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In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic—parabolic Keller—
Segel system without cut-off. It involves an original type of McKean—Vlasov interaction kernel. At the
particle level, each particle interacts with all the past of each other particle by means of a time integrated
functional involving a singular kernel. At the mean-field level studied here, the McKean—Vlasov limit pro-
cess interacts with all the past time marginals of its probability distribution in a similarly singular way. We
prove that the parabolic—parabolic Keller—Segel system in the whole Euclidean space and the correspond-
ing McKean—Vlasov stochastic differential equation are well-posed for any values of the parameters of the
model.

Keywords: chemotaxis model; Keller—Segel system; singular McKean—Vlasov non-linear stochastic
differential equation

1. Introduction

The standard d-dimensional parabolic—parabolic Keller—Segel model for chemotaxis describes
the time evolution of the density p; of a cell population and of the concentration ¢, of a chemical
attractant:

1
dplt,x)=V- <§Vp - xch) (t,x), t>0,xeR?,
1
adic(t,x) = EAc(t,x) —Ac(t,x)+p(t,x), t>0,x¢€ RY.
p(0,x) = po(x), (0, x) = co(x),
where x,a > 0 and A > 0. See, for example, Carrapatoso and Mischler [2], Perthame [12] and
references therein for theoretical results on this system of PDEs and applications to Biology.
Recently, stochastic interpretations have been proposed for a simplified version of the two-

dimensional model, that is, the parabolic—elliptic model which corresponds to the values o = 0
and A = 0. They all rely on the fact that, in the parabolic—elliptic case, Vc(#, x) can be explicited

1350-7265 © 2020 ISI/BS


http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/19-BEJ1158
mailto:denis.talay@inria.fr
mailto:milica.tomasevic@polytechnique.edu

1324 D. Talay and M. TomaSevic¢

as the convolution of p(¢, x) and the kernel k(x) = — 2:'[)|(—x|2’ which allows one to rewrite the first
equation in (1) as a closed standard McKean—Vlasov—Fokker—Planck equation.

Consequently, the stochastic process of McKean—Vlasov type whose p; is the time marginal
density involves the singular interaction kernel k. This explains why, so far, only partial results
are obtained and heavy techniques are used to get them. In Jabir et al. [8], one may find a short
review of the works HaSkovec and Schmeiser [6], Fournier and Jourdain [5] and Cattiaux and
Pédeches [3].

We here deal with the parabolic—parabolic system (¢ = 1) without cut-off and study the
McKean—Vlasov stochastic representation of the mild formulation of the equation satisfied by
pr. This representation involves a singular interaction kernel which is different from the one in
the above mentioned approaches and does not seem to have been studied in the McKean—Vlasov
non-linear SDE literature. The system reads

t
dX,=b"@t, X,)dt + {/ (K,n,s * ps)(X,)ds} dt +dw,, t>0,
0
ps(y)dy :=L(X5), s>0,

2

2
where K7 (x) := Xe—MV(We*%) and b¥(t, x) := ye M VEco(x + W;). Here, (W,);>0 is
a d-dimensional Brownian motion on a filtered probability space (2, F, P, (F;)) and X is an
R¢-valued Fo-measurable random variable. Notice that the formulation requires that the one di-
mensional time marginals of the law of the solution are absolutely continuous with respect to
Lebesgue’s measure and that the process interacts with all the past time marginals of its proba-
bility distribution through a functional involving a singular kernel.

For d =2 and yx small enough, the analysis of the well-posedness of this non-linear equa-
tion and the proof that (p;)s>0, together with some well chosen (c;)s>0, solves the Keller—Segel
equation can be found in Tomasevi¢ [15]. For larger values of x, these issues become delicate
because solutions may blow up in finite time. As numerical simulations of the related particle
system appear to be effective for arbitrary value of y, it seems interesting to validate our proba-
bilistic approach in the one-dimensional case.

The objective of this paper is to prove general existence and uniqueness results for both the
deterministic system (1) and the stochastic dynamics (2) ford =1, « =1 and any x > 0. The
companion paper Jabir et al. [8] deals with the well-posedness and propagation of chaos property
of the particle system corresponding to (2) for d = 1. There, each particle interacts with all the
past of all the other ones by means of a time integrated singular kernel.

In this one-dimensional framework, the PDE (1) was previously studied by Osaki and
Yagi [11], Hillen and Potapov [7] in bounded intervals / with boundary conditions while we
here deal with the problem posed on the whole space R. In [11], one assumes that the density pg
isin L2(I) and cq is in H'(I). In [7] one assumes po € L*°(I) and ¢y € W97 (1), where g and r
belong to a particular set of parameters. Here, we only suppose that pg is a probability measure
(not necessarily a density function) and ¢p € C }1 (R).

We emphasize that we do not limit ourselves to the specific kernel K ,ﬁ (x) related to the Keller—
Segel model. We below show that the mean-field PDE and the stochastic differential equation of
Keller—Segel type are well-posed for a whole class of time integrated singular kernels. This SDE
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cannot be analyzed by means of standard coupling methods or Wasserstein distance contrac-
tions. Both to construct local solutions and to go from local to global solutions, an important
issue consists in properly defining the set of weak solutions without any assumption on the initial
probability distribution of X¢. That led us to introduce constraints on the time marginal den-
sities. To prove that these constraints are satisfied in the limit of an iterative procedure where
the kernel is not cut off, the norms of the successive time marginal densities cannot be allowed
to exponentially depend on the L°-norm of the successive corresponding drifts. They neither
can be allowed to depend on Holder-norms of the drifts. Therefore, we use an accurate estimate
(with explicit constants) on densities of one-dimensional diffusions with bounded measurable
drifts which is obtained by a stochastic technique rather than by PDE techniques. This strategy
allows us to get uniform bounds on the L°°-norms of the sequence of drifts, which is essential
to get existence and uniqueness of the local solution to the non-linear martingale problem solved
by any limit of the Picard procedure, and to suitably paste local solutions when constructing the
global solution.

The paper is organized as follows. In Section 2, we state our main results. In Section 3, we
prove a preliminary estimate on the probability density of diffusions whose drift is only supposed
Borel measurable and bounded. In Section 4, we study a non-linear McKean—Vlasov—Fokker—
Planck equation. In Section 5, we prove the local existence and uniqueness of a solution to a
non-linear stochastic differential equation more general than (2) (for d = 1). In Section 6, we
get the global well-posedness of this equation. In Section 7, we apply the preceding result to
the specific case of the one-dimensional parabolic—parabolic Keller—Segel model. The Appendix
concerns an explicit formula for the transition density of a particular diffusion.

Notation. In all the paper, we denote by Cr, Cr(bo, po), etc., any constant which depends on
T and the other specified parameters, but is uniform w.r.t. ¢ € [0, T] and may change from line
to line. Similarly, C denotes any universal constant which may change from line to line.

2. Our main results

Our first main result concerns the well-posedness of a non-linear one-dimensional stochastic
differential equation with a non standard McKean—Vlasov interaction kernel which at each time
t involves in a singular way all the time marginals up to time ¢ of the probability distribution of
the solution. As our technique of analysis is not limited to the above kernel K*, we consider the
following McKean—Vlasov stochastic equation:

t
dX;=b(t, X;)dt + {/ (Ki—s * ps)(Xt)ds} dt+dW;, =T,
0

ps(Vdy :=L(Xs), s>0; Xo ~ po(dy),

3

and in all the sequel we assume the following conditions on the interaction kernel.

Hypothesis (H). The function K defined on R™ x R is such that
1. Foranyt >0, K; is in LI(R).
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. For any t > 0 the function K;(x) is a bounded continuous function on R.

. The set of points x € R such that lim,_, o K;(x) < oo has full Lebesgue measure.

Ki—s
. Forany T > 0 the function f1(t) := fot @ ds is well defined and bounded on [0, T].

