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We investigate the maximal degree in a Poisson–Delaunay graph in Rd , d ≥ 2, over all nodes in the window
Wρ := ρ1/d [0,1]d as ρ goes to infinity. The exact order of this maximum is provided in any dimension.
In the particular setting d = 2, we show that this quantity is concentrated on two consecutive integers with
high probability. A weaker version of this result is discussed when d ≥ 3.
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1. Introduction

Let χ be a locally finite subset in Rd , d ≥ 2, endowed with its Euclidean norm ‖·‖, such that each
subset of size n < d +1 is affinely independent and no d +2 points lie on a sphere. The Delaunay
triangulation of χ is the unique triangulation with vertices in χ such that the circumball of each
simplex contains no point of χ in its interior. The set of its edges is denoted by Del(χ) and the
graph (χ,Del(χ)) is the so-called Delaunay graph associated with χ [28], page 478. Delaunay
graphs are a very popular structure in computational geometry [2] and are extensively used in
many areas such as surface reconstruction, mesh generation, molecular modeling, and medical
image segmentation, see, for example, [11,15]. The book by Okabe et al. [26] gives a taste of
the richness of the theory of these graphs and of the variety of their applications. In this paper,
we consider a Poisson–Delaunay graph that is a random Delaunay graph based on a stationary
Poisson point process in Rd .

Recently, extremes of various quantities associated with Poisson–Delaunay graphs have been
investigated by Chenavier, Devillers and Robert. In [13], the length of the shortest path between
two distant vertices is considered. In [12,14], the extremes studied are the largest or smallest
values of a given geometric characteristic, such as the volume or the circumradius, over all sim-
plices in the Poisson–Delaunay graph with incenter in a large window. For a broad panorama of
extreme values arising from construction based on a Poisson point process, we refer the reader
to [29].

In this paper, we deal with the case of a discrete random variable, namely the maximal degree.
More precisely, let η be a stationary Poisson point process in Rd . Without restriction, we assume
that the intensity of η equals 1. Let Wρ = ρ1/d [0,1]d , where ρ is a positive real number. We
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Figure 1. A node (blue) with its neighbors (red) which maximizes the degree in a planar Delaunay graph
observed in a window.

investigate the asymptotic behaviour, as ρ goes to infinity, of the following random variable:

�ρ = max
x∈η∩Wρ

dη(x),

where dη(x) denotes the degree of any node x ∈ η in the Poisson–Delaunay graph associated
with η, i.e. the number of (non-oriented) edges passing through x (see Figure 1). The maximal
degree of random combinatorial graphs has been extensively investigated, see, for example, [5,
10,16–18,24,25]. Much less has been done when the vertices are given by a point process and the
edges are built according to geometric constraints. To the best of the authors’ knowledge, one of
the first results on the maximal degree in a Poisson–Delaunay graph was due to Bern et al. (see
Theorem 7 in [4]) who showed that

E[�ρ] = �

(
logρ

log logρ

)
(1.1)

in any dimension d ≥ 2. Broutin et al. [8] went on to provide a new bound for �ρ in the following
sense: when d = 2, with probability tending to 1, the maximal degree �ρ is less than (logρ)2+ξ ,
for any fixed ξ > 0. Our main theorem significantly improves these two results in dimension two.

Theorem 1. Let �ρ be the maximal degree in a planar Poisson–Delaunay graph over all nodes
in Wρ = ρ1/2[0,1]2. Then there exists a deterministic function ρ �→ Iρ , ρ > 0, with values in
N = {1,2, . . .}, such that

(i) P(�ρ ∈ {Iρ, Iρ + 1}) −→
ρ→∞ 1;

(ii) Iρ ∼
ρ→∞

1
2 · logρ

log logρ
.

In the above theorem, the notation f (ρ) ∼
ρ→∞ g(ρ) means that f (ρ)

g(ρ)
converges to 1 as ρ goes to

infinity, for any functions f,g : R → R, such that f (ρ) and g(ρ) differ from 0 for ρ large enough.
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Figure 2. Empirical distribution of �ρ , based on 75,000 simulations, of the maximal degree in a planar
Poisson–Delaunay graph observed in the window W106 = 103[0,1]2.

In particular, our result provides the exact order of the maximal degree and claims that, with
high probability, the maximal degree is concentrated on two consecutive values. As observed in
Figure 2, the concentration is already visible for ρ = 106. On the other hand, the estimate of Iρ

is good only for much larger values of ρ because of the extremely slow growth of the logarithm.
This will be discussed further at the end of Section 2.2.

Our theorem is rather classical in the sense that similar results have already been established
in the context of random combinatorial graphs [5,10,16–18,24,25]. Penrose [27], Th 6.6, estab-
lished the same type of result as Theorem 1 for a Gilbert graph. More precisely, he proved that
for this random geometric graph, the maximal degree and the maximal clique number are also
concentrated on two consecutive values with high probability. To the best of the authors’ knowl-
edge, Anderson [1] was the first one, in the context of classical Extreme Value Theory, to prove
that the maximum of n independent and identically distributed random variables is concentrated,
with high probability as n goes to infinity, on two consecutive integers for a wide class of dis-
crete random variables. Kimber [21] provided rates of convergence in the particular case where
the random variables are Poisson distributed. However, two difficulties are added in the context
of Poisson–Delaunay graphs. The first one is that the distribution of the typical degree cannot be
made explicit. The second one, which constitutes the main difficulty, comes from the dependence
between the degrees of the nodes and the geometric constraints in the Poisson–Delaunay graph.

As a corollary of Theorem 1, we can find arbitrary large windows for which the maximal
degree is concentrated on only one integer with high probability.

Corollary 2. Let �ρ be the maximal degree in a planar Poisson–Delaunay graph over all nodes
in Wρ = ρ1/2[0,1]2. Then there exists an increasing sequence (ρi) converging to infinity such
that

P(�ρi
= i) −→

i→∞ 1.
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The above corollary implies that, with probability 1, the event {�ρi
= i} occurs infinitely many

times. A weaker version of Theorem 1, which deals with the general case d ≥ 2, is stated below.

Theorem 3. Let �ρ be the maximal degree in a Poisson–Delaunay graph over all nodes in
Wρ = ρ1/d [0,1]d , d ≥ 2. Then there exists a deterministic function ρ �→ Jρ , ρ > 0, with values
in N = {1,2, . . .}, such that

(i) P(�ρ ∈ {Jρ, Jρ + 1, . . . , Jρ + �d}) −→
ρ→∞ 1, where �d = 
 d+3

2 �;

(ii) Jρ ∼
ρ→∞

d−1
2 · logρ

log logρ
.

In particular, when d = 2, the above result claims that the maximal degree is concentrated on
three consecutive values, which is less accurate than Theorem 1. When d = 3 and d = 4, this
also shows that the maximal degree is concentrated on four consecutive values.

Although Theorem 1 only deals with the two dimensional case, its proof is significantly more
difficult than the proof of Theorem 3. Indeed, as opposed to Theorem 1, we think that Theo-
rem 3 is not optimal in the sense that the maximal degree should also be concentrated on two
consecutive integers, and not only on �d + 1 integers. The proof of Theorem 1 extensively uses
the fact that the graph is planar. In particular, as an intermediate result to derive Theorem 1, we
prove that, with high probability, there is no family of five nodes in the Poisson–Delaunay graph
which are close to each other, such that their degrees simultaneously exceed Iρ . Such a result is
essential in our proof and is specific to the two dimensional case.

As a consequence of Theorem 3, the following corollary improves the estimate (1.1).

Corollary 4. Let �ρ be the maximal degree in a Poisson–Delaunay graph over all nodes in

Wρ = ρ1/d [0,1]d , d ≥ 2. Then E[�ρ] ∼
ρ→∞

d−1
2 · logρ

log logρ
.

All our results can be written in the context of the dual Poisson–Voronoi tessellation. More
precisely, given a stationary Poisson point process η in Rd , and x ∈ η, the set

Cη(x) = {y ∈ Rd : ‖x − y‖ ≤ ∥∥x′ − y
∥∥, x′ ∈ η

}
is called the Voronoi cell with nucleus x. The Poisson–Voronoi tessellation associated with η

is defined as the family of the cells Cη(x), x ∈ η. For a complete account on Poisson–Voronoi
tessellations, we refer to [26], ch. 5. This model corresponds to the dual graph of Delaunay graph
in the following way: there exists an edge between two points x, x′ ∈ η in the Delaunay graph if
and only if they are Voronoi neighbors, that is,

Cη(x) ∩ Cη

(
x′) �=∅.

In particular the maximal degree �ρ is also the maximal number of (d −1)-dimensional facets of
Voronoi cells with nucleus in Wρ . Thus Theorems 1, 3 and Corollaries 2, 4 also provide estimates
of the maximal number of facets of a Poisson–Voronoi tessellation as ρ goes to infinity.

The paper is organized as follows. In Section 2, we give several preliminaries by introducing
some notation and by recalling a few known results. In Section 3, we present technical lemmas
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which will be used to derive Theorems 1 and 3. In Section 4, we prove our main theorems and
their corollaries. The proofs of the technical lemmas are given in Section 5.

2. Preliminaries

2.1. Notation

Here we summarize the notation used throughout the text.

