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This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by
E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in
a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic
order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express
the rate function as solution to an entropy minimisation problem in the space of stationary marked point
processes.
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1. Introduction

In the present paper, we investigate typical distances and large deviation principles (LDPs) in the
spatial preferential attachment models (S-PAMs) model introduced in [11]. Firstly, we verify a
conjecture in [13], Remark 3, about typical distances in the largest connected component of the
S-PAM. As made precise in Theorem 2.1 below, the asymptotic behaviour depends both on the
strength of the preferential attachment and on the influence of vertex distances on the connection
probability. This is in contrast to the situation for the asymptotic degree distribution, where only
the strength of the preferential attachment but not the geometry affects the power-law exponent
[12], Remark 1.

Secondly, we establish an LDP for the in-degree evolution and the evolution of the neigh-
bourhood structure of a typical vertex. The most fundamental building blocks for this result are
the process-level LDP of a marked Poisson point process [9] and the contraction principle. The
rate function is expressed via a constraint minimisation problem of the specific relative entropy.
Loosely speaking, large deviations from the neighbourhood structure are induced by stationary
modifications of the original Poisson point process of vertices. Asymptotically, the configura-
tions in a rare event minimise the specific-entropy costs of these modifications subject to the
constraint of leading to the considered rare event. Hence, our approach offers a novel comple-
menting perspective to previously used martingale techniques [2,4].

The rest of the paper is organised as follows. In Section 2, we provide precise definitions of
the S-PAM and state our two main results. Sections 3 and 4 contain the proofs for the distance
asymptotics and the large deviation principle. Finally, highly technical proofs and auxiliary re-
sults are available in a short supplementary document that is available on the journal webpage.
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2. Model definition and main results

2.1. Definition

We consider the S-PAM from [11–13]. More precisely, the torus Tn = [−n1/d/2, n1/d/2]d/∼ of
side length n > 0 in dimension d ≥ 1 is the ambient space of the model. For the construction
of the S-PAM, we view the process of network nodes as a space-time process of points arriving
sequentially in Tn. More precisely, they form a homogeneous Poisson point process X = Xn on
Tn × [0,1] with intensity 1. Formally, a point (x, s) ∈ X is a vertex at position x ∈ Tn and birth
time s ∈ [0,1]. For brevity, we often write just x ∈ X to denote the a.s. unique vertex (x, s) in
position x ∈ Tn.

We identify X with the vertex set of a random geometric graph Gn = (X,E) obtained by the
following distance-dependent preferential attachment mechanism.

The model is parametrised by an affine function f : Z≥0 → (0,∞), z �→ γ z + γ ′ inducing
the PA mechanism, where γ ∈ (0,1), γ ′ > 0, and a decreasing profile function ϕ : [0,∞) →
[0,1] incorporating the spatial effects. We assume power decay of the profile function in the
sense that ϕ(x) = min{κx−δ,1} for some δ > 1 with normalising constant κ chosen such that∫ ∞

0 ϕ(x)dx = 1/2. With these settings, the edges in the S-PAM are obtained as follows, where
by a slight abuse of notation we write | ·− · | for the Euclidean distance on the torus. Initially, the
edge set is empty. Whenever a new vertex (y, t) ∈ X is born, it connects to each vertex (x, s) ∈ X

with s < t independently with probability

ϕ

(
t |x − y|d

f (Zx(t−))

)
, (1)

where Zx(t−) denotes the in-degree of (x, s) at time t−, that is, the number of connections it
has already received from vertices born during (s, t). These dynamics give rise to an increasing
process (Gn(t))t∈[0,1] of geometric graphs. We usually write Gn for Gn(1).

2.2. Typical distances

One of the central findings in [13] is that the S-PAM undergoes a phase transition: if the attach-
ment function f increases quickly and the profile function ϕ decreases slowly, then the connected
component Cn of the oldest vertex in Gn = Gn(1) grows linearly in n. Moreover, this component
is robust under site percolation in the sense that it remains of linear size even after any nontrivial
i.i.d. Bernoulli thinning of the vertices.

By [13], Theorem 1, and [12], Theorem 7, for γ > δ/(1 + δ) we have

P− lim
n→∞

#Cn

n
= θ ∈ (0,1), (2)

where P − lim is shorthand for limit in probability. In this regime, it is conjectured [13], Re-
mark 3, that typical distances are of doubly-logarithmic order. We verify this conjecture here.
The graph distance in Gn is denoted by distn(·, ·).
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Theorem 2.1 (Distances for γ > δ/(1+δ)). Let Y , Y ′ be uniformly chosen vertices of Cn. Then,
with high probability as n → ∞,

distn
(
Y,Y ′) ≤ (

4 + o(1)
) log logn

log γ
δ(1−γ )

.

By checking the error terms in the proofs of Propositions 3.2 and 3.3 below, one can see that
Theorem 2.1 extends to the slightly more general choices of attachment and profile function
studied in [13]. Thus, the following extension of Theorem 2.1 holds true.

Corollary 2.2. Let the preferential attachment function f satisfy limk→∞ f (k)
k

= γ ∈ (0,1) and
the profile function ϕ ϕ(x) = L(x)x−δ , for some δ ∈ (1,∞) and some slowly varying function
L : (0,∞) → (0,∞), then the conclusion of Theorem 2.1 remains valid.

It is an intriguing open problem to complement Theorem 2.1 with a matching lower bound. An
important step in this direction would be to derive a corresponding result in the more tractable
age-dependent random connection model as suggested in [10].

