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In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–
Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the
particle level, each particle interacts with all the past of each other particle by means of a time integrated
functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit pro-
cess interacts with all the past time marginals of its probability distribution in a similarly singular way. We
prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the correspond-
ing McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the
model.

Keywords: chemotaxis model; Keller–Segel system; singular McKean–Vlasov non-linear stochastic
differential equation

1. Introduction

The standard d-dimensional parabolic–parabolic Keller–Segel model for chemotaxis describes
the time evolution of the density ρt of a cell population and of the concentration ct of a chemical
attractant: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
∂tρ(t, x) = ∇ ·

(
1

2
∇ρ − χρ∇c

)
(t, x), t > 0, x ∈ Rd,

α∂t c(t, x) = 1

2
�c(t, x) − λc(t, x) + ρ(t, x), t > 0, x ∈Rd .

ρ(0, x) = ρ0(x), c(0, x) = c0(x),

(1)

where χ,α > 0 and λ ≥ 0. See, for example, Carrapatoso and Mischler [2], Perthame [12] and
references therein for theoretical results on this system of PDEs and applications to Biology.

Recently, stochastic interpretations have been proposed for a simplified version of the two-
dimensional model, that is, the parabolic–elliptic model which corresponds to the values α = 0
and λ = 0. They all rely on the fact that, in the parabolic–elliptic case, ∇c(t, x) can be explicited
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as the convolution of ρ(t, x) and the kernel k(x) = − x

2π |x|2 , which allows one to rewrite the first
equation in (1) as a closed standard McKean–Vlasov–Fokker–Planck equation.

Consequently, the stochastic process of McKean–Vlasov type whose ρt is the time marginal
density involves the singular interaction kernel k. This explains why, so far, only partial results
are obtained and heavy techniques are used to get them. In Jabir et al. [8], one may find a short
review of the works Haškovec and Schmeiser [6], Fournier and Jourdain [5] and Cattiaux and
Pédèches [3].

We here deal with the parabolic–parabolic system (α = 1) without cut-off and study the
McKean–Vlasov stochastic representation of the mild formulation of the equation satisfied by
ρt . This representation involves a singular interaction kernel which is different from the one in
the above mentioned approaches and does not seem to have been studied in the McKean–Vlasov
non-linear SDE literature. The system reads⎧⎨

⎩dXt = b�(t,Xt ) dt +
{∫ t

0

(
K

�
t−s ∗ ps

)
(Xt ) ds

}
dt + dWt , t > 0,

ps(y) dy := L(Xs), s > 0,

(2)

where K
�
t (x) := χe−λt∇( 1

(2πt)d/2 e− |x|2
2t ) and b�(t, x) := χe−λt∇Ec0(x + Wt). Here, (Wt)t≥0 is

a d-dimensional Brownian motion on a filtered probability space (	,F,P, (Ft )) and X0 is an
Rd -valued F0-measurable random variable. Notice that the formulation requires that the one di-
mensional time marginals of the law of the solution are absolutely continuous with respect to
Lebesgue’s measure and that the process interacts with all the past time marginals of its proba-
bility distribution through a functional involving a singular kernel.

For d = 2 and χ small enough, the analysis of the well-posedness of this non-linear equa-
tion and the proof that (ps)s≥0, together with some well chosen (cs)s≥0, solves the Keller–Segel
equation can be found in Tomašević [15]. For larger values of χ , these issues become delicate
because solutions may blow up in finite time. As numerical simulations of the related particle
system appear to be effective for arbitrary value of χ , it seems interesting to validate our proba-
bilistic approach in the one-dimensional case.

The objective of this paper is to prove general existence and uniqueness results for both the
deterministic system (1) and the stochastic dynamics (2) for d = 1, α = 1 and any χ > 0. The
companion paper Jabir et al. [8] deals with the well-posedness and propagation of chaos property
of the particle system corresponding to (2) for d = 1. There, each particle interacts with all the
past of all the other ones by means of a time integrated singular kernel.

In this one-dimensional framework, the PDE (1) was previously studied by Osaki and
Yagi [11], Hillen and Potapov [7] in bounded intervals I with boundary conditions while we
here deal with the problem posed on the whole space R. In [11], one assumes that the density ρ0

is in L2(I ) and c0 is in H 1(I ). In [7] one assumes ρ0 ∈ L∞(I ) and c0 ∈ Wq,r (I ), where q and r

belong to a particular set of parameters. Here, we only suppose that ρ0 is a probability measure
(not necessarily a density function) and c0 ∈ C1

b(R).

We emphasize that we do not limit ourselves to the specific kernel K
�
t (x) related to the Keller–

Segel model. We below show that the mean-field PDE and the stochastic differential equation of
Keller–Segel type are well-posed for a whole class of time integrated singular kernels. This SDE
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cannot be analyzed by means of standard coupling methods or Wasserstein distance contrac-
tions. Both to construct local solutions and to go from local to global solutions, an important
issue consists in properly defining the set of weak solutions without any assumption on the initial
probability distribution of X0. That led us to introduce constraints on the time marginal den-
sities. To prove that these constraints are satisfied in the limit of an iterative procedure where
the kernel is not cut off, the norms of the successive time marginal densities cannot be allowed
to exponentially depend on the L∞-norm of the successive corresponding drifts. They neither
can be allowed to depend on Hölder-norms of the drifts. Therefore, we use an accurate estimate
(with explicit constants) on densities of one-dimensional diffusions with bounded measurable
drifts which is obtained by a stochastic technique rather than by PDE techniques. This strategy
allows us to get uniform bounds on the L∞-norms of the sequence of drifts, which is essential
to get existence and uniqueness of the local solution to the non-linear martingale problem solved
by any limit of the Picard procedure, and to suitably paste local solutions when constructing the
global solution.

The paper is organized as follows. In Section 2, we state our main results. In Section 3, we
prove a preliminary estimate on the probability density of diffusions whose drift is only supposed
Borel measurable and bounded. In Section 4, we study a non-linear McKean–Vlasov–Fokker–
Planck equation. In Section 5, we prove the local existence and uniqueness of a solution to a
non-linear stochastic differential equation more general than (2) (for d = 1). In Section 6, we
get the global well-posedness of this equation. In Section 7, we apply the preceding result to
the specific case of the one-dimensional parabolic–parabolic Keller–Segel model. The Appendix
concerns an explicit formula for the transition density of a particular diffusion.

Notation. In all the paper, we denote by CT , CT (b0,p0), etc., any constant which depends on
T and the other specified parameters, but is uniform w.r.t. t ∈ [0, T ] and may change from line
to line. Similarly, C denotes any universal constant which may change from line to line.

2. Our main results

Our first main result concerns the well-posedness of a non-linear one-dimensional stochastic
differential equation with a non standard McKean–Vlasov interaction kernel which at each time
t involves in a singular way all the time marginals up to time t of the probability distribution of
the solution. As our technique of analysis is not limited to the above kernel K�, we consider the
following McKean–Vlasov stochastic equation:⎧⎨

⎩dXt = b(t,Xt ) dt +
{∫ t

0
(Kt−s ∗ ps)(Xt ) ds

}
dt + dWt, t ≤ T ,

ps(y) dy := L(Xs), s > 0; X0 ∼ p0(dy),

(3)

and in all the sequel we assume the following conditions on the interaction kernel.

Hypothesis (H). The function K defined on R+ ×R is such that

1. For any t > 0, Kt is in L1(R).
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2. For any t > 0 the function Kt(x) is a bounded continuous function on R.
3. The set of points x ∈R such that limt→0 Kt(x) < ∞ has full Lebesgue measure.

4. For any T > 0 the function f1(t) := ∫ t

0

‖Kt−s‖L1(R)√
s

ds is well defined and bounded on [0, T ].
5. For any T > 0 there exists CT such that

sup
x∈R

∥∥K·(x)
∥∥

L1(0,T )
≤ CT .

6. For any T > 0 there exists CT such that

sup
0≤t≤T

∫ T

0
‖KT +t−s‖L1(R)

1√
s

ds ≤ CT .

As emphasized in the Introduction, the well-posedness of the system (3) cannot be obtained
by applying known results in the literature.

Given (t, x) ∈R+ ×R and a family of densities (pt )t≤T we set

B(t, x;p) :=
∫ t

0
(Kt−s ∗ ps)(x) ds. (4)

We now define the notion of a weak solution to (3).

Definition 2.1. The family (	,F,P, (Ft ),X,W) is said to be a weak solution to the equation
(3) up to time T > 0 if:

1. (	,F,P, (Ft )) is a filtered probability space.
2. The process W := (Wt)t∈[0,T ] is a one-dimensional (Ft )-Brownian motion.
3. The process X := (Xt )t∈[0,T ] is real-valued, continuous, and (Ft )-adapted. In addition, the

probability distribution of X0 is p0.
4. The probability distribution P ◦ X−1 has time marginal densities (pt , t ∈ (0, T ]) with re-

spect to Lebesgue measure which satisfy

∀0 < t ≤ T , ‖pt‖L∞(R) ≤ CT√
t
. (5)

5. For any t ∈ (0, T ] and x ∈R, one has that
∫ t

0 |b(s,Xs)|ds < ∞ a.s.
6. P-a.s. the pair (X,W) satisfies (3).