General notation. We denote by N = {1,2, . . .} and R+ = [0,∞) the sets of positive integers
and non-negative numbers, respectively. The d-dimensional Euclidean space Rd is endowed with
the Euclidean norm ‖ · ‖ and with its d-dimensional Lebesgue measure Vd(·). We denote by Bd+
the set of Borel sets B ⊂ Rd such that 0 < Vd(B) < ∞. The unit sphere with dimension d − 1 is
denoted by Sd−1.

Now, let k ∈ N be fixed. We use the short notation x1:k = (x1, . . . , xk) ∈ (Rd)k , and for
such a k-tuple of points we write sx1:k + t = (sx1 + t, . . . , sxk + t) for any s ∈ R and
t ∈ Rd . We also consider concatenation of such vectors, for example, we write (x1:k, y1:�) =
(x1, . . . , xk, y1, . . . , y�). For any set S, we denote by Sk�= the family of vectors (s1, . . . , sk) ∈ Sk

such that si �= sj for any i �= j . If χ is a finite set, we also denote by #χ its cardinality.
Let f,g : R → R be two functions such that f (ρ) and g(ρ) differ from 0 for ρ large enough.

Recall that the notation g(x) ∼
x→∞ f (x) means that f and g are asymptotically equivalent, that

is, g(x)
f (x)

−→
x→∞ 1. Moreover, we write g(x) = O(f (x)) if and only if there exists a positive number

M and a real number x0 such that |g(x)| ≤ M|f (x)| for any x ≥ x0. When g(x)
f (x)

−→
x→∞ 0 we write

g(x) = o(f (x)).
The quantity c denotes a generic constant which depends only on the dimension d . We oc-

casionally index the constants when the distinction between several of them need to be made
explicit, e.g. when two or more constants appear in a single equation.

Delaunay graph. We recall that a (undirected) graph G = (V ,E) is a set V of vertices together
with a set E of edges with no orientation. Given a graph G, we denote the set of neighbors of a
vertex v by NG(v), that is the set of vertices w ∈ V such that {v,w} ∈ E.

Let χ be a locally finite subset of Rd in general position, i.e. such that each subset of size
n ≤ d is affinely independent and no d + 2 points lie on a sphere. For a (d + 1)-tuple of points
x1, . . . , xd+1 ∈ χ , we denote by B(x1:d+1) the unique open circumball associated with these
points. We recall that we define a Delaunay edge between xi and xj for each 1 ≤ i, j ≤ d +1, i �=
j , when χ ∩B(x1:d+1) =∅, and denote by Del(χ) the set of these edges. The graph (χ,Del(χ))

is the so-called Delaunay graph associated with χ , see, for example, [28], page 478.
Let x0 ∈ χ . With a slight abuse of notation, we denote by Nχ (x0) = N(χ,Del(χ))(x0) the set

of neighbors of x0 in the Delaunay graph associated with χ . In particular, the degree of x0 is
dχ(x0) = #Nχ (x0). We also denote by Fχ(x0) the Voronoi flower at x0, defined as the union of
all open balls which do not contain any point of χ and which are circumscribed around x0 and d
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other points of χ , that is,

Fχ(x0) =
⋃

x1:d∈χd�=
B(x0:d )∩χ=∅

B(x0:d).

The Voronoi flower at x0 only depends on its neighbors in the corresponding Delaunay graph.
Reciprocally the Voronoi flower at x0 determines its set of neighbors. We call 	-content of x0
the volume of its Voronoi flower and denote it by

	χ(x0) = Vd

(
Fχ(x0)

)
.

If χ is a finite subset {x0, x1, . . . , xk} of Rd , with k ≥ d , we use the shorter notation:

Fx1:k (x0) = F{x0,...,xk}(x0) and 	x1:k (x0) = Vd

(
Fx1:k (x0)

)
.

Finally, for each B ∈ Bd+ and k ∈ N, we let

MB
χ = max

x∈χ∩B
dχ(x) and NB

χ [k] =
∑

x∈χ∩B

1{dχ (x)≥k}. (2.1)

If χ ∩ B =∅, we take MB
χ = −∞. In particular, if χ = η and B = Wρ , we have M

Wρ
η = �ρ .

2.2. The typical degree

Recall that η denotes a stationary Poisson point process of intensity 1 in Rd , see [23], page 19,
for the definition of a Poisson point process. To describe the mean behaviour of the Poisson–
Delaunay graph, the notion of typical degree is introduced as follows. Let B ∈ Bd+ be fixed. The
typical degree is defined as the discrete random variable D0 with distribution given by

P
(
D0 = k

)= 1

Vd(B)
E

[ ∑
x∈η∩B

1{dη(x)=k}
]
, (2.2)

for any integer k. It is clear that P(D0 = k) = 0 for any k ≤ d . A consequence of the Mecke
equation (e.g., Theorem 4.1 in [23]) shows that

D0 d= dη∪{0}(0), (2.3)

where
d= denotes the equality in distribution. In particular, the right-hand side in (2.2) does not

depend on B . As another consequence of the Mecke equation, notice that

E
[
NB

η [k]]= Vd(B)P
(
D0 ≥ k

)
(2.4)

for any B ∈ Bd+, and for any integer k.
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Integral representation for the distribution of the typical degree. Let x1:k ∈ (Rd)k�= be a k-tuple
of distinct points, with k ≥ d . We say that x1:k is in convex position if {0, x1, . . . , xk} is in gen-
eral position, 0 is connected to all the xi , i = 1, . . . , k, in the Delaunay graph associated with
{0, x1, . . . , xk} and 0 is in the interior of the closure of the Voronoi flower F{0,x1,...,xk}(0). We
denote by Ck the set of all k-tuples of points in Rd which are in convex position. Note that
Ck is also the set of k-tuples of points x1:k such that {0, x1, . . . , xk} is in general position and
such that the Voronoi cell with nucleus 0 associated with {0, x1, . . . , xk}, i.e. C{0,x1,...,xk}(0), is
a (bounded) convex polytope with k facets. The set Ck is measurable and classical in the set-
ting of Voronoi tessellations, see, for example, Equation (6) in [9]. Note also that Ck is stable
under permutations, meaning that for any x1:k ∈ Ck and any permutation σ of the set {1, . . . , k},
we have xσ(1:k) = (xσ(1), . . . , xσ(k)) ∈ Ck . We shall now derive an integral representation of the
distribution of the typical degree D0.

Lemma 5. For each k ≥ 1, we have

P
(
D0 = k

)= ∫
Ck

1{	y1:k (0)≤1} dy1:k.

Proof. Using the above notation and Equation (2.3), we write

P
(
D0 = k

)= 1

k! E
[ ∑

x1:k∈ηk�=

1{x1:k∈Ck}1{Fx1:k (0)∩η=∅}
]
.

The multivariate Mecke equation (e.g., Theorem 4.4 in [23]) allows us to rewrite the expectation
of a sum over k-tuples of points in a Poisson point process as an integral over k-tuples of points
in Rd . Thanks to this formula, this gives

P
(
D0 = k

)= 1

k!
∫

Ck

P
(
Fx1:k (0) ∩ (η ∪ {x1, . . . , xk}

)=∅
)

dx1:k

= 1

k!
∫

Ck

P
(
Fx1:k (0) ∩ η =∅

)
dx1:k

= 1

k!
∫

Ck

e−	x1:k (0) dx1:k,

where the third line is also a consequence of the fact that η is a Poisson point process. Using the
fact that e−t = ∫∞

t
e−s ds, we get

P
(
D0 = k

)= 1

k!
∫

Ck

∫ ∞

0
1{	x1:k (0)≤s}e−s ds dx1:k.

Now since being in convex position is invariant under rescaling and since 	s1/dy1:k (0) =
s	y1:k (0), the change of variables x1:k = s1/dy1:k gives

P
(
D0 = k

)= 1

k!
∫ ∞

0
e−s

∫
Ck

1{	y1:k (0)≤1}sk dy1:k ds =
∫

Ck

1{	y1:k(0)≤1} dy1:k,
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where the last equality comes from the fact that
∫∞

0 e−ssk ds = �(k + 1) = k!. This concludes
the proof of Lemma 5. �

Estimates for the distribution of the typical degree. The following result provides bounds for
the distribution of the typical degree in Rd , d ≥ 2.

Proposition 6. There exist two constants c1, c2 > 0 only depending on d such that, for any
integer k ≥ d + 2 we have

(i) P(D0 = k) ≤ c2k
− 2

d−1 P(D0 = k − 1),

(ii) P(D0 = k) ≥ ck
1k

−2
d−1 k .

In particular, for some constant c3, we have

ck
1k

−2
d−1 k ≤ P

(
D0 = k

)≤ ck
3k

− 2
d−1 k (2.5)

and

P
(
D0 ≥ k

) ∼
k→∞ P

(
D0 = k

)
. (2.6)

The last equation comes from the fact that, for k ≥ d + 1, we have P(D0 ≥ k + 1) =∑∞
�=1 P(D0 = k + �) ≤ ∑∞

�=1 c�
2(k + 1)−

2�
d−1 P(D0 = k), which is negligible compared to

P(D0 = k) as k goes to infinity.
Proposition 6 is very similar to two results in [7] (Theorem 1.1 and Theorem 1.2) in which

estimates for the distribution of the typical number of facets in a Poisson hyperplane tessellation
are given. We only give a sketch of proof because it relies on a simple adaptation of several
arguments included in [7] to our setting. However, for a complete proof of Proposition 6, we
refer the reader to Chapter 5 in [6] (Theorems 5.1.7 and 5.5.1).

