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The estimation of a log-concave density on R is a canonical problem in the area of shape-constrained non-
parametric inference. We present a Bayesian nonparametric approach to this problem based on an exponen-
tiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave
truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general con-
traction result based on the log-concave maximum likelihood estimator that prevents the need for further
metric entropy calculations. We further present computationally more feasible approximations and both an
empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.

Keywords: convergence rate; density estimation; Dirichlet mixture; log-concavity; nonparametric
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1. Introduction

Nonparametric shape constraints offer practitioners considerable modelling flexibility by pro-
viding infinite-dimensional families that cover a wide range of parameters whilst also including
numerous common parametric families. Log-concave densities on R, that is densities whose
logarithm is a concave function taking values in [−∞,∞), constitute a particularly important
shape-constrained class. This class includes many well-known parametric densities that are fre-
quently used in statistical modelling, including the Gaussian, uniform, Laplace, Gumbel, logistic,
gamma distributions with shape parameter at least one, Beta(α,β) distributions with α,β ≥ 1 and
Weibull distributions with parameter at least one.

One of the original statistical motivations for considering log-concave density estimation was
the problem of estimating a unimodal density with unknown mode. While this is a natural con-
straint in many applications, the nonparametric MLE over this class does not exist [3]. Since
the class of log-concave densities equals the class of strongly unimodal densities [19], Walther
[36] argues that this class provides a natural alternative to the full set of all unimodal densities.
The class of log-concave densities also preserves many of the attractive properties of Gaussian
distributions, such as closure under convolution, marginalization, conditioning and taking prod-
ucts. One can therefore view log-concave densities as a natural infinite-dimensional surrogate
for Gaussians that retain many of their important features yet allow substantially more freedom,
such as heavier tails. For these reasons, estimation of log-concave densities has received signifi-
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cant attention in recent years, particularly concerning the performance of the log-concave MLE
[4–6,9,10,21,22,30].

Outside density estimation, log-concavity as a modelling assumption has found applications
in many statistical problems, such as mixture models [1,36], tail index estimation [25], clustering
[5], regression [10] and independent component analysis [29]. For general reviews of inference
with log-concave distributions and estimation under shape constraints, see [37] and [15], respec-
tively.

The Bayesian approach provides a natural way to encode shape constraints via the prior dis-
tribution, for instance under monotonicity [20,27,28,31] or convexity constraints [16,17,32]. We
present here a Bayesian nonparametric method for log-concave density estimation on R based
on an exponentiated Dirichlet process mixture prior, which we show converges to a log-concave
truth in Hellinger distance at the (near-)minimax rate. To the best of our knowledge, this is the
first Bayesian nonparametric approach to this problem. We also study two computationally mo-
tivated approximations to the full Dirichlet process mixture based on standard Dirichlet process
approximations, namely the Dirichlet multinomial distribution and truncating the stick-breaking
representation (see Chapter 4.3.3 of [13]). We further propose both an empirical and hierarchi-
cal Bayes approach that have clear practical advantages, while behaving similarly to the above
in simulations. All of these priors are easily implementable using a random walk Metropolis–
Hastings within Gibbs sampling algorithm, which we illustrate in Section 3.

An advantage of the Bayesian method is that point estimates and credible sets can be approx-
imately computed as soon as one is able to sample from the posterior distribution. In particular,
the posterior yields easy access to statements on Bayesian uncertainty quantification as we show
numerically in Section 3. Our numerical results suggest that pointwise credible sets have reason-
able coverage at moderate sample sizes.

The Bayesian approach also permits inference about multiple quantities, such as functionals,
in a unified way using the posterior distribution. A particular functional of interest is the mode
of a log-concave density. While the pointwise limiting distribution of the log-concave MLE is
known [2], it depends in a complicated way on the unknown density making it difficult to use
to construct a confidence interval for the mode. An alternative approach to constructing a con-
fidence interval based on comparing the log-concave MLE with the mode constrained MLE has
recently been proposed [7]. For the Bayesian, the marginal posterior of the mode provides a nat-
ural approach to both estimation and uncertainty quantification. Indeed, it is easy to construct
Bayesian credible intervals as we demonstrate numerically in Section 3. Whether such an ap-
proach is theoretically justified from a frequentist perspective is a subtle question related to the
semiparametric Bernstein-von Mises phenomenon (Chapter 12 of [13]) that is, however, beyond
the scope of this article. We also note that other constraints, such as a known mode [8], can
similarly be enforced through suitable prior calibration.

Given the good performance of the log-concave MLE, one might expect that Bayesian pro-
cedures, being driven by the likelihood, behave similarly well. This is indeed the case, as we
show below. Our proof relies on the classic testing approach of Ghosal et al. [11] with interesting
modifications in the log-concave setting. The existence and optimality of the MLE in Hellinger
distance is closely linked to a uniform control of bracketing entropy [34]. In our setting, one can
exploit the affine equivariance of the log-concave MLE (Remark 2.4 of [10]) to circumvent the
need to control the metric entropy of the whole space by reducing the problem to studying a sub-
set satisfying restrictions on the first two moments of the underlying density. This is a substantial
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reduction, since obtaining sharp entropy bounds in even this reduced case is highly technical,
see Theorem 4 of Kim and Samworth [22]. One can then use the MLE to construct suitable
plug-in tests with exponentially decaying type-II errors as in Giné and Nickl [14] that take full
advantage of the extra structure of the problem compared to the standard Le Cam–Birgé testing
theory for the Hellinger distance [23]. Indeed, a naive attempt to control the entropy directly, as
is standard in the Bayesian nonparametrics literature (e.g., [11]), results in an overly small set
on which the prior must place most of its mass. This leads to unnecessary restrictions on the
prior, which in particular are not satisfied by the priors we consider in Section 2, see Remark 1.
Beyond this, there remain significant technical hurdles to proving that the prior places sufficient
mass in a Kullback–Leibler neighbourhood of the truth, in particular related to the approximation
of log-concave densities using piecewise log-linear functions with suitably spaced knots.

The paper is structured as follows. In Section 2, we introduce our priors and present our main
results, both on general contraction for log-concave densities and for the specific priors consid-
ered here. In Section 3, we present a simulation study, including a more practical empirical Bayes
implementation, with some discussion in Section 4. In Section 5, we present the proofs of the
main results with technical results placed in Section 6. The proofs of certain technical lemmas
and some additional simulations can be found in the supplementary material [24].

Notation: For two probability densities p and q with respect to Lebesgue measure λ on R,
we write h2(p, q) = ∫

(
√

p − √
q)2 for the squared Hellinger distance, K(p,q) = ∫

p log p
q

for

the Kullback–Leibler divergence and V = ∫
p(log p

q
)2. We denote by P n

f0
the product probability

measure corresponding to the joint distribution of i.i.d. random variables X1, . . . ,Xn with density
f0 and write Pf0 = P 1

f0
. For a function w, we denote by w′− and w′+ its left and right derivatives

respectively, that is

w′−(x) = lim
s↗x

w′(s) and w′+(x) = lim
s↘x

w′(s).

Let R+ = [0,∞) and for two real numbers a, b, let a ∧ b and a ∨ b denote the minimum and
maximum of a and b respectively. Finally, the symbols � and � stand for an inequality up to a
constant multiple, where the constant is universal or (at least) unimportant for our purposes.

2. Main results

Consider i.i.d. density estimation, where we observe X1, . . . ,Xn ∼ f0 with f0 = ew0 an un-
known log-concave density to be estimated. Let F denote the class of upper semi-continuous
log-concave probability densities on R. For α > 0 and β ∈ R, denote

Fα,β := {
f ∈ F : f (x) ≤ eβ−α|x| ∀x ∈R

}
.

By Lemma 1 of Cule and Samworth [4], for any log-concave density f0 there exist constants
αf0 > 0 and βf0 ∈ R such that f0(x) ≤ eβf0−αf0 |x| for all x ∈ R. Consequently, any upper semi-
continuous log-concave density f0 belongs to Fα,β for 0 < α ≤ αf0 and β ≥ βf0 .

We establish a general posterior contraction theorem for priors on log-concave densities using
the general testing approach introduced in [11], which requires the construction of suitable tests



Bayesian log-concave density estimation 1073

with exponentially decaying type-II errors. We construct plug-in tests based on the concentration
properties of the log-concave MLE, similar to the linear estimators considered in [14,26]. The
MLE has been shown to converge to the truth at the minimax rate in Hellinger distance in Kim
and Samworth [22] and the following theorem relies heavily on their result.