Remark 2.2. For any T > 0, Inequality (5) and Hypothesis (H-4) lead to

∃CT > 0, sup
0≤t≤T

sup
x∈R

∣∣B(t, x;p)
∣∣ ≤ CT ,

which means that the the drift term in (3) is bounded.

The following theorem provides existence and uniqueness of the weak solution to (3).
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Theorem 2.3. Let T > 0. Suppose that b ∈ L∞([0, T ] × R) is continuous w.r.t. the space vari-
able. Under Hypothesis (H), Equation (3) admits a unique weak solution in the sense of Defini-
tion 2.1.

We finally state an easy result which is useful to prove the propagation of chaos in the case of
Keller–Segel kernel (see Jabir et al. [8]).

Corollary 2.4. Let r ∈ (1,∞) and r ′ such that 1
r

+ 1
r ′ = 1. In addition to the assumptions of

Theorem 2.3 suppose the following hypothesis:

H-7. For any t > 0, Kt is in Lr ′
(R) and the function f2(t) := ∫ t

0

‖Kt−s‖
Lr′ (R)

s
1

2r′
ds is well defined

and bounded on [0, T ].
Then, Definition 2.1 is equivalent to Definition 2.1 modified as follows: Instead of (5) one imposes

∀0 < t ≤ T , ‖pt‖Lr(R) ≤ CT

t
1
2 (1− 1

r
)
. (6)

Our next result concerns the well-posedness of the the one-dimensional parabolic–parabolic
Keller–Segel model⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
(t, x) = ∂

∂x
·
(

1

2

∂ρ

∂x
− χρ

∂c

∂x

)
(t, x), t > 0, x ∈R, (7a)

∂c

∂t
(t, x) = 1

2

∂2c

∂x2
(t, x) − λc(t, x) + ρ(t, x), t > 0, x ∈ R, (7b)

ρ(t, ·) w→ ρ0(dx), t → 0; c(0, x) = c0(x).

As this system preserves the total mass, that is,

∀t > 0,

∫
	

ρ(t, x) dx =
∫

	

ρ0(dx) =: M,

the new functions ρ̃(t, x) := ρ(t,x)
M

and c̃(t, x) := c(t,x)
M

satisfy the system (7) with the new pa-
rameter χ̃ := χM . Therefore, w.l.o.g. we may and do thereafter assume that M = 1.

Denote gt (x) := 1√
2πt

e− x2
2t . We define the notion of solution for the system (7):

Definition 2.5. Given the probability measure ρ0, the function c0, and the constants χ > 0, λ ≥
0, T > 0, the pair (ρ, c) is said to be a solution to (7) if for every 0 < t ≤ T the function ρ(t, ·)
is a probability density function which satisfies ‖ρ(t, ·)‖L∞(R) ≤ CT√

t
, c is in L∞([0, T ];C1

b(R)),
and the following equality

ρ(t, x) = gt ∗ ρ0(x) − χ

∫ t

0

∂gt−s

∂x
∗

(
∂c

∂x
(s, ·)ρ(s, ·)

)
(x) ds (8)
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is satisfied in the sense of the distributions with

c(t, x) = e−λt
(
g(t, ·) ∗ c0

)
(x) +

∫ t

0
e−λs

(
gs ∗ ρ(t − s, ·))(x) ds. (9)

Notice that the function c(t, x) defined by (9) is a mild solution to (7b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the two-
dimensional Keller–Segel model for which sub-critical and critical regimes exist depending on
the parameters of the model (see Corrias et al. [4] and references therein). In the one-dimensional
case there is no critical regime as shown by the following theorem.

Theorem 2.6. Assume that ρ0 is a probability measure and c0 ∈ C1
b(R). Given any χ > 0, λ ≥ 0

and T > 0, for t > 0 consider the time marginal densities ρ(t, x) ≡ pt (x) of the probability
distribution of the unique weak solution to Equation (3) with K = K� and b = b�. Also consider
the corresponding function c(t, x) as in (9). The pair (ρ, c) provides a global solution to (7) in
the sense of Definition 2.5. Any other solution (ρ1, c1) with the same initial condition (ρ0, c0)

satisfies ‖ρ1(t, ·) − ρ(t, ·)‖L1(R) = 0 and ‖ ∂c1

∂x
(t, ·) − ∂c

∂x
(t, ·)‖L1(R) = 0 for every 0 < t ≤ T .

Remark 2.7. From estimates below we could deduce some additional regularity results which
we do not need here: See Remark 3.3. In particular, if the initial condition has a density ρ0 ∈
L∞(R), then ρ ∈ L∞([0, T ];L1 ∩ L∞(R)). If ρ0 ∈ L2(R), then ρ ∈ L∞([0, T ];L1 ∩ L2(R))

and t1/4‖ρt‖L∞(R) ≤ C.

Remark 2.8. In our Definitions 2.1 and 2.5 of solutions to, respectively, systems (3) and (7),
we impose constraints on the L∞-norms of the, respectively, time marginal densities pt and
functions ρt . The L∞ space cannot be an appropriate choice to search a global solution to the
two-dimensional equation (1) under reasonable conditions on χ and ρ0. Indeed, the singularity of
the kernel K

�
t is stronger in dimension 2 than in dimension 1. Therefore, one can only construct

local solutions to (1) and (2) when using the L∞([0, T ] × R2)-norm of the drift coefficient
B(t, x,p) and the L1([0, T ];L∞(R2)) norm of the time marginal density flow p. See Tomašević
[14,15] for more comments on that issue and for the introduction of another technique of proof,
based on accurate Lp-estimates, to construct global solutions under satisfying explicit conditions
on χ and ρ0.

3. Preliminary: A density estimate

In the sequel, we will get local solutions to (3) and extend them to global solutions by means of
an iterative procedure. The L∞-norms of the successive drifts are needed to be bounded from
above uniformly w.r.t. the iteration step. Standard density estimates obtained by using Girsanov
theorem or PDE analysis do not help to this purpose. The reason is that they involve constants
which exponentially depend on the L∞-norm (or even Hölder-norm) of the drifts. We therefore
proceed by using an accurate pointwise estimate (with explicit constants) on densities of one-
dimensional diffusions with bounded measurable drifts. Estimate (11) below is obtained by using
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a stochastic technique. Its drawback is that the map y �→ p
β
y (t, x, y) is not a probability density

function. However, it suffices to nicely bound the successive drifts of the Picard iterations as
shown by Proposition 5.3.

Let X(b) be a process defined by

X
(b)
t = X0 +

∫ t

0
b
(
s,X(b)

s

)
ds + Wt, t ∈ [0, T ]. (10)

To obtain L∞(R) estimates for the transition probability density p(b)(t, x, y) of X(b) under the
only assumption that the drift b(t, x) is measurable and uniformly bounded we slightly extend
the estimate proved in Qian and Zheng [13] for time homogeneous drift coefficients b(x). We
here propose a proof different from the original one. It avoids the use of densities of pinned
diffusions and the claim that p(b)(t, x, y) is continuous w.r.t. all the variables which does not
seem obvious to us. In our proof, we adapt the method in Makhlouf [10], the main difference
being that instead of the Wiener measure our reference measure is the probability distribution of
the particular diffusion process Xβ considered in Qian and Zheng [13] and defined by

X
β
t = X0 + β

∫ t

0
sgn

(
y − Xβ

s

)
ds + Wt.

Theorem 3.1. Let X(b) be the process defined in (10) with X0 = x. Let p
β
y (t, x, z) be the transi-

tion density of Xβ . Assume β := supt∈[0,T ] ‖b(t, ·)‖L∞(R) < ∞. Then for all y ∈R and t ∈ (0, T ]
it holds that

p(b)(t, x, y) ≤ pβ
y (t, x, y) = 1√

2πt

∫ ∞
|x−y|√

t

ze− (z−β
√

t)2

2 dz. (11)

Proof. Let f ∈ C∞
c (R) and fix t ∈ (0, T ]. Consider the parabolic PDE driven by the infinitesimal

generator of Xβ :⎧⎨
⎩

∂u

∂t
(s, x) + 1

2

∂2u

∂x2
(s, x) + β sgn(y − x)

∂u

∂x
(s, x) = 0, 0 ≤ s < t, x ∈R,

u(t, x) = f (x), x ∈ R.

(12)

In view of Veretennikov ([16], Theorem 1) there exists a solution u(s, x) ∈ W
1,2
p ([0, t] × R).

Applying the Itô–Krylov formula to u(s,X
β
s ), we obtain that

u(s, x) =
∫

f (z)pβ
y (t − s, x, z) dz.

The formula (36) from our Appendix allows us to differentiate under the integral sign:

∂u

∂x
(s, x) =

∫
f (z)

∂p
β
y

∂x
(t − s, x, z) dz, ∀0 ≤ s < t ≤ T .
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Fix 0 < ε < t . Now apply the Itô–Krylov formula to u(s,X
(b)
s ) for 0 ≤ s ≤ t − ε and use the

PDE (12). It comes:

E
(
u
(
t − ε,X

(b)
t−ε

)) = u(0, x) +E

∫ t−ε

0

(
b
(
s,X(b)

s

) − β sgn
(
y − X(b)

s

))∂u

∂x

(
s,X(b)

s

)
ds.