7
. For any T > O there exists Ct such that

D A W

SuP“K(x)HLl(o,T) =Cr.
xeR

6. Forany T > O there exists Ct such that

T
1
SUPf IK7+i—sllp1ry—=ds < Cr.
o KTl 75

0<t<T

As emphasized in the Introduction, the well-posedness of the system (3) cannot be obtained
by applying known results in the literature.
Given (¢, x) € RT x R and a family of densities (p;);<7 we set

t
B(t,x; p) ;:/ (K;—s * ps)(x)ds. “4)
0
We now define the notion of a weak solution to (3).
Definition 2.1. The family (2, F, P, (F;), X, W) is said to be a weak solution to the equation
(3) up to time T > 0 if:

1. (2, F,P, (F;)) is a filtered probability space.

2. The process W := (W;);c[0,1] is a one-dimensional (F;)-Brownian motion.

3. The process X := (X;):¢[0,7] 1S real-valued, continuous, and (F;)-adapted. In addition, the
probability distribution of Xg is po.

4. The probability distribution P o X —! has time marginal densities (p;, t € (0, T']) with re-
spect to Lebesgue measure which satisfy

Cr
VO<t =T, |pillLew <—. )

NG

5. Forany r € (0, T] and x € R, one has that fot |b(s, X5)|ds < o0 a.s.
6. P-a.s. the pair (X, W) satisfies (3).

Remark 2.2. For any T > 0, Inequality (5) and Hypothesis (H-4) lead to

iCr >0, sup sup|B(t,x;p)|SCT,

0<t<T xeR

which means that the the drift term in (3) is bounded.

The following theorem provides existence and uniqueness of the weak solution to (3).
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Theorem 2.3. Let T > 0. Suppose that b € L*°([0, T] x R) is continuous w.r.t. the space vari-
able. Under Hypothesis (H), Equation (3) admits a unique weak solution in the sense of Defini-
tion 2.1.

We finally state an easy result which is useful to prove the propagation of chaos in the case of
Keller—Segel kernel (see Jabir et al. [8]).

Corollary 2.4. Let r € (1,00) and r’ such that % % = 1. In addition to the assumptions of
Theorem 2.3 suppose the following hypothesis:

/ IKe—sll, .
H-7. Foranyt >0, K; isin L" (R) and the function f>(t) := Ot w ds is well defined

and bounded on [0, T]. s

7

Then, Definition 2.1 is equivalent to Definition 2.1 modified as follows: Instead of (5) one imposes

YO<t<T, lpllr@w < (6)

T
(="

Our next result concerns the well-posedness of the the one-dimensional parabolic—parabolic
Keller—Segel model

ap ad 1 dp ac

—(t,x)=—-(=——xp— |, x), 1>0,xeR, 7
or = 5 <28x X'Oax>( *), t>0xe (72)
0 1) 1826(: Y= et x)+p(t,x), t>0,x€eR (7b)
— U, X)=——=U,X) —AcCl, X s X ), >U,x s

ot 2 9x2 p

p(t,-) g poldx), t—0; c(0,x) =co(x).

As this system preserves the total mass, that is,
vVt >0, / ,o(t,x)dx:/ podx)=:M,
Q Q

the new functions p(¢, x) := % and ¢(z,x) := % satisfy the system (7) with the new pa-
rameter x := x M. Therefore, w.l.o.g. we may and do thereafter assume that M = 1.

,(2
Denote g;(x) := ﬁe‘é_x We define the notion of solution for the system (7):

Definition 2.5. Given the probability measure pg, the function cg, and the constants y > 0, A >
0, T > 0, the pair (p, ¢) is said to be a solution to (7) if for every 0 < ¢ < T the function p(¢, -)
is a probability density function which satisfies [|o(t, -)[| Lo ®) < %, cisin L*°([0, TT; Cg (R)),
and the following equality

" 9gi—s
0x

a
p(t,x) = g * po(x) —x/ * <8—C(s, -)p(s,~))(X)ds ®)
0 X
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is satisfied in the sense of the distributions with
t
ot x) = e (g(t,) % o) (x) + / ™M (gy % p(t =5, ) (x) ds. ©)
0

Notice that the function c(#, x) defined by (9) is a mild solution to (7b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the two-
dimensional Keller—Segel model for which sub-critical and critical regimes exist depending on
the parameters of the model (see Corrias et al. [4] and references therein). In the one-dimensional
case there is no critical regime as shown by the following theorem.

Theorem 2.6. Assume that py is a probability measure and co € C }l (R). Givenany x >0,A>0
and T > 0, for t > 0 consider the time marginal densities p(t,x) = p;(x) of the probability
distribution of the unique weak solution to Equation (3) with K = K* and b = b*. Also consider
the corresponding function c(t, x) as in (9). The pair (p, c) provides a global solution to (7) in
the sense of Definition 2.5. Any other solution (p', c') with the same initial condition (pg, co)

. a1 a.
satisfies | p1(t,) — p(t, ) ;1) =0 and |5 (t, ) — 252, )l L1 gy =0 for every 0 <t < T.

Remark 2.7. From estimates below we could deduce some additional regularity results which
we do not need here: See Remark 3.3. In particular, if the initial condition has a density pg €
L% (R), then p € L®([0, T]; L' N L®(R)). If pg € L*(R), then p € L>®°([0, T]; L' N L*(R))
and 114 p; || Lo ) < C.

Remark 2.8. In our Definitions 2.1 and 2.5 of solutions to, respectively, systems (3) and (7),
we impose constraints on the L°°-norms of the, respectively, time marginal densities p, and
functions p;. The L°° space cannot be an appropriate choice to search a global solution to the
two-dimensional equation (1) under reasonable conditions on x and pg. Indeed, the singularity of
the kernel K lti is stronger in dimension 2 than in dimension 1. Therefore, one can only construct
local solutions to (1) and (2) when using the L°°([0, T'] x R2)-norm of the drift coefficient
B(t, x, p) and the L' ([0, T]; L (R?)) norm of the time marginal density flow p. See Tomasevi¢
[14,15] for more comments on that issue and for the introduction of another technique of proof,
based on accurate L”-estimates, to construct global solutions under satisfying explicit conditions
on x and pg.

3. Preliminary: A density estimate

In the sequel, we will get local solutions to (3) and extend them to global solutions by means of
an iterative procedure. The L°°-norms of the successive drifts are needed to be bounded from
above uniformly w.r.t. the iteration step. Standard density estimates obtained by using Girsanov
theorem or PDE analysis do not help to this purpose. The reason is that they involve constants
which exponentially depend on the L°°-norm (or even Holder-norm) of the drifts. We therefore
proceed by using an accurate pointwise estimate (with explicit constants) on densities of one-
dimensional diffusions with bounded measurable drifts. Estimate (11) below is obtained by using
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a stochastic technique. Its drawback is that the map y — pg (t, x, y) is not a probability density
function. However, it suffices to nicely bound the successive drifts of the Picard iterations as
shown by Proposition 5.3.

Let X be a process defined by

t
x® = x, +/ b(s, XP)ds +W,, 1€[0,T]. (10)
0

To obtain L>(R) estimates for the transition probability density p® (z, x, y) of X® under the
only assumption that the drift b(¢, x) is measurable and uniformly bounded we slightly extend
the estimate proved in Qian and Zheng [13] for time homogeneous drift coefficients b(x). We
here propose a proof different from the original one. It avoids the use of densities of pinned
diffusions and the claim that p®) (¢, x, y) is continuous w.r.t. all the variables which does not
seem obvious to us. In our proof, we adapt the method in Makhlouf [10], the main difference
being that instead of the Wiener measure our reference measure is the probability distribution of
the particular diffusion process X# considered in Qian and Zheng [13] and defined by

t
Xf:Xo—i-ﬁ/ sgn(y — XB)ds + w,.
0

Theorem 3.1. Let X®) be the process defined in (10) with Xo = x. Let pg (t, x, ) be the transi-
tion density of XP. Assume B := sup;eo,77 10(, )| Lo ) < 00. Then forall y € R andt € (0, T']
it holds that

e _ B2

2
Nz ‘%}l ze dz. (11)

PP, x, ) < plit,x, ) =

Proof. Let f € C2°(R) and fix t € (0, T']. Consider the parabolic PDE driven by the infinitesimal
generator of X#:

du 10%u

at( )+28 2

u(t,x)=f(x), xekR.