2.3. Large deviations principle

As our second main result, we derive an LDP for the evolution of the neighbourhood structure in
the S-PAM as defined in Section 2.1, in the vein of [1]. This complements results for combinato-
rial sparse graphs discussed in [1] by a class of random graphs with an underlying geometry. In
particular, as a corollary we obtain an LDP for the evolution of the empirical in-degree distribu-
tion over time, similar to the setting in [2].

Next, we introduce notation related to local convergence of graphs. We let G∗ denote the
family of rooted graphs, that is, of locally finite and connected graphs with a distinguished vertex.
We write gh for the subgraph of a rooted graph g ∈ G∗ obtained as the union of all paths in g

connecting to the root in at most h ≥ 0 hops. We equip G∗ with the local topology, the topology
generated by the functions evh,g′ : g �→ 1{gh � g′

h}, where h ∈ Z≥0 and g′ ∈ G∗. Then, writing
[Gn(t), x] for the spatial PAM at time t with distinguished vertex x ∈ X, the evolution of the
empirical neighbourhood structure

Lneighb
n (·) = 1

n

∑
x∈X

δ[Gn(·),x] (3)

defines a random variable in the product space M(G∗)[0,1], where M(G∗) is the family of fi-
nite measures on G∗ endowed with the vague topology. In other words, M(G∗)[0,1] carries the
smallest topology such that for each t ∈ [0,1], h ∈ Z≥0 and rooted graph g ∈ G∗ the evaluation
maps evt,h,g : M(G∗)[0,1] → [0,∞), ν �→ νt (gh) are continuous. Also note that since we work
in a Poisson setting, in (3) we normalise by the window size n rather than the random number of
vertices.
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By the contraction principle [3], Theorem 4.2.10, the LDP for L
neighb
n becomes a consequence

of the LDP for marked Poisson point processes [9], Theorem 3.1. Hence, we introduce com-
mon notation in this setting. First, to realise the independent connections with the probability
described in (1), we proceed as in the random connection model [8] and introduce a family of
auxiliary random variables. More precisely, we augment each vertex (x, s) ∈ X independently
with a collection of iid random variables {Vx,y}y∈X such that each Vx,y ∼ U([0,1]) is uniformly
distributed on [0,1]. In other words, X becomes an [0,1]Z≥0 -marked Poisson point process. As
a new vertex (y, t) ∈ X arrives, it connects to (x, s) ∈ X if and only if s < t and Vx,y is smaller
than the threshold given in (1).

In the limit n → ∞ the torus Tn approaches Rd . Therefore, the limiting objects appearing in
the LDP live in Pθ , the space of all distributions of stationary [0,1]Z≥0 -marked point processes
on Rd endowed with the τL-topology of local convergence. This topology is generated by the
evaluations evf : Pθ → [0,∞), Q �→ ∫

C f (ψ)Q(dψ), where C is the space of configurations in
the space Rd × [0,1]Z≥0 that are locally finite in the first component and f is any nonnegative
measurable function depending only on the configuration in a bounded domain [9]. Additionally,
Q∗ denotes the unnormalised Palm version of a stationary point process Q ∈ Pθ [14], Section 9.
That is, Q∗ is determined by the disintegration identity

∫
C

f (ψ)Q∗(dψ) =
∫
C

∫
[0,1]d

f (θxψ)ψ(dx)Q(dψ),

where θx : Rd → Rd , y �→ y − x denotes the shift by x ∈ Rd . Then, for each time t ∈ [0,1],
considering the neighbourhood structure at the origin o ∈ Rd under the Palm measure Q∗ yields
an element in M(G∗). Hence, letting t vary, we associate to Q ∈ Pθ the evolution of the neigh-
bourhood structure Q∗,neighb ∈M(G∗)[0,1].

Finally, the rate function in the LDP is expressed in terms of the specific relative entropy of
stationary marked point processes. More precisely, writing �[−n/2,n/2]d for the restriction to the
box [−n/2, n/2]d , for Q ∈Pθ we put

H(Q) = lim
n→∞n−d

∫
log

(
dQ�[−n/2,n/2]d

dPois�[−n/2,n/2]d
(ψ)

)
Q�[−n/2,n/2]d (dψ),

tacitly applying the convention that H(Q) = ∞ if the Radon–Nikodym derivative of the re-
stricted point processes does not exist. By means of the contraction principle, the LDP for marked
Poisson point processes [9], Theorem 3.1, now gives rise to the LDP for the evolution of the em-
pirical neighbourhood structure.

Theorem 2.3. The empirical neighbourhood structure {Lneighb
n }n≥1 satisfies the LDP in the

product space M(G∗)[0,1] with good rate function ν �→ infQ∈Pθ ,Q∗,neighb=ν H(Q).

Since the degree of the root in a rooted graph is nothing more than the size of the 1-
neighbourhood, after another application of the contraction principle, Theorem 2.3 yields an
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LDP for the evolution of empirical in-degrees

Ldeg
n (·) = 1

n

∑
k≥0

#
{
x ∈ X : Zx(·) = k

}
δk. (4)

Corollary 2.4. The empirical in-degree evolution {Ldeg
n }n≥1 satisfies the LDP in the product

space M(Z≥0)
[0,1] with good rate function ν �→ infQ∈Pθ ,Q∗,deg=ν H(Q).