In view of Corollary A.2 in the Appendix there exists a function h ∈ L1([0, t] ×R) such that

∀0 < s < t ≤ T ,∀y, z ∈R, E

∣∣∣∣∂p
β
y

∂x

(
t − s,X(b)

s , z
)∣∣∣∣ ≤ CT,β,x,yh(s, z). (13)

Consequently,

E
(
u
(
t − ε,X

(b)
t−ε

))
=

∫
f (z)pβ

y (t, x, z) dz

+
∫

f (z)

∫ t−ε

0
E

{(
b
(
s,X(b)

s

) − β sgn
(
y − X(b)

s

))∂p
β
y

∂x

(
t − s,X(b)

s , z
)}

ds dz.

Let now ε tend to 0. By Lebesgue’s dominated convergence theorem we obtain∫
f (z)p(b)(t, x, z) dz

=
∫

f (z)pβ
y (t, x, z) dz

+
∫

f (z)

∫ t

0
E

{(
b
(
s,X(b)

s

) − β sgn
(
y − X(b)

s

))∂p
β
y

∂x

(
t − s,X(b)

s , z
)}

ds dz.

Therefore the density p(b) satisfies:

p(b)(t, x, z) = pβ
y (t, x, z) +

∫ t

0
E

{(
b
(
s,X(b)

s

) − β sgn
(
y − X(b)

s

))∂p
β
y

∂x

(
t − s,X(b)

s , z
)}

ds.

As noticed in Qian and Zheng [13], in view of Formula (37) from our Appendix we have for any
x ∈R,

(
b(s, x) − β sgn(y − x)

) ∂

∂x
pβ

y (t − s, x, y) ≤ 0.

This leads us to choose z = y in the preceding equality, which gives us

p(b)(t, x, y) = pβ
y (t, x, y) +

∫ t

0
E

{(
b
(
s,X(b)

s

) − β sgn
(
y − X(b)

s

))∂p
β
y

∂x

(
t − s,X(b)

s , y
)}

ds,
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from which

∀t ≤ T , p(b)(t, x, y) ≤ pβ
y (t, x, y).

We finally use Qian and Zheng’s explicit representation (see Qian and Zheng [13] and our Ap-
pendix). �

Corollary 3.2. For t > 0 denote by p(t, ·) the probability density of X
(b)
t . One has

∥∥p(t, ·)∥∥
L∞(R)

≤ 1√
2πt

+ β. (14)

Proof. Denote by pX0 the probability distribution X0 in (10). In view of (11), we have

p(t, y) ≤ 1√
2πt

∫
pX0(dx)

∫ ∞
|x−y|√

t

ze− (z−β
√

t)2

2 dzdx

≤ 1√
2πt

∫
pX0(dx)(dx)

∫ ∞
|x−y|√

t
−β

√
t

(z + β
√

t)e− z2
2 dzdx

= 1√
2πt

(∫
pX0(dx)(dx)e− (|x−y|−βt)2

2t dx

+ β
√

t

∫
pX0(dx)(dx)

∫ ∞
|x−y|√

t
−β

√
t

e− z2
2 dzdx

)

≤ 1√
2πt

∫
pX0(dx)(dx)e− (|y−x|−βt)2

2t dx + β. �

Remark 3.3. If the initial distribution has a density p0 ∈ L∞(R), the above calculation shows
that ∥∥p(t, ·)∥∥

L∞(R)
≤ 2‖p0‖L∞(R) + β.

If p0 ∈ Lp(R), p > 1, Hölder’s inequality leads to

1√
2πt

∫
p0(x)e− (|y−x|−βt)2

2t dx ≤ ‖p0‖Lp(R)√
2πt

(∫
e−q

(|y−x|−βt)2

2t dx

)1/q

≤ Cqt
1

2q

√
t

= Cq

t
1

2p

.

4. A non-linear McKean–Vlasov–Fokker–Planck equation

This section is aimed to show that the time marginal densities of a weak solution to (3) uniquely
solve a mild formulation of a McKean–Vlasov–Fokker–Planck equation. We will see in Section 7
that this mild equation reduces to (8) in the Keller–Segel case.



1332 D. Talay and M. Tomašević

Proposition 4.1. Let T > 0. Assume b ∈ L∞([0, T ] × R) and Hypothesis (H). Let (	,F,P,

(Ft ),X,W) be a weak solution to (3) until T . Then

1. The time marginal densities (pt )t∈(0,T ] satisfy in the sense of the distributions the mild
equation

∀t ∈ (0, T ], pt = gt ∗ p0 −
∫ t

0

∂gt−s

∂x
∗ (

ps

(
b(s, ·) + B(s, ·;p)

))
ds. (15)

2. Equation (15) admits at most one solution (pt )t∈[0,T ] which for any t ∈ (0, T ] belongs to
L1(R) and satisfies (5).

Proof. We successively prove (15) and the uniqueness of its solution in L1(R).
1. Now, for f ∈ C2

b(R) consider the Cauchy problem

⎧⎪⎨
⎪⎩

∂G

∂s
+ 1

2

∂2G

∂x2
= 0, 0 ≤ s < t, x ∈R,

lim
s→t−

G(s, x) = f (x).
(16)

The function

Gt,f (s, x) =
∫

f (y)gt−s(x − y)dy

is a smooth solution to (16). Applying Itô’s formula, we get

Gt,f (t,Xt ) − Gt,f (0,X0)

=
∫ t

0

∂Gt,f

∂s
(s,Xs) ds +

∫ t

0

∂Gt,f

∂x
(s,Xs)

(
b(s,Xs) + B(s,Xs;p)

)
ds

+
∫ t

0

∂Gt,f

∂x
(s,Xs) dW s + 1

2

∫ t

0

∂2Gt,f

∂x2
(s,Xs) ds.

Using (16), we obtain

Ef (Xt ) = EGt,f (0,X0) +
∫ t

0
E

[
∂Gt,f

∂x
(s,Xs)

(
b(s,Xs) + B(s,Xs;p)

)]
ds

=: I + II. (17)

On the one hand one has

I =
∫ ∫

f (y)gt (y − x)dy p0(dx) =
∫

f (y)(gt ∗ p0)(y) dy.
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On the second hand one has

II =
∫ t

0

∫
∂

∂x

[∫
f (y)gt−s(x − y)dy

](
b(s, x) + B(s, x;p)

)
ps(x) dx ds

=
∫ t

0

∫ ∫
f (y)

∂gt−s

∂x
(x − y)dy

(
b(s, x) + B(s, x;p)

)
ps(x) dx ds

= −
∫

f (y)

∫ t

0

[
∂gt−s

∂x
∗ ((

b(s, ·) + B(s, ·;p)
)
ps

)]
(y) ds dy.

Thus (17) can be written as∫
f (y)pt (y) dx =

∫
f (y)(gt ∗ p0)(y) dy

+
∫

f (y)

∫ t

0

[
∂gt−s

∂x
∗ ((

b(s, ·) + B(s, ·;p)
)
ps

)]
(y) ds dy,

which is the mild equation (15).
2. Assume p1

t and p2
t are two mild solutions in the sense of the distributions to (15) which

satisfy

∃CT > 0,∀t ∈ (0, T ], ∥∥p1
t

∥∥
L∞(R)

+ ∥∥p2
t

∥∥
L∞(R)

≤ CT√
t
.

Then, for every t > 0,

∥∥p1
t − p2

t

∥∥
L1(R)

≤
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ [B(

s, ·;p1)p1
s − B

(
s, ·;p2)p2

s )

∥∥∥∥
L1(R)

ds

+
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ [

b(s, ·)(p1
s − p2

s

)]∥∥∥∥
L1(R)

ds

≤
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ [(

B
(
s, ·;p1) − B

(
s, ·;p2))p1

s

]∥∥∥∥
L1(R)

ds

+
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ [(

p1
s − p2

s

)
B

(
s, ·;p2)]∥∥∥∥

L1(R)

ds

+
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ [

b(s, ·)(p1
s − p2

s

)]∥∥∥∥
L1(R)

ds

=: I + II + III.

As ∥∥∥∥∂gt−s

∂x

∥∥∥∥
L1(R)

≤ CT√
t − s

,
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the convolution inequality ‖f ∗ h‖L1(R) ≤ ‖f ‖L1(R)‖h‖L1(R) and Remark 2.2 lead to

II ≤
∫ t

0

∥∥∥∥∂gt−s

∂x

∥∥∥∥
L1(R)

∥∥(
p1

s − p2
s

)
B

(
s, ·;p2)∥∥

L1(R)
ds ≤ CT

∫ t

0

‖p1
s − p2

s ‖L1(R)√
t − s

ds.

As b is bounded, we also have

|III| ≤ CT

∫ t

0

‖p1
s − p2

s ‖L1(R)√
t − s

ds.

We now turn to I . Notice that

∥∥B
(
s, ·;p1) − B

(
s, ·;p2)∥∥

L1(R)
≤

∫ s

0
‖Ks−τ‖L1(R)

∥∥p1
τ − p2

τ

∥∥
L1(R)

dτ,

from which, since by hypothesis (pt ) satisfies (5),

I ≤
∫ t

0

CT√
t − s

√
s

∫ s

0
‖Ks−τ‖L1(R)

∥∥p1
τ − p2

τ

∥∥
L1(R)

dτ ds

=
∫ t

0

∥∥p1
τ − p2

τ

∥∥
L1(R)

∫ t

τ

CT√
t − s

√
s
‖Ks−τ‖L1(R) ds dτ.

