) if ‖h1‖ = ‖h2‖ or, alternatively its spectral density function φ(ω) ≡ φ(‖ω‖) is a function
of frequency through ‖ω‖. Section 3.1 explains the methodology and Section 3.2 numerically
examines its performance.

3.1. Methodology

For testing purposes, we prescribe over-identified estimating functions which satisfy the spectral
moment condition (2.1) under assumptions of isotropy. We base these functions on the normal-
ized spectral distribution �0(·) from (1.1). To illustrate, for a vector t1 ∈ R

d , select r1 orthog-
onal d × d matrices, say Q1,1, . . . ,Q1,r1

(i.e., Q′
1,iQ1,i = Id×d ). Under isotropy, it holds that

θ1 = �0(Q1,i t1) for each i = 1, . . . , r1, and the r1 functions G∗
θ1

(ω) = [G̃θ1(ω) + G̃θ1(−ω)]/2

for G̃θ1(ω) = [I(−∞,Q11t1](ω)− θ1, . . . , I(−∞,Q1,r1
t1](ω)− θ1] fulfill the moment condition (2.1)

with p = 1 parameter θ1. In general, one may choose p vectors t1, . . . , tp ∈R
d and ri orthogonal

matrices Qi,1, . . . ,Qi,ri
for each t i to formulate p parameters θ = (θ1, . . . , θp)′ as

θi = �0(Qi,j t i ), j = 1, . . . , ri , i = 1, . . . , p

and analogously develop r =∑p

i=1 ri > p estimating functions

Giso
θ (ω) = [

G∗
θ1

(ω), . . . ,G∗
θp

(ω)
]′
. (3.1)
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Typically, one may choose small p and r (e.g., p = 1, r = 2 in Section 3.2). With the estimating
functions (3.1), a test statistic −2̂an logRn(θ̂n) is formulated from EL (Section 2.2) to test for
isotropy (i.e., if

∫
Giso

θ (ω)φ(ω) dω = 0r holds at some θ0).
To state a formal result on the test’s validity, we require some mild assumptions on the

dependence of the mean zero, second-order stationary process {Z(s) : s ∈ R
d}, expressed in

terms of mixing/moment conditions. For brevity, these regularity conditions (denoted as Condi-
tions (R.1)–(R.5)) are described in Supplement A. For the result, note that the distribution of the
test statistic −2̂an logRn(θ̂n) depends on two types of randomness, due to the spatial process
{Z(s) : s ∈ R

d} and the random sequence X ≡ {Xi}i≥1 ⊂ R
d determining the spatial locations

(Section 2.1). In the following, P(·) ≡ P(·|X) denotes probability conditional on the collection
of random vectors X, while PX denotes the joint distribution of X1,X2, . . . .

Theorem 1 (PID or MID cases). Suppose Conditions (R.1)–(R.5) hold, the estimating functions
(3.1) are used, and limn→∞ n/λd

n ∈ (0,∞]. Then, under H0: “{Z(s) : s ∈ R
d} has an isotropic

covariance structure,”

−2̂an logRn(θ̂n)
d−→ χ2

r−p as n → ∞,a.s. (PX).

That is, regardless of the spatial sampling locations X1,X2, . . . , the distribution of the test
statistic based on the MELE θ̂n is guaranteed to have a chi-square limit under the null hypothesis.
One can additionally establish that the test statistic diverges to +∞ if the estimating functions
Giso

θ (ω) in (3.1) no longer satisfy the moment condition
∫

Giso
θ (ω)φ(ω) dω = 0r (i.e., isotropy

is violated). Importantly, this distributional result for the test statistic holds equally for both PID
and MID spatial sampling structures (i.e., c∗ ∈ (0,∞) or c∗ = ∞ for c∗ = limn→∞ n/λd

n), which
is not often possible in the frequency domain with irregularly located spatial data (cf. [24]), and
again requires no variance estimation steps. We next consider a numerical study of our test for
isotropy.

Remark 1. Estimating functions could be based on correlations (1.2) to prescribe tests of
isotropy and the result in Theorem 1 would still hold. For example, by considering a single
correlation θ1 = ρ(h1) (i.e., p = 1) and r > 1 lags h1, . . . ,hr ∈ R

d satisfying ‖hi‖ = ‖h1‖,
i = 2, . . . , r , the resulting estimating functions Gθ1(ω) = [cos(h′

1ω) − θ1, . . . , cos(h′
rω) − θ1]′

would satisfy the moment condition (2.1). More generally, one may formulate estimating func-
tions Gθ(ω) based on p correlations θ = (θ1, . . . , θp)′ with lag sets for each θi . However, numer-
ical studies (not shown here) indicate that the estimating functions (3.1) have greater power for
assessing isotropy than those based on correlations. Intuitively, for our tests involving the spatial
periodogram, the spectral distribution function is more natural, without a translation step of the
frequency domain (spectral distribution) into the spatial domain (covariances).

Remark 2. In formulating results, we assume the process Z(·) has mean zero for simplicity.
In practice, observations {Z(si )}ni=1 can be replaced with sample centered versions {Z(si ) −
Z̄n}ni=1, Z̄n = n−1 ∑n

i=1 Z(si ), in computing the periodogram In(·). The results still hold and
we implement this centering in simulation studies to follow.
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3.2. Illustration

In this section, we present a simulation study of the testing method for spatial isotropy.
Considering sampling regions Dn = λn[−1/2,1/2)2, λn = 24,36 and sample sizes n =
1200,1800,2400,3600, we generated i.i.d. locations s1, . . . , sn ∈ Dn for si = λnXi with Xi ’s
drawn from a uniform distribution on [−0.5,0.5]2 and a Gaussian process {Z(s) : s ∈ R

2}.
We evaluated the (sample mean-centered) periodogram on a frequency grid Nn = {λ−κ

n j : j ∈
Z

2 ∩ [−Cλn,Cλn]2}, with varying values C = 1,1.5,2 and κ = 0.05,0.1, where C and κ re-
spectively control the number and spacing of frequencies for the EL device (Section 2.2). These
C, κ values induce a set of frequencies that is large but with sufficient spacing to ensure pe-
riodogram variants are approximately independent (e.g., choices of κ roughly create spacings
between frequencies of 0.5 in horizontal/vertical directions).