(s, x)—l—ﬂsgn(y—x)—(s x)=0, O0<s<t,xelR, (12)

In view of Veretennikov ([16], Theorem 1) there exists a solution u(s, x) € W,l,’z([O, t] X R).
Applying the It6—Krylov formula to u (s, X f ), we obtain that

u(s,x) = /f(z)pﬂ(t—v x,2)dz.

The formula (36) from our Appendix allows us to differentiate under the integral sign:

(S x)= /f(z) p) (t—s,x,2)dz, VO<s<t<T.
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Fix 0 < ¢ < t. Now apply the [t6—Krylov formula to u(s, X‘gb)) for 0 <s <t — ¢ and use the
PDE (12). It comes:

t—e

Bu(t — e, X%,)) =u(0,x) + E /O (bls. X) — Bsgnly — X)) 2 s, X)) ds.

In view of Corollary A.2 in the Appendix there exists a function & € L'([0, 1] x R) such that

oy

VO<s<t<T,Vy,zeR, E‘
X

=5, X", 2)| < Crpryh(s,2). (13)
Consequently,
E(u(r —e, X))
ff(z)p (t,x,2)dz
1—e aplg
+ / f(z)/ E{(b(s, X)) — Bsgn(y — Xb(,h)))a—xy(t —5, X, z) } dsdz.
0
Let now € tend to 0. By Lebesgue’s dominated convergence theorem we obtain
/f(z)p(b)(t,x, 2)dz

=/f(z)py(t x,2)dz

B
/f(z)/ { s, X(h) ﬂsgn(y—Xé(,b)))aaﬂ(t—s,XS(b),Z)}dsdz.
X

Therefore the density p® satisfies:

t B
P(b)(t,x,z)=PyB(t,x,z)+/0 E{(b(s,Xs(b))—ﬂsgn(y—Xy’)))%(t—s,XS(b),z)}ds.

As noticed in Qian and Zheng [13], in view of Formula (37) from our Appendix we have for any
x eR,

(b(s, x) — ﬂsgn(y—X)) pv(t $,x,y) < 0.

This leads us to choose z = y in the preceding equality, which gives us

t 9pP
PO, x,y) =p5(t,x,y)+f0 E{(b(s,XAEb)) —ﬂsgn(y—Xﬁb)))%(t —S,ng),y)}ds,
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from which
vi<T, pPw x,y) <pia xy).

We finally use Qian and Zheng’s explicit representation (see Qian and Zheng [13] and our Ap-
pendix). (]

Corollary 3.2. Fort > 0 denote by p(t, -) the probability density of X ,(b) . One has

1
[FIGD] Pr.— At B. (14)

Proof. Denote by pyx, the probability distribution X¢ in (10). In view of (11), we have

ty) < 1 ) o0 _(z—ﬂzmzd J
»Y) = Xo(dx ze zdx
Py V2t PXo b
! dox [ e T dzd
= Xo (dx)( x)/ (z+ t)e” 2 dzdx
NGl kol _p i p
1 f (5 =y =02
= — x,(dx)(dx)e” 2 dx
«/27”( PXo
o0 Z2
4ot [ pxpann [ e T dx)
|x;}y\_ﬂﬁ
1 (y=x]=pn2
< x,(dx)(dx)e” 2 dx + B.
Nl P 0
Remark 3.3. If the initial distribution has a density pg € L°°(R), the above calculation shows

that

P ooy < 20P0ll @) + B-

If po € LP(R), p > 1, Holder’s inequality leads to

y—x|—Bn2 D —x|—B1)2 1/q ZL
L /Po(x)ef(ly 3 dx < Ipollr@ (/ e*qw dx> < —th T C_l‘f.
V2mt 2wt Jt (%

4. A non-linear McKean-Vlasov-Fokker—Planck equation

This section is aimed to show that the time marginal densities of a weak solution to (3) uniquely
solve a mild formulation of a McKean—Vlasov—Fokker—Planck equation. We will see in Section 7
that this mild equation reduces to (8) in the Keller—Segel case.
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Proposition 4.1. Let T > 0. Assume b € L°°([0, T] x R) and Hypothesis (H). Let (2, F, P,
(Fp), X, W) be a weak solution to (3) until T . Then

1. The time marginal densities (p;)ie(0,1] Satisfy in the sense of the distributions the mild
equation

" og—s
ax

Vie (0.7, pi=g*po— /O % (ps(bGs. ) + BGs. 5 p))ds.  (15)

2. Equation (15) admits at most one solution (p;);c[o0, 7] Which for any t € (0, T] belongs to
L' (R) and satisfies (5).

Proof. We successively prove (15) and the uniqueness of its solution in L (R).
1. Now, for f € Ci (R) consider the Cauchy problem

G 193°G

__}__—:0, OSS<I,X€R,

s 2 0x2 (16)
lim G(s,x) = f(x).

s—t

The function
G r(s,x)= / FOgi—s(x —y)dy
is a smooth solution to (16). Applying Itd’s formula, we get

Gy r(t, Xs) — Gy £ (0, Xo)

! 8Gt,f ! 8Gt,/'
= oo (5 X)ds + = (5, Xo) (b(s, Xs) + B(s, Xy p))ds
0 0

K} 0x
L9G, 1 [19%Gy
+ p . (s,XS)dWs+§ 3 > (s, Xs)ds.
0 X 0 X

Using (16), we obtain

' [9G
Ef(X:) = EG, (0, Xo)+/(; IE[ a;’f(s,Xs)(b(s,Xs)—l-B(S,Xs;P))] ds

=1 +1I. (17)

On the one hand one has

1=//f(y)gf(y—X)dypo(dx)=/f(y)(gr*po)(y)dy~
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On the second hand one has

trd
U=/ /g[/ f(y)gz_s(x—y)dy}(b(s,x)+B(s,x;p))ps(x)dxds

///m
o[

Thus (17) can be written as

Tx—y) dy(b(s x)+ B(s, x; p))ps(x) dxds

((b(s, ) + BCs, - ,p))ps)](y)dsdy.

/f(y)pz(y)dx =/f(y)(gt*po)(y)dy

‘[f<)/‘[gt‘ >+B@,,p»p»}ynud»

which is the mild equation (15).
2. Assume ptl and p,2 are two mild solutions in the sense of the distributions to (15) which
satisfy
Cr
ACr >0,vV1 € (0,71, ||p, ||L°Q(]R) + ||p, ||L°°(]R) =—

7

Then, for every ¢t > 0,

0
||P, P ”LI(R) / ” 8t—s *[B( . D ) B( , ;PZ)PSZ) LI(R)ds
“Nog,—
+f 8t—s * [b(s, )(pvl —_ p%)] ds
0 0x LI(R)
! 38[*5‘ o1 .02 1
< #[(B(s.: p') — B(s.s p°)) Py ] ds
0 0x LI(R)
"Nog,—
+/ % «[(p; — p3)B(s, 5 p?)] ds
0 X LI(R)
t
0g;—
+/«ﬁJ*W&Nﬁ—ﬁﬂ ds
ol ox L'(R)
= I+1+1l.
As
H 08r—s < Cr
ax LU(R) T Jt—s
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the convolution inequality || f * hll 11wy < I/l 1 w17l L1 () and Remark 2.2 lead to

w= [ ] pp2es)gdcr [ P
o o L\ T POR P S = e

As b is bounded, we also have

! ||P3]~ —P3||L1(R)
1l <C ——————ds.
m <cr [ D

We now turn to /. Notice that

s
“B(sa ) Pl) - B(S’ s P2) “LI(R) = A ”KSfT”Ll(R) Hp‘}' - p% ”LI(R) dr,

from which, since by hypothesis (p;) satisfies (5),

t Cr s 1 2
1= [ [ Ui [} = P2l s

t t C
- L2 _—r
—/0 “p-c Pz HLI(]R)‘/; m«/E”KS_T“LI(R)deT.