Sketch of proof. Note that it is enough to prove that the proposition holds for k ≥ k0 for some
arbitrarily large fixed k0. Indeed the result extends to k ≥ d + 2 simply by decreasing the value
of c1 and increasing the value of c2.

From Lemma 5, we know that

P
(
D0 = k

)= Vd×k(Ck,1),

where

Ck,t := {y1:k ∈ (Rd
)k : y1:k ∈ Ck,	y1:k (0) ≤ t

}
for any t > 0. Unfortunately the geometry of this set is too complex and a precise evaluation of
its Lebesgue measure seems out of reach (except for low values of k and d). We present below
the heart of the proof to get the lower and upper bounds of Proposition 6.

Upper bound: The key observation comes when one considers y1:k ∈ Ck and looks at what
happens when we remove one point yi of the collection {y1, . . . , yk}. More specifically we are
interested in how the Voronoi flowers Fy1:k (0) and Fy1:k−1(0) differ. There can be some bad



956 G. Bonnet and N. Chenavier

configurations where removing one specific point will change dramatically the picture but there
is always a good proportion of the points yi which does not significantly affect the Voronoi
flower. Indeed, by considering the associated Voronoi cell and using arguments from polytope
approximation theory, it can be shown (see Lemma 4.3.2 of [6]) that for any y1:k ∈ Ck,1, for at
least a quarter of the indices i ∈ {1, . . . , k}, the following two properties hold simultaneously:

(Pi) (y1, . . . , yi−1, yi+1, . . . , yk) ∈ Ck−1,1+εk
,

(P ′
i ) yi is at distance at most ε′

k from the boundary of F{0,y1,...,yk}\{yi }(0),

where εk = O(k−(d+1)/(d−1)) and ε′
k = O(k−2/(d−1)). Recall that elements y1:k ∈ Ck,1 are stable

under permutation of the points y1, . . . , yk . Thus, if one picks a random point uniformly in Ck,1
the probability that (Pk) and (P ′

k) are satisfied is at least 1/4. This can also be written as

Vd×k(Ck,1) ≤ 4
∫

Ck,1

1{(Pk) is satisfied}1{(P ′
k) is satisfied} dy1:k

= 4
∫

Ck−1,1+εk

∫
Rd

1{d(yk,∂Fy1:k−1 (0))≤ε′
k} dyk dy1:k−1.

Now, it is easy to see that the inner integral is of order ε′
k and using also some homogeneity

properties, we get

Vd×k(Ck,1) ≤ c · ε′
kVd×(k−1)(Ck−1,1+εk

)≤c′ · ε′
k(1 + εk)

k−1Vd×(k−1)(Ck−1,1),

for some positive constants c, c′. The factor (1 + εk)
k−1 tends to 1 because kεk converges

to 0 as k goes to infinity. Lemma 6(i) follows from the last upper bound and the fact that
Vd×(k−1)(Ck−1,1) = P(D0 = k − 1).

Lower bound: The idea for the lower bound is to build a subset Ek ⊂ Ck,1 with a sufficiently
simple geometry such that we can easily estimate its volume. We start by picking a “nice” con-
figuration x1:k in the interior of Ck,1. By “nice” we mean that ‖x1‖ = · · · = ‖xk‖, the vectors are
well spread, i.e. min‖xi − xj‖ is maximal, and 	x1:k (0) = 1 − δ, where δ > 0 is a fixed, arbi-
trarily small number. Note that in dimension 2 the points x1, . . . , xk are the vertices of a regular
polygon centered at the origin. In higher dimension they do not have such a nice property, but by
using usual arguments of minimal cap covering (see, e.g., Lemma 4.1.2. in [6]), it is easy to see
that min‖xi − xj‖ is of order k−1/(d−1) in any dimension.

Now we consider the following neighborhood of x1:k ,

Dk = {y1:k ∈ (Rd
)k : (1 − δ′k−2/(d−1)

)‖xi‖ ≤ ‖yi‖ ≤ ‖xi‖,‖xi − yi‖ ≤ δ′k−1/(d−1) ∀i
}
,

where δ′ > 0 is a fixed number, arbitrarily small compare to δ. Basic classical geometry compu-
tation (essentially Pythagorean theorem) show that this is a subset of Ck,1. Also, it is easy to see
that Dk has a volume of order ((δ′)dk−(d+1)/(d−1))k .

By considering permutation of the k coordinates for each element in Dk , we build the set Ek

with a volume k! bigger. Formally the set Ek is defined as

Ek = {(yσ(1), . . . , yσ(k)) : y1:k ∈ Dk,σ is a permutation of {1, . . . , k}}.
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Figure 3. The set Ek with k = 7 in the planar case. The black central dot is the origin. Elements of E7 are
7-tuple of points such that there is exactly one of them in each of the “round” red rectangle. For each of the
7! possible indexing y1, . . . , y7 of the 7 black dots, the 7-tuple y1:7 belongs to E7. The lines segments form
the Delaunay triangulation Del({0, y1, . . . , y7}). The thin black doted circles are the circumscribed circle
around the different Delaunay triangles. The thick blue dashed curve is the boundary of the Voronoi flower
Fy1:7 (0).

An illustration of this set in the planar case with k = 7 is provided in Figure 3. Using the lower
bound k! ≥ (k/e)k we get that Ek has a volume bigger than ckk−2/(d−1) for some positive con-
stant c. This is precisely the lower bound of the proposition. �

According to Proposition 6, the distribution of the typical degree belongs to the class of dis-
crete distributions considered by Anderson [1]. Roughly speaking, this explains why the maximal
degree belongs to two consecutive integers when the size of the window goes to infinity.

In the particular setting d = 2, a more precise estimate of the distribution of the typical degree
is established by Hilhorst (see Equation (1.2) in [19]):

P
(
D0 = k

)= C

4π2
· (8π2)k

(2k)!
(
1 + O

(
k− 1

2
))

, (2.7)

where C � 0.34. The above result is extended by Calka and Hilhorst for a larger class of random
polygons in R2 (see Equation (1.5) in [20]). Notice that (2.7) implies Proposition 6 in the partic-
ular case d = 2. The following remark presents a heuristic argument suggesting that, in the case
d = 2, a careful study based on (2.7) should refine the estimate E[�ρ].

Remark. The estimate E[�ρ] � d−1
2 · logρ

log logρ
seems to be accurate only for extremely high

values of ρ. Indeed, for d = 2, Figure 2 illustrates that the empirical distribution of �106 concen-
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trates on 15 and 16 rather than around 1
2 · log 106

log log 106 � 2.6. This is not surprising because of the
extremely slow growth of the logarithm.

Nevertheless, the following heuristic argument provides a much closer estimate of �106 .
Thanks to (2.7) and because of the extremely fast decay of this expression as k grows, we have

P
(
D0 ≤ 13

)� 1 − P
(
D0 = 14

)� 1 − 10−5

and

P
(
D0 ≤ 15

)� 1 − P
(
D0 = 16

)� 1 − 7.6 · 10−8.

Assuming that the maximal degree has the same behaviour as the maximum of 106 independent
random variables with the same distribution as the typical degree,

P(�106 ≤ 13) � 4 · 10−5 and P(�106 ≤ 15) � 0.93.

This suggests that �106 ∈ {14,15} with high probability, which is almost what we observe in
Figure 2. In the setting d = 2, a careful study based on (2.7) should provide an estimate of
E[�ρ] which fits the correct value faster than ours.

2.3. The function ρ �→ Iρ

In this section, we define a function ρ �→ Iρ , ρ > 0, with values in N, and which depends on
the dimension d . When d = 2, this is the function appearing in Theorem 1. To define Iρ for any
d ≥ 2, our approach is mainly inspired from [1]. For any k ≥ d + 1, define G(k) = P(D0 > k),
where D0 is the typical degree in Rd . We extend G as a continuous function as follows. For
any k ≥ d + 1, we let h(k) = − logG(k). We consider an auxiliary function hc defined as the
extension of h obtained by linear interpolation, that is, for any x ≥ d + 1,

hc(x) = h
(
x�)+ (x − 
x�)(h(
x + 1�)− h

(
x�)).
The function hc is continuous, strictly increasing and limx→∞ hc(x) = ∞. Then we extend G

as the continuous function Gc(x) = e−hc(x) for each x ≥ d + 1. In particular, Gc is a continuous
strictly decreasing function. Now, we define the function ρ �→ Iρ , ρ > 0, by

Iρ =
⌊
G−1

c

(
1

ρ

)
+ 1

2

⌋
. (2.8)

3. Intermediate results

In this section, we establish intermediate results which will be used in the proofs of Theorems 1
and 3. The proofs of these lemmas are given in Section 5.
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3.1. Technical results

We will use several times the following trivial lemma.

Lemma 7. Let B ∈ Bd+ and k ∈ N. Then P(MB
η ≥ k) ≤ Vd(B)P(D0 ≥ k).

The following lemma provides the exact order of Iρ .