For the simulation study presented below, we considered an isotropic exponential correlation
function σ(h) = exp(−‖h‖), h = (h1, h2)

′ ∈R
2 or a directional (anisotropic) correlation σ(h) =

exp(−2h2); the results are invariant to the mean and variance of the process. We applied the
spectral distribution-based estimating functions Giso

θ (·) from (3.1) with vector sets of the form
{±t1} for t1 = (1,−1)′ (vector set B1) or t1 = (2,−2)′ (vector set B2); these provide r = 2
functions with p = 1 parameter under isotropy (corresponding to two orthogonal matrices Q1,1,
Q1,2 in (3.1) as the identity matrix and a 180◦ rotation). We also considered a further vector
set (B3) by combining B1/B2 sets. Empirical size and power results for the tests of isotropy
with vector sets B1 and B2 appear in Tables 1–2. It should be noted again that the EL testing

Table 1. Empirical size for tests of isotropy based on the spectral distribution function (vector sets B1 and
B2); based on 1000 runs with nominal size 0.1

B1 B2

n n

λn C κ 1200 1800 2400 3600 1200 1800 2400 3600

24 1 0.05 0.193 0.203 0.194 0.173 0.224 0.259 0.295 0.256
0.1 0.185 0.179 0.156 0.125 0.266 0.245 0.207 0.164

1.5 0.05 0.168 0.186 0.198 0.181 0.190 0.230 0.266 0.254
0.1 0.169 0.192 0.161 0.133 0.206 0.238 0.223 0.182

2 0.05 0.179 0.150 0.187 0.187 0.204 0.187 0.231 0.243
0.1 0.172 0.155 0.193 0.125 0.190 0.208 0.222 0.198

36 1 0.05 0.163 0.142 0.173 0.196 0.169 0.173 0.211 0.227
0.1 0.169 0.156 0.171 0.175 0.172 0.202 0.216 0.189

1.5 0.05 0.150 0.130 0.160 0.169 0.155 0.148 0.177 0.181
0.1 0.157 0.133 0.157 0.142 0.166 0.145 0.180 0.182

2 0.05 0.129 0.142 0.132 0.144 0.139 0.143 0.148 0.147
0.1 0.145 0.141 0.142 0.139 0.161 0.154 0.163 0.162
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Table 2. Empirical power for tests of isotropy based on the spectral distribution function (vector sets B1
and B2); based on 1000 runs with nominal size 0.1

B1 B2

n n

λn C κ 1200 1800 2400 3600 1200 1800 2400 3600

24 1 0.05 0.973 0.972 0.959 0.896 0.920 0.954 0.960 0.885
0.1 0.978 0.972 0.958 0.898 0.963 0.966 0.957 0.892

1.5 0.05 0.967 0.968 0.962 0.891 0.890 0.949 0.964 0.885
0.1 0.979 0.967 0.956 0.891 0.947 0.962 0.954 0.895

2 0.05 0.963 0.970 0.953 0.892 0.851 0.940 0.950 0.888
0.1 0.981 0.977 0.955 0.887 0.931 0.968 0.952 0.893

36 1 0.05 0.901 0.958 0.949 0.903 0.745 0.889 0.927 0.898
0.1 0.971 0.971 0.959 0.909 0.868 0.954 0.951 0.903

1.5 0.05 0.846 0.949 0.944 0.894 0.675 0.834 0.898 0.894
0.1 0.946 0.965 0.958 0.898 0.793 0.934 0.942 0.904

2 0.05 0.807 0.913 0.933 0.893 0.593 0.779 0.869 0.893
0.1 0.904 0.957 0.960 0.893 0.729 0.894 0.937 0.893

methodology is fully non-parametric (i.e., no assumptions required about joint distributions or
even the spatial pattern of locations), which can add distortion to test calibrations under spatial
dependence for moderate sample sizes. However, better sizes and powers resulted from using
small vector sets (e.g., B1 and B2) compared to larger, more complicated sets (e.g., B3). In
general, regardless of the vector set, size and power improved for larger sampling regions and
the power often improved as the sample size n increased. The testing method’s sensitivity to
choices of κ , C seemingly decreased as n increased.

For comparison, we also evaluated the test of isotropy from [23] (hereafter [MS]), which
involves a kernel estimator σ̂ (h) of the process covariances σ(h) (cf. [15]). The [MS] method
computes standard errors for σ̂ (h) using a spatial block bootstrap [22], which is computationally
quite demanding. Because of this, we considered this method only for a sample size n = 600;
Supplement A provides implementation details. Based on a lag set {(0,1), (1,0), (0,5), (5,0)}
(i.e., lags for evaluating the kernel estimator σ̂ (·) which differ from the vectors t i in (3.1)),
the [MS] method had empirical size and power of 0.128 and 1, respectively, at a nominal level
α = 0.1. However, the size and power of our tests based on the spectral distribution could often
perform comparably, for example, size 0.147 and power 0.927 with vector set B1 and (C, κ) =
(1.5,0.1) when n = 600. Further, our method has far greater computational advantages with a
better capacity to scale to large data; using a computer with a 3.00 GHz processor, our tests were
approximately 40 and 100 times faster those of for sample sizes n = 600 and n = 1200. Note the
[MS] method is specifically designed for tests of isotropy, while our frequency domain approach
is not tailored to a particular spatial testing problem.
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4. Assessing spatial covariance separability

To illustrate a different problem in spatial testing, consider the common issue of assessing
whether the process covariance function σ(·) from (1.2) is separable, that is, whether there ex-
ist valid functions σi(·), i = 1,2, such that σ(h) = ∏d

i=1 σi(hi) for h = (h1, . . . , hd)′ ∈ R
d , or

alternatively whether the process spectral density φ(ω) =∏d
i=1 φi(ωi), ω = (ω1, . . . ,ωd)′ ∈ R

d

factors component-wise for appropriate functions φi(·). Section 4.1 presents our test, with nu-
merical illustration in Section 4.2.