Since M(Z≥0)
[0,1] carries the product topology, Corollary 2.4 only provides access to crude

information on the time evolution of the empirical degree distributions. For this reason, we next
deduce a more refined LDP based on the Skorohod topology [7]. Since this topology requires
an underlying metric space, we consider only the setting of a priori bounded in-degrees. More
precisely, for k ≥ 0 let

Ldeg;≤k
n (·) =

(
1

n
#
{
x ∈ X : Zx(·) = 0

}
, . . . ,

1

n
#
{
x ∈ X : Zx(·) = k

})

denote the evolution of the vector containing the normalised in-degree evolutions truncated at
the kth in-degree. Then, L

deg;≤k
n is a random element of the Skorohod space Dk+1 of functions

f : [0,1] → [0,∞)k+1 that are càdlàg in each coordinate.

Corollary 2.5. For every k ≥ 0 the truncated empirical in-degree evolution {Ldeg
n }n≥1 satisfies

the LDP in the Skorohod topology with good rate function

f = (
f0(·), . . . , fk(·)

) �→ inf
Q∈Pθ

Q∗,deg;≤k=f

H(Q).

3. Proof of Theorem 2.1

We prove Theorem 2.1 in several steps. First, in Section 3.1 we explain the overall idea and give
the proof subject to intermediate results. Then, Section 3.2 introduces sprinkling and monotonic-
ity as central tools for the arguments in the subsequent sections. Finally, Sections 3.3 and 3.4
contain the proofs of the intermediate results.

3.1. The main argument

To establish the upper bound on typical distances, we first show that almost all vertices in the
giant component are within bounded distance of a fairly old vertex of high degree. Then, we
proceed to show that each such high-degree node is at distance at most 2(ρ + o(1)) log logn of
the oldest vertex in Gn with high probability, where

ρ = 1

log(γ /(δ(1 − γ ))
. (5)
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In essence, this argument is already outlined in [13], cf. Remark 3, and can be traced in the
proofs of Propositions 13 and 15 therein. However, the arguments given in [13] to establish the
existence of a giant component only require the oldest vertex to connect to sufficiently many
lower degree vertices. To show this, only a bounded number of search steps are necessary. To
prove Theorem 2.1 along similar lines, we analyse the probabilities of adverse events occurring
during the search for connecting vertices more thoroughly than is required for the robustness
results in [13]. To keep the different stages of our search algorithm sufficiently independent,
we rely on a sprinkling construction in the vein of [13]. More precisely, for some small r > 0
we colour each vertex in X independently red with probability r and black with probability
b = 1 − r . Then, Gr

n and Gb
n denote the S-PAMs constructed on the red and black vertices,

respectively. The reasoning behind this will be explained in Section 3.2.
Let us make the overall argument precise. To start the construction, we need to find an old black

vertex near a uniformly chosen vertex Y ∈ Cn. By stationarity, we may assume that Y = (o,U)

is located at the origin o ∈Rd with U uniform in [0,1] and consider the Poisson process X under
the corresponding Palm distribution P(o,U). A vertex (x, s) ∈ Gb

n is D-reachable if it connects to
(o,U) by a path in Gb

n in at most D hops. For ease of reference, we introduce the events

Eb
n(D, s) = {

some vertex Y0 ∈ Gb
n born before time s is D-reachable

}
.

If there are several reachable vertices, Y0 denotes the one with minimal birth time.

Proposition 3.1 (Connection to good vertices). Let b, s > 0. Then, there exists an almost surely
finite random variable D = Db(s)

lim
n→∞P(o,U)

({
(o,U) ∈ Cb

n

} \ Eb
n

(
Db(s), s

)) = 0,

where Cb
n denotes the connected component of the oldest vertex in Gb

n.

Having reached a sufficiently old black vertex, we proceed as in the above heuristic argument.
For the rest of this section, g : (0,∞) → (0,∞) denotes the sub-polynomially growing function
introduced in Lemma A.2, which is parametrised by γ , δ and r only. Extending a notion from
[13], we say a vertex (x, s) ∈ Gn is r-good if s < 1/2 and it has at least s−γ /g(s−1) red neigh-
bours with birth times in (s,1/2). It is locally r-good if it remains r-good after removing all
edges of the form y → x with y /∈ [x − s−1/d , x + s−1/d ]d . Loosely speaking, exploring possible
paths along good vertices ensures a sufficient number of outgoing connections to choose from.
Additionally, local goodness allows us to scan X for good vertices while keeping the explored
areas sufficiently localised to leverage on the spatial independence of Poisson points.

We build up a hierarchical connection path along r-good vertices of increasing age joined by
young red vertices born after time 1/2. Writing rgoodn ⊂ X for the subset of all red r-good
vertices, we introduce a hierarchy of layers

Lr
1 ⊂ Lr

2 ⊂ · · · ⊂ rgoodn

of red r-good vertices, parametrised by their age. The first layer Lr
1 contains the vertices of

highest degree, i.e. near nγ . With increasing index, the layers {Lr
i }i≥1 contain more and more
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vertices of lower and lower degrees. More precisely, in the robust regime γ > δ/(1 + δ), we can
fix global parameters

α ∈
(

1,
γ

δ(1 − γ )

)
, β ∈

(
α,

γ

δ
+ αγ

)
, (6)

and then set

Lr
k = {

(x, s) ∈ rgoodn : s ≤ n−α−k}
and

K = min
{
k ≥ 1 : n−α−k ≥ (logn)−ν−1} − 2,

where

ν = min

{
−βδ + γ − αγ δ,

β − α

d

}
> 0.

Starting from an old r-good vertex, we typically reach Lr
K in at most C(α,β, r) log log logn

steps, where C(α,β, r) is a sufficiently large constant. In particular, in Section 3.4, we explicitly
specify the scheme for establishing these connections. For the moment, assume that C(α,β, r)

is given and call an r-good vertex at distance at most C(α,β, r) log log logn from Lr
K well-

connected.