In addition, using Hypothesis (H-4),

∫ t

τ

1√
t − s

√
s
‖Ks−τ‖L1(R) ds ≤ 1√

τ

∫ t

τ

1√
t − s

‖Ks−τ‖L1(R) ds

= 1√
τ

∫ t−τ

0

‖Ks‖L1(R)√
t − τ − s

ds ≤ CT√
τ

.

It comes:

I ≤ CT

∫ t

0

‖p1
τ − p2

τ‖L1(R)√
τ

dτ.

Gathering the preceding estimates, we obtain

∀t > 0,
∥∥p1

t − p2
t

∥∥
L1(R)

≤ CT

∫ t

0

‖p1
s − p2

s ‖L1(R)√
t − s

ds + CT

∫ t

0

‖p1
s − p2

s ‖L1(R)√
s

ds.

Notice that limt→0 ‖p1
t − p2

t ‖L1(R) = 0. Indeed, in view of (15) and Remark 2.2 one has

∥∥p1
t − p2

t

∥∥
L1(R)

≤
∫ t

0

CT√
t − s

(∥∥p1
s

∥∥
L1(R)

+ ∥∥p2
s

∥∥
L1(R)

)
ds ≤ CT

√
t .
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Set u(t) := ‖p1
t − p2

t ‖L1(R) for t > 0 and u(0) = 0. Applying the singular Gronwall Lemma 4.2
below to u(t), we conclude

∀t ∈ (0, T ], ∥∥p1
t − p2

t

∥∥
L1(R)

= 0,

which ends the proof. �

In the above proof, we have used the following result.

Lemma 4.2. Let (u(t))t≥0 be a non-negative bounded function such that for a given T > 0, there
exists a positive constant CT such that for any t ∈ (0, T ]:

u(t) ≤ CT

∫ t

0

u(s)√
s

ds + CT

∫ t

0

u(s)√
t − s

ds. (18)

Then, u(t) = 0 for any t ∈ (0, T ].
Proof. Inequality (18) leads to

u(t) ≤ 2CT

√
t

∫ t

0

u(s)√
s
√

t − s
ds.

Iterate the preceding expression, apply Fubini’s theorem and the definition of the β-function. It
comes:

u(t) ≤ (2CT )2√t

∫ t

0

√
s√

s
√

t − s

∫ s

0

u(r)√
s − r

√
r

dr ds ≤ (2CT )2
√

T β

(
1

2
,

1

2

)∫ t

0

u(r)√
r

dr.

It now remains to apply the classical Gronwall lemma. �

5. A local existence and uniqueness result for Equation (3)

Set

D(T ) :=
∫ T

0

∫
R

∣∣Kt(x)
∣∣dx dt < ∞. (19)

The main result in this section is the following theorem.

Theorem 5.1. Let T0 > 0 be such that D(T0) < 1. Assume b ∈ L∞([0, T0]×R) continuous w.r.t.
space variable. Under Hypothesis (H), Equation (3) admits a unique weak solution up to T0 in
the sense of Definition 2.1.

Iterative procedure. Let us define the sequence (Xk)k≥1 as follows. We start with⎧⎨
⎩dX1

t = b
(
t,X1

t

)
dt +

{∫ t

0
(Kt−s ∗ p0)

(
X1

t

)
ds

}
dt + dWt,

X1
0 ∼ p0.

(20)



1336 D. Talay and M. Tomašević

Denote the drift of this equation by b1(t, x). For k ≥ 2, suppose that, in the step k − 1, the one
dimensional time marginals of the law of the solution have densities (pk−1

t )t>0, we define the
drift in the step k as

bk
(
t, x,pk−1) = b(t, x) + B

(
t, x;pk−1).

The corresponding SDE is

{
dXk

t = bk
(
t,Xk

t ,p
k−1)dt + dWt,

Xk
0 ∼ p0.

(21)

In order to prove the desired local existence and uniqueness result, we set up the non-linear
martingale problem related to (3).

Definition 5.2. Consider the canonical space C([0, T0];R) equipped with its canonical filtration.
Let Q be a probability measure on this canonical space and denote by Qt its one dimensional
time marginals. Q solves the martingale problem (MP(p0, T0, b)) if

(i) Q0 = p0.
(ii) For any t ∈ (0, T0], Qt have densities qt w.r.t. Lebesgue measure on R. In addition, they

satisfy

∀0 < t ≤ T0, ‖qt‖L∞(R) ≤ CT0√
t
. (22)

(iii) For any f ∈ C2
c (R) the process (Mt)t≤T0 , defined as

Mt := f (wt ) − f (w0)

−
∫ t

0

[
1

2
f ′′(wu) + f ′(wu)

(
b(u,wu) +

∫ u

0

∫
Ku−τ (wu − y)qτ (y) dy dτ

)]
du

is a Q-martingale where (wt ) is the canonical process.

Notice that the arguments in Remark 2.2 justify that all the integrals in the definition of Mt are
well defined.

We start with the analysis of Equations (20)–(21).

Proposition 5.3. Same assumptions as in Theorem 5.1. For any k ≥ 1, Equations (20)–(21)
admit unique weak solutions up to T0. For k ≥ 1, denote by Pk the law of (Xk

t )t≤T0 . Moreover,
for t ∈ (0, T0], the time marginals Pk

t of Pk have densities pk
t w.r.t. Lebesgue measure on R.

Setting βk = supt≤T0
‖bk(t, ·,pk−1)‖L∞(R) and b0 := ‖b‖L∞([0,T0]×R), one has

∀0 < t ≤ T0,
∥∥pk

t

∥∥
L∞(R)

≤ C(b0, T0)√
t

and βk ≤ C(b0, T0).
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Finally, there exists a function p∞ ∈ L∞((0, T0];L1(R)) such that

sup
0<t≤T0

∥∥pk
t − p∞

t

∥∥
L1(R)

→ 0, as k → ∞.

Moreover,

∀0 < t ≤ T0,
∥∥p∞

t

∥∥
L∞(R)

≤ C(b0, T0)√
t

. (23)

Proof. We proceed by induction.
Case k = 1. In view of (H-5), one has β1 ≤ b0 + CT0 . This implies that the equation (20) has

a unique weak solution in [0, T0] with time marginal densities (p1
t (y) dy)t≤T0 which in view of

(14) satisfy

∀t ∈ (0, T0],
∥∥p1

t

∥∥
L∞(R)

≤ 1√
2πt

+ β1.

Case k > 1. Assume now that the equation for Xk has a unique weak solution and assume βk

is finite. In addition, suppose that the one dimensional time marginals satisfy

∀t ∈ (0, T0],
∥∥pk

t

∥∥
L∞(R)

≤ 1√
2πt

+ βk.

In view of (H-4), the new drift satisfies

∣∣bk+1(t, x;pk
)∣∣ ≤ b0 +

∫ t

0

∥∥pk
s

∥∥
L∞(R)

‖Kt−s‖L1(R) ds

≤ b0 +
∫ t

0

(
1√
2πs

+ βk

)
‖Kt−s‖L1(R) ds

≤ b0 + CT0 + βkD(T0).

Thus, we conclude that βk+1 ≤ b0 + CT0 + βkD(T0). Therefore, there exists a unique weak
solution to the equation for Xk+1. Furthermore, by (14):

∀t ∈ (0, T0],
∥∥pk+1

t

∥∥
L∞(R)

≤ CT0√
t

+ βk+1.

Notice that

∀k > 1, βk+1 ≤ b0 + CT0 + βkD(T0) and β1 ≤ b0 + CT0 .

Thus, as by hypothesis D(T0) < 1, we have

∀k ≥ 1, βk ≤ b0 + CT0

1 − D(T0)
+ b0 + CT0 (24)
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and ∥∥pk
t

∥∥
L∞(R)

≤ CT0√
t

+ βk ≤ CT0√
t

+ b0 + CT0

1 − D(T0)
+ b0 + CT0 ≤ CT0√

t
. (25)

Finally, it remains to prove that the sequence pk converges in L∞((0, T0];L1(R)). In order to do
so, we will prove pk is a Cauchy sequence.

Applying the same procedure as in Section 4, one can derive the mild equation for (pk
t )t∈(0,T0].

Thus, for every k ≥ 1, the marginals (pk
t )t∈(0,T0] satisfy the mild equation

∀t ∈ (0, T ], pk
t = gt ∗ p0 −

∫ t

0

∂gt−s

∂x
∗ (

pk
s b

k
(
s, ·,pk−1))ds (26)

in the sense of the distributions. Assume for a while that we have proved that for any 0 < t ≤ T0,
one has

∥∥pk
t − pk−1

t

∥∥
L1(R)

≤ CT0

∫ t

0

‖pk−1
s − pk−2

s ‖L1(R)√
s

ds. (27)

Remember that
∫ t

0 f (u1) · · ·∫ uk−1
0 f (uk) duk · · · du1 = 1

k! (
∫ t

0 f (u)du)k for any positive inte-
grable function f . Then, iterating (27) one gets,

∥∥pk
t − pk−1

t

∥∥
L1(R)

≤ 2
(CT0

√
T0)

k−1

(k − 1)! .