4.1. Methodology

We base test assessments on the feature that, under separability, the normalized spectral distribu-
tion, for t = (t1, . . . , td)′ ∈ R

d , factors into d univariate integrals

�0(t) =
d∏

i=1

�0
i (ti ), �0

i (ti ) =
∫ ti

−∞
φi(ω)dω/

∫ ∞

−∞
φi(ω)dω, i = 1, . . . , d,

satisfying �0
i (−ti ) = 1 − �0

i (ti ) by the evenness of φi(·) ≥ 0. For a given t ∈ R
d , one can

define p = d parameters as θi = �0
i (ti ), i = 1, . . . , d , for which the component-wise indicator

Ii,t (ω) ≡ I (ωi ≤ ti ) fulfills
∫ [Ii,t (ω) − θi]φ(ω) dω = ∫ [Ii,−t (ω) − (1 − θi)]φ(ω) dω = 0 for

each i = 1, . . . , d under separability. This leads to a general class of estimating functions given
as G

sep
θ (ω) = [G̃θ (ω) + G̃θ (−ω)]/2 for

G̃θ (ω) =
[

d∏
i=1

g∗
1,i (ω) −

d∏
i=1

θ∗
1,i , . . . ,

d∏
i=1

g∗
r,i (ω) −

d∏
i=1

θ∗
r,i

]′
, ω ∈R

d, (4.1)

defined by r > p components of the form
∏d

i=1 g∗
j,i(ω) −∏d

i=1 θ∗
j,i ; here each g∗

j,i(ω) is chosen
as either Ii,t (ω), Ii,−t (ω), or 1 and, correspondingly, each θ∗

j,i is set to θi , 1−θi or 1, respectively.
This construction (4.1) ensures that the spectral moment condition (2.1) holds under separability,
that is,

∫
G

sep
θ (ω)φ(ω) dω = 0r at some θ0. For illustration, with spatial sampling in R

2 (d = 2),
we follow (4.1) for a given t = (t1, t2)

′ ∈ R
2 and define two different forms of r = 3 > p = 2

estimating functions, given in (4.2)–(4.3), as

G̃θ (ω) = [
I(−∞,(t1,t2)](ω) − θ1θ2, I(−∞,(−t1,t2)](ω)

− (1 − θ1)θ2, I(−∞,(t1,−t2)](ω) − θ1(1 − θ2)
]′
, (4.2)

G̃θ (ω) = [
I(ω1 ≤ t1) − θ1, I(−∞,(−t1,t2)](ω)

− (1 − θ1)θ2, I(−∞,(t1,−t2)](ω) − θ1(1 − θ2)
]′
, (4.3)

where θi = �0(ti), i = 1,2. Estimating functions may also be extended to incorporate further
vector sets t .
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To test for separability, we create a test statistic −2̂an logRn(θ̂n), as in Section 2.2, using
estimating functions G

sep
θ (·). The following result establishes the test’s validity.

Theorem 2 (PID or MID cases). Suppose Conditions (R.1)–(R.5) hold, the estimating functions
based on (4.1) are used, and limn→∞ n/λd

n ∈ (0,∞]. Then, under H0: “{Z(s) : s ∈ R
d} has a

separable covariance structure,”

−2̂an logRn(θ̂n)
d−→ χ2

r−p as n → ∞,a.s. (PX).

Again, for any outcome of the spatial sampling locations X1,X2, . . . , the test statistic based
on the MELE θ̂n has a simple chi-square limit for assessing separability, which holds in a unified
manner for both PID and MID spatial sampling structures. One could alternatively formulate
test statistics for separability based on estimating functions defined by process correlations ρ(·).
For example, for some h = (h1, . . . , hd)′ ∈ R

d , define p = d parameters θ = (θ1, . . . , θd)′ ≡
[ρ1(h1), . . . , ρd(hd)]′ where ρ(h) =∏d

i=1 ρi(hi) under covariance separability and set r = p+1
estimating functions as Gθ(ω) = [cos (h1ω1) − θ1, . . . , cos (hrωr) − θr , cos(h′ω) − ∏d

i=1 θi]′,
ω = (ω1, . . . ,ωd)′ ∈ R

d . Such functions satisfy the moment condition (2.1) under separability,
and variations are possible by adding further correlation parameters for other lags h ∈ R

d . How-
ever, similarly to Remark 1, test statistics based on the normalized spectral distribution (4.1)
typically exhibited better power than those based on correlations in our numerical studies. The
next section demonstrates the tests for separability using the estimating functions G

sep
θ (·) from

Theorem 2.

4.2. Illustration

We provide a numerical study of our tests for separability using the basic simulation design from
Section 3.2 (d = 2). For this study, we considered a separable exponential correlation function
σ(h) = exp(−2h1) exp(−h2) for size calculations and a non-separable exponential correlation
σ(h) = exp(−0.01‖h‖) for power determination. The test statistics were based on the estimating
functions from (4.2)–(4.3) (i.e., r = 3 functions for p = 2 parameters) using the normalized
spectral distribution. We refer to these as Type 1 and Type 2 functions, respectively, and consider
two different vector sets for implementing each: t = (t1, t2)

′ as (2,1) or (1,2). Tables 3–4 show
the sizes and power, respectively, for tests of separability based on Type 2 functions.

In assessing separability, Type 2 functions emerged better than Type 1 in both size and power,
though performances became similar for larger sampling regions. To explain this performance
difference, note the Types 1 and 2 functions in (4.2)–(4.3) differ in their first components, where
Type 2 functions estimate a parameter (i.e., θ1, a marginal spectral distribution value) that exists
even when separability assumptions are violated. This well-defined parameter is then used to
set the remaining Type 2 functions in (4.3) for checking separability, which produced better
outcomes in our simulations. From Tables 3–4, the separability tests with Type 2 functions were
fairly insensitive to the frequency grid used in the EL device (e.g., (C, κ)) and to the vector
set used for t . Power generally improved for increasing sample sizes n, regardless of the size
(λn = 24,36) of the sampling region.
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Table 3. Empirical size for tests of separability based on normalized spectral distribution (Type 2 functions
with t = (1,2) or (2,1)); from 1000 runs with nominal size 0.1

(1,2) (2,1)

n n

λn C κ 1200 1800 2400 3600 1200 1800 2400 3600

24 1 0.05 0.114 0.123 0.150 0.149 0.122 0.140 0.134 0.133
0.1 0.109 0.150 0.133 0.165 0.116 0.129 0.125 0.179

1.5 0.05 0.111 0.116 0.115 0.124 0.120 0.113 0.101 0.127
0.1 0.113 0.125 0.121 0.144 0.111 0.120 0.112 0.144