Proposition 3.2 (Well-connectedness). Let b > 0. Then,

lim
s→0

lim inf
n→∞ E

[
PY0

(
Y0 is well-connected | Gb

n

)
1Eb

n(Db(s),s)

] = 1.

Having established a path from (o,U) to Lr
K , we now bound the diameter of Lr

K .

Proposition 3.3 (Final layer diameter). With high probability, we have that

diamn

(
Lr

K

) ≤ 4K.

Combining Propositions 3.1–3.3, we now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Since K is of order (1 + o(1)) log logn/ logα, by Proposition 3.3 it
suffices to show that a uniformly chosen Y ∈ Cn connects to Lr

K in at most o(log logn) hops
with high probability. In particular, this occurs under the event E ∩ F where E = Eb

n(Db(s), s)

and F = {Y0 is well-connected}. In other words, it suffices to show that

lim
b→1

lim inf
s→0

lim inf
n→∞ P(o,U)

({
(o,U) ∈ Cb

n

} ∩ E ∩ F
) = θ.

To achieve this goal, decompose the left-hand side as

P(o,U)

({
(o,U) ∈ Cb

n

} ∩ E ∩ F
)

≥ P(o,U)

(
(o,U) ∈ Cb

n

) − P(o,U)

({
(o,U) ∈ Cb

n

} \ E
) − P(o,U)(E \ F). (7)
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By Proposition 3.1, the second summand tends to 0 as n → ∞. Since E is measurable with
respect to Gb

n, the third contribution equals

P(o,U)(E \ F) = E(o,U)

[(
1 − PY0

(
F | Gb

n

))
1{E}],

which tends to 0 as s → 0 and n → ∞ by Proposition 3.2. Hence, (7) gives that

lim inf
s→0

lim inf
n→∞ P(o,U)

({
(o,U) ∈ Cb

n

} ∩ E ∩ F
) ≥ θb.

Here θb denotes the asymptotic proportion of vertices in the giant component of Gb
n, which by

continuity of the percolation probability [13], Proposition 7, tends to θ as b → 1. �

3.2. Sprinkling and monotonicity

In this subsection, we highlight sprinkling and monotonicity as central tools entering the proofs
of Propositions 3.2 and 3.3 and in particular we explain which role the colouring plays in the
proofs. To explain the idea behind sprinkling, assume we explore two disjoint subgraphs of Gn.
If we want to show that these subgraphs are connected to each other, we would like to use that
they are independent. However, it is sometimes challenging to exclude hidden dependencies in
the construction or definition of the subgraphs in question. It would be much easier to sample
edges independently between them. This is where the sprinkling technique enters the stage.

Since Gn is built from a Poisson point process, it is easiest to add a few additional points to
X, which potentially results in additional edges in the S-PAM. It is convenient here to consider
again the alternative formulation of the model obtained by first considering the set X × X of
‘potential edges’ and then assigning the collection of i.i.d. weights VX×X = {Vx,y}x,y∈X to the
potential edges, with Vx,y uniform on [0,1] and an edge is added between (x, s) and (y, t) with
s < t if and only if Vx,y ≤ ϕ(t |x − y|d/f (Zx(t−))).

Formally, we consider, for b close to 1, the independent colouring of the Poisson process X

described in the previous section, i.e. each node is either black with probability b or red with
probability r = 1 − b. Hence, the thinning theorem for Poisson processes [14], Corollary 5.9,
decomposes X = Xb ∪ Xr into a black and an independent red Poisson process with parameters
b and r , respectively. Recall that Gb

n denotes the S-PA graph built from Xb only.
By continuity, the S-PAM Gb

n obtained from Xb resembles Gn, for b close to 1 and we view
the edges sent from a red to a black vertex as a version of sprinkling. Now, the following mono-
tonicity principle holds, where for two geometric graphs G, H we write G ⊂ H if every vertex
and every edge of G is also contained in H .

Lemma 3.4 (Monotonicity). The graphs Gn, Gb
n and Gr

n can be defined on the same probability
space in such a way that almost surely Gb

n ∪ Gr
n ⊂ Gn.

Proof. First, represent the Poisson process as X = Xb ∪ Xr , where the latter is an independent
superposition of the black Poisson process and the red Poisson process. We sample the edge
variables in a consistent manner with the above decomposition. That is, VXb×Xb ⊂ VX×X . Now,
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we couple Gb
n, Gn via the sequential PA construction. By monotonicity of the attachment and a

suitable coupling of the corresponding in-degree evolutions, Gb
n(t) ⊂ Gn(t) holds for all t ≤ 1.

It only remains to note that we can also construct Gr
n in a consistent manner such that Gr

n ⊂ Gn.
To achieve this, we use an identical copy of Xr and the corresponding restricted weights and
just run the construction of Gr

n alongside the construction of Gb
n, Gn above and observe that by

monotonicity of the attachment rule, any edge drawn in Gr
n is also drawn in Gn. �

3.3. Proof of Proposition 3.1

We prove a slightly stronger assertion based on the modified reachability events

E∗
n(D,N, s) = {at least N black vertices born before time s are D-reachable}.