Theorem 1. Let F denote the set of upper semi-continuous, log-concave probability densities
on R and let �n be a sequence of priors supported on F . Consider a sequence εn → 0 such that
n−2/5 � εn � n−3/8−ρ for some ρ > 0 and suppose there exists a constant C > 0 such that

�n

(
f ∈ F :

∫
R

f0

(
log

f0

f

)
≤ ε2

n,

∫
R

f0

(
log

f0

f

)2

≤ ε2
n

)
≥ exp

(−Cnε2
n

)
. (1)

Then for sufficiently large M ,

�n

(
f ∈ F : h(f,f0) ≥ Mεn|X1, . . . ,Xn

) → 0

in P n
f0

-probability as n → ∞.

The upper bound εn � n−3/8−ρ is an artefact of the proof arising from the exponential inequal-
ity for the log-concave MLE that we use to construct our tests, see Lemma 1. Since our interest
lies in obtaining the optimal rate n−2/5, possibly up to logarithmic factors, it plays no further
role in our results. It is typical in Bayesian nonparametrics to require metric entropy conditions,
which come from piecing together tests for Hellinger balls into tests for the complements of
balls, see for instance Theorem 7.1 of [11]. The lack of such a condition in Theorem 1 is tied
to the optimality and specific structure of the log-concave MLE. Using the affine equivariance
of the MLE (Remark 2.4 of [10]), one can reduce the testing problem to considering alternatives
in the class F restricted to have zero mean and unit variance. Unlike the whole space F , the
bracketing Hellinger entropy of this latter set can be suitably controlled, thereby avoiding the
need for additional entropy bounds.

Remark 1. Obtaining sharp entropy bounds for log-concave function classes is a highly tech-
nical task and such bounds are only available for certain restricted subsets. Even in the case of
mean and variance restrictions (Theorem 4 of [22]) and compactly supported and bounded den-
sities (Proposition 14 of [21]), the proofs are lengthy and require substantial effort. To use such
bounds for the classic entropy-based approach to prove posterior contraction would therefore
require the prior to place most of its mass on the above types of restricted sets. For instance,
the prior might be required to place all but exponentially small probability on Fα,β for some
given α > 0, β ∈ R. Such a prior construction is undesirable in practice and in fact none of our
proposed priors satisfy such a restriction.

We now introduce a prior on log-concave densities based on an exponentiated Dirichlet process
mixture. For any measurable function w :R→ R, define the density

fw(x) = ew(x)∫
R

ew(y) dy
, (2)
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which is well-defined if
∫
R

ew(y) dy < ∞. Recall that any monotone non-increasing probability
density on R

+ has a mixture representation [38]

f (x) =
∫ ∞

x

1

u
dP (u),

where P is a probability measure on R
+. Khazaei and Rousseau [20] and Salomond [28] used

the above representation to obtain a Bayesian nonparametric prior for monotone non-increasing
densities. Unfortunately, such a convenient mixture representation is unavailable for log-concave
densities and so the prior construction is somewhat more involved. Integrating the right-hand
side of the last display, we obtain a function w :R+ →R as follows:

w(x) = γ1

∫ ∞

0

u ∧ x

u
dP (u) − γ2x,

where γ1 > 0, γ2 ∈R and P is a probability measure on [0,∞). Since its (left and right) deriva-
tive is monotone decreasing, w is concave. While not every concave function can be represented
in this way, any log-concave density on [0,∞) can be approximated arbitrary well in Hellinger
distance by a function of the form ew/(

∫
ew), where w is as above with P a discrete probability

measure, see Proposition 1. Translating the above thus gives a natural representation for a prior
construction for log-concave densities on R.

Consider therefore the following possibly n-dependent prior on the log-density w : [an, bn] →
R, where possibly an → −∞ and bn → ∞:

W(x) = γ1

∫ bn−an

0

u ∧ (x − an)

u
dP (u) − γ2(x − an), (3)

where

• P ∼ DP(H1[0,bn−an]), the Dirichlet process with base measure H1[0,bn−an] = H(R+) ×
H̄1[0,bn−an], where 0 < H(R+) < ∞, H̄ is a probability measure on R

+ and every subset
U ⊂ [0, bn − an] satisfies H(U) � λ(U)/(bn − an)

η for some η ≥ 0,
• γi ∼ pγi

, i = 1,2, where pγ1 , pγ2 are probability densities on [0,∞) and R respectively,

satisfying pγi
(|x|) � e−cix

1/4
, ci > 0, for all x ∈ [0,∞) and x ∈R respectively,

• γ1, γ2, and P are independent.

We denote by �n the full prior induced by fW , where W is drawn as above. Some typical draws
from the prior are plotted in Figure 1.

Remark 2. If (bn − an) grows polynomially in n, then H must have polynomial tails. On the
other hand, if (bn − an) grows more slowly than any polynomial, one can relax this condition.
For instance, if H has a density h with respect to the Lebesgue measure, then it is sufficient that
mint∈[0,bn−an] h(t) � n−λ for some λ > 0. In particular, if (bn − an) � logn, then h may have
exponential tails.

We comment on several aspects of our prior. Firstly, since Dirichlet process draws are atomic
with probability one, the prior draws (3) will be piecewise linear and concave. Moreover, we
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Figure 1. Prior draws with [an, bn] = [0,1], γ1 ∼ Cauchy+(0,1), γ2 ∼ Cauchy(0,1), H = U(0,1) and
using the stick breaking construction.

could add any concave function to (3), such as an −γ3x
2-type term, and still have a suitable

concave prior. This permits greater modelling flexibility but complicates computation. In any
case, the prior described above gives optimal contraction rates and can be computed in prac-
tice, so we restrict our attention to it. Another point to note is that if (bn − an) → ∞ and
H is supported on the whole of R

+, then the Dirichlet process base measure has total mass
H(R+)H̄ ([an, bn]) ≤ H(R+) for fixed n. This has the interpretation of assigning the prior more
weight as n → ∞, up to the full prior weight H(R+). An alternative would be to re-weight
the base measure to have full mass H(R+) to give it equal weight for all n. This plays no role
asymptotically and so we restrict to the first case for technical convenience.

A potentially more serious issue is that for fixed n, the support of the prior draws may not
contain the support of the true density f0, in which case observations outside [an, bn] cause the
likelihood to be identically zero. While this is not a problem for n large enough if −an, bn → ∞
fast enough (see Theorem 3), it can be an issue for finite n. In practice, if one has an idea of
the support of f0, it is enough to select [an, bn] large enough to contain supp(f0). A more
pragmatic solution is to use an empirical Bayes approach and make the prior data-dependent
by setting an := X(1), bn := X(n) the first and last order statistics. This ensures that the likeli-
hood is never zero and the posterior is always well-defined. Indeed, the MLE is supported on
[X(1),X(n)] and so this can be thought of as plugging-in an estimate of the approximate sup-
port based on the likelihood. Moreover, since this approach yields the smallest support [an, bn]
with non-zero likelihood, it also brings computational advantages. In particular, it can prevent
the need to simulate the posterior distribution on potentially very large regions of R where the
posterior draws are essentially indistinguishable from zero. The empirical Bayes method be-
haves very similarly to the prior (3) in simulations and we would advocate this approach in
practice.

We first present a contraction result when the true density f0 has known compact support.

Theorem 2. Let f0 ∈ Fα,β for some α > 0, β ∈ R and suppose further that f0 is compactly
supported. Let an ≡ a and bn ≡ b for all n and denote by �n = � the prior described above. If
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supp(f0) ⊂ [a, b], then

�
(
f : h(f,f0) ≥ M(logn)n−2/5 | X1, . . . ,Xn

) → 0

in P n
f0

-probability for some M = M(α,β) > 0.

If supp(f0) is not contained in a compact set or is unknown, it suffices to let −an, bn → ∞ fast
enough. A slightly stronger lower bound on the tail of pγ1 is consequently required, depending
on the size of (bn − an).

Theorem 3. Let f0 ∈ Fα,β for some α > 0, β ∈ R and let �n denote the prior described above
with −an, bn � logn. Assume further that (bn − an) � nμ/5 and that the prior density pγ1 for

γ1 satisfies the stronger lower bound pγ1(x) � e−c1x
1/(4+μ)

for some 0 ≤ μ ≤ 2. Then

�n

(
f : h(f,f0) ≥ Mεn | X1, . . . ,Xn

) → 0

in P n
f0

-probability for some M = M(α,β) > 0 and

εn = max
(
(logn)n−2/5, (bn − an)n

−4/5). (4)

Theorem 2 follows immediately from Theorem 3 and so its proof is omitted. If (bn − an) =
O((logn)n2/5), then we obtain the minimax rate for log-concave density estimation in The-
orem 3, up to a logarithmic factor. Since the Hellinger distance dominates the total variation
distance, the above also implies posterior convergence in total variation at the same rate εn given
in (4). We also note that all the above statements are proved uniformly over f0 ∈Fα,β .