2 0.05 0.111 0.109 0.121 0.133 0.110 0.119 0.111 0.133
0.1 0.118 0.131 0.111 0.152 0.120 0.134 0.110 0.141

36 1 0.05 0.068 0.092 0.105 0.088 0.061 0.090 0.107 0.096
0.1 0.075 0.109 0.075 0.104 0.074 0.108 0.080 0.102

1.5 0.05 0.073 0.090 0.094 0.101 0.075 0.099 0.106 0.106
0.1 0.076 0.099 0.085 0.101 0.072 0.102 0.091 0.105

2 0.05 0.106 0.085 0.093 0.102 0.113 0.098 0.094 0.099
0.1 0.084 0.093 0.093 0.088 0.083 0.099 0.088 0.097

Table 4. Empirical power for tests of separability based on normalized spectral distribution (Type 2 func-
tions with t = (1,2) or (2,1)); from 1000 runs with nominal size 0.1

(1,2) (2,1)

n n

λn C κ 1200 1800 2400 3600 1200 1800 2400 3600

24 1 0.05 0.772 0.866 0.881 0.902 0.766 0.868 0.874 0.902
0.1 0.792 0.881 0.909 0.908 0.783 0.879 0.901 0.908

1.5 0.05 0.669 0.797 0.856 0.892 0.663 0.798 0.856 0.890
0.1 0.697 0.820 0.876 0.906 0.681 0.819 0.872 0.903

2 0.05 0.584 0.718 0.792 0.871 0.590 0.715 0.798 0.873
0.1 0.612 0.745 0.829 0.884 0.603 0.748 0.834 0.877

36 1 0.05 0.599 0.729 0.781 0.879 0.601 0.738 0.793 0.873
0.1 0.598 0.732 0.798 0.884 0.598 0.727 0.808 0.886

1.5 0.05 0.467 0.622 0.711 0.830 0.462 0.617 0.706 0.831
0.1 0.470 0.644 0.689 0.825 0.474 0.643 0.692 0.827

2 0.05 0.429 0.544 0.634 0.768 0.436 0.545 0.635 0.776
0.1 0.399 0.530 0.584 0.769 0.406 0.520 0.572 0.761
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5. Variogram model fitting

In contrast to previous sections (e.g., Sections 3–4), here we illustrate our method for testing
spatial parameter values rather than for assessing a spatial covariance form. Section 5.1 describes
the methodology applied to variogram model fitting and Section 5.2 numerically demonstrates
its performance.

5.1. Methodology

Variogram estimation plays an important role in spatial prediction. Suppose {2γ ∗(·; θ) : θ ∈ 	},
	 ⊂R

p denotes a class of variogram models for the true variogram 2γ ∗(h) ≡ Var(Z(h)−Z(0)),
h ∈ R

d of the process Z(·). Let 2γ (·; θ) ≡ 2γ ∗(·; θ)/σ (0) and 2γ (·) ≡ 2γ ∗(·)/σ (0) denote
their scale-invariant versions. Least squares estimation (cf. [6]) is a common approach for fitting
variogram models, but the resulting point estimators can have complex limiting distributions. As
an alternative, our frequency domain testing method can be applied to least squared-type fitting,
without requiring such limit laws. Motivated by the consideration that the population criterion∑m

i=1{2γ (hi ) − 2γ (hi; θ)}2 (based on some fixed lags h1, . . . ,hm ∈ R
d ) is minimized at the

true parameter θ = θ0, we can define r = p estimating functions

Gvar
θ (ω) =

m∑
i=1

{
1 − cos

(
h′

iω
)− γ (hi; θ)

}∇[
2γ (hi; θ)

]
, ω ∈ R

d, (5.1)

where ∇[2γ (h; θ)] denotes the p × 1 vector of first order partial derivatives of 2γ (h; θ) with
respect to θ . Under mild conditions on the variogram model, these estimating functions fulfill
the moment condition (2.1) at θ = θ0, that is,

∫
Gvar

θ0
(ω)φ(ω) dω = 0p .

Using the EL scheme (Section 2.2) with functions (5.1), we formulate a test statistic
−2̂an log[Rn(θ)/Rn(θ̂n)] for the parameter hypothesis H0 : θ = θ0 ∈ R

p . The form of this
test statistic resembles a log-ratio similar to parameter assessments with parametric likelihood
and also differs slightly from previous test statistics for evaluating moment conditions (e.g.,
−2̂an logRn(θ̂n) in Theorems 1–2).

Theorem 3 (PID or MID cases). Suppose Conditions (R.1)–(R.5) hold, the estimating functions
based on (5.1) are used, and the variogram 2γ (·; θ) is twice continuously differentiable in a
neighborhood of θ0. Then, under H0 : θ = θ0 ∈ 	 ⊂R

p ,

−2̂an log
[
Rn(θ0)/Rn(θ̂n)

] d−→ χ2
p as n → ∞,a.s. (PX).

Hence, the frequency domain test for variogram model parameters involves a simple chi-
square calibration, without difficult variance estimation steps as common to alternative ap-
proaches for fitting variograms with irregular spatial observations in PID/MID sampling schemes
(cf. [11], kernel variogram estimators). By inverting the test in Theorem 3, an approximate
100(1 − α)% confidence region for variogram model parameters is given as{

θ ∈ 	 : −2̂an log
[
Rn(θ)/Rn(θ̂n)

]≤ χ2
p,1−α

}
(5.2)
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using a (1 − α) chi-square percentile χ2
p,1−α . We next demonstrate such confidence regions

through numerical studies.

Remark 3. For evaluating parameter claims H0 : θ = θ0, an alternative EL test statistic of [BLN]
can also be applied. This approach does not involve EL maximizers θ̂n and, rather than (5.2), a
confidence region is set as {θ ∈ 	 : −2an(θ) logRn(θ) ≤ χ2

p,1−α} with a factor an(θ) defined by

substituting θ for θ̂n in (2.2). However, by using an extended version of EL with point estimation,
the proposed confidence region (5.2) is computationally less involved (i.e., ân ≡ an(θ̂n) is evalu-
ated only once at θ̂n) and can improve performance, as considered next in simulation studies for
the variogram. Theoretical results in Section 6 also show that test statistics based on θ̂n generally
have better large-sample power compared to the counterpart statistics from [BLN] for parameter
testing.