Proof of Proposition 3.1. In [12,13], it is shown that as n → ∞, the finite graphs {Gb
n}n≥1

converge weakly to a local limit graph H∞ with vertices in Rd × [0,1] and θb ∈ (0,1) in (2)
equals the proportion of vertices contained in the unique infinite component K∞ of H∞. Let us
consider this limit graph and introduce the events E∗∞(D,N, s) corresponding to E∗

n(D,N, s)

in H∞. On the event (o,U) ∈ K∞, we already know that there exist (shortest) paths connecting
(o,U) to at least N black vertices born before time s, for N , s fixed. This is a consequence
of [13], Prop. 13, in which an infinite path containing arbitrarily old vertices is shown to be
contained in H∞ and of [13], Prop. 4, which asserts the uniqueness of the infinite cluster in H∞.
In particular,

D∞ = min
{
D : the event E∗∞(D,N, s) occurs

}
is finite. To use the random variables D∞ in the finite graphs {Gb

n}n≥1 we use a coupling from
[12], Section 4.1: given a Poisson point process Xb of intensity b on Rd × [0,1] with edge
weights VXb×Xb we may construct both H∞ and {Gb

n}n≥1 from (Xb,VXb×Xb) in a consistent
manner by restricting Xb to the torus Tn for each n. Under this coupling, local weak conver-
gence of {Gb

n}n≥1 to H∞ is turned into almost sure convergence of any finite vector of edge in-
dicators [12], Proposition 5. Since the event E∗∞(D,N, s) depends only on finitely many edges,
we conclude that E∗

n(D∞,N, s) occurs eventually if (o,U) ∈ K∞. Hence, in the upper bound

P(o,U)

({
(o,U) ∈ Cb

n

} \ E∗
n(D∞,N, s)

)
≤ P(o,U)

({
(o,U) ∈ K∞

} \ E∗
n(D∞,N, s)

) + P(o,U)

(
(o,U) ∈ Cb

n \ K∞
)
,

the first term tends to 0 as n → ∞. Moreover, the second term converges to 0 by (2) and unique-
ness of the infinite component in H∞. �

3.4. Proofs of Propositions 3.2 and 3.3

In what follows, we again apply Lemma 3.4 to embed the red graph Gr
n into Gn. We show that

high-degree nodes are connected in two steps. First, Lemma 3.5 states that two moderately old
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red vertices of high degree are likely to both connect to a young red vertex. Hence, they are at
graph distance at most 2 from each other in Gr

n, as long as they are sufficiently close in Tn.
Second, by Lemma 3.6, red high-degree vertices are well spread out such that a red high-degree
vertex has a red vertex with a much higher degree not too far away in Tn. This is reminiscent of
the robustness proof in [13]. Nevertheless, due to the different nature of our goal, we conduct a
more refined analysis.

For vertices (x, s), (y, t) ∈ Xr set 
r(x, s) = Zr
x(1/2)s(β−αγ )δ , where Zr· (·) denotes in-

degree evolutions in Gr
n. The following lemma is a variant of [13], Lemma 11, and follows

from the more general Lemma A.1 in the appendix. Here, we say x and y are 2-connected if
x ← z → y in Gr

n for some (z, r) ∈ Xr�Tn×[1/2,1].

Lemma 3.5 (2-connections). There exists a constant c > 0 such that for every sufficiently large
n and every locally r-good (x, s), (y, t) ∈ Xr with s, t ≤ 1/4, Zr

x(1/2)α ≤ Zr
y(1/2) and |x −

y|d ≤ s−β we have

P
(
x and y are 2-connected | Xr ∩ (

Tn × [0,1/2])) ≥ 1 − e−cr
r (x,s).

Proceeding as in [13], Proposition 13, we now discover locally good vertices in Xr . Since in
this section, we always explore X by moving ‘towards the right’, that is, by increasing the first
space-coordinate and since we determine local goodness of a vertex (x, s) by peeking into a cube
of volume 1/s around x, the following σ -algebra naturally captures the information collected
during the exploration process in Gr

n:

F
(
x−) = σ

(
X′(x),V �X′(x)

)
with

X′(x) = Xr�[0,x]×Rd−1×[0,1] ∪ Xr�[x−s−1/d ,x+s−1/d ]d×[0,1/2]).

We write lgoodr
n for the family of locally good vertices in Gr

n and recall from (6) that the con-
nection scheme between the high-degree vertices relies on the parameters α, β .

Lemma 3.6. Let r > 0 be arbitrary. Then, there exists a constant q ∈ (0,1) with the following
property. If (x, s) ∈ Gr

n is any vertex with n−1/β < s ≤ 1/4, then

P
(
lgoodr

n ∩ (
Bs−β/d (x) × [

0, sα
]) �=∅ | F(

x−)) ≥ 1 − q
1
7 s−(β−α)/d

.

Proof. For η = β − α, we select M = �s−η/d/6 − 1� disjoint sub-intervals I1, . . . , IM with
midpoints a1, . . . , aM within the interval [s−α/d , s−β/d ]. Now, define blocks

Ak = (ak,0, . . . ,0) + [−3s−α/d,3s−α/d
]d

, and

Bk = (ak,0, . . . ,0) + [−s−α/d , s−α/d
]d

.

The blocks x +Ak are disjoint and their point configuration is independent of F(x−). Next, note
that the total number of points in (x + Bk) × (sα/2, sα) is Poisson distributed with parameter of
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constant order proportional to r . Moreover, by Corollary A.3, the expected number among them
that are locally r-good is bounded away from 0. Hence, each of the blocks x + Bk contains a
locally good vertex born in (sα/2, sα) with probability at least 1 − q ∈ (0,1).