The posterior mean, also considered in the simulation study, is not necessarily log-concave.
Nevertheless one can construct log-concave density estimators by separately computing the pos-
terior mean for each parameter θ,p, γ1, γ2 and then constructing the corresponding log-concave
density according to (2) and (3). Another approach is to take the smallest Hellinger ball accumu-
lating, say, 50% of the posterior mass and sample an arbitrary log-concave density from that ball.
It is straightforward to verify that both of these estimators achieve the minimax concentration rate
(up to the same logarithmic factor).

It is also of interest to obtain a fully Bayesian procedure that does not require the user to
define the support of the prior draws. We therefore consider a hierarchical prior where one places
a prior on the end points a and b, now not necessarily depending on n. This method has the
advantage of employing a prior that does not depend on the data, but is slightly more involved
computationally than the simple empirical Bayes approach. Assign to (a, b) a prior supported on
the open half-space {(a, b) : a < b} that has a Lebesgue density π(a, b) satisfying

π(a, b) ≥ Ce−c1|a|q−c2|b−a|r for all a < b (5)

and some c1, c2,C, q, r > 0. Such a distribution can be easily constructed by first drawing a ∼
π1, where the Lebesgue density π1(a) ≥ Ce−c|a|q , and then independently drawing (b − a)|a ∼
π2, where π2 is a Lebesgue density on (0,∞) satisfying π2(b − a) ≥ Ce−c|b−a|r . Conditionally
on (an, bn) = (a, b), the prior is then exactly as above. This hierarchical construction leads to a
fully Bayesian procedure that again contracts at the (near-)minimax rate.
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Theorem 4. Let f0 ∈ Fα,β for some α > 0, β ∈ R and let �n denote the prior described above
with hyperprior (a, b) ∼ π(a, b) satisfying (5). Then

�n

(
f : h(f,f0) ≥ M(logn)n−2/5 | X1, . . . ,Xn

) → 0

in P n
f0

-probability for some M = M(α,β) > 0.

Dirichlet process mixture priors are popular in density estimation due to the conjugacy of
the posterior distribution, thereby providing methods that are highly efficient computationally.
However, due to the exponentiation (2), this conjugacy property no longer holds, resulting in a
less attractive prior choice that brings computational challenges. In practice, it is common to use
approximations of the Dirichlet process to speed up computations, see, for instance, Chapter 4.3.3
of [13].

We firstly consider the Dirichlet multinomial distribution as a replacement for the Dirichlet
process in our prior. By the proof of Theorem 3, the underlying true log-concave density can
be well approximated by a piecewise log-linear density with at most N = Cn1/5 logn knots,
for some large enough constant C > 0. In view of this, it is reasonable to take N atoms in the
distribution. The corresponding prior on log-concave densities then takes the form

θi
iid∼ H̄1[0,bn−an], for i = 1, . . . ,N,

p = (p1, . . . , pN) ∼ Dir(α1, . . . , αN),

γi
iid∼ pγi

, i = 1,2,

fθ,p,γ1,γ2(x) = exp{γ1
∑N

i=1
θi∧(x−an)

θi
pi − γ2(x − an)}1[an,bn](x)∫ bn

an
exp{γ1

∑N
i=1

θi∧(u−an)
θi

pi − γ2(u − an)}du
,

(6)

where αi , i = 1, . . . ,N , are chosen such that αi = α/N for some arbitrary 0 < α ≤ H(R+).
An alternative choice for the mixing prior is to truncate the stick-breaking representation of the

Dirichlet process at a fixed level. Similarly to the Dirichlet multinomial distribution, we truncate
the stick-breaking process at level N = Cn1/5 logn, resulting in the same hierarchical prior as in
(6) with the only difference being that the distribution of p in the N -simplex is given by

pi ∼ Vi

i−1∏
j=1

(1 − Vj ), where Vi ∼ Beta
(
1,H

(
R

+))
, i = 1, . . . ,N − 1. (7)

Both of these computationally more efficient approximations have the same theoretical guaran-
tees as the full exponentiated Dirichlet process prior �n or its hierarchical Bayes equivalent.

Corollary 1. Let f0 ∈Fα,β for some α > 0, β ∈ R and let �′
n denote either the prior (6) or (7).

If −an, bn � logn, (bn − an) � nμ/5 and the prior density pγ1 for γ1 satisfies the stronger lower

bound pγ1(x) � e−c1x
1/(4+μ)

for some 0 ≤ μ ≤ 2, then

�′
n

(
f : h(f,f0) ≥ Mεn | X1, . . . ,Xn

) → 0
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in P n
f0

-probability for some M = M(α,β) > 0 and εn given by (4).
If we additionally assign a hyperprior π(a, b) satisfying (5) to (a, b) and no longer re-

quire the strong lower bound for pγ1 , then the above holds for the resulting posterior with
εn = (logn)n−2/5.

The proofs of Theorem 3 and Corollary 1 establish the small-ball probability (1) by approxi-
mating a log-concave density in Fα,β with a suitable piecewise log-linear density. This approxi-
mation requires several key properties, which make its construction non-standard and technically
involved, and it may be of independent interest. The proof of Proposition 1 is deferred to Sec-
tion 6.

Proposition 1. Let f0 ∈ Fα,β and ([an, bn])n be a sequence of compact intervals such that
[− 8

5α
logn, 8

5α
logn] ⊂ [an, bn] and (bn − an) = o(n4/5). For any n ≥ n0, where n0 is an integer

depending only on α and β , there exists a log-concave density f̄n that is piecewise log-linear
with N̄ ≤ C(α,β)n1/5 logn knots z1, . . . , zN̄ ∈ [0, bn − an] satisfying the following properties:

(i) h2(f0, f̄n) ≤ C(α,β)[(logn)2n−4/5 + (bn − an)
2n−8/5],

(ii) {x ∈ R : f̄n(x) > 0} = [an, bn],
(iii) the knots are cn−6/5 logn-separated for some universal constant c > 0,
(iv) f0(x) ≤ C(α,β)f̄n(x) for all x ∈ [an, bn],
(v) there exist γ̄1 ∈ [0,2(bn −an)n

4/5], |γ̄2| ≤ n4/5, γ̄3 ∈R and (p̄1, . . . , p̄N̄ ) satisfying pi ≥
0 and

∑N̄
i=1 pi = 1, such that

f̄n(x) = exp

(
γ̄1

N̄∑
i=1

zi ∧ (x − an)

zi

p̄i − γ̄2(x − an) + γ̄3

)
1[an,bn](x).

It is relatively straightforward to establish an approximation of f0 satisfying (i). However,
approximating f0 by f̄n in a Kullback–Leibler type sense, as in (1), necessitates control of the
support of f̄n via (ii) and uniform control of the ratio f0/f̄n via (iv). The most difficult property
to establish is the polynomial separation of the points in (iii). This is needed to ensure that the
Dirichlet process prior simultaneously puts sufficient mass in a neighbourhood of each of the
knots zi , i = 1, . . . , N̄ . Setting [an, bn] = [− 8

5α
logn, 8

5α
logn] yields the following corollary.

Corollary 2. Let f0 ∈ Fα,β . For any n ≥ n0, where n0 is an integer depending only on α and
β , there exists a log-concave density f̄n supported on [− 8

5α
logn, 8

5α
logn] that is piecewise log-

linear with O(n1/5 logn) knots and satisfies h2(f0, f̄n) ≤ C(α,β)(logn)2n−4/5. Moreover, we
may take the knots to be cn−6/5 logn-separated for some universal constant c > 0.

3. Simulation study

We present a simulation study to assess the performance of the proposed log-concave priors for
density estimation. In particular, we investigate the prior based on the truncated stick breaking
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representation (7), firstly, with deterministically chosen support [an, bn], secondly its empirical
Bayes counterpart with support [X(1),X(n)], where X(1) and X(n) denote the smallest and largest
observations, respectively, and thirdly the hierarchical Bayes version where the parameters a and
b − a are endowed with independent Cauchy and half-Cauchy distributions, respectively. In all
cases, we plot the posterior mean and 95% pointwise credible sets, and compare them with the
log-concave maximum likelihood estimator (computed using the R function “mlelcd”).

Consider first the posterior distribution arising from the prior with deterministic support
[an, bn]. We have drawn random samples of size n = 50,200,500 and 2500 from a gamma
distribution with shape and rate parameters 2 and 1, respectively. We took the number of lin-
ear pieces in the exponent of the prior to be N = Cn1/5 logn, with C = 1, set [an, bn] =
[−2.3 logn,2.3 logn], endowed the break-point parameters θ = (θ1, . . . , θm) with independent
uniform priors on [0, bn − an], assigned the weight parameters p a stick-breaking distribution
truncated at level m, and endowed γ1 and γ2 a half Cauchy and a Cauchy distribution, respec-
tively, with location parameter 0 and scale parameter 1. Since the posterior distribution does not
have a closed-form expression, we drew approximate samples from the posterior using a random
walk Metropolis–Hastings within Gibbs sampling algorithm for 10,000 iterations out of which
the first 5000 are discarded as burn-in period. In Figure 2, we have plotted the true distribution
(solid red), posterior mean (solid blue), 95% pointwise credible band (dashed blue) and the max-
imum likelihood estimator (solid green). The data is represented by a histogram on the figures.