5.2. Illustration

We next study the test statistic −2̂an log[Rn(θ)/Rn(θ̂n)] and the confidence region (5.2) for var-
iogram model fitting and we also include the EL approach from [BLN] (cf. Remark 3). Using
the simulation design of Section 3.2 (d = 2), we considered processes having variograms de-
fined by either (a) an exponential correlation model with range parameter r = 1 or (b) a Matérn
correlation model (cf. [31]) with smoothness parameter ν = 1 and range parameter r = 1.5. We
computed coverage probabilities of 90% confidence regions for these model parameters using the
proposed approach (5.2) and the method of [BLN]. For variogram fitting, we applied estimating
functions Gvar

θ (·) from (5.1) based on a lag set {h1,h2,h3,h4} = {(1,1), (2,2), (3,3), (4,4)} to
span a sequence of distances. The resulting empirical coverages appear in Tables 5 and 6. The
proposed testing approach produced confidence sets with generally better accuracy than those
without point estimation, irrespective of the frequency grid (C, κ) and sampling configuration.
This provides evidence supporting the new frequency domain approach for parameter testing
considered here.

6. Extensions to general frequency domain tests

While previous sections have treated several spatial testing scenarios, the proposed frequency
domain method has the potential to be extended to other testing problems about spatial de-
pendence forms or parameters. For the testing issue of interest, the central idea is to stipu-
late spatial estimating functions Gθ(·) that fulfill a spatial expectation condition (2.1) in the
frequency domain. Then, the EL scheme of Section 2.2 provides two types of test statistics.
The test statistic −2̂an logRn(θ̂n) can be applied to assess the null hypothesis H0: “functions
Gθ(·), at some parameter θ0, satisfy the moment condition (2.1).” This provides a general ba-
sis for assessing spatial covariance structures, using r > p estimating functions for p spatial
parameters. To test a hypothesis about specific parameter values H0 : θ = θ0, the test statis-
tic −2̂an log[Rn(θ0)/Rn(θ̂n)] can be used and subsequently inverted to set confidence regions
{θ ∈ 	 : −2̂an log[Rn(θ)/Rn(θ̂n)] ≤ χ2

p,1−α}.
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Table 5. Coverages of 90% confidence regions for variogram parameters with (5.2) or without [BLN] point
estimation; using exponential correlation (r = 1) and 1000 simulation runs

n

1200 1800 2400 3600

λn C κ with w/o with w/o with w/o with w/o

24 1 0.05 0.905 0.944 0.892 0.923 0.897 0.914 0.897 0.897
0.10 0.889 0.923 0.892 0.915 0.890 0.910 0.869 0.873

1.5 0.05 0.910 0.952 0.904 0.941 0.895 0.919 0.911 0.926
0.10 0.892 0.938 0.898 0.936 0.893 0.917 0.887 0.896

2 0.05 0.910 0.946 0.916 0.957 0.916 0.953 0.903 0.939
0.10 0.886 0.940 0.920 0.954 0.901 0.921 0.904 0.919

36 1 0.05 0.910 0.970 0.912 0.950 0.901 0.951 0.892 0.932
0.10 0.888 0.945 0.902 0.940 0.907 0.939 0.901 0.937

1.5 0.05 0.901 0.950 0.923 0.972 0.908 0.955 0.888 0.941
0.10 0.888 0.947 0.911 0.958 0.924 0.959 0.903 0.940

2 0.05 0.887 0.952 0.910 0.953 0.906 0.960 0.884 0.941
0.10 0.891 0.953 0.895 0.964 0.909 0.962 0.906 0.960

Table 6. Coverages of 90% confidence regions for variogram parameters with (5.2) or without [BLN] point
estimation; using Matérn correlation (ν = 1, r = 1.5) and 1000 simulation runs

n

1200 1800 2400 3600

λn C κ with w/o with w/o with w/o with w/o

24 1 0.05 0.807 0.860 0.792 0.854 0.848 0.880 0.815 0.869
0.10 0.806 0.855 0.801 0.861 0.840 0.879 0.824 0.871

1.5 0.05 0.801 0.854 0.793 0.837 0.867 0.911 0.850 0.903
0.10 0.788 0.832 0.782 0.827 0.875 0.902 0.840 0.877

2 0.05 0.870 0.908 0.894 0.931 0.861 0.901 0.843 0.887
0.10 0.879 0.918 0.859 0.913 0.873 0.909 0.838 0.883

36 1 0.05 0.869 0.926 0.862 0.910 0.894 0.940 0.893 0.931
0.10 0.877 0.914 0.860 0.922 0.905 0.945 0.867 0.905

1.5 0.05 0.848 0.897 0.852 0.909 0.898 0.930 0.915 0.957
0.10 0.855 0.905 0.851 0.902 0.905 0.936 0.886 0.921

2 0.05 0.867 0.929 0.882 0.939 0.895 0.940 0.896 0.947
0.10 0.871 0.934 0.897 0.947 0.899 0.939 0.885 0.930
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The following theorem establishes the validity of these frequency domain tests. Due to its
generality, the result requires additional conditions on the estimating functions (denoted as Con-
ditions (R.6)–(R.8) in Supplement A) which hold for functions in Theorem 1–3 based on the
spectral distribution or autocorrelations.

Theorem 4 (PID or MID cases). Suppose Conditions (R.1)–(R.8) hold; the r ≥ p estimating
functions satisfy the moment (2.1) at a true θ0 ∈ 	 ⊂ R

p; Dθ0 ≡ ∫
Rd [∂Gθ0(ω)/∂θ ]φ(ω) dω has

full column rank p; and limn→∞ n/λd
n ∈ (0,∞]. Then, as n → ∞,

−2̂an log
[
Rn(θ0)/Rn(θ̂n)

] d−→ χ2
p and − 2̂an logRn(θ̂n)

d−→ χ2
r−p a.s. (PX).

Without stringent assumptions on the underlying process or spatial sampling design, the pro-
posed frequency domain approach allows for a wide range of moment and parameter assessments
with irregularly located spatial data, as tools for diagnosing dependence structures with such data.