In addition, using Hypothesis (H-4),

— K- r”Ll(]R)dS< | Ks— r”Ll(]R)dS

o

-7 K C
/ MK Ly ds < T
f N/ JT

t 1_ 2 .
7 SCT/ lp: — PrliLi(w) dr.
0 VT

t
1
/t Vi=ss
It comes:

Gathering the preceding estimates, we obtain

“ipl = PPl “lpd = PPl
vi>0, |p!—p? gcrf ;ds+CT/ — = s,
” t t”Ll(R) 0 Jr— 0 s

Notice that lim; ¢ || pt1 — pt2 1) = 0. Indeed, in view of (15) and Remark 2.2 one has

t CT
”pt1 - p12||L1(R) = ) ﬁ(”l’s] ||L1(]R) + ||ps2||L1(R))ds <Crvi.
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Set u(t) := ||p,1 — p,2||L1(R) for t > 0 and u(0) = 0. Applying the singular Gronwall Lemma 4.2
below to u(t), we conclude

vVt € (0,T], HP;I - Pt2 HL’(R) =0,

which ends the proof. O
In the above proof, we have used the following result.

Lemma4.2. Let (u(t)):>0 be a non-negative bounded function such that for a given T > 0, there
exists a positive constant Ct such that for any t € (0, T]:

L u(s) " u(s)
u(t)fCT/O %ds—i_CT,/o \/tTSdS. (18)

Then, u(t) =0 forany t € (0, T].

Proof. Inequality (18) leads to

u(t) <2C \/Z/t&ds
=TIV si=s

Iterate the preceding expression, apply Fubini’s theorem and the definition of the S-function. It
comes:

rs Sou(r) 11 "u(r)
t<2C2t/ f dd<2c2ﬁ(—,—>/—d.
u()_(r)Joﬁmomﬁrs_(r) P2a) ) 7w

It now remains to apply the classical Gronwall lemma. (I

5. A local existence and uniqueness result for Equation (3)
Set
T
D(T) :=/ /|Kt(x)]dxdt < o0. (19)
0 R
The main result in this section is the following theorem.

Theorem 5.1. Let Ty > 0 be such that D(Ty) < 1. Assume b € L°°([0, Ty] x R) continuous w.r.t.
space variable. Under Hypothesis (H), Equation (3) admits a unique weak solution up to Ty in
the sense of Definition 2.1.

Iterative procedure. Let us define the sequence (X k)kzl as follows. We start with

t
dX) =b(t, X!\ dt + {/ (Ki— * po)(le)dS} dt+dw;, (20)
0

1
XO ~ Dpo-
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Denote the drift of this equation by bl (t, x). For k > 2, suppose that, in the step k — 1, the one
dimensional time marginals of the law of the solution have densities ( pf_l),>0, we define the
drift in the step k as

bk(t,x, pk_l) =b(t,x)+ B(t,x; pk_l).
The corresponding SDE is

dxk =k (e, x¥, p=1ydr +aw,,

k 21

Xy~ po-

In order to prove the desired local existence and uniqueness result, we set up the non-linear
martingale problem related to (3).

Definition 5.2. Consider the canonical space C([0, Tp]; R) equipped with its canonical filtration.
Let Q be a probability measure on this canonical space and denote by Q; its one dimensional
time marginals. Q solves the martingale problem (MP(pg, To, b)) if

@ Qo = po.
(i1) For any ¢ € (0, To], Q; have densities g; w.r.t. Lebesgue measure on R. In addition, they
satisfy
Cr,
Y0 <t <Tp, oR) < —2. 22
=To, ligillzemw = NG (22)

(iii) For any f € C? (R) the process (M;);<r,, defined as
M; == f(w;) — f(wo)
1 u
- / [Ef”(wu) + f’(wu><b(u, ) + /0 / Kue (= 1)ge (v) dy dr)} du

t
0
is a Q-martingale where (wy;) is the canonical process.

Notice that the arguments in Remark 2.2 justify that all the integrals in the definition of M; are
well defined.
We start with the analysis of Equations (20)—(21).

Proposition 5.3. Same assumptions as in Theorem 5.1. For any k > 1, Equations (20)—(21)
admit unique weak solutions up to Ty. For k > 1, denote by P* the law of (X f),sTO. Moreover,
for t € (0, Tyl, the time marginals IP’f of P¥ have densities pf w.r.t. Lebesgue measure on R.
Setting p* = sup; < 6% (2, -, p*=Y) | Loo(wy and b := ||b|l L0, 7y1xR), One has

C(bo, To)

“Pi{ ||L°°(]R) = T and ng < C(bg, Tp).

VO <t <T,
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Finally, there exists a function p>™ € L*®((0, To]; L' (R)) such that

Sup ||p;{_p;>O“Ll(R)_>O, as k — 0o.
0<t<Ty

Moreover,

C(bo, To)

Y0 <t < Ty, ”P?OHLOO(R) = N

(23)

Proof. We proceed by induction.

Case k = 1. In view of (H-5), one has /31 < by + Cr,. This implies that the equation (20) has
a unique weak solution in [0, Tp] with time marginal densities ( le () dy): <1, which in view of
(14) satisfy

Vi € (0, Ty, + L

1
1
” Py ||L°°(]R) = NT

Case k > 1. Assume now that the equation for X* has a unique weak solution and assume ¥
is finite. In addition, suppose that the one dimensional time marginals satisfy

Vit € (0, Tl + B~

1
k
||p, ” Lo®) = N

In view of (H-4), the new drift satisfies

t
|b*F (2, x5 p¥)| < o + /0 |25 ooy 1 K5 1 ey s

tro
<b +/(—+ ") K,_ ds
ot )\ s B NIKe—sll 1wy
< by + Cr, + B*D(Ty).

Thus, we conclude that ,8k+1 <by+ Cr, + ﬁkD(To). Therefore, there exists a unique weak
solution to the equation for X**!, Furthermore, by (14):

C
j +ﬂk+1-
NG

Vi e (O, TO]a ||Pf+] ||L°O(]R) =
Notice that
Vk>1, B <bo+Cr+BD(Ty) and B <by+Cry.
Thus, as by hypothesis D(Tp) < 1, we have

by + Cr,

R T

+bo + Cr, (24)
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and

Cry

C bo+C
”Pt ”Loo(R) \/— 2 0

Cry
+p <0 0 .
Vi 1-D(Ty) NG
Finally, it remains to prove that the sequence p converges in L*°((0, Tp]; LY(R)). In order to do
so, we will prove p* is a Cauchy sequence.
Applying the same procedure as in Section 4, one can derive the mild equation for ( pf )10, Tyl
Thus, for every k > 1, the marginals ( Pf)te(O,To] satisfy the mild equation

+bo+Cry < (25)

t
08— _
Ve O 7] phmgoep— [ B (R ) s 26)

in the sense of the distributions. Assume for a while that we have proved that for any 0 < ¢t < Tj,
one has

k—1 k—2
— Ps ||L1(R)d

Il P A
| i — lHLl(R) = CTO/ NG 5. @7

Remember that fé F@) - o5 fu) dug -+ duy = %(fot f () du)* for any positive inte-
grable function f. Then, iteratlng (27) one gets,

”pk 1“ (CTQ\/_)
! L@ = (k—1)!

Therefore, supy_, <7, | Pf — pi! L1 ) — 0. as k — oo as desired.
It remains to prove the inequality (27). In view of (26), one has

| = Py < /H S s (PhB (5, P = PO (s, R )| s
LI®)
1 . _
5[0 m“ P (s P72 (05 — I)HLI(R)dS
ro . _ _
+./o v Ll SRS Il A RV )l ISR
=1 +1I. (28)

According to (24), one has

-1
1
I<CTO/ ||17g 113 ® ;0

t—s

According to (25), one has

IISCTOV/é ’_t—S\/_/”KA u*

) HL'(R) duds.
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Convolution inequality and Fubini—Tonelli’s theorem lead to

t t
1
I1<cC k=1 _ k=2 / — || K dsdu.
= TO/O ”pu Dy “LI(R) . mﬁ” s u”Ll(R)

Apply the change of variables 1 — s = s’. It comes,

R IS B ) Tl /
”ECTO/O ﬁHPu — Dy HLI(R)/(; ﬁ”KI—M—X’HLI(R)dS du.

According to (H-4) one has

I <Cr, /‘tiﬂpk —pk 2” du
— 0 o \/ﬁ u u LY(R) .