Therefore, sup0<t≤T0
‖pk

t − pk−1
t ‖L1(R) → 0, as k → ∞ as desired.

It remains to prove the inequality (27). In view of (26), one has

∥∥pk
t − pk−1

t

∥∥
L1(R)

≤
∫ t

0

∥∥∥∥∂gt−s

∂x
∗ (

pk
s b

k
(
s, ·,pk−1) − pk−1

s bk−1(s, ·,pk−2))∥∥∥∥
L1(R)

ds

≤
∫ t

0

1√
t − s

∥∥bk−1(s, ·,pk−2)(pk
s − pk−1

s

)∥∥
L1(R)

ds

+
∫ t

0

1√
t − s

∥∥(
bk

(
s, ·,pk−1) − bk−1(s, ·,pk−2))pk

s

∥∥
L1(R)

ds

=: I + II. (28)

According to (24), one has

I ≤ CT0

∫ t

0

‖pk
s − pk−1

s ‖L1(R)√
t − s

ds.

According to (25), one has

II ≤ CT0

∫ t

0

1√
t − s

√
s

∫ s

0

∥∥Ks−u ∗ (
pk−1

u − pk−2
u

)∥∥
L1(R)

duds.
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Convolution inequality and Fubini–Tonelli’s theorem lead to

II ≤ CT0

∫ t

0

∥∥pk−1
u − pk−2

u

∥∥
L1(R)

∫ t

u

1√
t − s

√
s
‖Ks−u‖L1(R) ds du.

Apply the change of variables t − s = s′. It comes,

II ≤ CT0

∫ t

0

1√
u

∥∥pk−1
u − pk−2

u

∥∥
L1(R)

∫ t−u

0

1√
s′ ‖Kt−u−s′‖L1(R) ds′ du.

According to (H-4) one has

II ≤ CT0

∫ t

0

1√
u

∥∥pk−1
u − pk−2

u

∥∥
L1(R)

du.

Coming back to (28) and using our above estimates on I and II, we obtain

∥∥pk
t − pk−1

t

∥∥
L1(R)

≤ CT0

∫ t

0

‖pk
s − pk−1

s ‖L1(R)√
t − s

ds + CT0

∫ t

0

1√
u

∥∥pk−1
u − pk−2

u

∥∥
L1(R)

du.

We set At := ∫ t

0
1√
u
‖pk−1

u − pk−2
u ‖L1(R) du and �(t) := ‖pk

t − pk−1
t ‖L1(R). Then, we have

�(t) ≤ CT0A(T0) + CT0

∫ t

0

�(s)√
t − s

ds.

Iterating this relation, we get

�(t) ≤ CT0A(T0) + C2
T0

∫ t

0

1√
t − s

∫ s

0

�(u)√
s − u

duds.

Apply Fubini’s theorem to get

�(t) ≤ CT0A(T0) + C2
T0

∫ t

0
�(u)

∫ t

u

1√
t − s

√
s − u

ds du.

Notice that
∫ t

u
1√

t−s
√

s−u
ds = ∫ 1

0
1√

1−x
√

x
dx. Now, apply Gronwall’s lemma to get (27) and the

convergence of pk to p∞.
In order to obtain (23), fix t ∈ (0, T ] and use (25) and the fact that the convergence in L1(R)

implies the almost sure convergence of a subsequence. �

The following is an obvious consequence of the preceding proposition.

Corollary 5.4. Same assumptions as in Proposition 5.3. Assume that (Pk)k≥1 admits a weakly
convergent subsequence (Pnk )k≥1. Denote its limit by Q. Then for any t ∈ (0, T0], one has that
Qt (dx) = p∞

t (x) dx, where p∞ is constructed in Proposition 5.3.
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Proposition 5.5. Same assumptions as in Theorem 5.1. Then:

(1) The family of probabilities (Pk)k>1 is tight.
(2) Any weak limit P∞ of a convergent subsequence of (Pk)k≥1 solves (MP(p0, T0, b)).

Proof. In view of (24), we obviously have

∃CT0 > 0, sup
k

E
∣∣Xk

t − Xk
s

∣∣4 ≤ CT0 |t − s|2, ∀0 ≤ s ≤ t ≤ T0.

This is a sufficient condition for tightness (see, e.g., Karatzas and Shreve [9], Chapter 2, Pb. 4.11).
Let (Pnk ) be a weakly convergent subsequence of (Pk)k≥1 and let P∞ denote its limit. Let

us check that P∞ solves the martingale problem (MP(p0, T0, b)). To simplify the notation, we
below write Pk instead of Pnk and p̄k−1 instead of pnk−1.

(i) Each Pk
0 has density p0, and therefore P∞

0 also has density p0.
(ii) Corollary 5.4 implies that the time marginals of P∞ are absolutely continuous with respect

to Lebesgue’s measure and satisfy (22).
(iii) Set

Mt := f (wt ) − f (w0)

−
∫ t

0

[
1

2
f ′′(wu) + f ′(wu)

(
b(u,wu) +

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ

)]
du.

We have to prove

EP∞
[
(Mt − Ms)φ(wt1 , . . . ,wtN )

]
= 0, ∀φ ∈ Cb

(
RN

)
and 0 ≤ t1 < · · · < tN < s ≤ t ≤ T0,N ≥ 1.

The process

Mk
t := f (wt ) − f (w0)

−
∫ t

0

[
1

2
f ′′(wu) + f ′(wu)

(
b(u,wu) +

∫ u

0

(
Ku−τ ∗ p̄k−1

τ

)
(wu)dτ

)]
du

is a martingale under Pk . Therefore, it follows that

0 = EPk

[(
Mk

t − Mk
s

)
φ(wt1 , . . . ,wtN )

]
= EPk

[
φ(· · · )(f (wt ) − f (ws)

)] +EPk

[
φ(· · · )

∫ t

s

1

2
f ′′(wu)du

]

+EPk

[
φ(· · · )

∫ t

s

f ′(wu)b(u,wu)du

]

+EPk

[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p̄k−1

τ

)
(wu)dτ du

]
.
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Since (Pk) weakly converges to P∞, the first two terms on the r.h.s. obviously converge. Now
observe that

EPk

[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p̄k−1

τ

)
(wu)dτ du

]

−EP∞
[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

]

=
(
EPk

[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p̄k−1

τ

)
(wu)dτ du

]

−EPk

[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

])

+
(
EPk

[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

]

−EP∞
[
φ(· · · )

∫ t

s

f ′(wu)

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

])

=: I + II.

Now, in view of (25) and the definition of D(T ) as in (19), one has

|I | ≤ ‖φ‖L∞(R)

∫ t

s

∫ u

0

∫ ∣∣f ′(x)
∣∣∣∣(Ku−τ ∗ (

p̄k−1
τ − p∞

τ

))
(x)

∣∣pk
u(x) dx dτ du

≤ ‖φ‖L∞(R)

∥∥f ′∥∥
L∞(R)

∫ t

s

CT0√
u

∫ u

0
‖Ku−τ‖L1(R)

∥∥p̄k−1
τ − p∞

τ

∥∥
L1(R)

dτ du

≤ CT0D(T0)‖φ‖L∞(R)

∥∥f ′∥∥
L∞(R)

sup
r≤T0

∥∥p̄k−1
r − p∞

r

∥∥
L1(R)

.

Proposition 5.3 implies that I → 0 as k → ∞.
Now, to prove that II → 0, it suffices to prove that the functional F : C([0, T0];R) → R defined

by

w· �→ φ(wt1 , . . . ,wtN )

∫ t

s

f ′(wu)

∫ u

0

∫
Ku−τ (wu − y)p∞

τ (y) dy dτ du

is continuous. Let (wn) a sequence converging in C([0, T0];R) to w. Since φ is a continuous
function, it suffices to show that

lim
n→∞

∫ t

s

f ′(wn
u

)∫ u

0

∫
Ku−τ

(
wn

u − y
)
p∞

τ (y) dy dτ du

=
∫ t

s

f ′(wu)

∫ u

0

∫
Ku−τ (wu − y)p∞

τ (y) dy dτ du. (29)
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For (u, τ ) ∈ [s, t] × [0, t], set

hu,τ (x) := 1{τ < u}f ′(xu)

∫
Ku−τ (x − y)p∞

τ (y) dy.

The hypothesis (H-2) implies the continuity of hu,τ on R. Furthermore,

∣∣hu,τ (x)
∣∣ ≤ C1{τ < u}∥∥p∞

τ

∥∥
L∞(R)

‖Ku−τ‖L1(R) ≤ C√
τ

1{τ < u}‖Ku−τ‖L1(R).