We mention two further properties related to parameter tests based on the log-ratio statistic
−2̂an log[Rn(θ)/Rn(θ̂n)] in Theorem 4. The first is that profile log-ratio statistics can be spec-
ified for testing parameter subsets of θ in an analogous way to parametric likelihood. Decom-
posing the spatial parameter θ = (θ1, θ2) ∈ 	 ∈ R

p into a q × 1 subvector θ1 and a (p − q) × 1
subvector θ2, the profile EL statistic for a specified value of θ1 ∈ R

q is given as

−2̂an log
[
Rn

(
θ1, θ̂

θ1
2,n

)
/Rn(θ̂n)

]
where, given θ1, the estimator θ̂

θ1
2,n maximizes Rn(θ1, θ2) with respect to θ2 ∈ R

p−q . Corollary 1
establishes that this profile statistic is valid with an intuitive limit.

Corollary 1. Suppose the conditions of Theorem 4 hold. Then, under H0 : θ1 = θ01 ∈R
q ,

−2̂an log
[
Rn

(
θ01, θ̂

θ01
2,n

)
/Rn(θ̂n)

] d−→ χ2
q as n → ∞ a.s. (PX).

As a second property, the log-ratio statistic −2̂an log[Rn(θ)/Rn(θ̂n)] from Theorem 4 can
generally be shown to have better local power than an alternative EL statistic −2a(θ) logRn(θ)

from [BLN] for testing hypotheses about a spatial parameter θ ∈ 	 ⊂ R
p . As described in Sec-

tion 2.2, both test statistics are based on r ≥ p estimating functions and a frequency grid for
the spatial periodogram, though the statistic of [BLN] lacks point estimation and the adjustment
an(θ) is defined by θ in place of θ̂n in (2.2); see also Remark 3. To describe local power proper-
ties, we require a factor b2

n ≡ (λd
n/n)2Nn + λκd

n that depends on the number n of sampling sites,
the volume λd

n of spatial sampling region, the number N ≡ Nn of frequency grid spacings and
the volume λ−κd

n between such spacings. While the size of bn changes with the spatial asymp-
totic scheme (e.g., PID vs. MID), it holds that bn → ∞ with bnλ

−κd
n → 0 as n → ∞. If θ0 ∈R

p

denotes the true parameter value, Corollary 2 next determines the asymptotic power of both test
statistics along a sequence of alternative parameters as shifts of θ0 by O(bnλ

−κd
n ).

Corollary 2. Suppose Theorem 4 conditions hold and define θn ≡ θ0 +bnλ
−κd
n v, n ≥ 1, in terms

of the true parameter θ0 ∈ R
p and an arbitrary vector v ∈ R

p . Then, given any sub-sequence
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{nj } ⊂ {n}, there exists a further sub-sequence {nk} ⊂ {nj } along with a positive definite r × r

matrix U2 and a constant a ∈ {1,2} such that, as nk → ∞,

−2̂ank
log

[
Rnk

(θnk
)/Rnk

(θ̂nk
)
] d−→ χ2

p(τ ) and − 2a(θnk
) logRnk

(θnk
)

d−→ χ2
r (τ )

hold a.s. (PX), where τ ≡ a−1v′U−1
2 v is a non-centrality parameter. As described in Propo-

sition 7.1, values of U2, a vary by the spatial asymptotic structure (PID-MID/slow infill vs.
MID/fast infill) and U2 may further depend on the sub-sequence {nk}.

The statement of Corollary 2 is complicated by the issue that the estimating functions de-
termine if the non-centrality parameter τ (through U2) can potentially vary with the sub-
sequence {nk}; see also Proposition 7.1 and its proof. For many estimating functions though,
including those of Sections 3–5, the value τ does not change with the sub-sequence; in
which case, Corollary 2 implies convergence to non-central chi-squared distributions. How-
ever, regardless of the exact subsequence, Corollary 2 gives that p-values from the test
statistic −2̂an log[Rn(θn)/Rn(θ̂n)] will be smaller than those from the counterpart statis-
tic −2a(θn) logRn(θn) along local alternatives θn = θ0 + bnλ

−κd
n v: for any constant c > 0,

the probability that the latter test statistic exceeds a threshold c is asymptotically given by
P(χ2

r (τ ) > c), which exceeds the asymptotic p-value P(χ2
p(τ ) > c) of the first statistic (e.g.,

χ2
r (τ )

d= χ2
p(τ ) + χ2

r−p(τ ) for an independent sum). Hence, the spatial EL version with point
estimation θ̂n can have power advantages for parameter tests over the EL analog without es-
timation θ̂n. Additionally, as shown in Corollary 1, such point estimation also leads to natural
profile test statistics for spatial parameters, which are not possible in the EL framework lacking
maximization steps.

7. Overview of theoretical development and proofs

This section aims to briefly outline technical details in showing chi-square limit laws for the spa-
tial EL test statistics based on point maximization θ̂n. Section 7.1 sets up ingredients for estab-
lishing these asymptotic distributions. At issue, the testing method is again intended to be unified
and valid across differing asymptotic forms for spatial sampling, and Proposition 7.1 indicates the
rather complex large-sample behavior of periodogram-based quantities important to the method.
This result culminates with the distributional feature that appropriate scaling for maximized EL
log-ratio statistics (in Proposition 7.1(ii)) varies with the underlying spatial asymptotics. Sec-
tion 7.2 then proves the general testing result in Theorem 4 for assessing spatial structure, show-
ing that estimated scaling factors automatically adjust to the asymptotic type of spatial sampling
and also previewing some intricacies of the spatial periodogram. A complete description of reg-
ularity conditions and technical supporting lemmas appear in Supplement A along with proofs
of Corollaries 1–2.