Coming back to (28) and using our above estimates on / and /I, we obtain

P ’||P§_P§71||L1(R) I B
Ipt =Pl gy =Cn |, =7 s w0 |zl = s

We set A; := fo f||Pk I Pl,lelLl(R) du and ®(1) := || p¥ — pk~! Il .1 () Then, we have

o) < Cry AT + Cry [ 2L g
—ds.
=CnrA(p To  Ji—s
Iterating this relation, we get
®(1) < C A(T)+C2/ / W _ guds.
= ~THA70 To Jt—s Jo «/s—u
Apply Fubini’s theorem to get
5 t t 1
(1) < Cr,A(Tp) + C /d)ufidsdu.
= oAl +Chy |2 | =

1339

du.

Notice that | ﬁ ds = fol \/1_717;“/;? dx. Now, apply Gronwall’s lemma to get (27) and the

convergence of p¥ to p™®

In order to obtain (23), fix ¢ € (0, T] and use (25) and the fact that the convergence in L' (R)

implies the almost sure convergence of a subsequence.

The following is an obvious consequence of the preceding proposition.

]

Corollary 5.4. Same assumptions as in Proposition 5.3. Assume that (Pk)kzl admits a weakly
convergent subsequence (P"*)y>1. Denote its limit by Q. Then for any t € (0, To], one has that

Qs (dx) = p°(x) dx, where p™ is constructed in Proposition 5.3.
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Proposition 5.5. Same assumptions as in Theorem 5.1. Then:

(1) The family of probabilities (IP’k)k>1 is tight.
(2) Any weak limit P> of a convergent subsequence of (Pk)kzl solves (MP(po, To, b)).

Proof. In view of (24), we obviously have

3Cr, >0, supE[Xk — x| <Cpli—sP, YO<s<i<Tp
k

This is a sufficient condition for tightness (see, e.g., Karatzas and Shreve [9], Chapter 2, Pb. 4.11).
Let (P") be a weakly convergent subsequence of (}P’k)kz 1 and let P*° denote its limit. Let
us check that P*° solves the martingale problem (MP(pg, Ty, b)). To simplify the notation, we

below write P¥ instead of P and p*~! instead of p"* 1.

(i) Each P’é has density po, and therefore PG° also has density po.
(ii) Corollary 5.4 implies that the time marginals of P> are absolutely continuous with respect
to Lebesgue’s measure and satisfy (22).
(iii) Set
M; = f(w;) — f(wo)
! 1 " / " o0
- /0 [Ef (wu) + f (wu)<b(u, wy) + /O (Ku—rz * p3 )(wu)df)] du.

We have to prove

Epeo [(Mt - Mo)¢(wy, ..., th)]

=0, VpeCp(RY)and0<r < - <ty <s<t<Tp,N>1
The process
Mf = f(w;) — f(wo)
T, p ! ~k—1
-/, 1)+ ' (wa) b, w) + A (Ku—r % p; " )(wy)dt | |du

is a martingale under IP¥. Therefore, it follows that

0= Ep[(M — M{)p(wyy, ..., wiy)]

t
=Ep [ )(f(w) — f(wy))] + Ep |:¢("~)f Ef”(wu)du]
t
+]Epk[¢(~-)/ f’(wu)b(u,wu)du]

t u
+ Epr [45("')/ f/(wu)/ (Ku—r *ﬁlj_l)(wu)drdu}.
K 0
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Since (P¥) weakly converges to P>, the first two terms on the r.h.s. obviously converge. Now

observe that
t u
Ep [qb(---) / £ w) / (Ku_f*ﬁ’;“)wu)drdu}
s 0

t u
_]E]poo[(p(-~-)/ f/(wu)/(; (Ku_,*pgo)(wu)drdu}

= (Ew [¢(~--> / ) / M(KH * ﬁli_l)(wu)dfdu}
—Epk[qs( >f f (wu)/ pr (wu)dfduD
+ (EP/« [¢<---) f F(wa) fo (Kue p?o)(w,,)drdu:|
— Epo [¢(...)/Stf'(wu)/ou(1<ut *p?o)(wu)drduD

=:1+1

Now, in view of (25) and the definition of D(T') as in (19), one has
t u
=16l [ [ 170 Kamex (757 = p2) 0|t drar
)
< / CTo 00
= ”¢”L°°(R) ||f ||L°°(R) ”Ku T”LI(R) ||p.r iy 2 ||L1(R)drdu
< Cry D(T) |l ||f ||Loo(R) sup | 5" = PPl 1. g
r<To

Proposition 5.3 implies that / — 0 as k — oc.
Now, to prove that /T — 0, it suffices to prove that the functional F : C([0, Tp]; R) — R defined
by

t u
w"—>¢(wrl,...,ww)/ f’(wu)/o /Ku_r(wu—y)pi"(y)dydfdu

is continuous. Let (w") a sequence converging in C([0, Tp]; R) to w. Since ¢ is a continuous
function, it suffices to show that

t u
lim f/(w:f)/ /Ku_r(wZ—y)pfo(y)dydrdu

n—o0

/ Fwa) / / we (g — )P () dyde du. (29)
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For (u, 1) € [s,t] x [0, £], set

hu,r(x) =1{r < u}f/(xu)/Ku—r(x - y)p?o(y) dy-

The hypothesis (H-2) implies the continuity of 4, r on R. Furthermore,

C
|hu,t(x)‘ =Cl{r < u}Hp?O ”LOO(R)”KufT”Ll(R) = ﬁ]l{f < ul|Ku—rllp1(w)-

In view of (H-4), we apply the theorem of dominated convergence to conclude (29). This ends
the proof. |

Proof of Theorem 5.1. Proposition 5.5 implies the existence of a weak solution (2, F, P, (F;),
X, W) to (3) up to time Tp. Thus, the marginals P o Xt_1 =: p; satisfy || psllpom) < %, te
(0, Tol. In addition, as |B(t, x; p)| < C(Tp), one has that (2, F,P, (F;), X, W) is the unique
weak solution of the linear SDE

dX,=b(t, X,)dt + B(t, X;; p)dt +dW;, 1 <T. (30)

Now suppose that there exists another weak solution (fZ, F , I@’, (.7:}), X , W) to 3) up to Ty
and for 0 <t < Ty denote P o Xfl (dx) = p;(x)dx. By Proposition 4.1, we have p; = p;, for
0 <t <Ty. Therefore, (22, F,P, (F;), X, W) is a weak solution to (30), from which IP o X 1=
PoX 1. O

6. Proofs of Theorem 2.3 and Corollary 2.4: A global existence
and uniqueness result for Equation (3)

We now construct a solution for an arbitrary time horizon 7' > 0. We will do it by restarting
the equation after the already fixed 7p. We start with T = 2Tj. Then, we will generalize the
procedure for an arbitrary 7 > 0.

6.1. An informal construction of the global weak solution on [0, 27(]

Assume, for a while, that a global weak solution uniquely exists. Denote the density of X; by p,l,
for 0 <t < Tp and by ptz, for t € (Tp, 2Tp]. In view of Equation (3), we would have

To+t To+t

X1yt = X1 +/
To

b(s, X5)ds +/
T;

0

s
/O (Ky—o + po) (Xs)dO ds + Wiy o1 — Wiy
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Observe that

To+t ps
/ / (Ks—o * pg)(X;5)dO ds
T

0 0

To+t pTo To+t ps
/ /0 (Ks—o * pg)(Xs)dO ds +/ / (Ks—o * p3)(X;)ds dt
Tq

0 To To
=: B1 + Bs.
In addition,
t To |
o Zf / (Ktyrsr—o % p)(X1y15) dO s,
0 JO

and

t To+s’ 5
By = /0 / (K1y+s—6 * pg) (X1y45) dO ds’
T,

0
t s/ s
- ~/O [) (KS,_G/ * pTO+9/)(XT0+s’) do' ds’.

Now set Y; := X7,4; and p;(y) := p%ﬁt (). Consider the new Brownian motion W, := Wryte —
Wr,. It comes:

t t rToy
Y, =Yo+ f b(s + To, Yy) ds + f f (Kt -0 % pg) (Ys) d6 ds
0 0 JO

t s
+/ / (Ky'—g % po)(Ys) db ds + W,
0 Jo

for ¢ € (0, Tp]. Setting

To »
bi(t,x, Tp) :=/ (KT()-H—S * psl)(x) ds and b(t,x):=b(Ty+t,x),
0
we have

t
dYtZE(Z,Yt)dt+b](t, Yt,T())dt'i‘{\/ (Kt_v*ﬁ;)(Yt)dS}dt+dW,, [STQ, (31)
0

Yo~ pr()dy, Yy~ py(y)dy.