Lemma 8. Let d ≥ 2 and let Iρ be as in (2.8). Then

Iρ ∼
ρ→∞

d − 1

2
· logρ

log logρ
.

The next lemma deals with the probability that the typical degree is larger than Iρ up to an
additive constant.

Lemma 9. Let d ≥ 2 and let Iρ be as in (2.8). Then

(i) ρ P(D0 ≥ Iρ + 2) −→
ρ→∞ 0;

(ii) (
log logρ

logρ
)

2�
d−1 ρ P(D0 ≥ Iρ − �) −→

ρ→∞ ∞ for each � ≥ 0.

In particular, when � = 0, Lemma 9(ii) means that ρ P(D0 ≥ Iρ) goes to infinity. By adapting
the proof of Lemma 9, it can also be shown that ρ P(D0 ≥ Iρ + 1) does not converge as ρ goes
to infinity because its infimum and supremum limits equal 0 and ∞ respectively.

As a consequence of Lemma 9, we could show that if X1, . . . ,Xn is a sequence of n inde-
pendent and identically distributed random variables, with the same distribution as the typical
degree, then the maximum of X1, . . . ,Xn belongs to {In, In + 1} with probability tending to 1 as
n goes to infinity. Even if the independency is lost, as it is the case with the vertices’ degrees, the
maximum remains upper bounded with high probability by In + 1, see Section 4.1, page 962. On
the other hand, if the dependency is too strong it is much more delicate to give a non-trivial lower
bound. Therefore the proofs of Theorems 1 and 3 rely on a quantification of the dependencies
between the vertices’ degrees. In Section 3.2 we show that vertices which are far enough have
almost independent degrees. This is sufficient to derive Theorem 3. In Section 3.3, at the cost
of reducing the setting to d = 2, we deal with a more local scale by showing that there are no 5
close nodes, such that their degrees are simultaneously larger than Iρ . This is one of the greatest
difficulties treated in this paper and one of the key arguments to prove Theorem 1.

3.2. A subdivision of the window Wρ

It is well-known that a Poisson–Delaunay graph in Rd has good mixing properties. To capture
this property, we proceed as follows. We partition Wρ = ρ1/d [0,1]d into a set Vρ of Nd

ρ closed
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sub-cubes of equal size, where

Nρ :=
⌊(

ρ

α logρ

)1/d⌋
, (3.1)

for some α > 2, with ρ large enough. The volume of each sub-cube is approximately α logρ

as ρ goes to infinity. The sub-cubes are indexed by the set of i := (i1, . . . , id ) ∈ {1, . . . ,Nρ}d ,
analogously to the order of indexing the elements of a matrix. With a slight abuse of notation,
we identify a cube with its index. We denote by i0 the unique sub-cube in Vρ which contains the
origin. We now introduce a distance between sub-cubes i and j as d(i, j) := max1≤s≤d |is − js |.
If I and J are two sets of sub-cubes, we let

d(I,J ) := min
i∈I,j∈J

d(i, j).

For any A ⊂ Rd , we define

I(A) := {i ∈ Vρ : int(i ∩ A) �=∅
}
.

Finally, to ensure several independence properties, we introduce the event that each sub-cube
contains at least one point of η, that is

Eρ :=
⋂

i∈Vρ

{η ∩ i �=∅}.

The event Eρ is extensively used in Stochastic Geometry to derive central limit theorems or limit
theorems in Extreme Value Theory (see, e.g., [3,12]). It will play a crucial role in the rest of the
paper. The following lemma captures the idea of “local dependence”.

Lemma 10. Let A,B ⊂ Wρ and let Nρ as in (3.1), with α > 2. Then

(i) conditioned on the event Eρ , the random variables MA
η and MB

η are independent when

d(I(A),I(B)) > D, where D := 4(
√d� + 1);
(ii) P(E c

ρ) = O(ρ−(α−1)), where E c
ρ denotes the complement of the event Eρ .

The above lemma has been used in various papers (e.g., Lemma 5 in [12] and Lemma 1 in
[14]). We refer the reader to these papers for a proof.

3.3. Family of five nodes with large degrees when d = 2

In this section, we only deal with the case d = 2. Recall that i0 is defined as the unique square in
Vρ which contains the origin (see Section 3.2). When ρ goes to infinity, the order of the area of
this square is α logρ.

The following result shows that, with high probability, there are no 5 close nodes, such
that their degrees are simultaneously larger than Iρ . Recall that the random variable NB

η [k] =∑
x∈η∩B 1{dη(x)≥k}, as introduced in (2.1), denotes the number of nodes in B with degree larger
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than k. By a convex and symmetric Borel subset B in R2, we mean a convex subset such that a
point x lies in B if and only if its antipode, −x, also lies in B .

Proposition 11. Let B ∈ B2+ be a convex and symmetric Borel subset in R2. Then there exist two
positive constants c4, c5 (independent of B) such, that for any k ≥ 1, we have

P
(
NB

η [k] ≥ 5
)≤ (c4V2(B)k−2 + ck

5V2(B)2k−k/2)
P
(
D0 = k

)
.

The above result is the key ingredient to derive Theorem 1 and contains the main difficulty of
our problem. It extensively uses the fact that the Delaunay graph is planar.

3.4. A lower bound for the distribution’s tail of the maximal degree in a
block

The following results deal with the reciprocal of Lemma 7. The first one only concerns the case
d = 2 and will be used to prove Theorem 1.

Proposition 12. Let B ∈ B2+ be a convex and symmetric Borel subset in R2. Then there exists an
integer k0 depending on B such that

P
(
MB

η ≥ k
)≥ V2(B)

5
P
(
D0 ≥ k

)
,

for any k ≥ k0.

The following result provides a lower bound which is less accurate than the one of Proposi-
tion 12, but deals with the general case d ≥ 2. It will be used to prove Theorem 3.

Proposition 13. Let B ∈ Bd+, d ≥ 2. Then, for any k ∈ N and h ≥ 1, we have

P
(
MB

η ≥ k
)≥ Vd(B)

h + 1

(
P
(
D0 ≥ k

)− exp

(
−Vd(B)

(
1 − e + h

Vd(B)

)))
.

3.5. A bound for the probability of a finite union of events

Lemma 14. Fix K ≥ 1. Let (�,F,P) be a probability space and let B(1), . . . ,B(K), be a col-
lection of events such that P(

⋂
j≤k+1 B(ij )) = 0, for any 1 ≤ i1 < · · · < ik+1 ≤ K . Then

P

(
K⋃

i=1

B(i)

)
≥ 1

k

K∑
i=1

P
(
B(i)
)
.

Notice that when k = 1, the inequality is actually an equality.
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4. Proofs of theorems and corollaries

4.1. Proof of Theorem 1

Let Iρ be as in (2.8). According to Lemma 8, we have Iρ ∼
ρ→∞

1
2 · logρ

log logρ
. Now, we have to show

that P(�ρ ∈ {Iρ, Iρ + 1}) converges to 1 as ρ goes to infinity. It is clear that P(�ρ ≥ Iρ + 2)

converges to 0 according to Lemma 7 (applied to B = Wρ and k = Iρ + 2) and Lemma 9.
To prove that P(�ρ ≤ Iρ − 1) converges to 0, we use all intermediate results presented in the
previous section. To do it, we subdivide the window Wρ into N2

ρ sub-squares of equal size as
described in Section 3.2, where Nρ is defined in (3.1) with d = 2, α > 2. This gives

P(�ρ ≤ Iρ − 1) ≤ P(�ρ ≤ Iρ − 1 | Eρ) + P
(
E c

ρ

)
(4.1)

= P

(⋂
i∈Vρ

{
M i

η ≤ Iρ − 1
} ∣∣∣ Eρ

)
+ P
(
E c

ρ

)
, (4.2)

where M i
η is defined in Section 2.1 and where Eρ and Vρ are defined in Section 3.2 respectively.

Let V ′
ρ be the family of sub-cubes i for which each coordinate of its index (i1, i2) is a multiple

of 9. Note that for any pair of distinct sub-cubes i, j ∈ V ′
ρ , we have d(i, j) ≥ 9 > 8 = 4(
√2�+1).

According to Lemma 10(i), conditioned on Eρ , we know that the events {M i
η ≤ Iρ − 1} and

{M j
η ≤ Iρ − 1} are independent for each i �= j ∈ V ′

ρ . Using the fact that P(M i
η ≤ Iρ − 1 | Eρ) ≤

P(M
i0
η ≤ Iρ − 1)/P(Eρ) for each i, we get

P

(⋂
i∈Vρ

{
M i

η ≤ Iρ − 1
} | Eρ

)
≤
∏
i∈V ′

ρ

P
(
M i

η ≤ Iρ − 1 | Eρ

)

≤
(
P(M

i0
η ≤ Iρ − 1)

P(Eρ)

)#V ′
ρ

= exp
(
#V ′

ρ

(
log
(
1 − P

(
M i0

η ≥ Iρ

))− log
(
P(Eρ)

)))
.

It is clear that #V ′
ρ ≥ 
Nρ/9�2 ≥ N2

ρ

82 for ρ large enough. Using this, and applying the standard

inequality log(1 − u) ≤ −u by taking u = P(M
i0
η ≥ Iρ), we get

P

(⋂
i∈Vρ

{
M i

η ≤ Iρ − 1
} | Eρ

)
≤ exp

(
−Nρ

82

(
P
(
M i0

η ≥ Iρ

)+ log
(
P(Eρ)

)))
.