We see that the posterior mean gives an adequate estimator for the true log-concave density
with similar, if not superior, performance compared to the more jagged maximum likelihood es-
timator, and the 95% pointwise credible bands mostly contain the true function except for points
close to zero. We further investigate the frequentist coverage properties of the pointwise Bayesian
credible sets. We repeat the above experiment for the empirical Bayes procedure 100 times (each
with 2000 iterations out of which half were discarded as burn in) and report the frequencies
where the density f (x) at given points x ∈ {0.5,1,1.5,2,2.5,3} is inside of the corresponding
credible interval. We consider sample sizes n = 50,200 and 500 and report the empirical cov-
erage probabilities in Table 1. One can see that in this particular example we get quite reliable
uncertainty quantification, especially for larger sample sizes. It should be noted, however, that
the frequentist coverage of Bayesian credible sets is a delicate subject in nonparametric statistics,
see, for instance, Szabó et al. [33], and is beyond the scope of this article.

Remark 3. The constant C in the number N = Cn1/5 logn of knots can be chosen relatively
freely from a theoretical point of view without affecting the convergence rate. In practice, how-
ever, larger C results in smaller bias, larger variance and increased computational cost. For the
relatively large sample sizes, we consider here (except perhaps n = 50), taking C = 1 already
gives reasonable estimators, see Figure 2. The optimal choice of C depends on the unknown un-
derlying density and one could experiment with selecting C in a data-driven manner, for example,
by estimating it empirically or endowing C with a prior. We think that C = 1 works sufficiently
well for moderate sample sizes, while for small samples sizes one can take C slightly larger, say
2 or 3, to have enough knots.

We next investigate the behaviour of the empirical and hierarchical Bayes versions of the
proposed prior. We again simulate n = 50,200,500 and 2500 independent draws from a
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Figure 2. Prior with [an, bn] selected deterministically: the underlying Gamma(2,1) density function
(red), posterior mean (solid blue), pointwise credible bands (dashed blue), maximum likelihood estima-
tor (solid green) and data is represented with a histogram. We have increasing sample size from left to right
and top to bottom n = 50,200,500 and 2500.

Gamma(2,1) distribution and set the compact support of the prior densities to be [an, bn] =
[X(1),X(n)], that is the smallest and largest observations, for the empirical Bayes procedure and
[a, b], with a ∼ Cauchy(0,1) and b−a ∼ Cauchy+(0,1) independent, for the hierarchical Bayes
method. As before, we set m = n1/5 logn and endowed the parameters θ,p, γ1 and γ2 with the
same priors as above. We ran the algorithm again for 10,000 iterations, taking the first half of the
chain as a burn-in period. We plot the outcomes in Figures 3 and 4 for the empirical and hierar-

Table 1. Frequencies out of 100 experiments when the empirical Bayes credible set contained the true
function values at points x = 0.5,1, . . . ,3. From top to bottom the sample size increases from n = 50 until
n = 500

x

n 0.5 1 1.5 2 2.5 3

50 0.51 0.81 0.88 0.85 0.87 0.93
200 0.68 0.97 0.94 0.87 0.94 0.97
500 0.83 0.96 0.88 0.87 0.86 0.91
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Figure 3. Empirical Bayes prior with data-driven support: the underlying Gamma(2,1) density function
(red), posterior mean (solid blue), pointwise credible bands (dashed blue) and data is represented with a
histogram. We have increasing sample size from left to right and top to bottom n = 50,200,500 and 2500.

chical Bayes procedures, respectively. One can see that for n ≥ 500 observations, the posterior
mean (solid blue) closely resembles the underlying gamma density (solid red), while the fit is
already reasonable for n = 200. The pointwise 95%-credible bands contain the true density, even
near zero, which was problematic in case of the prior with support selected deterministically.
Comparing Figures 2, 3 and 4, we see that the empirical and hierarchical Bayes approaches of
selecting the support [an, bn] in a data-driven way outperform a deterministic selection. We also
note that the algorithm for the empirical Bayes method was considerably faster than the others
due to the smaller support, which reduces the computation time of the normalizing constants∫

ew(y) dy of the densities.
We then investigate the performance of the posterior distribution corresponding to the em-

pirical and hierarchical Bayes methods for recovering different log-concave densities and again
compare them with the MLE. We have considered a standard normal distribution, a gamma dis-
tribution with shape parameter 2 and rate parameter 1, a beta distribution with shape parameters
2 and 3, and a Laplace distribution with location parameter 0 and dispersion parameter 1. In
all four examples, we have taken sample size n = 1500. The posterior mean (solid blue), the
95% pointwise credible bands (dashed blue) and the MLE (green) are plotted in Figures 5 and 6
for the empirical and hierarchical Bayes procedures, respectively. All four subpictures for both
data-driven methods show satisfactory results, both for recovery using the posterior mean and for
uncertainty quantification using the pointwise credible bands. We note that the displayed plots
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Figure 4. Hierarchical Bayes prior with data-driven support: the underlying Gamma(2,1) density function
(red), posterior mean (solid blue), pointwise credible bands (dashed blue) and data is represented with a
histogram. We have increasing sample size from left to right and top to bottom n = 50,200,500 and 2500.

convey typical behaviour and are representative of multiple simulations. We hence draw the con-
clusion that the proposed method seems to work well in practice for various choices of common
log-concave densities.

Lastly, we investigate the performance of the proposed Bayesian procedures for estimating
the mode of the underlying log-concave density. We consider the standard normal distribution
and take i.i.d. random samples of size ranging from 50 to 20,000. We run the Gibbs sampler
for 20,000 iterations and take the first half of the iterations as burn-in period. For each posterior
draw, we compute the mode and use the resulting histogram to approximate the one-dimensional
marginal posterior. The histograms from the empirical Bayes procedure are displayed in Figure 7.
One can see that the posterior concentrates around the true mode (i.e., 0) as the sample size
increases.

The marginal posterior concentrates substantially slower than n−1/2-rate. This is as expected,
since the best possible minimax rate for estimating the mode m0 of a unimodal or log-concave
density f0 satisfying f ′′

0 (m0) < 0 is n−1/5, see [2,18]. Indeed, the mode of the log-concave MLE
attains this rate [2]. Interestingly, the marginal posterior does not seem to be Gaussian, which
may be linked to the irregular asymptotic distribution of the mode of the log-concave MLE. This
rather complicated distribution equals the mode of the second derivative of the lower envelope of
a certain Gaussian process, see [2] for full details. A better understanding of the limiting shape
of the marginal posterior would be interesting, but is beyond the scope of this article.
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Figure 5. The underlying density function (red), empirical Bayes posterior mean (solid blue) and pointwise
credible bands (dashed blue). The data is represented with a histogram. The true density functions are from
left to right and top to bottom: standard Gaussian, Gamma(2,1), Beta(2,3) and Laplace(0,1).

Figure 6. The underlying density function (red), hierarchical Bayes posterior mean (solid blue) and point-
wise credible bands (dashed blue). The data is represented with a histogram. The true density functions are
from left to right and top to bottom: standard Gaussian, Gamma(2,1), Beta(2,3) and Laplace(0,1).
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Figure 7. The empirical Bayes posterior distribution of the mode for standard normal distribution with
increasing sample size from left to right and top to bottom, ranging between n = 50 and n = 20,000.

In the supplementary material, we provide additional simulations for the marginal posterior
for the mode from the empirical Bayes posterior for different underlying log-concave densities,
namely the beta and gamma distributions. We also numerically investigate the applicability of
our log-concave Bayesian prior for estimating mixtures of log-concave densities.

4. Discussion

We have proposed a novel Bayesian procedure for log-concave density estimation. The prior is
defined on compactly supported densities, where the support can be chosen either deterministi-
cally, empirically or using a fully Bayesian hierarchical procedure. We have shown theoretically
that both the deterministic and fully Bayesian choices of the support give (near-)optimal posterior
contraction rates, and have demonstrated the good small sample performance of the posterior for
all three methods in a simulation study. We have also plotted the 95% pointwise credible bands,
which in our simulation study provide reliable frequentist uncertainty quantification. However,
this might depend heavily on the choice of the underlying true density and it is unclear at present
whether our methods generally provide trustworthy frequentist uncertainty quantification. The
rigourous study of this question is beyond the scope of the present paper.