The above calculation suggests the following procedure to construct a solution on [0, 27p]:
One constructs a weak solution to (31) on [0, Tp] and suitably paste its probability distribution
with the solution to the non-linear martingale problem (MP(pg, Ty, b)). We then prove that the
so defined measure solves the desired non-linear martingale problem (MP(pg, 27y, b)).
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6.2. The global solution

Throughout this section, we denote by €2¢ the canonical space C([0, Tp]; R) and by By its Borel
o - field. We denote by Q! the probability distribution of the unique weak solution to (3) up to T
constructed in the previous section.

Lemma 6.1. Let Ty > 0 be such that D(Ty) < 1. Assume b € L*°([0,2Ty] x R) is contin-
uous w.r.t. the space variable. Denote by p,1 the time marginals of Q'. Set bi(t,x,Tp) :=
fOTO (K7y4r—s * psl)(x) ds and E(t, x) :=b(Ty +t, x). Under Hypothesis (H), Equation (31) ad-
mits a unique weak solution up to Ty.

Proof. Let us check that we may apply Theorem 5.1 to (31). Notice that the SDE (31) involves
the same kernel K;(x) as the SDE (3).
First, by construction the initial law p;o of Y satisfies the assumption of Theorem 5.1. Sec-

ondly, the role of the additional drift b is now played by the sum of the two linear drifts, b and
b1. By hypothesis, b is bounded in [0, 7p] x R and continuous in the space variable. Using (5)
and (H-6) we conclude that b; is bounded uniformly in # and x since

o | Kryse—sllprmy ds < C
Vs o

To show that b1 (¢, x, Ty) is continuous w.r.t. x we use (H-2) and proceed as at the end of the
proof of Proposition 5.5.

We now are in a position to apply Theorem 5.1: There exists a unique weak solution to (31)
up to Tp. |

|bl(t1x’ TO)| = CT()/O

Denote by Q the probability distribution of the process (Y:,7 < Tp). Notice that Q? is the
solution to the martingale problem (MP( plTO, To, b+ by)).

A new measure on C([0,2Tp]; R). Let Q!, Q? and (p,l) be as above. Let (ptz) denote the
time marginal densities of Q2. In particular, @(2) = QITO, ie. pé(z) dz = p}o (z) dz. Define the

mapping X0 from Q) to R as Xo(w) := wo. Using Karatzas and Shreve ([9], Theorem 3.19,
Chapter 5) to justify the introduction of regular conditional probabilities, for each y € R we
define the probability measure (@y% on (20, By) by

VAeBy. Q(A)=P*(AIX°=y).
In particular,
Qi(we Qo wo=y)=1.

We now set Q := C([0, 27p]; R). For w!l, w?e Qo we define the concatenation w = w! 1,
w? € Q of these two paths as the function in € defined by

wg =wp, 0<0<T,
w9+TO=w1TO+w§—w(2), 0<0<t—Ty.
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On the other hand, for a given path w € €2, the two paths w I w?e Qo such that w = w! T, w?

are
wh=wg, 0<6<Tp,
u)g =wp+e, 0=<0=Tp.

We define the probability distribution Q on €2 equipped with its Borel o -field as follows. For any
continuous and bounded functional ¢ on €2,

Bolol = [ pi@@w = [ [ [ p(! on )@ du?)ph01dy Q' (aw'). G2
Q QQ R QO
Notice that if ¢ acts only on the part of the path up to # < Tp of any w. € €2, one has

Eqle((we)o<i)] =Eqi[¢((we)a<)]- (33)

Proposition 6.2. Let Ty > 0 be such that D(Ty) < 1. Assume b € L*°([0, 2Ty] x R) is continuous
w.r.t. the space variable. Under Hypothesis (H), Equation (3) admits a unique weak solution up
to 2Ty.

Proof. Let us prove that the probability measure Q solves the non-linear martingale problem
(MP(po, 2Tp, b)) on the canonical space C([0, 2Tp]; R).

(i) By (33), it is obvious that Qo = Q).

(i) Next, one easily obtains that the one dimensional time marginal densities of Q are p,l when
0 <t <Tyand ptszo when Ty < t < 2Tj. Therefore, the one dimensional marginals of Q have

densities g; which, by construction, satisfy ||g; ||z~ ®) < % fort € (0,2Tp].
(iii) It remains to show that (M;);<>7, defined as

M, = f(w;) — f(wo)

t 1 u
—/0 [Ef”(wu)—i—f’(u)u)<b(u,wu)+/(; /Ku_r(wu—y)qr(y)dydf)}du

is a Q-martingale.

(a) For s <t < Ty that results from (33) and the fact that Q! solves the (MP(po, To, b)).

(b) For s < Tp <t <2Tp, in view of (a), it suffices to prove that Eq(M;|Br,) = Mr,. To prove
the preceding holds true, use that Q2 solves (MP(plTO, To, b+ by)) (see (c)).

(c) Let Ty <s <t <2Tp. For w € Q2 denote by w! and w? the functions in 2 such that
w=w! 1 w?. Proceeding as in the short calculation above Equation (31) one easily gets

—Tp ~
M — M, = f(wTZ*TO) - f(wszo) _/ [%fﬁ(wg) - f/(w,%) (b(”’ w:%)

s—To

u
+b1(u, wlzl, To) +/0 K, ;% p%(wﬁ) dr>i| du =: F(wz)
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Now,take ;] < - <ty <Toy<tpy1 <--- <ty <sforl <m <N,

EQ(¢(wt1 sy th)(Mt - Ms))

=/QO/R/QO¢(w}I,...,w,lm,wme_TO,...,wa_TO)
x F(w?)Q}(dw?) pj, (1) dy Q' (dw').

Since Q? solves the (MP(plTO, To, b + by)), one has that ]EQz(go(w?,, ...,w?,)F) = 0 for any
continuous bounded function ¢ on R”, any n € N and any #; < L <t <s — Tp. Taking

(p(wtz,,...,w% )=<]b(wt11,...,w,lm,wtz,,...w2 )foraﬁxedwl,weconcludethat
1

) /
tN —m 1 tN —m

/1;/;2 (p(wfzmﬂ—To’ N wtzN—To)F(wz)Qi (dwz)plTo (y) dy =0
0

which provides the desired result.
We have just shown the existence of a solution to (MP(po, 279, b)). We proceed as in the proof
of Theorem 5.1 to deduce the existence and uniqueness of a weak solution to (3) up to 27y. U

End of the proof of Theorem 2.3: From 27j to arbitrary time horizons. Given any finite
time horizon 7' > 0, split the interval [0, T'] into n = [Tlo] + 1 intervals of length not exceeding
Ty and repeat n times the procedure used in the preceding subsection. By construction, the time
marginals of this solution to (MP(po, T, b)) have probability densities which satisfy (5). O

Let us now show that, under an additional assumption on the kernel K, the constraint (5) in
Definition 2.1 may be relaxed without altering existence and uniqueness of the weak solution.

Proof of Corollary 2.4. Let (2, F,P, (F;), X, W) be any solution to (3) in the sense of Def-
inition 2.1. As (5) obviously implies (6) since p; belongs to L'(R), (Q, F,P,(F),X,W)isa
solution to (3) in the modified sense.

Let (2, F,P, (5;), X, W) be any solution to (3) in the new sense. Denote by (p;)o</<r the
time marginal densities of P o X~!. Then, by Holder’s inequality, (6) and (H-7) imply that
B(t, x; p) is a bounded function on [0, 7] x R. Therefore, in view of Corollary 3.2, (p;)o<i<T
satisfies (5) and, thus, (2, F, P, (F;), X, W) is a solution to (3) in the sense of Definition 2.1. [J

Remark 6.3. Another way to relax the condition (5) in Definition 2.1 is by adding regularity
on the initial distribution. When this initial distribution has a density pgp € L°°(R), we can use
Remark 3.3 in the iterative procedure. Consequently, the constraint (5) may be relaxed as follows:
the one dimensional marginal densities (p;)o<:<7 belong to L*°([0, T'] x R). Similarly, if pg €
L?(R), then the constraint may be relaxed into

Cr
VO<t<T, lpillrew) =< /2"
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7. Application to the one-dimensional Keller—-Segel model

In this section, we prove Corollary 2.6. We start with checking that K* satisfies Hypothesis (H).
The condition (H-1) is satisfied since for ¢ > 0 one has

C _Z
||Kf||L1(R):$/|Z|€ zdz.