Now, to check local goodness we need to check in the worst case a set of diameter 21/ds−α/d ≤
2s−α/d , that is, these vertices occur independently for different blocks. Hence, the number of
locally good vertices at distance at most s−β/d from x dominates a multinomial random variable
with M trials and success probability 1 − q , which exceeds 0 with probability 1 − qM . �

We are now in the position to prove the main result of this section, Proposition 3.2. Since,
Zr

y(1/2) ≥ Zr
x(1/2)α holds for any x ∈ Lr

k+1 \ Lr
k and y ∈ Lr

k , by Lemma 3.5, with high proba-
bility, a vertex in Lr

k+1 is 2-connected to a vertex in Lr
k .

Proof of Proposition 3.2. Let Y0 = (x0, t0) denote the vertex guaranteed by the event Eb
n(s).

We wish to apply first Lemma 3.6 and then Lemma 3.5 to find a locally good red vertex (x1, t1)

with |x0 − x1|d ≤ t
−β

0 and t1 ≤ tα0 that 2-connects to (x0, t0), thus establishing that (x0, t0) and
(x1, t1) are at distance at most 2 in Gr

n. The probability that this fails is bounded by

e1 = q
1
7 t

−(β−α)/d
0 + exp

(−cr
r(x0, t0)
)
. (8)

Iteration yields

ej = q
1
7 t

−(β−α)/d
j−1 + exp

(−cr
r(xj−1, tj−1)
)
.

Note that 
(xj−1, tj−1) ≥ t
βδ−γ−αγ δ

j−1 /g(t−1
j−1) and we recall that

ν = min
{−βδ + γ + αγ δ, (β − α)/d

}
> 0.

Hence, we can find a small number q > 0 with

ej ≤ 2 exp
(−qt−ν

j−1

) ≤ 2 exp
(−qt−ναj−1

0

)
.

The probability of failing to reach Lr
K from (x0, t0) in Gr

n is thus bounded by

2
∑
j≥1

exp
(−qt−ναj−1

0

) ≤ 2
∑
j≥1

exp
(−qs−ναj−1)

,

which can be made arbitrarily small by lowering s, see Lemma A.4. Note that it takes at most
O(log log logn) iterations to arrive at a vertex with birth time 1/(logn)C for any C > 0, since
the birth time of the freshly discovered vertex is lower by at least a fixed power than the birth
time of the last vertex in each iteration. �

For Proposition 3.3, we proceed similarly as in Proposition 3.2.

Proof of Proposition 3.3. Let a vertex in (x, s) ∈ Lr
K be given. We need to consider two cases:

s < n−1/β and s ∈ (n−1/β, n−1/αK
). In the first case, we argue directly as in the proof of [13],
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Proposition 15, to obtain that (x, s) is either the oldest vertex in Xr or, by Lemma A.1, it connects
to it with probability exceeding 1 − εlog s2

. Note that there are at most O(n1−1/β) such vertices,
that is, this argument holds with high probability simultaneously for all of them.

Let us now consider s ∈ (n−1/β, n−1/αK
). An iteration as in the proof of Proposition 3.2 yields

a chain of 2-connections connecting (x, s) to the oldest vertex in at most K steps. Since the error
bound is weakest in the first step, we may bound the total probability that the desired path does
not exist by

q̄(n) = K exp
(−q

(
(logn)α/ν

)ν)
.

Since α > 1 we have nq̄(n) = o(1). Thus, the probability of failing to connect any node in Lr
K

to the oldest vertex in K steps vanishes, as with high probability there are at most of order n

vertices in the system. Thus, the diameter of Lr
K is at most 4K in Gr

n. �

4. Proof of Theorem 2.3

In this section, we prove the LDP asserted in Theorem 2.3 and deduce Corollary 2.5 by apply-
ing the LDP for the empirical field of a marked Poisson point process [9], Theorem 3.1. We
first introduce an approximated network dynamic, where connections appear only up to a finite
distance. In a second step, we show that this modified dynamic forms an exponentially good
approximation in the sense of [3], Definition 4.2.14.

In order to prove Theorem 2.3, we rely on the LDP for the empirical field of a marked Poisson
point process in the τL-topology of local convergence [9], Theorem 3.1. However, this result is
not directly applicable in the present setting. Indeed, the τL-topology captures only interactions
of bounded range, whereas the polynomial decay of the profile function ϕ allows for arbitrarily
long edges.

The proof of Theorem 2.3, proceeds in two steps. First, in Proposition 4.1, we see that after
truncating edges longer than a fixed distance, the resulting neighbourhood evolution is contin-
uous in the input data. In particular, the contraction principle yields an LDP in the truncated
setting. Second, Proposition 4.2 shows that changes induced by the truncations are asymptoti-
cally negligible in the sense of exponentially good approximations [3], Definition 4.2.14. Since
the sprinkling construction does not appear in this section, we overwrite the previous notation
Gr . This approximation has the advantage of exhibiting only local dependencies.

The truncated S-PAM Gr suppresses potential connections longer than a fixed threshold r > 0.
That is, we consider the dynamics (1), except that |x − y| is replaced by ∞ if |x − y| > r . For
t ≤ 1 and Q ∈Pθ , we write Q∗,r−neighb(t) for the measure on G∗ determined by the rooted graph
[Gr(t), o] under the Palm measure Q∗. Moreover, Q∗,r−neighb(t, h) denotes the projection of this
measure under the map of taking the h-neighbourhood.

Proposition 4.1 (LDP for finite-range model). The approximated neighbourhood evolution
Q∗,r−neighb ∈M(G∗)[0,1] is continuous in Q ∈Pθ under the τL-topology.