In our simulation study, we further investigated the behaviour of the marginal posterior for the
mode functional. A natural next question is whether one can obtain semiparametric Bernstein-



Bayesian log-concave density estimation 1085

von Mises type results for the mode. In view of the irregular behaviour of the log-concave MLE,
this is an interesting problem as it is unclear whether the limiting distribution of the posterior is
indeed Gaussian.

A possible application of our proposed approach is clustering based on mixture models. As-
suming that clusters have log-concave densities instead of (say) Gaussians broadens their mod-
elling flexibility. We have executed a small simulation study to explore this direction. For sim-
plicity, we have considered a mixture of only two log-concave densities and modified our prior
accordingly. In the considered examples (see the Supplementary material), our procedure per-
forms reasonably well. However, we should note that the computational time is much worse
than using simple Gaussian kernels. Extending this to mixtures with more than two (possibly
unknown number of) components seems to be possible, but requires optimization of the Gibbs
sampler and perhaps introducing other approximation steps, which are beyond the scope of the
present paper.

Another natural question if whether one can extend these results to multivariate density esti-
mation, especially in view of the difficulty of computing the log-concave MLE in higher dimen-
sions. Since our present prior construction is based on using a mixture representation to model
a decreasing function, which corresponds to the derivative of the concave exponent, this will re-
quire new ideas. A possible approach is presented in Hannah and Dunson [17], who place a prior
over all functions that are the maximum of a set of hyperplanes. This yields a prior on the set of
convex functions that could potentially be adapted to the multivariate log-concave setting.

5. Proofs

Define the following classes of log-concave densities with mean and variance restrictions:

F ξ,η =
{
f ∈F : μf :=

∫
xf (x)dx = ξ, σ 2

f :=
∫

(x − μf )2f (x)dx = η

}
and

F̃ ξ,η = {
f ∈F : |μf | ≤ ξ,

∣∣σ 2
f − 1

∣∣ ≤ η
}
.

Let f̂n denote the log-concave MLE based on i.i.d. random variables X1, . . . ,Xn arising from a
density f0 ∈F .

The proof of Theorem 1 relies on a concentration inequality for the log-concave MLE based
on data from moment-restricted densities. This is the content of the following lemma, whose
proof is essentially contained in Kim and Samworth [22] for the more difficult case of general
d ≥ 1. However, we require a sharper probability bound than they provide and so make some
minor modifications to their argument. The proof can be found in the supplementary material
[24].

Lemma 1. For every ε > 0, there exist positive constants L0,C, c,n0, depending only on ε, and
positive universal constants D,d > 0, such that for all L ≥ L0 and n ≥ n0,

sup
g0∈F0,1

P n
g0

(
h(ĝn, g0) ≥ Ln−2/5) ≤ C exp

(−cn1/(4+2ε)
) + D exp

(−dL2n1/5),
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where ĝn denotes the log-concave maximum likelihood estimator based on an i.i.d. sample
Z1, . . . ,Zn from g0.

Proof of Theorem 1. As in the proof of Theorem 2.1 of [11], using the lower bound on the small
ball probability from (1), it suffices to construct tests φn = φn(X1, . . . ,Xn;f0) such that

P n
f0

φn → 0 and sup
f ∈F :h(f,f0)≥Mεn

P n
f (1 − φn) ≤ e−(C+4)nε2

n

for n large enough, where the constant C > 0 matches that in (1).
For M0 a constant to be chosen below, set φn = 1{h(f̂n, f0) ≥ M0εn}, where f̂n is the log-

concave MLE based on i.i.d. observations X1, . . . ,Xn from a density f0 ∈ F . Let μf0 = EXi ,
σ 2

f0
= Var(Xi) and define Zi = (Xi − μf0)/σf0 , so that EZi = 0 and Var(Zi) = 1. Further set

g0(z) = σf0f0(σf0z + μf0) and ĝn(z) = σf0 f̂n(σf0z + μf0), so g0 ∈ F0,1
. By affine equivari-

ance (Remark 2.4 of [10]), ĝn is the log-concave maximum likelihood estimator of g0 based on
Z1, . . . ,Zn.

Using the invariance of the Hellinger distance under affine transformations and Lemma 1 with
ε = 1/2, the type-I error satisfies

P n
f0

φn = P n
g0

(
h(ĝn, g0) ≥ M0εn

) ≤ P n
g0

(
h(ĝn, g0) ≥ L0n

−2/5) ≤ Ce−cn1/5 → 0

as n → ∞ for M0 large enough since εn � n−2/5. For f ∈ F such that h(f,f0) ≥ Mεn,

P n
f (1 − φn) = P n

f

(
h(f0, f̂n) < M0εn

)
≤ P n

f

(
h(f0, f ) − h(f, f̂n) < M0εn

)
≤ P n

f

(
(M − M0)εn < h(f, f̂n)

)
.

Since εn � n−3/8−ρ implies εn � n−3/8−ρ′
for any 0 < ρ′ ≤ ρ, we may take ρ > 0 arbitrarily

small. Applying Lemma 1 with ε(ρ) > 0 to be chosen below and Ln = (M − M0)εnn
2/5, which

satisfies Ln ≥ L0 for M > 0 large enough since εn � n−2/5, yields

sup
f ∈F :h(f,f0)≥Mεn

P n
f (1 − φn) ≤ sup

g∈F0,1
P n

g

(
h(ĝn, g) > (M − M0)εn

)
= sup

g∈F0,1
P n

g

(
h(ĝn, g) > Lnn

−2/5)
≤ C(ρ) exp

(−c(ρ)n
1

4+2ε(ρ)
) + D exp

(−dL2
nn

1/5)
for all n ≥ n0(ρ). Since εn � n−3/8−ρ by assumption, it follows that nε2

n � n1/4−2ρ =
o(n1/(4+2ε(ρ))) for ε(ρ) > 0 small enough. Therefore,

sup
f ∈F :h(f,f0)≥Mεn

P n
f (1 − φn) ≤ (

1 + o(1)
)
De−d(M−M0)

2nε2
n .
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Since we can make the constant in the exponent arbitrarily large by taking M > 0 large enough,
this completes the proof. �

Proof of Theorem 3. Let f0 ∈ Fα,β for some α > 0 and β ∈ R. We may restrict to a suitable
compactly supported density approximating f0 using the first paragraph of the proof of Theo-
rem 2 of Ghosal and van der Vaart [12]. For completeness, we reproduce their argument in this
paragraph. Let ψn(x) = 1[−tn,tn](x) for tn = a′ logn for some a′ > α−1. Define new observa-
tions X̄1, . . . , X̄n̄ from the original observations X1, . . . ,Xn by rejecting each Xi independently
with probability 1 − ψn(Xi). Since Pf0 [−tn, tn]c ≤ 2eβα−1e−αtn = o(n−1), the probability that
at least one of the Xi ’s is rejected is o(1) and so the posterior based on the original and modi-
fied observations are the same with P n

f0
-probability tending to one. Since posterior contraction

is defined via convergence in P n
f0

-probability, this implies that the posterior contraction rates are
the same. The new observations come from a density f0,n that is proportional to f0ψn, which is
log-concave and upper semi-continuous. Since |1 − ∫

f0ψn| ≤ Pf0 [−tn, tn]c = o(n−1),

h2(f0, f0,n) ≤ 2
∫
R

f0

(
1 − 1√∫

f0ψn

)2

dx + 2∫
f0ψn

∫
R

f0(1 − √
ψn)

2 dx

≤ 2
(
∫

f0ψn − 1)2∫
f0ψn

+ 2∫
f0ψn

∫
R\[−tn,tn]

f0 dx = o
(
n−1). (8)

It therefore suffices to establish contraction for the posterior based on the new observations about
the density f0,n = f0ψn/

∫
f0ψn.

Under the assumed conditions on (bn − an), εn given by (4) satisfies n−2/5 � εn � n−3/8−ρ

for some ρ > 0 small enough. We thus apply Theorem 1 so that we need only show the small-ball
probability (1). Note that f0,n(x) ≤ eβ−α|x|(1+o(n−1)), so that f0,n ∈Fα,2β for n large enough.
Since −an, bn � logn and bn − an = o(n4/5), we may construct an approximation f̄n of f0,n

based on the interval [an, bn] for n large enough using Proposition 1. By Lemma 8 of [12],∫
R

f0,n

(
log

f0,n

fW

)k

�
(
h2(f0,n, f̄n) + h2(f̄n, fW )

)
×

(
1 + log

∥∥∥∥f0,n

f̄n

∥∥∥∥
L∞([an,bn])

+ log

∥∥∥∥ f̄n

fW

∥∥∥∥
L∞([an,bn])

)k

for k = 1,2. By Proposition 1(i) and (iv), the first term in the first bracket and the second term in
the second bracket are O((logn)2n−4/5 + (bn − an)

2n−8/5) and O(1) respectively.
By Proposition 1(v), f̄n has representation

f̄n(x) = exp

(
γ̄1

N̄∑
i=1

zi ∧ (x − an)

zi

p̄i − γ̄2(x − an) + γ̄3

)
1[an,bn](x), (9)

where (zi)
N̄
i=1 ⊂ [0, bn − an] are the knots written in increasing order, N̄ = N̄n = O(n1/5 logn)

and
∑N̄

i=1 p̄i = 1. Let w̄n(x) = (log f̄n(x) − γ̄3)1[an,bn](x) − ∞1R\[an,bn](x) so that f̄n = fw̄n
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using the transformation (2). We may thus without loss of generality take γ̄3 = 0 since it is
contained in the normalization (2).