In view of (H-4), we apply the theorem of dominated convergence to conclude (29). This ends
the proof. �

Proof of Theorem 5.1. Proposition 5.5 implies the existence of a weak solution (	,F,P, (Ft ),

X,W) to (3) up to time T0. Thus, the marginals P ◦ X−1
t =: pt satisfy ‖pt‖L∞(R) ≤ C√

t
, t ∈

(0, T0]. In addition, as |B(t, x;p)| ≤ C(T0), one has that (	,F,P, (Ft ),X,W) is the unique
weak solution of the linear SDE

dX̃t = b(t, X̃t ) dt + B(t, X̃t ;p)dt + dWt, t ≤ T0. (30)

Now suppose that there exists another weak solution (	̂, F̂, P̂, (F̂t ), X̂, Ŵ ) to (3) up to T0

and for 0 < t ≤ T0 denote P̂ ◦ X̂−1
t (dx) = p̂t (x) dx. By Proposition 4.1, we have p̂t = pt , for

0 < t ≤ T0. Therefore, (	̂, F̂, P̂, (F̂t ), X̂, Ŵ ) is a weak solution to (30), from which P̂ ◦ X̂−1 =
P ◦ X−1. �

6. Proofs of Theorem 2.3 and Corollary 2.4: A global existence
and uniqueness result for Equation (3)

We now construct a solution for an arbitrary time horizon T > 0. We will do it by restarting
the equation after the already fixed T0. We start with T = 2T0. Then, we will generalize the
procedure for an arbitrary T > 0.

6.1. An informal construction of the global weak solution on [0,2T0]

Assume, for a while, that a global weak solution uniquely exists. Denote the density of Xt by p1
t ,

for 0 < t ≤ T0 and by p2
t , for t ∈ (T0,2T0]. In view of Equation (3), we would have

XT0+t = XT0 +
∫ T0+t

T0

b(s,Xs) ds +
∫ T0+t

T0

∫ s

0
(Ks−θ ∗ pθ)(Xs) dθ ds + WT0+t − WT0 .



McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel 1343

Observe that∫ T0+t

T0

∫ s

0
(Ks−θ ∗ pθ)(Xs) dθ ds

=
∫ T0+t

T0

∫ T0

0

(
Ks−θ ∗ p1

θ

)
(Xs) dθ ds +

∫ T0+t

T0

∫ s

T0

(
Ks−θ ∗ p2

θ

)
(Xs) ds dt

=: B1 + B2.

In addition,

B1 =
∫ t

0

∫ T0

0

(
KT0+s′−θ ∗ p1

θ

)
(XT0+s′) dθ ds′,

and

B2 =
∫ t

0

∫ T0+s′

T0

(
KT0+s′−θ ∗ p2

θ

)
(XT0+s′) dθ ds′

=
∫ t

0

∫ s′

0

(
Ks′−θ ′ ∗ p2

T0+θ ′
)
(XT0+s′) dθ ′ ds′.

Now set Yt := XT0+t and p̃t (y) := p2
T0+t (y). Consider the new Brownian motion Wt := WT0+t −

WT0 . It comes:

Yt = Y0 +
∫ t

0
b(s + T0, Ys) ds +

∫ t

0

∫ T0

0

(
KT0+s′−θ ∗ p1

θ

)
(Ys) dθ ds

+
∫ t

0

∫ s

0
(Ks′−θ ′ ∗ p̃θ )(Ys) dθ ds + Wt,

for t ∈ (0, T0]. Setting

b1(t, x, T0) :=
∫ T0

0

(
KT0+t−s ∗ p1

s

)
(x) ds and b̃(t, x) := b(T0 + t, x),

we have⎧⎨
⎩dYt = b̃(t, Yt ) dt + b1(t, Yt , T0) dt +

{∫ t

0
(Kt−s ∗ p̃s)(Yt ) ds

}
dt + dWt , t ≤ T0,

Y0 ∼ p1
T0

(y) dy, Ys ∼ p̃s(y) dy.

(31)

The above calculation suggests the following procedure to construct a solution on [0,2T0]:
One constructs a weak solution to (31) on [0, T0] and suitably paste its probability distribution
with the solution to the non-linear martingale problem (MP(p0, T0, b)). We then prove that the
so defined measure solves the desired non-linear martingale problem (MP(p0,2T0, b)).
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6.2. The global solution

Throughout this section, we denote by 	0 the canonical space C([0, T0];R) and by B0 its Borel
σ - field. We denote by Q1 the probability distribution of the unique weak solution to (3) up to T0
constructed in the previous section.

Lemma 6.1. Let T0 > 0 be such that D(T0) < 1. Assume b ∈ L∞([0,2T0] × R) is contin-
uous w.r.t. the space variable. Denote by p1

t the time marginals of Q1. Set b1(t, x, T0) :=∫ T0
0 (KT0+t−s ∗ p1

s )(x) ds and b̃(t, x) := b(T0 + t, x). Under Hypothesis (H), Equation (31) ad-
mits a unique weak solution up to T0.

Proof. Let us check that we may apply Theorem 5.1 to (31). Notice that the SDE (31) involves
the same kernel Kt(x) as the SDE (3).

First, by construction the initial law p1
T0

of Y satisfies the assumption of Theorem 5.1. Sec-

ondly, the role of the additional drift b is now played by the sum of the two linear drifts, b̃ and
b1. By hypothesis, b̃ is bounded in [0, T0] × R and continuous in the space variable. Using (5)
and (H-6) we conclude that b1 is bounded uniformly in t and x since

∣∣b1(t, x, T0)
∣∣ ≤ CT0

∫ T0

0

‖KT0+t−s‖L1(R)√
s

ds < CT0 .

To show that b1(t, x, T0) is continuous w.r.t. x we use (H-2) and proceed as at the end of the
proof of Proposition 5.5.

We now are in a position to apply Theorem 5.1: There exists a unique weak solution to (31)
up to T0. �

Denote by Q2 the probability distribution of the process (Yt , t ≤ T0). Notice that Q2 is the
solution to the martingale problem (MP(p1

T0
, T0, b̃ + b1)).

A new measure on C([0,2T0];R). Let Q1, Q2 and (p1
t ) be as above. Let (p2

t ) denote the
time marginal densities of Q2. In particular, Q2

0 = Q1
T0

, i.e. p2
0(z) dz = p1

T0
(z) dz. Define the

mapping X0 from 	0 to R as X0(w) := w0. Using Karatzas and Shreve ([9], Theorem 3.19,
Chapter 5) to justify the introduction of regular conditional probabilities, for each y ∈ R we
define the probability measure Q2

y on (	0,B0) by

∀A ∈ B0, Q2
y(A) = P2(A|X0 = y

)
.

In particular,

Q2
y(w ∈ 	0,w0 = y) = 1.

We now set 	 := C([0,2T0];R). For w1· ,w2· ∈ 	0 we define the concatenation w = w1 ⊗T0

w2 ∈ 	 of these two paths as the function in 	 defined by{
wθ = w1

θ , 0 ≤ θ ≤ T0,

wθ+T0 = w1
T0

+ w2
θ − w2

0, 0 ≤ θ ≤ t − T0.
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On the other hand, for a given path w ∈ 	, the two paths w1· ,w2· ∈ 	0 such that w = w1 ⊗T0 w2

are {
w1

θ = wθ, 0 ≤ θ ≤ T0,

w2
θ = wT0+θ , 0 ≤ θ ≤ T0.

We define the probability distribution Q on 	 equipped with its Borel σ -field as follows. For any
continuous and bounded functional ϕ on 	,

EQ[ϕ] =
∫

	

ϕ(w)Q(dw) :=
∫

	0

∫
R

∫
	0

ϕ
(
w1 ⊗T0 w2)Q2

y

(
dw2)p1

T0
(y) dyQ1(dw1). (32)

Notice that if ϕ acts only on the part of the path up to t ≤ T0 of any w· ∈ 	, one has

EQ

[
ϕ
(
(wθ )θ≤t

)] = EQ1

[
ϕ
(
(wθ )θ≤t

)]
. (33)

Proposition 6.2. Let T0 > 0 be such that D(T0) < 1. Assume b ∈ L∞([0,2T0]×R) is continuous
w.r.t. the space variable. Under Hypothesis (H), Equation (3) admits a unique weak solution up
to 2T0.

Proof. Let us prove that the probability measure Q solves the non–linear martingale problem
(MP(p0,2T0, b)) on the canonical space C([0,2T0];R).

(i) By (33), it is obvious that Q0 =Q1
0.

(ii) Next, one easily obtains that the one dimensional time marginal densities of Q are p1
t when

0 < t ≤ T0 and p2
t−T0

when T0 < t ≤ 2T0. Therefore, the one dimensional marginals of Q have

densities qt which, by construction, satisfy ‖qt‖L∞(R) ≤ C√
t

for t ∈ (0,2T0].
(iii) It remains to show that (Mt)t≤2T0 defined as

Mt := f (wt ) − f (w0)

−
∫ t

0

[
1

2
f ′′(wu) + f ′(wu)

(
b(u,wu) +

∫ u

0

∫
Ku−τ (wu − y)qτ (y) dy dτ

)]
du

is a Q-martingale.
(a) For s ≤ t ≤ T0 that results from (33) and the fact that Q1 solves the (MP(p0, T0, b)).
(b) For s ≤ T0 ≤ t ≤ 2T0, in view of (a), it suffices to prove that EQ(Mt |BT0) = MT0 . To prove

the preceding holds true, use that Q2 solves (MP(p1
T0

, T0, b̃ + b1)) (see (c)).