Spatial empirical likelihood based inference 2481

7.1. A key result for the spatial test statistics

Proposition 7.1 collects some basic components for establishing the distributional limits of spa-
tial test statistics based on EL. To describe the result, recall that the differing PID or MID spatial
sampling forms correspond respectively to limn→∞ n/λd

n ∈ (0,∞) or limn→∞ n/λd
n = ∞, where

n is the number of sampling sites and λd
n is the sampling region volume. The asymptotic type

of spatial sampling turns out to impact the properties of test statistics, as can the volume Nλ−κd
n

of the frequency grid used in the testing method (cf. Section 2.2), where N ≡ Nn and λ−κd
n

denote the number of, and volume between, frequency grid spacings. In particular, additional
complexities arise in establishing the spatial statistics under MID sampling where two distribu-
tional subcases merge depending how fast n grows relative to λd

n(Nnλ
−κd
n )1/2. Note that, under

MID (i.e., limn→∞ n/λd
n = ∞), the sample size n already grows faster than the volume λd

n of the
spatial sampling region but the subcases require further considering whether or not n grows faster
than λd

n expanded by a factor involving the frequency grid volume Nλ−κd
n ↑ ∞ as n → ∞. When

n increases faster than λd
n(Nnλ

−κd
n )1/2, this corresponds a MID subcase with a “fast rate” of infill

sampling, where n that grows substantially faster than the sampling region volume λd
n (increased

by a factor (Nλ−κd
n )1/2); a MID subcase with a slower infill rate results when λd

n(Nnλ
−κd
n )1/2

dominates n. These differences impact the testing method through the spatial periodogram, which
has a bias that decreases at a rate λd

n/n. To summarize the effects of different spatial asymptotics
on the EL-based testing method, Proposition 7.1(i) first describes a stochastic expansion of the
point estimator θ̂n, which is used for establishing the main outcome of maximized EL test statis-
tics in Proposition 7.1(ii). Appropriate “scaling” is an issue in both Proposition 7.1(i)–(ii), where
scaling for the estimator θ̂n involves a factor b2

n ≡ (λd
n/n)2Nn + λκd

n that varies in size by the
case of spatial asymptotics. Details on the proof appear in Supplement A.

Proposition 7.1. Assume Theorem 4 conditions. Further, define a constant a ∈ {1,2} where
a = 2 if either limn→∞ n/λd

n ∈ (0,∞) (PID) or if limn→∞ n/λd
n = ∞ with n � λd

n(Nnλ
−κd
n )1/2

(MID/slow infilling); and where a = 1 if limn→∞ n/λd
n = ∞ with n � λd

n(Nnλ
−κd
n )1/2 (MID/fast

infilling).

(i) Then, given any sub-sequence {nj } ⊂ {n}, there exists a further sub-sequence {nk} ⊂ {nj }
and a positive definite r × r matrix V (possibly depending on {nk} and a ∈ {1,2}) such that

bnk
Jnk,θ0 ≡ 1

b2
nk

Nnk∑
j=1

Gθ0(ωjnk
)Ĩnk

(ωjnk
)

d−→ N(0r , aV ) a.s. (PX),

holds with b2
nk

≡ (λd
nk

/nk)
2Nnk

+ λκd
nk

→ ∞ and λκd
nk

/bnk
→ ∞ as nk → ∞, and the maximizer

θ̂nk
∈R

p along the sub-sequence satisfies⎛⎜⎝ bnk
t θ̂nk

(θ̂nk
− θ0)

λκd
nk

bnk

⎞⎟⎠=
(

U1

−U2D
′
θ0

V −1

)
bnk

Jnk,θ0 + op(1) a.s. (PX)
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for a random vector t θ̂nk
∈ R

r (an EL Langrange multiplier for θ̂nk
) and non-singular matrices

U1 = V −1 − V −1Dθ0U2D
′
θ0

V −1 and U2 = (D′
θ0

V −1Dθ0)
−1.

(ii) As n → ∞, it holds that

−2

a
log

[
Rn(θ0)/Rn(θ̂n)

] d−→ χ2
p and

−2

a
logRn(θ̂n)

d−→ χ2
r−p a.s. (PX).

In Proposition 7.1(ii), note that the appropriate scaling (i.e., −1 or −2) for test statistics
changes with the asymptotic form of spatial sampling. Similarly to EL theory in [BLN], a di-
chotomy in scaling exists according to whether n grows substantially faster than λd

n (“fast infill”
MID) or not (i.e., PID or “slow infill” MID cases). The estimator θ̂n in the spatial test statistics
here creates challenges compared to the EL form of [BLN] that lacks point estimation. The spa-
tial peridogram Ĩn(·) and estimating functions Gθ(·) induce the large-sample properties of the
point estimator θ̂n in Proposition 7.1(i), which in turn play an essential role in the main distribu-
tional limits of Proposition 7.1(ii). However, in contrast to other EL applications with estimating
functions (cf. [19,28]), the spatial point estimator θ̂n is not asymptotically guaranteed to have a
normal limit. That is, the behavior of θ̂n (particularly its limit variance) can vary across differ-
ent sample sub-sequences so that a corresponding limit distribution may not even exist for θ̂n,
though the estimator remains consistent. This aspect owes in part to the unbounded frequency
domain in the analysis of irregularly located spatial data, as described in [33]. However, while
the large-sample behavior of point estimators in Proposition 7.1(i) depends on sub-sequences,
the limit distribution of test statistics in Proposition 7.1(ii) does not, which is of main inter-
est here. However, correct scaling for such test statistics still depends on the underlying spatial
asymptotics.

Ultimately, the general test statistics −2̂an log[Rn(θ0)/Rn(θ̂n)] or −2̂an logRn(θ̂n) in The-
orem 4 need to automatically adjust to the spatial sampling structure with estimated scaling ân

from (2.2). We show this to be true and provide a proof of Theorem 4 from Proposition 7.1(ii)
next.

7.2. Proof of Theorem 4

In the following, all probabilistic convergence (e.g., op , Op ,
p−→) refers to probability condi-

tional P(·) ≡ P(·|X) for the spatial process {Z(s) : s ∈ R
d} given a collection of random vectors

X ≡ {Xi}i≥1 ⊂ R
d determining spatial locations (Section 2.1); we generally suppress that such

convergence holds a.s. (PX), where again PX denotes the joint distribution of X1,X2, . . . (cf.
Section 3.1). From Proposition 7.1(ii) and the constant a ∈ {1,2} there, Theorem 4 will follow

by establishing 2̂an
p−→ 2/a for ân from (2.2) or equivalently that

ân
p−→

⎧⎨⎩
1

2
for PID or MID with n � λd

n(Nnλ
−κd
n )1/2

1 MID with n � λd
n(Nnλ

−κd
n )1/2
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as n → ∞ (a.s. (PX)). Set cn = n/λd
n and b2

n = c−2
n N + λκd

n (with N ≡ Nn), where b−1
n +

λ−κd
n bn → 0 holds, and recall In(·) and Ĩn(·) = In(·) − c−1

n σ̂ (0) denote the ordinary and bias
corrected periodograms (Section 2.1). We shall refer to some conditions (e.g., (R.3)) and lemmas
appearing in Supplement A, and write sn ∼ tn to denote limn→∞(sn/tn) = 1 for generic positive
sequences {sn}, {tn}.