Suppose that fw is a (log-concave) density with support equal to [an, bn] and such that ‖w̄n −
w‖L∞([an,bn]) ≤ cεn. Since

∫
ew = eO(εn)

∫
ew̄n , it follows that for x ∈ [an, bn], f̄n(x)/fw(x) ≤

eO(εn) = eo(1). Since h2(f̄n, fw) � ε2
n by Lemma 3.1 of [35], we can conclude that{

w : ‖w̄n − w‖L∞([an,bn]) ≤ cεn

} ⊂ {
w : K(f0,n, fw) ≤ ε2

n,V (f0,n, fw) ≤ ε2
n

}
(10)

for some c > 0. It therefore suffices to lower bound the prior probability of the left-hand set.
Fix δ > 0 to be chosen sufficiently large below. Since the zi are n−6/5-separated by Proposi-

tion 1(iii), we can find a collection of disjoint intervals (Ui)
N̄
i=1 in [an, bn] with Lebesgue measure

λ(Ui) = εδ
n and such that zi ∈ Ui for i = 1, . . . , N̄ . Further denote U0 := R\⋃Mn

i=1 Ui . Let W be a
prior draw of the form (3) with parameters γ1, γ2 and P . Writing pi = P(Ui), p̄0 = 0 and using
the triangle inequality, for any x ∈ [an, bn],∣∣w̄n(x) − W(x)

∣∣
=

∣∣∣∣∣γ̄1

N̄∑
i=1

zi ∧ (x − an)

zi

p̄i − γ̄2(x − an) − γ1

∫ ∞

0

θ ∧ (x − an)

θ
dP (θ) − γ2(x − an)

∣∣∣∣∣
≤ |γ̄1 − γ1|

∫ ∞

0

θ ∧ (x − an)

θ
dP (θ) + γ̄1

∣∣∣∣∫
U0

θ ∧ (x − an)

θ
dP (θ)

∣∣∣∣
+ γ̄1

∣∣∣∣∣
N̄∑

i=1

∫
Ui

θ ∧ (x − an)

θ
dP (θ) −

N̄∑
i=1

zi ∧ (x − an)

zi

pi

∣∣∣∣∣
+ γ̄1

∣∣∣∣∣
N̄∑

i=1

zi ∧ (x − an)

zi

(pi − p̄i)

∣∣∣∣∣ + (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1| + γ̄1

N̄∑
i=1

sup
θ∈Ui

|θ − zi |
θ ∧ zi

pi + γ̄1p0 + γ̄1

N̄∑
i=1

|pi − p̄i | + (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1| + 2γ̄1

N̄∑
i=1

λ(Ui)

zi

pi + γ̄1

N̄∑
i=0

|pi − p̄i | + (bn − an)|γ̄2 − γ2|, (11)

where we have used in the second to last line that the maximal distance between the (piecewise)
lines (y∧a)/a and (y∧b)/b occurs at y = a∧b and in the last line that θ > zi/2 for all θ ∈ Ui for
a sufficiently large choice of the parameter δ > 0. By Proposition 1(v), we have γ̄1 ≤ 2n4/5(bn −
an) � n(4+μ)/5. Furthermore, by the separation of the knots, zi ≥ z1 ≥ cn−6/5, i = 1, . . . , N̄ , and
so by the assumptions on the (Ui), the second term is bounded by 2c−1γ̄1n

6/5εδ
n ≤ c̃εn for some

δ, c̃ > 0 large enough.
The remaining three terms are independent under the prior and so can be dealt with separately.

By the assumptions on the base measure of the Dirichlet process, we have that
∑N̄

i=0 H(Ui) ≤
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H(R+) and H(Ui) = H(R+)H̄ (Ui) � λ(Ui)/(bn −an)
η ≥ εδ

n/(bn −an)
η ≥ εδ′

n for i = 1, . . . , N̄

and some δ′ > δ. For i = 0, note that λ(U0) ≥ (bn − an) − N̄εδ
n � 1. Using the lower the bounds

for the λ(Ui), which come from the polynomial separation of the knots in Proposition 1(iii), we
can apply Lemma 10 of [12] to get

�n

(
γ̄1

N̄∑
i=0

|pi − p̄i | ≤ εn

)
� e−cN̄ log(2γ̄1/εn) � e−c′nε2

n . (12)

From the tail assumption on the density of γ1 and the upper bound on γ̄1, we have

�n

(|γ1 − γ̄1| ≤ εn

)
� εne

−c(γ̄1+εn)1/(4+μ) ≥ e−c′n1/5 ≥ e−nε2
n . (13)

By Proposition 1(v), |γ̄2| � n4/5, which, combined with the tail bound on the density of γ2, yields

�n

(
(bn − an)|γ2 − γ̄2| ≤ εn

)
� εn

bn − an

e−c(|γ̄2|+εn/(bn−an))1/4 ≥ e−c′n1/5 ≥ e−nε2
n (14)

since εn/(bn − an) → 0 no faster than polynomially in n. Combining the above, we have that
�n(‖w̄n − W‖L∞([an,bn]) ≤ (3 + c̃)εn) ≥ e−(2+c′)nε2

n . �

Proof of Theorem 4. Since the proof follows that of Theorem 3, we only specify the details
where the present proof differs. Using the same arguments, we restrict to studying posterior
contraction based on observations arising from the log-concave density f0,n = f0ψn/

∫
f0ψn for

ψn(x) = 1[−tn,tn](x) with tn = a′ logn for some a′ > α−1. We again apply Theorem 1 so that we
only need to show the small-ball probability (1) for εn = (logn)n−2/5.

Writing �a,b for the prior conditional on (a, b) and setting �n = {(a, b) : −3tn ≤ a ≤
−2tn,2tn ≤ b ≤ 3tn}, the small ball probability in (1) is lower bounded by∫

�n

�a,b

(
K(f0,n, fW ) ≤ ε2

n,V (f0,n, fW ) ≤ ε2
n

)
π(a, b) da db

≥ inf
(a,b)∈�n

�a,b

(
K(f0,n, fW ) ≤ ε2

n,V (f0,n, fW ) ≤ ε2
n

) ×
∫

�n

π(a, b) da db. (15)

Using the lower bound assumption (5) on π(a, b), the last integral is lower bounded by
Ce−c1(3tn)q−c2(6tn)r

∫
�n

da db ≥ Ct2
ne−c3(logn)q∨r � e−C′nε2

n . It thus suffices to lower bound the
infimum in the last display.

Since [− 8
5α

logn, 8
5α

logn] ⊂ [a, b] and (b − a) = O(logn) = o(n4/5) for all (a, b) ∈ �n, we
may apply Proposition 1 to construct an approximation f̄n of f0,n based on the interval [a, b] for
any (a, b) ∈ �n. One can then proceed exactly as in the proof of Theorem 3 to lower bound the
prior small-ball probability by e−Cnε2

n for fixed (a, b) ∈ �n. Since all constants in that argument
depend only on α, β and the prior hyperparameters, the lower bound is uniform over all (a, b)

with (b − a) = O(n2/5) (to ensure εn in (4) takes the value (logn)n−2/5) and −a, b ≥ 8
5α

logn.
In particular, the lower bound is uniform over �n. �
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Proof of Corollary 1. We use the notation employed in the proof of Theorem 3. By (10), it
suffices to lower bound the prior probability of an L∞-small ball about w̄n, where f̄n = fw̄n

is the approximation (9). Since N̄ ≤ N (at least for n large enough), we can add additional
breakpoints to the piecewise linear function w̄n with weights p̄i = 0, i = N̄ + 1, . . . ,N , without
changing w̄n. Without loss of generality, pick any such additional breakpoints to be no smaller
than cn−6/5. Using similar computations to (11), for any x ∈ [an, bn],∣∣w̄n(x) − w(x)

∣∣
=

∣∣∣∣∣γ̄1

N∑
i=1

zi ∧ (x − an)

zi

p̄i − γ̄2(x − an) − γ1

N∑
i=1

θi ∧ (x − an)

θi

pi − γ2(x − an)

∣∣∣∣∣
≤ |γ̄1 − γ1|

N∑
i=1

θi ∧ (x − an)

θi

pi + γ̄1

∣∣∣∣∣
N∑

i=1

θi ∧ (x − an)

θi

pi −
N∑

i=1

zi ∧ (x − an)

zi

pi

∣∣∣∣∣
+ γ̄1

N∑
i=1

zi ∧ (x − an)

zi

|pi − p̄i | + (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1| + γ̄1

N∑
i=1

|θi − zi |
θi ∧ zi

pi + γ̄1

N∑
i=1

|pi − p̄i | + (bn − an)|γ̄2 − γ2|.