From the definition of K% it is clear that for ¢ > 0, Kt:I is a bounded and continuous function
on R. The condition (H-3) is also obviously satisfied.
To check (H-4), we notice

K @) / 1 /1 1
1) .= 7ds:C 4dS:C 761’)6.
Si® [) NG 0 /SA/T— 0 /xy/1—x

For x # 0, one has

K20 oML e [T E e [T R <
o= 7 s = Clx]| W R T =l e =<
T T
For x =0, one has ||K.ﬁ(0) 10,7y = 0. Thus, (H-5) is satisfied.
Finally, to prove (H-6) we notice that for every ¢ € [0, T']
/THK:I [ L ¢ d<c/T—1 ds=C
—ds = S s=0C.
0 TH=sIL® /5 0o VT+t—sys — Jo T —ss

Therefore, in view of Theorem 2.3, Equation (2) withd =1 is Well-posed.1

Denote by p(t, x) = p;(x) the time marginals of the constructed probability distribution. Now,
define the function c as in (9). In view of Inequality (5), for any ¢ € (0, T'] the function c(z, -) is
well defined and bounded continuous. Let us show that ¢ € L*°([0, T']; C g (R)).

We have

dc 0 0 4
a(t, x) = a(e_ME(Co(x + W) + P (]E/O e Mot —s,x+ Ws)ds>.
Then observe that

1
N 2ms

_y2
e dyds

d ! 0 ! )
aE/O efmp(t—s,vaWs)ds:a/O e*“/p(t—s,ery)

—0-n?

0 )
— e =) dyds

‘ 1
_ —\(t—s)
_3X/()e /"(“"”m

8 t
=: —f f(s,x)ds.
ax 0

IWith similar calculations as for /1, one easily checks that the function f> is bounded on any compact time interval.
Thus, Corollary 2.4 applies as well as Theorem 2.3.
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Asforany 0 <s < t,

we have

’ _—A(t—s) y—X 2
(s,x)=e /p(s, )——————¢ 20=9) (y.
f Y 24/27 (t — 5)3/2 Y
Now, we repeat the same argument for % f(; f(s,x)ds. In order to justify the differentiation
under the integral sign we notice that

Cr
[l 0| £ ——
| < Jo=
Gathering the preceding calculations we have obtained

—(y—x)

dc M /t —A(t— )/ y—Xx
—(t,x)=e MEcy(x+W)+ | e § e 2= ;) dyds. 34
oy ¢ of o+ | pS(y)JE(z—s)3/2 y (34)

Using the assumption on ¢y and Inequality (5), for any ¢ € (0, T'] one has
%(I, ) <|co|l ;oo + Cr-
0x L>®(R) o L=®)

In addition, the preceding calculation and Lebesgue’s Dominated Convergence theorem show
that g—; (z, ) is continuous on R. We thus have obtained as desired that ¢ € L*°([0, T']; C ; (R)).

The above discussion shows that we are in a position to apply Proposition 4.1 with b(¢, x) =
xe MEc)(x + W;) and B(t,x; p) defined as in (4) with K = K*: In view of (34), one has
b(t,x)+ B(t,x; p) = a—f{(l, x) and therefore the function p(z, x) satisfies (8) in the sense of the
distributions. Therefore, it is a solution to the Keller Segel system (7) in the sense of Defini-
tion 2.5. We now check the uniqueness of this solution.

Assume there exists another solution p! satisfying Definition 2.5 with the same initial condi-
tion as p. For notation convenience, in the calculation below we set ¢;(x) := c(¢, x), c,1 (x) =
cl(t,x), pi(x) := p(t, x), and p/ (x) := p' (¢, x).

Using Definition 2.5, for every t > 0

lof = o) /H s (C‘lpl o > ds
Poriey = ax T LI(R)
5o, 9 1
()]
0 ax ax LI(R)
+/t —agt7S % p a_Cl_ % ds
0 0x y 0x ax LI(R)

=141l
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Using standard convolution inequalities and || =3 g’ Hpw < JzCTs we deduce:

d
[ [zt I3 — gl
1<cf i = p‘“]R”d and H<C | & L ® ‘“L(R)d.

Vi—s — o Vi=ss
Therefore
1 s s ol —
‘%_% LI(R)Sfo (p;_pu)*&?fu LI(R)dUSC/o ”pux/spi—”:l(R) a4
from which
II<C/ /3 o — Pull L1 (w) duds
“ Jo svi—sJo Vs—u

t 1
- 1
dsdu < CT/ —”p" Pull 1@y du.
0

t t 1
1 j— e —
SC/O Hpu pu||Ll(R)/u ﬁ /—S—u ,—[—s ﬁ

Gathering the preceding bounds for I and II we get

tipd = psllip tipd = pslip
1 s s HLY(R) s s HLY(R)
||10t _Pt”Ll(R)SCTf0 Tfis-i-CTA Tds-

Similarly as at the end of the proof of Proposition 4.1, we notice that lim;_,¢ || le — ,ot2 21w =0.

Lemma 4.2 thus implies that ||,ot1 — pellpi) =0 for every 0 <7 < T'. In view of (35) we also

80,

have || 55 — % | 1 &) = 0. This completes the proof of Corollary 2.6.

Appendix
We here propose a light simplification of the calculations in Qian and Zheng [13].

Proposition A.1. Let y € R and let B be a constant. Denote by pg (t, x, z) the transition proba-
bility density (with respect to the Lebesgue measure) of the unique weak solution to

t
X,:x+,3/ sgn(y — X5)ds + W;.
0

Then

GHz=y|+y=x]?
2t

1 o ity =B - _
pg(t,x,z)zm/(; eBUy—x14+y=lz=yD 2t(y+|z—y|+|y—x|)e

1 82 (=x)? (z=yl+ly—xD?
b ePly—rl D= (g oy (36)
N2t
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In particular,
1 © =B/
ze” 2 dz. 37
lx—yl
V2t Bl

ph.x. y) =

Proof. Let f be a bounded continuous function. The Girsanov transform leads to

E(f (X)) = E(f(x + Wo)eP ien0—rw ¥y 1)

Let L{ be the Brownian local time. By Tanaka’s formula (Karatzas and Shreve [9], page 205):
t
W, —al = |al +/ sgn(Wy —a)dW, + LY.
0

Therefore

t
/ sgn(y —x — W) dW, = |y — x|+ L — |W, — (y —x)|,
0
from which

y—=x i _ﬁ
E(f(Xt)) — E(f(x + Wt)e/f‘(ly—X\+L, —IWi=(y—0)D—-53 l)_
Recall that (W;, L{) has the following joint distribution:

P dz. L% ed *Md‘d
y>0: P(W,edz, L edy) = _3/2(y+lz—a|+|a|)e ] ydz.
1 2 1 (Iz—al+la)?
P(W; edz, LY =0) = e 7dz— e dz
( ' ! ) N2t 2wt

(see Borodin and Salminen [1], page 200, Eq. (1.3.8)). It comes:

* x4 =)=l (=
E(f (X)) = _t3/2//0 fx + )P ==0=0D=71(5 4 1z — (y —x)| + |y — x])
F+lz—(y—x —x)2
o THesmt? o
ﬂ(|y—x|—\z—(y_x)|)_§t(e_é e_w)dz.

The change of variables x + z = 7’ leads to

! N7 BUy—xlt5—l D= (5 4 1

V2r132 Iy /() e T+ = [+l —x1)
0

_ G+ —ylHy=xD?

X e 2 dyd7

E(f (X)) =

L2 )2
T T T

3

J_

from which the desired result follows. O
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In the next corollary we use the same notation as in the proof of Theorem 3.1.