Besides, according to Lemma 10(ii), we know that P(Eρ) = 1 − O(ρ−(α−1)) with α > 2. This
together with the above equation and Equation (4.1) gives, for ρ large enough,

P(�ρ ≤ Iρ − 1) ≤ exp

(
−N2

ρ

82

(
P
(
M i0

η ≥ Iρ

)+ log
(
P(Eρ)

)))+ O
(
ρ−(α−1)

)
.
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Since α > 2, we have N2
ρ log(P(Eρ)) −→

ρ→∞ 0. Thus,

P(�ρ ≤ Iρ − 1) ≤ exp

(
−N2

ρ

82
P
(
M i0

η ≥ Iρ

)+ o(1)

)
+ O
(
ρ−(α−1)

)
. (4.3)

To prove that the right-hand side of the above equation converges to 0, we have to show that
N2

ρ P(M
i0
η ≥ Iρ) converges to infinity. Notice that we cannot directly apply Proposition 12 to

the block B = i0 and to the integer k = Iρ because both quantities depend on ρ. To deal with

P(M
i0
η ≥ Iρ), we sub-divide the square i0 into K2

ρ sub-squares of equal size, say S1, . . . , SK2
ρ
,

with Kρ = 
(logρ)1/2�. The area of each sub-square Si is larger than α, and converges to α as ρ

goes to infinity.

Now, we define a finite collection of events B
(1)
ρ , . . . ,B

(K2
ρ)

ρ as follows. For each 1 ≤ i ≤ K2
ρ ,

we let

B(i)
ρ = {MSi

η ≥ Iρ

} \ {N i0
η [Iρ] ≥ 5

}
,

where we recall that N
i0
η [Iρ], as defined in (2.1), denotes the number of nodes with degree larger

than Iρ . In particular, we have

P
(
M i0

η ≥ Iρ

)≥ P

(K2
ρ⋃

i=1

B(i)
ρ

)
.

Moreover, we know that P(
⋂

j≤5 B
(ij )
ρ ) = 0, for any 1 ≤ i1 < · · · < i5 ≤ K2

ρ . It follows from
Lemma 14 that

P
(
M i0

η ≥ Iρ

)≥ 1

4

K2
ρ∑

i=1

P
(
B(i)

ρ

)≥ 1

4

K2
ρ∑

i=1

P
(
MSi

η ≥ Iρ

)− K2
ρ

4
P
(
N i0

η [Iρ] ≥ 5
)
.

First, we provide an estimate of P(N
i0
η [Iρ] ≥ 5). According to Proposition 11, we know that

P
(
N i0

η [Iρ] ≥ 5
)≤ (c4V2(i0)I−2

ρ + c
Iρ

5 V2(i0)2I
−Iρ/2
ρ

)
P
(
D0 = Iρ

)
.

Since V2(i0) = O(logρ) and Iρ ∼
ρ→∞

1
2 · logρ

log logρ
, it is clear that V2(i0)I−2

ρ = O(
(log logρ)2

logρ
).

Moreover, since log(V2(i0)) = O(Iρ), we have for some positive constant c,

c
Iρ

5 V2(i0)2I
−Iρ/2
ρ ≤ exp

(
−Iρ

2
log Iρ + c · Iρ

)
.

The last term converges to 0 as ρ goes to infinity. Therefore

P
(
N i0

η [Iρ] ≥ 5
)= o

(
P
(
D0 = Iρ

))
.
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To deal with P(M
Si
η ≥ Iρ), recall that the area of Si is larger than α so that, up to a transla-

tion, the square Si contains the square S′ = [−
√

α

2 ,
√

α

2 ]2. Due to the stationarity of η, we have

P(M
Si
η ≥ Iρ) ≥ P(MS′

η ≥ Iρ). According to Proposition 12 applied to B = S′, with V2(S
′) = α,

we obtain for ρ large enough and for each 1 ≤ i ≤ K2
ρ ,

P
(
MSi

η ≥ Iρ

)≥ α

5
P
(
D0 ≥ Iρ

)
.

Summing over i = 1, . . . ,K2
ρ , we deduce for ρ large enough that

P
(
M i0

η ≥ Iρ

)≥ K2
ρα

21
P
(
D0 ≥ Iρ

)
.

Now, we can conclude the proof of Theorem 1. Indeed, it follows from the above inequality
and Equation (4.3) that

P(�ρ ≤ Iρ − 1) ≤ exp
(−cN2

ρK2
ρ P
(
D0 ≥ Iρ

)+ o(1)
)+ O

(
ρ−(α−1)

)
,

for some positive constant c. This proves Theorem 1 thanks to Lemma 9(ii) and the fact that
N2

ρ ∼
ρ→∞

ρ
α logρ

and K2
ρ ∼

ρ→∞ logρ.

4.2. Proof of Corollary 2

To define the sequence (ρi), we first introduce for each i ≥ 1 the set Di = {ρ ∈ R+ : Iρ = i},
where Iρ is as in (2.8). Let i ≥ 1 be fixed. The set Di is non-empty since it contains the number
mi = (Gc(i − 1

2 ))−1. Because ρ �→ Iρ is increasing, Di is an interval. Moreover, this interval
is bounded since Dj is non-empty for each j ≥ 1. Thus the family (Di) is a partition of R+
into bounded intervals. We can easily show that these intervals are left-closed and right-open,
respectively.

Now, we define the sequence (ρi) as follows. For each i ≥ 2, we let ρi = supDi−1 = minDi .
In particular, we have Iρi−1 ≤ Iρi

− 1 = i − 1. The sequence (ρi) is increasing and converges to
infinity. According to Theorem 1, we have

P
(
�ρi

∈ {Iρi
, Iρi

+ 1}) −→
i→∞ 1. (4.4)

Moreover, according to Lemma 9(i), we know that (ρi − 1)P(D0 ≥ Iρi−1 + 2) converges to 0 as
i goes to infinity. Since Iρi−1 ≤ Iρi

− 1, this implies that

ρi P
(
D0 ≥ Iρi

+ 1
) −→

i→∞ 0.

Bounding P(�ρi
≥ Iρi

+ 1) by ρi P(D0 ≥ Iρi
+ 1) as before, we deduce that the probability

P(�ρi
≥ Iρi

+ 1) converges to 0. This together with (4.4) and the fact that Iρi
= i concludes the

proof of Corollary 2.
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4.3. Proof of Theorem 3

Let Jρ = Iρ +1−�d , where Iρ is defined in (2.8). According to Lemma 8, we know that Jρ ∼
ρ→∞

d−1
2 · logρ

log logρ
. Now, we have to show that P(�ρ ∈ {Jρ, Jρ + 1, . . . , Jρ + �d}) −→

ρ→∞ 1.

As in the proof of Theorem 1, we easily show that P(�ρ ≥ Iρ + 2) converges to 0 as ρ goes to
infinity. It remains to prove that P(�ρ ≤ Iρ − �d) also converges to 0. To do it, we proceed at this
step in the same spirit as in the case d = 2. We divide Wρ into Nd

ρ sub-cubes of equal size, where
Nρ is given in (3.1), for some α > 2. For some positive constant c this gives (see Equation (4.3))

P(�ρ ≤ Iρ − �d) ≤ exp
(−cNd

ρ P
(
M i0

η ≥ Iρ − �d + 1
)+ o(1)

)+ O
(
ρ−(α−1)

)
. (4.5)

Now we have to show that Nd
ρ P(M

i0
η ≥ Iρ − �d + 1) converges to infinity. This time we apply

Proposition 13 by taking B = i0, k = Iρ − �d + 1, and h = βVd(i0) for some β > 0. This gives

P
(
M i0

η ≥ Iρ − �d + 1
)

≥ Vd(i0)
βVd(i0) + 1

(
P
(
D0 ≥ Iρ − �d + 1

)− exp
(−(1 − e + β)Vd(i0)

))
.

Notice that the fraction Vd (i0)
βVd (i0)+1 is bounded. To deal with the right-hand side, we recall that

Nd
ρ ∼

ρ→∞
ρ

α logρ
and that Vd(i0) ∼

ρ→∞ α logρ, with α > 2. This gives

Nd
ρ exp

(−(1 − e + β)Vd(i0)
)= o

(
ρ−(α(1−e+β)−1)

)
.

Taking β in such a way that α(1 − e + β) > 1, we obtain that Nd
ρ exp(−(1 − e + β)Vd(i0))

converges to 0. Moreover, it follows from Lemma 9(ii) that

(
log logρ

logρ

) 2(�d−1)

d−1

log(ρ)Nd
ρ P
(
D0 ≥ Iρ − �d + 1

) −→
ρ→∞ ∞.

Combining all together we get

(
log logρ

logρ

) 2(�d−1)

d−1

log(ρ)Nd
ρ P
(
M i0

η ≥ Iρ − �d + 1
) −→

ρ→∞ ∞. (4.6)

Since 2(�d−1)
d−1 > 1, we deduce that Nd

ρ P(M
i0
η ≥ Iρ −�d +1) converges to infinity. This concludes

the proof of Theorem 3.
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4.4. Proof of Corollary 4

First, we write the expectation of the maximal degree as follows:

E[�ρ] =
Iρ−�d∑
k=1

kP(�ρ = k) +
Iρ+d∑

k=Iρ+1−�d

kP(�ρ = k) +
∞∑

k=Iρ+d+1

kP(�ρ = k).