(c) Let T0 ≤ s ≤ t ≤ 2T0. For w ∈ 	 denote by w1 and w2 the functions in 	0 such that
w = w1 ⊗T0 w2. Proceeding as in the short calculation above Equation (31) one easily gets

Mt − Ms = f
(
w2

t−T0

) − f
(
w2

s−T0

) −
∫ t−T0

s−T0

[
1

2
f ′′(w2

u

) − f ′(w2
u

)(
b̃
(
u,w2

u

)

+ b1
(
u,w2

u, T0
) +

∫ u

0
Ku−τ ∗ p2

τ

(
w2

u

)
dτ

)]
du =: F (

w2).
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Now, take t1 < · · · < tm ≤ T0 < tm+1 < · · · < tN ≤ s for 1 ≤ m ≤ N ,

EQ

(
φ(wt1, . . . ,wtN )(Mt − Ms)

)
=

∫
	0

∫
R

∫
	0

φ
(
w1

t1
, . . . ,w1

tm
,w2

tm+1−T0
, . . . ,w2

tN−T0

)
× F

(
w2)Q2

y

(
dw2)p1

T0
(y) dyQ1(dw1).

Since Q2 solves the (MP(p1
T0

, T0, b̃ + b1)), one has that EQ2(ϕ(w2
t ′1
, . . . ,w2

t ′n
)F ) = 0 for any

continuous bounded function ϕ on Rn, any n ∈ N and any t ′1 ≤ · · · ≤ t ′n < s − T0. Taking
ϕ(w2

t ′1
, . . . ,w2

t ′N−m

) = φ(w1
t1
, . . . ,w1

tm
,w2

t ′1
, . . . ,w2

t ′N−m

) for a fixed w1, we conclude that

∫
R

∫
	0

ϕ
(
w2

tm+1−T0
, . . . ,w2

tN−T0

)
F

(
w2)Q2

y

(
dw2)p1

T0
(y) dy = 0

which provides the desired result.
We have just shown the existence of a solution to (MP(p0,2T0, b)). We proceed as in the proof

of Theorem 5.1 to deduce the existence and uniqueness of a weak solution to (3) up to 2T0. �

End of the proof of Theorem 2.3: From 2T0 to arbitrary time horizons. Given any finite
time horizon T > 0, split the interval [0, T ] into n = [ T

T0
] + 1 intervals of length not exceeding

T0 and repeat n times the procedure used in the preceding subsection. By construction, the time
marginals of this solution to (MP(p0, T , b)) have probability densities which satisfy (5). �

Let us now show that, under an additional assumption on the kernel K , the constraint (5) in
Definition 2.1 may be relaxed without altering existence and uniqueness of the weak solution.

Proof of Corollary 2.4. Let (	,F,P, (Ft ),X,W) be any solution to (3) in the sense of Def-
inition 2.1. As (5) obviously implies (6) since pt belongs to L1(R), (	,F,P, (Ft ),X,W) is a
solution to (3) in the modified sense.

Let (	,F,P, (Ft ),X,W) be any solution to (3) in the new sense. Denote by (pt )0<t≤T the
time marginal densities of P ◦ X−1. Then, by Hölder’s inequality, (6) and (H-7) imply that
B(t, x;p) is a bounded function on [0, T ] × R. Therefore, in view of Corollary 3.2, (pt )0<t≤T

satisfies (5) and, thus, (	,F,P, (Ft ),X,W) is a solution to (3) in the sense of Definition 2.1. �

Remark 6.3. Another way to relax the condition (5) in Definition 2.1 is by adding regularity
on the initial distribution. When this initial distribution has a density p0 ∈ L∞(R), we can use
Remark 3.3 in the iterative procedure. Consequently, the constraint (5) may be relaxed as follows:
the one dimensional marginal densities (pt )0<t≤T belong to L∞([0, T ] ×R). Similarly, if p0 ∈
Lp(R), then the constraint may be relaxed into

∀0 < t ≤ T , ‖pt‖L∞(R) ≤ CT

t1/2p
.



McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel 1347

7. Application to the one-dimensional Keller–Segel model

In this section, we prove Corollary 2.6. We start with checking that K� satisfies Hypothesis (H).
The condition (H-1) is satisfied since for t > 0 one has

∥∥K
�
t

∥∥
L1(R)

= C√
t

∫
|z|e− z2

2 dz.

From the definition of K� it is clear that for t > 0, K
�
t is a bounded and continuous function

on R. The condition (H-3) is also obviously satisfied.
To check (H-4), we notice

f1(t) :=
∫ t

0

‖K�
t−s‖L1(R)√

s
ds = C

∫ t

0

1√
s
√

t − s
ds = C

∫ 1

0

1√
x
√

1 − x
dx.

For x �= 0, one has

∥∥K�· (x)
∥∥

L1(0,T )
= C

∫ T

0

|x|
s3/2

e− |x|2
2s ds = C|x|

∫ ∞
|x|√
T

z3

|x|3 e− z2
2

|x|2
z3

dz = C

∫ ∞
|x|√
T

e− z2
2 dz ≤ C.

For x = 0, one has ‖K�· (0)‖L1(0,T ) = 0. Thus, (H-5) is satisfied.
Finally, to prove (H-6) we notice that for every t ∈ [0, T ]∫ T

0

∥∥K
�
T +t−s

∥∥
L1(R)

1√
s

ds =
∫ T

0

C√
T + t − s

√
s

ds ≤ C

∫ T

0

1√
T − s

√
s

ds = C.

Therefore, in view of Theorem 2.3, Equation (2) with d = 1 is well-posed.1

Denote by ρ(t, x) ≡ pt(x) the time marginals of the constructed probability distribution. Now,
define the function c as in (9). In view of Inequality (5), for any t ∈ (0, T ] the function c(t, ·) is
well defined and bounded continuous. Let us show that c ∈ L∞([0, T ];C1

b(R)).
We have

∂c

∂x
(t, x) = ∂

∂x

(
e−λtE

(
c0(x + Wt)

)) + ∂

∂x

(
E

∫ t

0
e−λsρ(t − s, x + Ws)ds

)
.

Then observe that

∂

∂x
E

∫ t

0
e−λsρ(t − s, x + Ws)ds = ∂

∂x

∫ t

0
e−λs

∫
ρ(t − s, x + y)

1√
2πs

e
−y2

4s dy ds

= ∂

∂x

∫ t

0
e−λ(t−s)

∫
ρ(s, y)

1√
2π(t − s)

e
−(y−x)2

4(t−s) dyds

=: ∂

∂x

∫ t

0
f (s, x) ds.

1With similar calculations as for f1, one easily checks that the function f2 is bounded on any compact time interval.
Thus, Corollary 2.4 applies as well as Theorem 2.3.
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As for any 0 < s < t , ∣∣∣∣ ∂

∂x

1√
t − s

e
−(y−x)2

2(t−s)

∣∣∣∣ ≤ |y − x|
2(t − s)3/2

e
−(y−x)2

2(t−s) ≤ C

t − s
,

we have

f ′(s, x) = e−λ(t−s)

∫
ρ(s, y)

y − x

2
√

2π(t − s)3/2
e

−(y−x)2

2(t−s) dy.

Now, we repeat the same argument for ∂
∂x

∫ t

0 f (s, x) ds. In order to justify the differentiation
under the integral sign we notice that

∣∣f ′(s, x)
∣∣ ≤ CT√

(t − s)s
.

Gathering the preceding calculations we have obtained

∂c

∂x
(t, x) = e−λtEc′

0(x + Wt) +
∫ t

0
e−λ(t−s)

∫
ρs(y)

y − x√
2π(t − s)3/2

e
−(y−x)2

2(t−s) dy ds. (34)

Using the assumption on c0 and Inequality (5), for any t ∈ (0, T ] one has∥∥∥∥ ∂c

∂x
(t, ·)

∥∥∥∥
L∞(R)

≤ ∥∥c′
0

∥∥
L∞(R)

+ CT .

In addition, the preceding calculation and Lebesgue’s Dominated Convergence theorem show
that ∂c

∂x
(t, ·) is continuous on R. We thus have obtained as desired that c ∈ L∞([0, T ];C1

b(R)).
The above discussion shows that we are in a position to apply Proposition 4.1 with b(t, x) ≡

χe−λtEc′
0(x + Wt) and B(t, x;ρ) defined as in (4) with K ≡ K�: In view of (34), one has

b(t, x) + B(t, x;ρ) = ∂c
∂x

(t, x) and therefore the function ρ(t, x) satisfies (8) in the sense of the
distributions. Therefore, it is a solution to the Keller Segel system (7) in the sense of Defini-
tion 2.5. We now check the uniqueness of this solution.