Corollary A.2. Let 0 <s <t < T.Then for any z, y € R, there exists Ct g x,y such that

0
e

where h belongs to LY([0,1] x R).

S CT,ﬂ,X,)'h(sv Z)v

Proof. By Girsanov’s theorem, for some constant C7 g we have

d
= CT,ﬁ\/]E‘(a—xPyﬁ>(f -5, Wi, 2)

2

a
et

Observe that
9 _ (zmyltly—fl-Bu=s)?
b5, = e e R i)
p —Blz—yl— Bly—x|—
———y | b (t 8) By o Y) sen(E — y)
V2 (t —5)
2 X e—ﬂlz—y\——(t $) Py —31- 5= ;)

+ 2 (t —5)3/2

The sum of the absolute values of the first two terms in the right-hand side is bounded from above
by

B 2Byl
2 (t —5)
Thus,
0 Crp
Ell — B t—S,X(b),Z < %\/Eezﬂ‘y_wsxl
|<axpy>( * ) T 2t =)
Crp \/ ©|2,2Bly— Wy W
+(t—s)3/2 E(lz - Wi |%e )
=: B+ A.

Notice that

Cr, 4 G- Ws> _wr i 1/4 Cr,
Afﬁ(ﬂi“ —wi|te T R )Y =:ﬁ(A1A2)1/4.

. . _ 2 P
First, as there exists an o > 0 such that |a|4e @ < Ce ™", one has

t— )2+]/2 _ (z—x)2
A1 <C(t—y) / = s gs u—x)du < e 206+0—9)/Qw)

Vs + (1 —5)/Qa)
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Second,

Ar =/‘e4ﬂ|y_”|gs(u —x)du

o s

o0 1 M*Xz y l Llfxz
=e_4ﬁy/ 64/3“—6‘_( % du+e4ﬁy/ e =57 du
y $ Vs

o0 u—x—4ps)? y U—x $)2
— ABG—Y) 8B / Le_( = du 4B G867 / ieJ = du
y A/

o 5

2
S 68/3 xcﬂ,x,y'

Therefore,
1
A< CT,/S,x,ymgs+(t—s)/(2a) (z — x).
The term B is treated in the similar way as Aj. |
References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Borodin, A.N. and Salminen, P. (1996). Handbook of Brownian Motion — Facts and For-
mulae. Probability and Its Applications. Basel: Birkhduser. MR1477407 https://doi.org/10.1007/
978-3-0348-7652-0

Carrapatoso, K. and Mischler, S. (2017). Uniqueness and long time asymptotics for the parabolic—
parabolic Keller—Segel equation. Comm. Partial Differential Equations 42 291-345. MR3615547
https://doi.org/10.1080/03605302.2017.1280682

Cattiaux, P. and Pédeches, L. (2016). The 2-D stochastic Keller—Segel particle model: Existence and
uniqueness. ALEA Lat. Am. J. Probab. Math. Stat. 13 447-463. MR3519253

Corrias, L., Escobedo, M. and Matos, J. (2014). Existence, uniqueness and asymptotic behavior of
the solutions to the fully parabolic Keller-Segel system in the plane. J. Differential Equations 257
1840-1878. MR3227285 https://doi.org/10.1016/j.jde.2014.05.019

Fournier, N. and Jourdain, B. (2017). Stochastic particle approximation of the Keller—Segel equa-
tion and two-dimensional generalization of Bessel processes. Ann. Appl. Probab. 27 2807-2861.
MR3719947 https://doi.org/10.1214/16- AAP1267

Haskovec, J. and Schmeiser, C. (2011). Convergence of a stochastic particle approximation for mea-
sure solutions of the 2D Keller—Segel system. Comm. Partial Differential Equations 36 940-960.
MR2765424 https://doi.org/10.1080/03605302.2010.538783

Hillen, T. and Potapov, A. (2004). The one-dimensional chemotaxis model: Global existence and
asymptotic profile. Math. Methods Appl. Sci. 27 1783-1801. MR2087297 https://doi.org/10.1002/
mma.569

Jabir, J.-F., Talay, D. and TomaSevi¢, M. (2018). Mean-field limit of a particle approximation of
the one-dimensional parabolic—parabolic Keller—Segel model without smoothing. Electron. Commun.
Probab. 23 Paper No. 84, 14. MR3873791 https://doi.org/10.1214/18-ECP183

Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed.
Graduate Texts in Mathematics 113. New York: Springer. MR1121940 https://doi.org/10.1007/
978-1-4612-0949-2


http://www.ams.org/mathscinet-getitem?mr=1477407
https://doi.org/10.1007/978-3-0348-7652-0
http://www.ams.org/mathscinet-getitem?mr=3615547
https://doi.org/10.1080/03605302.2017.1280682
http://www.ams.org/mathscinet-getitem?mr=3519253
http://www.ams.org/mathscinet-getitem?mr=3227285
https://doi.org/10.1016/j.jde.2014.05.019
http://www.ams.org/mathscinet-getitem?mr=3719947
https://doi.org/10.1214/16-AAP1267
http://www.ams.org/mathscinet-getitem?mr=2765424
https://doi.org/10.1080/03605302.2010.538783
http://www.ams.org/mathscinet-getitem?mr=2087297
https://doi.org/10.1002/mma.569
http://www.ams.org/mathscinet-getitem?mr=3873791
https://doi.org/10.1214/18-ECP183
http://www.ams.org/mathscinet-getitem?mr=1121940
https://doi.org/10.1007/978-1-4612-0949-2
https://doi.org/10.1007/978-3-0348-7652-0
https://doi.org/10.1002/mma.569
https://doi.org/10.1007/978-1-4612-0949-2

McKean—Vlasov stochastic interpretation of the parabolic—parabolic Keller—Segel 1353

[10]
(1]
[12]

[13]

[14]
[15]

[16]

Makhlouf, A. (2016). Representation and Gaussian bounds for the density of Brownian motion with
random drift. Commun. Stoch. Anal. 10 151-162. MR3605422 https://doi.org/10.31390/cosa.10.2.02
Osaki, K. and Yagi, A. (2001). Finite dimensional attractor for one-dimensional Keller—Segel equa-
tions. Funkcial. Ekvac. 44 441-469. MR1893940

Perthame, B. (2004). PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic.
Appl. Math. 49 539-564. MR2099980 https://doi.org/10.1007/s10492-004-6431-9

Qian, Z. and Zheng, W. (2002). Sharp bounds for transition probability densities of a class
of diffusions. C. R. Math. Acad. Sci. Paris 335 953-957. MR1952556 https://doi.org/10.1016/
S1631-073X(02)02579-7

Tomasevié, M. (2018). On a probabilistic interpretation of the Keller—Segel parabolic—parabolic equa-
tions. Ph.D. Thesis, University Cote d’Azur.

Tomasevié¢, M. (2019). A new McKean—Vlasov stochastic interpretation of the parabolic—parabolic
Keller-Segel model: The two-dimensional case 1-20. Preprint. Available at arXiv:1902.08024.
Veretennikov, A.Y. (1982). Parabolic equations and It6’s stochastic equations with coefficients dis-
continuous in the time variable. Math. Notes Acad. Sci. USSR 31 278-283.

Received February 2018 and revised April 2019


http://www.ams.org/mathscinet-getitem?mr=3605422
https://doi.org/10.31390/cosa.10.2.02
http://www.ams.org/mathscinet-getitem?mr=1893940
http://www.ams.org/mathscinet-getitem?mr=2099980
https://doi.org/10.1007/s10492-004-6431-9
http://www.ams.org/mathscinet-getitem?mr=1952556
https://doi.org/10.1016/S1631-073X(02)02579-7
http://arxiv.org/abs/arXiv:1902.08024
https://doi.org/10.1016/S1631-073X(02)02579-7

	Introduction
	Our main results
	Preliminary: A density estimate
	A non-linear McKean-Vlasov-Fokker-Planck equation
	A local existence and uniqueness result for Equation (3)
	Proofs of Theorem 2.3 and Corollary 2.4: A global existence and uniqueness result for Equation (3)
	An informal construction of the global weak solution on [0,2T0]
	The global solution

	Application to the one-dimensional Keller-Segel model
	Appendix
	References