For the first term, we notice that

Iρ−�d∑
k=1

kP(�ρ = k) ≤
(Iρ−�d∑

k=1

k

)
P(�ρ ≤ Iρ − �d) ∼

ρ→∞
I 2
ρ

2
P(�ρ ≤ Iρ − �d).

Using (4.5), (4.6), Lemma 8 and the fact that 2(�d−1)
d−1 > 1, it follows from basic computations

that the right-hand side converges to 0. This proves that
∑Iρ−�d

k=1 kP(�ρ = k) also converges

to 0. Moreover, as a consequence of Theorem 3, we know that
∑Iρ+d

k=Iρ+1−�d
kP(�ρ = k) is

asymptotically equivalent to d−1
2 · logρ

log logρ
. For the third term, we have

∞∑
k=Iρ+d+1

kP(�ρ = k) = (Iρ + d)P(�ρ ≥ Iρ + d + 1) +
∞∑

k=Iρ+d+1

P(�ρ ≥ k).

According to Lemma 7 (applied to B = Wρ and k = Iρ + d + 1), the first term of the right-hand
side can be bounded as follows:

(Iρ + d)P(�ρ ≥ Iρ + d + 1) ≤ (Iρ + d)ρ P
(
D0 ≥ Iρ + d + 1

)
.

According to Proposition 6, there exists a positive constant c such that

(Iρ + d)P(�ρ ≥ Iρ + d + 1) ≤ cI−1
ρ ρ P

(
D0 = Iρ + 2

)
.

The last term converges to 0 according to Lemma 9(i). Moreover, thanks again to Proposition 6,
we can also show that the series

∑∞
k=Iρ+d+1 P(�ρ ≥ k) is asymptotically less than ρ P(D0 ≥

Iρ +d +1). Since this quantity converges to 0 by Lemma 9, this shows that
∑∞

k=Iρ+d+1 kP(�ρ =
k) −→

ρ→∞ 0. Consequently, we have E[�ρ] ∼
ρ→∞

d−1
2 · logρ

log logρ
.

5. Proofs of technical results

5.1. Proof of Lemma 7

Let B ∈ Bd+ and k ∈ N. It is clear that P(MB
η ≥ k) = P(NB

η [k] ≥ 1). According to the Markov’s
inequality, this gives

P
(
MB

η ≥ k
)≤ E

[
NB

η [k]]= Vd(B)P
(
D0 ≥ k

)
,

where the last equality comes from (2.4).
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5.2. Proof of Lemma 8

Let

Aρ = G−1
c

(
1

ρ

)
, (5.1)

so that Iρ = 
Aρ + 1
2�. Since Gc is a continuous strictly decreasing function, the term Aρ can be

written as

Aρ = inf

{
x ∈ R+ : Gc(x) ≤ 1

ρ

}
= sup

{
x ∈ R+ : Gc(x) ≥ 1

ρ

}
.

It is enough to prove that xρ − 2 ≤ Aρ ≤ yρ , where

xρ := d − 1

2
· logρ

log logρ
and yρ := d − 1

2

(
logρ

log logρ
+ 2

logρ

(log logρ)2
log log logρ

)
.

To prove that Aρ ≥ xρ − 2 for ρ large enough, we notice that

Aρ ≥ inf

{
k ∈ N : G(k − 1) ≤ 1

ρ

}
− 2.

Besides, according to Proposition 6 and the fact that G(k−1) = P(D0 ≥ k) is larger than P(D0 =
k), we have G(k − 1) ≥ ck

1k
− 2

d−1 k . Thus

Aρ ≥ inf

{
k ∈ N : ck

1k
−2
d−1 k ≤ 1

ρ

}
− 2 ≥ inf

{
x ∈ R+ : cx

1x
−2
d−1 x ≤ 1

ρ

}
− 2.

Moreover, for ρ large enough, we have

c
xρ

1 x
−2
d−1 xρ

ρ = exp

(
− logρ + logρ

log logρ

(
log log logρ + O(1)

))
>

1

ρ
.

In particular, we have xρ ≤ inf{x ∈ R+ : c−x
1 x

−2
d−1 x ≤ 1

ρ
}, which proves that Aρ ≥ xρ − 2.

To prove that Aρ ≤ yρ , we proceed along the same lines as above. Indeed,

Aρ ≤ sup

{
k ∈ N : G(k − 1) ≥ 1

ρ

}
.

According to (2.5) and (2.6), there exists a constant c6 > 0 such that, for each k ∈ N, we have

G(k − 1) ≤ ck
6k

− 2
d−1 k . Thus

Aρ ≤ sup

{
k ∈ N : ck

6k
−2
d−1 k ≥ 1

ρ

}
≤ sup

{
y ∈ R+ : cy

6y
−2
d−1 y ≥ 1

ρ

}
.
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Moreover, with standard computations, we can easily show that

c
yρ

6 yρ

−2
d−1 yρ = exp

(
− logρ − logρ

log logρ

(
log log logρ + O(1)

))
<

1

ρ
.

In particular, for ρ large enough, we have yρ ≥ sup{y ∈ R+ : c
y

6y
−2
d−1 y ≥ 1

ρ
}, which proves that

Aρ ≤ yρ .

5.3. Proof of Lemma 9

Proof of (i). First, we notice that for each k ∈ N, we have G(k+1)
G(k)

−→
k→∞ 0 by Proposition 6. With

standard computations (see, e.g., the proof of Theorem 1 in [1]), we easily show that

Gc(x + y)

Gc(x)
−→
x→∞ 0, (5.2)

for each x, y ∈ R+. In particular, we get

ρ P
(
D0 ≥ Iρ + 2

)= ρGc(Iρ + 1) ≤ ρGc

(
Aρ + 1

2

)
= o
(
ρGc(Aρ)

)
,

where Aρ is defined in (5.1). Since Gc(Aρ) = 1
ρ

, we have ρ P(D0 ≥ Iρ + 2) = o(1). �

Proof of (ii). First, we deal with the case � = 0. Proceeding in the same spirit as above, Equa-
tion (5.2) gives

ρ P
(
D0 ≥ Iρ

)= ρGc(Iρ − 1) ≥ ρGc

(
Aρ − 1

2

)
= Gc(Aρ − 1

2 )

Gc(Aρ)
−→
ρ→∞ ∞.

The general case follows from an induction on � and from the following lines:

ρ P
(
D0 ≥ Iρ − �

)≥ ρ P
(
D0 = Iρ − �

)
≥ ρc−1

2 (Iρ − � + 1)
2

d−1 P
(
D0 = Iρ − � + 1

)
∼

ρ→∞ cρ

(
logρ

log logρ

) 2
d−1

P
(
D0 ≥ Iρ − � + 1

)
,

where the second inequality is a consequence of Proposition 6 and where the third line comes
from (2.6) and the fact that Iρ ∼

ρ→∞
d−1

2 · logρ
log logρ

. �

5.4. Proof of Proposition 11

First, we show that if NB
η [k] ≥ 5, then almost surely there exists at least one pair of nodes in B ,

with degree larger than k but with few vertices in common. Then we show that such an event
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cannot occur with high probability. To do it, we begin with a result on deterministic geometric
graphs, established in the following paragraph.

A bound for the number of common vertices in a deterministic geometric graph.

Proposition 15. Let G = (V ,E) be a simple planar graph in R2 and let S = {s1, s2, s3, s4, s5} ⊂
V be a set of five distinct vertices. Then there exist two vertices si , sj ∈ S such that #(NG(si) ∩
NG(sj )) ≤ 4.

Proof. Assume for the sake of contradiction that every pair of distinct vertices of S has at least
five common neighbors and fix a planar drawing of G. We show below that G contains a sub-
division of the complete graph with five vertices K5, which is not planar. To do it, it is enough
to prove that for every distinct vertices u,v ∈ S, there exists a common neighbor puv /∈ S that is
adjacent to no vertex of S except u and v.

Let u,v ∈ S be two distinct vertices and let w1, . . . ,w5 be the common neighbors of u and v.
The edges of G between the vertices u, v and the vertices w1, . . . ,w5 partitions the plane into
five disjoint open regions R1, . . . ,R5. Up to a reordering of w1, . . . ,w5, we may assume that the
boundary of each region Ri is the quadrilateral uwivwi+1, where w6 := w1 (see Figure 4).

We prove below that for some 1 ≤ i ≤ 5 the closure Ri of Ri contains S. To do it, we observe
that there exists a region Ri which contains at least a vertex in S. Indeed, if not, S is included in
{u,v,w1,w2,w3,w4,w5} and contains a pair of the form wj , wj+2, for some 1 ≤ j ≤ 7, with
w6 := w1 and w7 := w2. Since the graph G is planar, the vertices wj and wj+2 have at most
three common neighbors, namely u, v and wj+1, which contradicts our assumption. Therefore,
there exists a vertex x ∈ S ∩ Ri for some 1 ≤ i ≤ 5. To prove that S is included in Ri , we assume
by contradiction that there exists a vertex y ∈ S ∩ Rj , with j �= i. In the same spirit as above, the
vertices x and y have at most three common neighbors, which also contradicts our assumption.