As ‖θ̂n − θ0‖ = Op(λ−κd
n bn) = op(1) by Proposition 7.1(i), we have

∣∣∣∣∣b−2
n

N∑
j=1

(∥∥Gθ̂n
(ωjn)

∥∥2 − ∥∥Gθ0(ωjn)
∥∥2)

I 2
n (ωjn)

∣∣∣∣∣
≤ C‖θ̂n − θ0‖b−2

n

N∑
j=1

(
Ĩ 2
n (ωjn) + σ̂ (0)2c−2

n

)
= op(1)Op

(
1 + b−2

n Nc−2
n

)= op(1)

using the differentiability of Gθ(·) in a neighborhood of θ0 under Condition (R.7) along with
b−2
n

∑N
j=1 Ĩ 2

n (ωjn) = Op(1) (cf. Lemma 3), b−2
n Nc−2

n = O(1), and the fact that σ̂n(0) ≡
n−1 ∑n

j=1 (Z(sj ) − Z̄n)
2 = Op(1); it also follows that

∣∣∣∣∣b−2
n

N∑
j=1

(∥∥Gθ̂n
(ωjn)

∥∥2 − ∥∥Gθ0(ωjn)
∥∥2)

Ĩ 2
n

∣∣∣∣∣= op(1).

From these, we have

b−2
n

N∑
j=1

∥∥Gθ̂n
(ωjn)

∥∥2
Ĩ 2
n (ωjn) = b−2

n

N∑
j=1

∥∥Gθ0(ωjn)
∥∥2(

An(ωjn)
2 + K2φ(ωjn)

2)+ op(1),

b−2
n

N∑
j=1

∥∥Gθ̂n
(ωjn)

∥∥2
I 2
n (ωjn) = b−2

n

N∑
j=1

∥∥Gθ0(ωjn)
∥∥22An(ωjn)

2 + op(1)

(7.1)

using periodogram expansions (cf. Lemma 2) given by

N∑
j=1

Gθ0(ωjn)
2[Ĩ 2

n (ωjn) − (
An(ωjn)

2 + K2φ(ωjn)
2)]= op

(
b2
n

)
,

N∑
j=1

Gθ0(ωjn)
2[I 2

n (ωjn) − 2An(ωjn)
2]= op

(
b2
n

)
,
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where An(ω) = c−1
n σ (0)+Kφ(ω), ω ∈ R

d for K = (2π)d
∫

f 2. Because λ−κd
n

∑N
j=1 φ(ωjn) →∫

Rd φ(ω) dω from
∫
Rd φ(ω) dω < ∞ and Condition (R.3), we also have bounds

N∑
j=1

φ(ωjn) = O
(
λκd

n

)= O
(
b2
n

)
,

N∑
j=1

φ2(ωjn) = O
(
λκd

n

)= O
(
b2
n

)
, (7.2)

by sup1≤j≤N |φ(ωjn)| ≤ C from (R.3).
Under PID (i.e., limn→∞ cn ∈ (0,∞)) or under MID (i.e., limn→∞ cn = ∞) with n �

λd
n(Nnλ

−κd
n )1/2, it holds that b2

n ∼ Nc−2
n . In these cases, it follows from the definition of

scaling ân from (2.2), upon using (7.1)–(7.2) with Condition (R.3) (i.e., lim infn→∞ N−1 ×∑N
j=1 ‖Gθ0(ωjn)‖2 > 0), that

ân = b−2
n

∑N
j=1 ‖Gθ̂n

(ωjn)‖2Ĩ 2
n (ωjn)

b−2
n

∑N
j=1 ‖Gθ̂n

(ωjn)‖2I 2
n (ωjn)

= b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖2c−2

n σ (0)2 + op(1)

b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖22c−2

n σ (0)2 + op(1)

= 1

2
+ op(1).

Under MID with n � λd
n(Nnλ

−κd
n )1/2, it holds instead that b2

n ∼ λκd
n with c−1

n → 0. Using these
rates along with (7.1)–(7.2) and Condition (R.3) (i.e., limn→∞

∑N
j=1 ‖Gθ0(ωjn)‖2φ(ωjn)

2 > 0),
we have

ân = b−2
n

∑N
j=1 ‖Gθ̂n

(ωjn)‖2Ĩ 2
n (ωjn)

b−2
n

∑N
j=1 ‖Gθ̂n

(ωjn)‖2I 2
n (ωjn)

= b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖22K2φ(ωjn)

2 + op(1)

b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖22K2φ(ωjn)2 + op(1)

= 1 + op(1)

in this case. This completes the proof.

8. Conclusions

We have developed a general spatial frequency domain method for irregularly spaced data, which
is applicable to a broad class of spatial processes and to a variety of inference problems about
spatial covariance. Using an extended empirical likelihood device, test statistics were shown to
have simple chi-square limits under mild conditions, without explicit assumptions or estimation
concerning the process distribution, the concentration of sampling locations, or the exact na-
ture of the spatial asymptotics (e.g., the amount of infill sampling). Depending on the spatial
inference problem of interest, the testing method requires specification of appropriate estimating
functions. For concreteness, we formally treated examples for testing isotropy or separability as
well as fitting variogram models, but general extensions (cf. Section 6) make further applications
possible. These include, for example, potentially novel goodness-of-fit assessments for the para-
metric form of variogoram models or spectral densities (e.g., Whittle estimation). In this sense,
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the proposed methodology provides a unified platform for inference across many scenarios of
spatial covariance assessment.

Open questions remain for the testing method about the best choices of estimating functions
for inference problems of interest (e.g., the number and structure of such functions). This issue
requires investigation through further applications. We have found that, where possible, the for-
mulation of spectral estimating functions based on the normalized spectral distribution, rather
than process correlations directly, often produced tests with better robustness properties in per-
formance and implementation.
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