The first and fourth terms are bounded from above by εn with prior probability at least e−nε2
n

by (13) and (14), respectively, for both priors. For the second term note, similarly to the proof
of Theorem 3, that z1 ≥ cn−6/5. Taking θi ∈ [zi, zi + cn−6/5εn/γ̄1], the second term is bounded
by γ̄1

∑N
i=1 piεn/γ̄1 = εn. The probability of this set under the base measure is H([zi, zi +

cn−6/5εn/γ̄1]) � cn−6/5εn/(γ̄1(bn − an)
η) by the assumptions on H̄ . The joint probability that

θi ∈ [zi, zi + cn−6/5εn/γ̄1] for every i = 1, . . . ,N is therefore bounded from below by a multiple
of (cn−6/5εn/γ̄1)

N/(bn − an)
ηN � e−c1N logn ≥ e−c2nε2

n , for sufficiently large constants c1, c2 >

0.
It remains to show that the third term is bounded from above by εn with probability at least

e−cnε2
n for some c > 0. In the case where (p1, . . . , pN) is endowed with a Dirichlet distribu-

tion, this statement follows from (12). In the case of the truncated stick-breaking prior, writ-
ing (p̄1, . . . , p̄N ) in decreasing order, we note that there exist 0 ≤ v̄1, . . . , v̄N−1 ≤ 1 such that
p̄i = ∏i−1

j=1(1− v̄j )v̄i , i = 1, . . . ,N −1, and p̄N = ∏N−1
j=1 (1− v̄j ). Define for i = 1,2, . . . ,N −1

the intervals

Ii = [(
v̄i − εnn

−4/5N−2) ∨ εnn
−4/5N−2/2,

(
v̄i + εnn

−4/5N−2) ∧ (
1 − εnn

−4/5N−2/2
)]

.

For vi ∈ Ii ⊂ [0,1], i = 1, . . . ,N − 1, we have∣∣(1 − v1) · · · (1 − vi)vi+1 − (1 − v̄1) · · · (1 − v̄i )v̄i+1
∣∣

≤ |v1 − v̄1| + |v2 − v̄2| + · · · + |vi+1 − v̄i+1|
≤ (i + 1)εnn

−4/5N−2 ≤ εnn
−4/5N−1.
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Hence for pi := (1 − v1)(1 − v2) · · · (1 − vi−1)vi , i = 1, . . . ,N − 1, (p1, . . . , pN) is in the N -
dimensional simplex and γ̄1

∑N
i=1 |p̄i − pi | ≤ γ̄1Nεnn

−4/5N−1 � εn. Finally, we note that for
vi ∼ Beta(a, b), we have P(vi ∈ Ii) � (εnn

−4/5N−2)a∨b and we can therefore conclude

P

(
γ̄1

N∑
i=1

|pi − p̄i | ≤ cεn

)
≥

N−1∏
i=1

P(vi ∈ Ii) ≥ eN(a∨b) log(εnN−2n−4/5) ≥ e−c1N logn ≥ e−c2nε2
n ,

for some large enough constants c1, c2 > 0, thereby completing the proof.
For the hierarchical case where we assign a prior to (a, b), the proof follows as in that of

Theorem 4 using (15) and the lower bound for the small-ball probability just derived. �

6. Proof of Proposition 1

In this section, we construct the piecewise log-linear approximation for an upper semi-continuous
log-concave density given in Proposition 1. In particular, we require that the number of knots in
the approximating function does not grow too quickly and that the knots are polynomially sepa-
rated, thereby rendering the construction somewhat involved. The proof relies on firstly approx-
imating any continuous concave function on a given compact interval using a piecewise linear
function. One then splits supp(f0) into sets, depending on the size of both logf0 and |(logf0)

′|,
and obtains suitable piecewise linear approximations defined locally on each of these sets. Piec-
ing together these local functions gives the desired global approximation.

We now construct a piecewise linear approximation of a continuous concave function w on a
compact interval [a, b]. For any partition a = x0 < x1 < · · · < xm = b of [a, b], let w̃m denote
the piecewise linear approximation of w given by

w̃m(x) :=
m∑

i=2

(
x − x∗

i−1

x∗
i − x∗

i−1

1

xi − xi−1
θi + x∗

i − x

x∗
i − x∗

i−1

1

xi−1 − xi−2
θi−1

)
1(x∗

i−1,x
∗
i ](x), (16)

where θi := ∫ xi

xi−1
w(s)ds and x∗

i := xi+xi−1
2 . On [a, x∗

1 ] and (x∗
m,b], the function is defined by

linearly extending the piecewise linear function defined above, that is

w̃m(a) := 1

x∗
2 − x∗

1

(
x∗

2 − a

x1 − a
θ1 − x∗

1 − a

x2 − x1
θ2

)
,

w̃m(b) := 1

x∗
m − x∗

m−1

(
b − x∗

m−1

b − xm−1
θm − b − x∗

m

xm−1 − xm−2
θm−1

)
.

(17)

The function w̃m takes value w̃m(x∗
i ) = 1

xi−xi−1

∫ xi

xi−1
w(s)ds at the midpoint x∗

i = xi+xi−1
2 of the

interval [xi−1, xi] and interpolates linearly in between. We next state several technical lemmas
whose proofs can be found in the supplementary material [24].

Lemma 2. Let w : [a, b] → R be a continuous concave function, where −∞ < a < b < ∞.
For any partition a = x0 < x1 < · · · < xm = b of [a, b], let w̃m denote the piecewise linear
approximation of w defined in (16) and (17). Then w̃m is a concave function.
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Lemma 3. Let w : [a, b] →R be a continuous concave function with w′+(a) − w′−(b) ≤ M and
where −∞ < a < b < ∞. Then there exists a partition a = x0 < x1 < · · · < xm = b of [a, b]
with mini=1,...,m(xi − xi−1) ≥ (b − a)(2m)−2 and such that

sup
x∈[a,b]

∣∣w(x) − w̃m(x)
∣∣ ≤ C

M(b − a)

m2
,

where w̃m is the piecewise linear approximation of w defined in (16) and (17) and C > 0 is a
universal constant (i.e., not depending on a, b,m).

Lemma 4. Any piecewise linear concave function w : [a, b] →R with N knots {z1, . . . , zN } can
be written in the form

w(x) = γ1

N∑
i=1

zi ∧ (x − a)

zi

pi − γ2(x − a) + γ3,

with parameters 0 ≤ γ1 ≤ (w′+(a) − w′−(b))(b − a), |γ2| ≤ |w′−(b)|, γ3 ∈ R,
∑N

i=1 pi = 1 and
pi ≥ 0 for i = 1, . . . ,N .

Proof of Proposition 1. Let ψn(x) = 1[−sn,sn](x) for sn = 4
5α

logn. The log-concave den-
sity function f1 = f1,n = f0ψn/

∫
f0ψn supported on [−sn, sn] satisfies |1 − ∫

f0ψn| ≤
Pf0 [−sn, sn]c ≤ 2eβα−1n−4/5. Arguing as in (8), one has h2(f0, f1,n) ≤ 12eβα−1n−4/5 for
n ≥ (4eβ/α)5/4.