We can now conclude the proof of Proposition 15. Indeed, since S ⊂ Ri , there exists a common
neighbor puv /∈ S of u, v which is not a neighbor of any vertex in S \ {u,v}: for i = 1,2,3,4,5,
we can take puv = w4,w5,w1,w2,w3 respectively. This proves the claimed property. �

Figure 4. Five common neighbors between the vertices u and v.
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Figure 5. A planar graph with a set S of five vertices (red points) such that each pair of vertices of S has
four common neighbors.

Proposition 15 is tight in the sense that the number 4 appearing in the upper bound cannot be
replaced by 3 (see Figure 5).

Proof of Proposition 11. Let Ek be the following event:

Ek =
{ ∑

x∈η∩B

1{dη(x)=k} ≥ 5

}
.

Then

P
(
NB

η [k] ≥ 5
)≤ P(Ek) + P

(
NB

η [k + 1] ≥ 1
)

≤ P(Ek) +E
[
NB

η [k + 1]]
= P(Ek) + V2(B)P

(
D0 ≥ k + 1

)
,

where the last equality comes from (2.4). According to Proposition 6, we know that

P
(
D0 ≥ k + 1

) ∼
ρ→∞ P

(
D0 = k + 1

)≤ ck−2
P
(
D0 = k

)
.

Now, we have to show that P(Ek) ≤ ckV2(B)2k−k/2
P(D0 = k), which constitutes the main

difficulty of the proof of Proposition 11. To do it, we apply Proposition 15: if the event Ek occurs
then there exist five nodes x1, . . . , x5 in η ∩ B with degree k such that #(Nη(x1) ∩Nη(x2)) ≤ 4.
Thus

P(Ek) ≤ 2P
(∃(x1, x2) ∈ (η ∩ B)2 : dη(x1) = dη(x2) = k,#

(
Nη(x1) ∩Nη(x2)

)≤ 4,

and V2
(
Fη(x1)

)≤ V2
(
Fη(x2)

))
.
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Figure 6. Part of the Delaunay graph Del(η ∪ {0, x}) around the points 0 and x.

The factor 2 comes from the fact that V2(Fη(x1)) is assumed to be lower than V2(Fη(x2)). It
follows from the multivariate Mecke equation and the fact that η is stationary that

P(Ek) ≤ 2V2(B)

∫
2B

P
({

dη∪{0,x}(0) = dη∪{0,x}(x) = k
}

∩ {#(Nη∪{0,x}(0) ∩Nη∪{0,x}(x)
)≤ 4

}∩{V2
(
Fη(x)

)≤ V2
(
Fη(0)

)})
dx.

Note that the integration domain is 2B since, because of the symmetry of B , this is precisely the
set of all differences x2 − x1 for x1, x2 ∈ B . To bound the right-hand side, we introduce for any
� ∈ N, x ∈ R2, s ∈ [0,∞] the set D�,x,s ⊂ R2� which consists of the family of (ordered) �-tuples
of points q1:� = (q1, . . . , q�) in R2 such that the following properties hold simultaneously:

P :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q1, . . . , q� are clockwise ordered around x;
qj /∈ B(x, qi, qi+1) for any i < � and j ≤ �;
V2

(⋃
i<�

B(x, qi, qi+1)

)
≤ s.

Here “clockwise ordered around x” means that the points appear in order when viewed from x

and turning clockwise. These properties are illustrated by Figure 6. In this figure, the points q1,
q2 and q3 are three consecutive neighbors of x (clockwise ordered around x). The circumscribed
disks of {x, q1, q2} and {x, q2, q3} are petals of the Voronoi flower centered at x, and therefore
the area of their union is less then 	η(x). These facts imply that q1:3 is an element of Dx,3,	η(x).
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Note that, contrary to the set Ck introduced just before Lemma 5, the set D�,x,s is not stable
under coordinates permutation. This is due to the clockwise orientation restriction. We will also
use several times the following homogeneity properties which hold for any � ∈ N, x ∈ R2 and
0 < s < t ,

D�,x,s = x + D�,0,s , D�,x,s ⊂ D�,x,t , V2�(D�,x,s) = s�V2�(D�,x,1). (5.3)

Now, let x ∈ B be fixed. Assume that the following events {dη∪{0,x}(0) = dη∪{0,x}(x) = k},
{#(Nη∪{0,x}(0) ∩ Nη∪{0,x}(x)) ≤ 4} and {V2(Fη∪{0,x}(x)) ≤ V2(Fη∪{0,x}(0))} hold simultane-
ously. In particular, there exist at least k − 4 neighbors of x which do not belong to the Voronoi
flower Fη∪{0,x}(0). Thus there exist at least k′ = 
 k−4

4 � consecutive (clockwise ordered around x)

neighbors of x, which are not neighbors of 0. Thus there exists a k′-tuple of points p1:k′ ∈ ηk′

such that the family of properties P holds, with � = k′ and s = V2(Fη∪{0,x}(0)). Therefore

P(Ek) ≤ 2V2(B)

∫
2B

P
({

dη∪{0,x}(0) = k
}

∩ {(η \Nη∪{0,x}(0)
)k′
�= ∩ Dk′,x,V2(Fη∪{0,x}(0)) �=∅

})
dx.

Now, we discuss two cases: the first one is when x and 0 are not neighbors and the second one
deals with the complement event.

Case 1. The nodes x and 0 are not neighbors. In this case, we bound for any x ∈ 2B , the
following probability:

P1(x) = P
({

dη∪{0,x}(0) = k
}∩ {(η \Nη∪{0,x}(0)

)k′
�= ∩ Dk′,x,V2(Fη∪{0,x}(0)) �=∅

}
∩ {x /∈Nη∪{0,x}(0)

})
.

To do it, we write

P1(x) ≤ 1

k! E
[ ∑

(p1:k,q1:k′ )∈ηk+k′
�=

1{Fp1:k (0)∩η=∅}1{p1:k∈Ck}1{q1:k′ ∈Dk′,x,	p1:k (0)}
]
,

where we recall that Fp1:k (0) is the Voronoi flower with nucleus 0 induced by the set of points
{0,p1, . . . , pk}. Notice that we have divided by k! because Ck is stable under permutations which
is not the case for D�,x,s . It follows from the multivariate Mecke equation that

P1(x) ≤ 1

k!
∫

R2k

∫
R2k′ P

(
Fp1:k (0) ∩ η =∅

)
1{p1:k∈Ck}1{q1:k′ ∈Dk′,x,	p1:k (0)} dq1:k′ dp1:k. (5.4)

Integrating over q1:k′ , it follows from Fubini’s theorem and the fact that η is a Poisson point
process, that

P1(x) ≤ 1

k!
∫

Ck

e−	p1:k (0)V2k′(Dk′,x,	p1:k(0))dp1:k.
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As in the proof of Lemma 5, we use the fact that e−	p1:k (0) = ∫∞
0 e−s1{	p1:k (0)≤s} ds. The change

of variables p1:k = s1/2y1:k , the properties (5.3), and the fact that 	s1/2y1:k (0) = s	y1:k (0), give

1

k!
∫

Ck

e−	p1:k (0)V2k′(Dk′,x,	p1:k(0))dp1:k

= 1

k!
∫ ∞

0
e−s

∫
Ck

1{	y1:k (0)≤1}
(
s	y1:k (0)

)k′
V2k′(Dk′,x,1)s

k dy1:k ds.

Bounding 	y1:k (0) by 1 in the integrand, we get

P1(x) ≤ 1

k!
∫ ∞

0
e−s

∫
Ck

1{	y1:k (0)≤1}sk+k′
V2k′(Dk′,x,1)dy1:k ds.

Integrating over s, we deduce from Lemma 5 that

P1(x) ≤ (k + k′)!
k! P

(
D0 = k

)
V2k′(Dk′,x,1).

The next lemma provides an upper bound for V2k′(Dk′,x,1).

Lemma 16. There exists a constant c > 0 such that, for any j ∈ N and x ∈ R2,

V2j (Dj,x,1) ≤ c

(j − 1)! P
(
D0 = j

)
.

Proof. First, we notice that this term actually does not depend on x since Dj,x,s = x +
Dj,0,s for any j , x, s. In the proof of this lemma we will use the notation 	̃p1:j (x) :=
V2(
⋃

i≤j−1 B(x,pi,pi+1)) for any p1:j ∈ Dj,x,∞. Similarly as above, we combine the substitu-

tion p1:j = s1/2y1:j with the observation that
∫∞

0 e−s1{	̃p1:j (0)≤s} ds = e
−	̃p1:j (0). This gives

V2j (Dj,0,1) = 1

j !
∫ ∞

0
e−s

∫
Dj,0,∞

1{	̃y1:j (0)≤1}s
j dy1:j ds = 1

j !
∫

Dj,0,∞
e
−	̃p1:j (0) dp1:j .