Proof. Fix t ∈ [0,1], h ≥ 0 and g ∈ G∗. Then, the indicator of the event that {[Gr(t), o]h � gh}
is a local observable. Hence, Q∗,r−neighb(t, h)(gh) is continuous in Q under the τL-topology, as
asserted. �
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Since the empirical field induced by the marked Poisson point process satisfies the LDP in
the τL-topology with specific entropy as good rate function [9], Theorem 3.1, combining Propo-
sition 4.1 with the contraction principle implies that L

r−neighb
n satisfies the LDP with good rate

function

ν �→ inf
Q∈Pθ

Q∗,r−neighb=ν

H(Q).

In order to bridge the gap between L
r−neighb
n and L

neighb
n , we rely on the machinery of exponen-

tially good approximation [3,6].

Proposition 4.2. Let t ∈ [0,1], h ≥ 0 and g ∈ G∗. Then, the random variables L
r−neighb
n (t,

h)(gh) are an exponentially good approximation of Ln(t, h)(gh).

Before establishing Proposition 4.2, we prove Theorem 2.3.

Proof of Theorem 2.3. Let t ∈ [0,1], h ≥ 0 and g ∈ G∗. First, by [6], Corollary 1.11, it suffices
to prove for every α > 0 that

lim
r→∞ sup

Q∈Pθ
H(Q)≤α

∣∣Q∗,r−neighb(t, h)(gh) −Q∗,neighb(t, h)(gh)
∣∣ = 0.

Now, for different values of r the approximations Gr are coupled in the sense that for r ′ ≥ r both
Q∗,r−neighb(t, h)(gh) and Q∗,r ′−neighb(t, h)(gh) integrate suitable indicators with respect to Q∗.
In particular, by the dominated convergence theorem,

lim
r→∞Q∗,r−neighb(t, h)(gh) =Q∗,neighb(t, h)(gh).

Hence, it suffices to show that for ε > 0 there exists r0 = r0(ε) with the following property. If
Q ∈Pθ satisfies H(Q) ≤ α, then

sup
r ′≥r≥r0

∣∣Q∗,r−neighb(t, h)(gh) −Q∗,r ′−neighb(t, h)(gh)
∣∣ ≤ ε. (9)

By Proposition 4.2, there exists r0 > 0 such that

lim sup
n→∞

1

n
logP

(∣∣Lr−neighb
n (t, h)(gh) − Lr ′−neighb

n (t, h)(gh)
∣∣ > ε

)
< −α (10)

holds for every r ′ ≥ r ≥ r0. As can be deduced from Proposition 4.1, not only the random variable

L
r−neighb
n (t, h)(gh) but also the difference L

r−neighb
n (t, h)(gh) − L

r ′−neighb
n (t, h)(gh) satisfies the

LDP and the rate function equals

a �→ inf
Q∈Pθ

Q∗,r−neighb(t,h)(gh)−Q∗,r′−neighb(t,h)(gh)=a

H(Q).
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In particular, (10) gives that

− inf
Q∈Pθ

|Q∗,r−neighb(t,h)(gh)−Q∗,r′−neighb(t,h)(gh)|>ε

H(Q) < −α,

so that the asserted upper bound (9) holds for every Q ∈Pθ with H(Q) ≤ α. �

4.1. Proof of Proposition 4.2

To prove exponentially good approximation, we compare the S-PAM with the Poisson random
connection model (RCM) [8]. In general, the S-PAM differs from the RCM substantially be-
cause preferential attachment leads to high-degree nodes. However, checking whether the h-
neighbourhood of a given vertex is of a certain form entails a uniform bound on the maximum
size of the relevant in-degrees, so that any discrepancy between Gn and Gr

n must come from an
edge of length at least r in the RCM. The integrability of the profile function implies that this is
a rare event.

Carrying out this program rigorously involves several intermediate steps that we state now and
prove later in this section. First, the proportion of nodes arriving at early times is asymptotically
negligible.

Lemma 4.3 (Early vertices). Let ε > 0. Then,

lim sup
σ→0

lim sup
n→∞

1

n
logP

(
#
(
X ∩ (

Tn × [0, σ ])) > εn
) = −∞.

Second, contributions from neighbourhoods around vertices located in highly dense regions of
Tn can also be ignored. To simplify the presentation, we assume in the following that n′ = n1/d

is an integer. Now, we partition Tn into cubes Qz = z + [−1/2,1/2]d centred at sites of discrete
torus Zd/n′. Moreover, we let Nz = #(X ∩ (Qz × [0,1])) denote the number of vertices in Qz.
For a threshold m ≥ 1, we define z ∈ Zd/n′ to be m-dense, in symbols z ∈ Dm, if Nz ≥ m and
m-sparse otherwise.

Lemma 4.4 (High-density regions). Let λ > 0. Then,

lim
m→∞ sup

n≥1

1

n
logE

[
exp

(
λ

∑
z∈Dm

Nz

)]
= 0.

Third, we deduce the finiteness of an exponential moment, thereby helping to bound the num-
ber of edges emanating from a given vertex. Fix b,m > 0 and let {N ′

z}z∈Zd be a family of inde-
pendent random variables, where N ′

z follows the distribution of a binomial random variable with
m trials and success probability ϕ(b(|z| − √

d)d+).
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Lemma 4.5 (Exponential moment). Let b,m,λ > 0. Then,

E

[
exp

(
λ

∑
z∈Zd

N ′
z

)]
< ∞.

Finally, we bound the number of long edges ending in an m-sparse cube. For x ∈ X we define
z(x) ∈ Zd/n′ to be such that x ∈ Qz(x). In words, z(x) is the centre of the cube containing x.