We write f1 = ew1 and construct the approximating function f̄n according to the value of w1
and its left and right derivatives w′

1,− and w′
1,+. Let

An
0 =

{
x ∈ [an, bn] : w1(x) < −4

5
logn

}
,

An
1 =

{
x ∈ [an, bn] : w1(x) ≥ −4

5
logn,

∣∣w′
1,±(x)

∣∣ > n4/5
}
,

An
2,j =

{
x ∈ [an, bn] : w1(x) ≥ −4

5
logn,2−j−1n4/5 <

∣∣w′
1,±(x)

∣∣ ≤ 2−j n4/5
}
, j = 0, . . . , jn,

An
3 =

{
x ∈ [an, bn] : w1(x) ≥ −4

5
logn,

∣∣w′
1,±(x)

∣∣ ≤ D

}
,

where D > 0 is some fixed constant, |w′
1,±(x)| = max(|w′

1,+(x)|, |w′
1,−(x)|) and jn =

�log2(n
4/5/D)� − 1. In fact the set where the left and right derivatives of the concave func-

tion w1 do not agree has measure zero. Note that the above sets are all disjoint except An
2,jn

and An
3: since jn is the smallest integer such that 2−jn−1n4/5 ≤ D, these last two sets may

overlap. In particular, we can express [an, bn] as the almost disjoint union of the above sets.
Write Bn = (

⋃jn

j=0 An
2,j ) ∪ An

3 ⊂ [an, bn] and note that by the concavity of w1, this is an in-

terval. Since ‖f1‖∞ ≤ 2eβ for n ≥ (4eβ/α)5/4, the set An
1 consists of at most two intervals,
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each of width O(n−4/5 logn). Using again the boundedness of f1, the definition of An
0 and that

| supp(f1)| � logn, ∫
Bn

f1 dx = 1 − O
(
n−4/5 logn

)
, (18)

so that in particular, Bn �=∅ for n ≥ n0(α,β) large enough.
We now construct a partition Pn of Bn based on which we take the piecewise linear approx-

imation (16)–(17) of the function w1. Note that An
2,j consists of at most two disjoint intervals,

An
2,j,+ and An

2,j,−, which by the boundedness of f1 are each of length O(2j+1n−4/5 logn).
Let Pn,An

2,j,+ denote the partition of the interval An
2,j,+ given by Lemma 3 with partition size

m = �2−j/2n3/5|An
2,j,+|1/2/

√
logn� = O(n1/5) and let Pn,An

2,j,− be the analogous partition con-

structed on An
2,j,−. Similarly, An

3 ∩ (An
2,jn

)c consists of a single interval of length O(logn). Let
Pn,An

3∩(An
2,jn

)c denote the corresponding partition of An
3 ∩ (An

2,jn
)n given by Lemma 3 with parti-

tion size m = �n1/5(D|An
3 ∩ (An

2,jn
)c|/ logn)1/2� = O(n1/5). Define the overall partition

Pn =Pn,An
3∩(An

2,jn
)c ∪

jn⋃
j=0

(Pn,An
2,j,+ ∪Pn,An

2,j,−)

of Bn, which has O(jnn
1/5) = O(n1/5 logn) points. The associated piecewise linear function

w̃n defined in (16)–(17) based on Pn is concave by Lemma 2 and by construction corresponds
to the partition given in Lemma 3 for each of the sets comprising Bn. It therefore satisfies the
conclusions of Lemma 3 on each such set (with the appropriate m), so that in particular,

• ‖w1 − w̃n‖L∞(An
2,j ) ≤ Cn−2/5 logn for some universal constant C > 0 independent of j ,

• the partition points in An
2,j are distance at least c2j n−6/5 logn ≥ cn−6/5 logn apart for some

universal constant c > 0 independent of j ,
• on An

3 ∩ (An
2,jn

)c , we have the same L∞-bound with the partition points being cn−2/5 logn-
separated.

Moreover, since these intervals meet only at their boundaries, and the boundary points of the
intervals are contained in the partition presented in Lemma 3, the interval boundaries will be
contained in Pn. Consequently, the separation property continues to hold even across the differ-
ent subpartitions. In conclusion, we have shown that w̃n is concave and piecewise linear with
O(n1/5 logn) knots, which are cn−6/5 logn-separated, and satisfies

sup
x∈Bn

∣∣w̃n(x) − w1(x)
∣∣ = O

(
n−2/5 logn

)
. (19)

We now extend the approximating function to [an, bn] ⊃ Bn. Write Pn = (xi)
M
i=0, where

min(Bn) = x0 < x1 < · · · < xM = max(Bn) and M = O(n1/5 logn). Define w̄n : [an, bn] → R
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as

w̄n(x) =

⎧⎪⎨⎪⎩
w̃n(x0) + (

w′
1,−(x0) ∧ n4/5 ∨ (−n4/5))(x − x0) x ∈ [an, x0],

w̃n(x) x ∈ Bn,

w̃n(xM) + (
w′

1,+(xM) ∧ n4/5 ∨ (−n4/5))(x − xM) x ∈ [xM,bn].
(20)

This is simply the function w̃n extended linearly from the boundary points of Bn with slope
w′

1,−(x0)∧n4/5 ∨ (−n4/5) and w′
1,+(xM)∧n4/5 ∨ (−n4/5) on [an, x0] and [xM,bn] respectively.

We now verify that w̄n is concave, for which it is enough to show that w̄′
n,+(x0) ≤ w̄′

n,−(x0) and
w̄′

n,+(xM) ≤ w̄′
n,−(xM). For the first inequality, using equation (8) in the supplement [24], the

concavity of w1 and the boundary construction of w̃n given by (16), w̄′
n,+(x0) = w̃′

n,+(x0) =
w̃′

n,+(x∗
1 ) ≤ w′

1,+(x0) ≤ w′
1,−(x0). Since x0 ∈ Bn, it also holds that |w̄′

n,+(x0)| ≤ n4/5. The sec-
ond inequality can be proved analogously.

Since log(1 + z) = O(z) as |z| → 0, it follows that log
∫

f0ψn = O(n−4/5). Using this and
(19), ∣∣w̄n(x0) − logf0(x0)

∣∣ ≤
∣∣∣∣log

∫
f0ψn

∣∣∣∣ + O
(
n−2/5 logn

) = O
(
n−2/5 logn

)
.

By concavity, the slope of the linear extension on [an, x0] satisfies w′
1,−(x0) = (logf0)

′−(x0) ≤
(logf0)

′+(x) for all x < x0 such that f0(x) > 0. Combining the above yields w̄n(x) ≥ logf0(x)−
O(n−2/5 logn) for all x ∈ [an, x0]. The same computation also gives the result for x ∈ [xM,bn],
so that for some C > 0,

sup
x∈[an,bn]\Bn

(
logf0(x) − w̄n(x)

) ≤ Cn−2/5 logn. (21)

Define the log-concave density

f̄n(x) =

⎧⎪⎨⎪⎩ew̄n(x)/

∫ bn

an

ew̄n x ∈ [an, bn],
0 x /∈ [an, bn].

This function is piecewise log-linear, has O(n1/5 logn) knots and satisfies (ii) and (iii) by con-
struction. We have

h2(f1, f̄n) ≤ 2
∫

Bc
n

f1 + 2
∫

Bc
n

f̄n +
∫

Bn

(
f

1/2
1 − f̄

1/2
n

)2
. (22)

The first integral is O(n−4/5 logn) by (18). Using (19),
∫
Bn

ew̄n = eo(1)
∫
Bn

f1. Write the

second integral as
∫
Bc

n
f̄n = ∫

An
0
f̄n + ∫

An
1
f̄n. By the definition of An

0 and (21),
∫
An

0
ew̄n ≤∫

An
0
e−(4/5) logn+n−2/5 logn ≤ (x0 −an +bn −xM)eo(1)n−4/5 = O((bn −an)n

−4/5). For the integral

over An
1 we simply observe that by (21), w̄n ≤ β +n−2/5 logn, and recall that the measure of An

1
is at most 2n−4/5(β + 4

5 logn). Since bn − an ≥ 16
5α

logn, then
∫
An

1
f̄n is also O((bn − an)n

−4/5).

This implies that the second integral in (22) is O((bn − an)n
−4/5).
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Using (18), (19), Lemma 3.1 of [35] and the above, the third term of (22) is bounded by a
multiple of∫

Bn

ew1

(
1 − 1√∫

Bn
ew1

)2

+
∫

Bn

(
ew1/2√∫
Bn

ew1

− ew̄n/2√∫
Bn

ew̄n

)2

+
∫

Bn

ew̄n

(
1√∫

Bn
ew̄n

− 1√∫ bn

an
ew̄n

)2

�
(∫

Bn

f1 − 1

)2

+ ‖w̄n − w1‖2
L∞(Bn)e

‖w̄n−w1‖L∞(Bn) +
(∫

Bn

ew̄n −
∫ bn

an

ew̄n

)2

= O
(
(logn)2n−4/5 + (bn − an)

2n−8/5),
which establishes (i).

Consider (iv). Note that this is trivial if f0(x) = 0, so assume f0(x) �= 0. If x ∈ Bn, then by
(19),

f0(x)/f̄n(x) = ew1(x)−w̄n(x)

∫
f0ψn

∫ bn

an

ew̄n = eO(n−2/5 logn)
(
1 + o(1)

) = 1 + o(1).

If x ∈ [an, bn]\Bn, then the result follows from (21).
Consider lastly (v). Since w̄n defined in (20) is piecewise linear with |w′+(an)| ∨ |w′−(bn)| ≤

n4/5, in view of Lemma 4 it takes the form

w̄n(x) = γ1

M∑
i=1

zi ∧ (x − an)

zi

− γ2(x − an) + γ3, x ∈ [an, bn],

with M = O(n1/5 logn), γ1 ≤ |w′+(an) − w′−(bn)|(bn − an) ≤ 2n4/5(bn − an) and |γ2| ≤
|w′−(bn)| ≤ n4/5. This completes the proof. �
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