Using the fact that e
−	̃p1:j (0) = E[1{(η∪{p1,...,pj })∩(

⋃
i≤j−1 B(0,pi ,pi+1))=∅}], the multivariate

Mecke equation implies that

V2j (Dj,0,1) = 1

j ! E
[ ∑

p1:j ∈η
j
�=

1{p1:j ∈Dj,0,∞}1{η∩(
⋃

i≤j−1 B(0,pi ,pi+1))=∅}
]
.

Note that a.s. the random variable dη∪{0}(0) is larger than j whenever the indicator functions
above are equal to one. Moreover if dη∪{0}(0) = � ≥ j , then there exist exactly � tuples of points
p1:� in η such that the corresponding events hold. In fact p1 must be a neighbor of 0 in Del(η),
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and picking it arbitrarily implies that p2,p3, . . . are the (clockwise ordered around 0) neighbors
of 0. Thus, according to (2.3), we can write

V2j (Dj,0,1) = 1

j ! E
[∑

�≥j

�1{D0=�}
]

(5.5)

Moreover, we know that

E

[∑
�≥j

�1{D0=�}
]

=
∞∑

�=1

(j + �)P
(
D0 = j + �

)≤ c′ · P(D0 = j
)
,

for some constant c′, where the inequality relies on an adaptation of the proof of (2.6), see
page 955. This together with (5.5) concludes the proof of Lemma 16. �

According to Lemma 16, for any x ∈ R2, we have

P1(x) ≤ c
(k + k′)!

k!(k′ − 1)! P
(
D0 = k

)
P
(
D0 = k′).

To provide an upper bound for the the right-hand side, we first we give an estimate of the log-
arithm of (k+k′)!

k!(k′−1)! P(D0 = k′). To do it, we use the fact that log(k!) = k logk + O(k). Since

k′ = 
 k−4
4 �, we have log((k + k′)!) = 5

4k logk + O(k) and log((k′ − 1)!) = 1
4k logk + O(k).

Moreover, according to (2.5), we also know that log(P(D0 = k′)) = − 1
2k logk + O(k). There-

fore,

log

(
(k + k′)!

k!(k′ − 1)! P
(
D0 = k′))= −1

2
k logk + O(k).

Now we can provide an upper bound for P1(x). Indeed, it follows from the above equality that
(k+k′)!

k!(k′−1)! P(D0 = k′) is lower than ckk−k/2 for some positive constant c, which implies

P1(x) ≤ ckk−k/2
P
(
D0 = k

)
.

Integrating over x ∈ 2B , we obtain
∫

2B
P1(x)dx ≤ ckV2(B)k−k/2

P(D0 = k).

Case 2. The nodes x and 0 are neighbors. In this case, for any x ∈ B , we deal with the following
probability:

P2(x) = P
({

dη∪{0,x}(0) = k
}∩ (η \Nη∪{0,x}(0)

)k′
�= ∩ Dk′,x,V2(Fη∪{0,x}(0)) �=∅}

∩ {x ∈Nη∪{0,x}(0)
})

.

Since we now consider situations where x is one of the k neighbors of 0, it will be practical
in the following lines to set pk = x in order to keep relatively short notation. This time we
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write

P2(x) = P2(pk)

≤ 1

(k − 1)! E
[ ∑

(p1:k−1,q1:k′ )∈ηk−1+k′
�=

1{Fp1:k (0)∩η=∅}1{p1:k∈Ck}1{q1:k′ ∈Dk′,pk ,	p1:k (0)}
]
.

Integrating over x ∈ B and applying the multivariate Mecke equation as in the first case, we
have ∫

B

P2(x)dx ≤ 1

(k − 1)!
∫

R2(k−1)×B

∫
R2k′ P

(
Fp1:k (0) ∩ η =∅

)
× 1{p1:k∈Ck}1{q1:k′ ∈Dk′,pk ,	p1:k (0)} dq1:k′ dp1:k.

The right-hand side is very similar to the upper bound in (5.4). There are only two differences
between these upper bounds. The first one is that we integrate over R2(k−1) × B instead of R2k .
The second one is that we consider the ratio 1

(k−1)! instead of 1
k! . However, proceeding exactly

along the same lines as in the first case, we obtain that
∫

2B
P2(x)dx ≤ ckk−k/2

P(D0 = k).
Since P(Ek) ≤ 2V2(B)

∫
2B

(P1(x) + P2(x))dx, it follows from the two cases discussed above

that P(Ek) ≤ ckV2(B)2k−k/2
P(D0 = k). This concludes the proof of Proposition 11.

5.5. Proof of Proposition 12

Recall that MB
η = maxx∈η∩B dη(x) and NB

η [k] =∑x∈η∩B 1{dη(x)≥k} denote the maximum degree
and the number of exceedances in the set B , respectively. This gives

P
(
D0 ≥ k

)= 1

V2(B)
E

[ ∑
x∈η∩B

1{dη(x)≥k}
]

= 1

V2(B)
E
[
NB

η [k]1{NB
η [k]≤4}1{MB

η ≥k}
]+ 1

V2(B)
E
[
NB

η [k]1{NB
η [k]≥5}

]
.

We bound NB
η [k]1{NB

η [k]≤4} by 4 in the first expectation and NB
η [k] by #(η ∩ B) in the second

one. We get

P
(
D0 ≥ k

)≤ 4

V2(B)
P
(
MB

η ≥ k
)+ 1

V2(B)
E
[
#(η ∩ B)1{NB

η [k]≥5}
]
. (5.6)

We show below that the second term of the right-hand side equals o(P(D0 = k)). To do it, we
write

E
[
#(η ∩ B)1{NB

η [k]≥5}
]

≤ k1+εV2(B)P
(
NB

η [k] ≥ 5
)+E

[
#(η ∩ B)1{#(η∩B)≥k1+εV2(B)}

]
,
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for some ε ∈ (0,1). According to Proposition 11, since ε < 1, we have

k1+εV2(B)P
(
N

η
B [k] ≥ 5

)= o
(
P
(
D0 = k

))
as k goes to infinity. Besides, we can easily show that if X is a Poisson random variable with
parameter λ, then E[X1{X≥x}] ∼

x→∞ x P(X ≥ x). Since #(η ∩ B) is a Poisson random variable

with parameter V2(B), this gives

E
[
#(η ∩ B)1{#(η∩B)≥k1+εV2(B)}

] ∼
k→∞ k1+εV2(B)P

(
#(η ∩ B) ≥ k1+εV2(B)

)
≤ k1+εV2(B) exp

(−k1+εV2(B)
)
E
[
e#(η∩B)

]
,

where the second line is a consequence of the Markov’s inequality. Besides, according to Propo-
sition 6, we have k1+ε exp(−k1+εV2(B)) = o(P(D0 = k)). This implies that

E
[
#(η ∩ B)1{NB

η [k]≥5}
]= o

(
P
(
D0 = k

))
.

This together with (5.6) concludes the proof of Proposition 12.

5.6. Proof of Proposition 13

Proceeding along the same lines as in the proof of Proposition 12 (see Equation (5.6)), we obtain
for any k ∈ N, h ≥ 1 that

P
(
D0 ≥ k

)≤ h + 1

Vd(B)
P
(
MB

η ≥ k
)+ 1

Vd(B)
E
[
NB

η [k]1{NB
η [k]≥h+1}

]
.

To deal with the second term of the right-hand side, we apply the Mecke equation. This gives

E
[
NB

η [k]1{NB
η [k]≥h+1}

]= E

[ ∑
x∈η∩B

1{dη(x)≥k}1{NB
η [k]≥h+1}

]

=
∫

B

P
(
dη∪{x}(x) ≥ k,NB

η∪{x}[k] ≥ h + 1
)

dx.

Bounding the integrand by the probability of the event {#((η ∪ {x}) ∩ B) ≥ h + 1}, which equals
{#η ∩ B ≥ h} for almost all x ∈ B , we obtain

E
[
NB

η [k]1{NB
η [k]≥h+1}

]≤ Vd(B)P(#η ∩ B ≥ h).

Thus

P
(
D0 ≥ k

)≤ h

Vd(B)
P
(
MB

η ≥ k
)+ P(#η ∩ B ≥ h). (5.7)
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Since the random variable #η ∩ B is Poisson distributed with parameter Vd(B), it follows from
the Markov’s inequality that

P(#η ∩ B ≥ h) ≤ e−h
E
[
e#η∩B

]= exp

(
−Vd(B)

(
1 − e + h

Vd(B)

))
.

This together with (5.7) concludes the proof of Proposition 13.

5.7. Proof of Lemma 14

For any ω ∈ �, let d(ω) be the number of B(i)’s which contain ω. Let 1 ≤ i, � ≤ K . It is clear that
the set {ω ∈ B(i) : d(ω) = �} is measurable because it can be written as a union, intersection and
complement of events B(i). Now, let ai(�) = P({ω ∈ B(i) : d(ω) = �}). According to Lemma 1
in [22], we know that

P

(
K⋃

i=1

B(i)

)
=

K∑
i=1

K∑
�=1

ai(�)

�

if � is finite. As mentioned in a footnote of [22], page 147, the above equality remains true for
a general probability space. Moreover, according to the assumption, we have ai(�) = 0 for any
i ≤ K and � > k. Thus

P

(
K⋃

i=1

B(i)

)
≥ 1

k

K∑
i=1

k∑
�=1

ai(�) = 1

k

K∑
i=1

P
(
B(i)
)
.
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