Assume there exists another solution ρ1 satisfying Definition 2.5 with the same initial condi-
tion as ρ. For notation convenience, in the calculation below we set ct (x) := c(t, x), c1

t (x) :=
c1(t, x), ρt (x) := ρ(t, x), and ρ1

t (x) := ρ1(t, x).
Using Definition 2.5, for every t > 0

∥∥ρ1
t − ρt

∥∥
L1(R)

≤
∫ t

0

∥∥∥∥∂gt−s

∂x
∗

(
∂c1

s

∂x
ρ1

s − ∂cs

∂x
ρs

)∥∥∥∥
L1(R)

ds

≤
∫ t

0

∥∥∥∥∂gt−s

∂x
∗

(
∂c1

∂x

(
ρ1

s − ρs

))∥∥∥∥
L1(R)

ds

+
∫ t

0

∥∥∥∥∂gt−s

∂x
∗

(
ρs

(
∂c1

∂x
− ∂cs

∂x

))∥∥∥∥
L1(R)

ds

=: I + II.
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Using standard convolution inequalities and ‖ ∂gt−s

∂x
‖L1(R) ≤ C√

t−s
we deduce:

I ≤ C

∫ t

0

‖ρ1
s − ρs‖L1(R)√

t − s
ds and II ≤ C

∫ t

0

‖ ∂c1
s

∂x
− ∂cs

∂x
‖L1(R)√

t − s
√

s
ds.

Therefore∥∥∥∥∂c1
s

∂x
− ∂cs

∂x

∥∥∥∥
L1(R)

≤
∫ s

0

∥∥∥∥(
ρ1

u − ρu

) ∗ ∂gs−u

∂x

∥∥∥∥
L1(R)

du ≤ C

∫ s

0

‖ρ1
u − ρu‖L1(R)√

s − u
du, (35)

from which

II ≤ C

∫ t

0

1√
s
√

t − s

∫ s

0

‖ρ1
u − ρu‖L1(R)√

s − u
duds

≤ C

∫ t

0

∥∥ρ1
u − ρu

∥∥
L1(R)

∫ t

u

1√
s
√

s − u
√

t − s
ds du ≤ CT

∫ t

0

‖ρ1
u − ρu‖L1(R)√

u
du.

Gathering the preceding bounds for I and II we get

∥∥ρ1
t − ρt

∥∥
L1(R)

≤ CT

∫ t

0

‖ρ1
s − ρs‖L1(R)√

t − s
ds + CT

∫ t

0

‖ρ1
s − ρs‖L1(R)√

s
ds.

Similarly as at the end of the proof of Proposition 4.1, we notice that limt→0 ‖ρ1
t −ρ2

t ‖L1(R) = 0.
Lemma 4.2 thus implies that ‖ρ1

t − ρt‖L1(R) = 0 for every 0 < t ≤ T . In view of (35) we also

have ‖ ∂c1
t

∂x
− ∂ct

∂x
‖L1(R) = 0. This completes the proof of Corollary 2.6.

Appendix

We here propose a light simplification of the calculations in Qian and Zheng [13].

Proposition A.1. Let y ∈ R and let β be a constant. Denote by p
β
y (t, x, z) the transition proba-

bility density (with respect to the Lebesgue measure) of the unique weak solution to

Xt = x + β

∫ t

0
sgn(y − Xs)ds + Wt.

Then

pβ
y (t, x, z) = 1√

2πt3/2

∫ ∞

0
eβ(|y−x|+ȳ−|z−y|)− β2

2 t
(
ȳ + |z − y| + |y − x|)e− (ȳ+|z−y|+|y−x|)2

2t dȳ

+ 1√
2πt

eβ(|y−x|−|z−y|)− β2

2 t
(
e− (z−x)2

2t − e− (|z−y|+|y−x|)2
2t

)
. (36)
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In particular,

pβ
y (t, x, y) = 1√

2πt

∫ ∞
|x−y|√

t

ze− (z−β
√

t)2

2 dz. (37)

Proof. Let f be a bounded continuous function. The Girsanov transform leads to

E
(
f (Xt )

) = E
(
f (x + Wt)e

β
∫ t

0 sgn(y−x−Ws)dWs− β2

2 t
)
.

Let La
t be the Brownian local time. By Tanaka’s formula (Karatzas and Shreve [9], page 205):

|Wt − a| = |a| +
∫ t

0
sgn(Ws − a)dWs + La

t .

Therefore ∫ t

0
sgn(y − x − Ws)dWs = |y − x| + La

t − ∣∣Wt − (y − x)
∣∣,

from which

E
(
f (Xt )

) = E
(
f (x + Wt)e

β(|y−x|+L
y−x
t −|Wt−(y−x)|)− β2

2 t
)
.

Recall that (Wt ,L
a
t ) has the following joint distribution:⎧⎪⎪⎨

⎪⎪⎩
ȳ > 0: P

(
Wt ∈ dz,La

t ∈ dȳ
) = 1√

2πt3/2

(
ȳ + |z − a| + |a|)e− (ȳ+|z−a|+|a|)2

2t dȳ dz.

P
(
Wt ∈ dz,La

t = 0
) = 1√

2πt
e− z2

2t dz − 1√
2πt

e− (|z−a|+|a|)2
2t dz

(see Borodin and Salminen [1], page 200, Eq. (1.3.8)). It comes:

E
(
f (Xt )

) = 1√
2πt3/2

∫
R

∫ ∞

0
f (x + z)eβ(|y−x|+ȳ−|z−(y−x)|)− β2

2 t
(
ȳ + ∣∣z − (y − x)

∣∣ + |y − x|)

× e− (ȳ+|z−(y−x)|+|y−x|)2
2t dȳ dz

+ 1√
2πt

∫
R

f (x + z)eβ(|y−x|−|z−(y−x)|)− β2

2 t
(
e− z2

2t − e− (|z−(y−x)|+|y−x|)2
2t

)
dz.

The change of variables x + z = z′ leads to

E
(
f (Xt )

) = 1√
2πt3/2

∫
R

f
(
z′)∫ ∞

0
eβ(|y−x|+ȳ−|z′−y|)− β2

2 t
(
ȳ + ∣∣z′ − y

∣∣ + |y − x|)

× e− (ȳ+|z′−y|+|y−x|)2
2t dȳ dz′

+ 1√
2πt

∫
R

f
(
z′)eβ(|y−x|−|z′−y|)− β2

2 t
(
e− (z′−x)2

2t − e− (|z′−y|+|y−x|)2
2t

)
dz′,

from which the desired result follows. �
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In the next corollary we use the same notation as in the proof of Theorem 3.1.

Corollary A.2. Let 0 < s < t ≤ T .Then for any z, y ∈R, there exists CT,β,x,y such that

E

∣∣∣∣
(

∂

∂x
pβ

y

)(
t − s,X(b)

s , z
)∣∣∣∣ ≤ CT,β,x,yh(s, z),

where h belongs to L1([0, t] ×R).

Proof. By Girsanov’s theorem, for some constant CT,β we have

E

∣∣∣∣
(

∂

∂x
pβ

y

)(
t − s,X(b)

s , z
)∣∣∣∣ ≤ CT,β

√
E

∣∣∣∣
(

∂

∂x
p

β
y

)(
t − s,Wx

s , z
)∣∣∣∣

2

.

Observe that

∂

∂x̄
pβ

y (t − s, x̄, z) = β√
2π(t − s)

e−2β|z−y|e− (|z−y|+|y−x̄|−β(t−s))2

2(t−s) sgn(x̄ − y)

+ β√
2π(t − s)

e−β|z−y|− β2

2 (t−s)e
β|y−x̄|− (z−x̄)2

2(t−s) sgn(x̄ − y)

+ z − x̄

2π(t − s)3/2
e−β|z−y|− β2

2 (t−s)e
β|y−x̄|− (z−x̄)2

2(t−s) .

The sum of the absolute values of the first two terms in the right-hand side is bounded from above
by

β√
2π(t − s)

e−2β|z−y|+β|y−x̄|.

Thus,

E

∣∣∣∣
(

∂

∂x
pβ

y

)(
t − s,X(b)

s , z
)∣∣∣∣ ≤ CT,β√

2π(t − s)

√
Ee2β|y−Wx

s |

+ CT,β

(t − s)3/2

√
E

(∣∣z − Wx
s

∣∣2
e2β|y−Wx

s |− (z−Wx
s )2

t−s
)

=: B + A.

Notice that

A ≤ CT,β

(t − s)3/2

(
E

[∣∣z − Wx
s

∣∣4
e−2 (z−Wx

s )2

t−s
]
E

[
e4β|y−Wx

s |])1/4 =: CT,β

(t − s)3/2
(A1A2)

1/4.

First, as there exists an α > 0 such that |a|4e−a2 ≤ Ce−αa2
, one has

A1 ≤ C(t − s)2
∫

e−α
(z−u)2

t−s gs(u − x)du ≤ (t − s)2+1/2

√
s + (t − s)/(2α)

e
− (z−x)2

2(s+(t−s)/(2α)) .
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Second,

A2 =
∫

e4β|y−u|gs(u − x)du

= e−4βy

∫ ∞

y

e4βu 1√
s
e− (u−x)2

2s du + e4βy

∫ y

−∞
e−4βu 1√

s
e− (u−x)2

2s du

= e4β(x−y)e8β2s

∫ ∞

y

1√
s
e− (u−x−4βs)2

2s du + e4β(y−x)e8β2s

∫ y

−∞
1√
s
e− (u−x+4βs)2

2s du

≤ e8β2sCβ,x,y .

Therefore,

A ≤ CT,β,x,y

1

(t − s)7/8
gs+(t−s)/(2α)(z − x).

The term B is treated in the similar way as A2. �
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