Lemma 4.6 (Long edges). Let b,m,λ > 0. Then,

lim
r→∞ sup

n≥1

1

n
logE

[
exp

(
λ

∑
x,y∈X

|x−y|>r

1
{
z(y) /∈ Dm and Vx,y ≤ ϕ

(
b|x − y|d)})]

= 0.

Before establishing Lemmas 4.3–4.6, we prove the main result.

Proof of Proposition 4.2. Without loss of generality, set t = 1. We derive a bound for the number
of bad vertices x ∈ X, that is, vertices whose h-neighbourhood is isomorphic to gh in Gn but not
in Gr

n. The corresponding bound with interchanged roles of Gn and Gr
n follows from similar

arguments. Hence, for any such x there exists a vertex x′ in the (h − 1)-neighbourhood of x

in Gr
n and a vertex y′ with |y′ − x′| > r such that there is an edge between y′ and x′ in Gn

but not in Gr
n. By Lemma 4.3, we may restrict our attention to vertices born after time σ . In

particular, writing � for the number of vertices in gh, we see that y′ is adjacent to x′ in the
RCM Grc with vertex set X and in which there is an edge from (x1, s1) to (x2, s2) if and only if
Vx1,x2 ≤ ϕ∗(|x1 − x2|d), where ϕ∗(ρ) = ϕ(σρ/f (�)).

To obtain bounds on exponential moments, we aim to restrict our attention to neighbour-
hoods intersecting only m-sparse cubes. More precisely, a self-avoiding path π = ((x0, s0), . . . ,

(xj , sj )) in Grc is m-sparse if

1. |xi − xi+1| ≤ r and si+1 ≤ si for every i ≥ 0,
2. z(xi) /∈ Dm for every i ≥ 1.

It is on purpose, that we do not impose z(x0) /∈ Dm. With this definition, every bad vertex is con-
tained in an m-sparse connected path that either starts at a vertex contained in an m-dense cube or
features an in-going edge of length at least r in the RCM Grc. Writing C1 and C2 for the families
of vertices contained in these types of paths, it suffices to provide upper bounds for #C1 and #C2.
More precisely, by the exponential Markov inequality it suffices to show that for every λ > 0,

lim sup
m→∞

lim sup
n→∞

1

n
logE

[
exp(λ#C1)

] = 0, (11)

and

lim sup
r→∞

lim sup
n→∞

1

n
logE

[
exp(λ#C2)

] = 0. (12)

To begin with, we show (11) and introduce the m-sparse connected component Cx at x ∈ X

as the union of all vertices of m-sparse paths in Grc starting at x ∈ X and consisting of at most h
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hops. First, recalling the definition of N ′
z from the paragraph preceding Lemma 4.5, the number

of edges in Grc from any x′ ∈ X to a vertex in z /∈ Dm is stochastically dominated by N ′
z(x′)−z

.
In particular, the independence of the family {Vx,y}x,y∈X implies that conditioned on X, the
size of Cx is stochastically dominated by the offspring until generation h of a Galton–Watson
process with offspring distribution N ′ = ∑

z∈Zd N ′
z. Despite the independence assumption on the

collection {Vx,y}x,y∈X , the m-sparse connected components Cx at different points x ∈ X are not
independent because they can share common vertices. Nevertheless, the size of their union is
stochastically dominated by the sum of the component sizes, when each component is explored
independently, see [5], Lemma 2.3. Hence, noting that Lemma 4.5 yields the finiteness of the
cumulant generating function c(λ) = logE[exp(λN ′)], we arrive at

1

n
logE

[
exp(λ#C1)

] ≤ 1

n
logE

[
exp

(
c(h)(λ)#

{
x ∈ X : z(x) ∈ Dm

})]
, (13)

where c(h) denotes the h-fold iteration of the function c. By Lemma 4.4, the right-hand side tends
to 0 as m → ∞.

In order to show (12), we proceed in precisely the same way until arriving at the analog of
(13), where the number of vertices contained in an m-dense cube is replaced by the number of
vertices that are contained in an m-sparse cube and are the endpoint of an edge in Grc of length
at least r . Instead of Lemma 4.4, now Lemma 4.6 implies that the resulting expression tends to 0
as r → ∞. �

Finally, we prove Lemmas 4.3–4.6.

Proof of Lemma 4.3. For fixed σ > 0, the number #(X ∩ (Tn × [0, σ ])) of Poisson points born
before time σ is a Poisson random variable with parameter nσ . In particular, by the Poisson
concentration inequality

1

n
logP

(
#
(
X ∩ (

Tn × [0, σ ])) > εn
) ≤ −ε

2
log

(
εσ−1),

where the right-hand side tends to −∞ as σ → 0. �

Proof of Lemma 4.4. First, by the independence property of the Poisson process,

1

n
logE

[
exp

(
λ

∑
z∈Dm

Nz

)]
= logE

[
exp

(
λ1{o ∈ Dm}No

)]
.

As No has exponential moments, we conclude by the monotone convergence theorem. �

Proof of Lemma 4.5. By independence of the {N ′
z}z∈Zd , we can expand the exponential moment

as

logE

[
exp

(∑
z∈Zd

N ′
z

)]
= m

∑
z∈Zd

log
(
1 + ϕ

(
b
(|z| − √

d
)d

+
))

≤ m
∑
z∈Zd

ϕ
(
b
(|z| − √

d
)d

+
)
.
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Now,
∫
Rd ϕ(|y|d)dy = ∫ ∞

0 κdϕ(x)dx < ∞. Since ϕ is also decreasing, we conclude that the
infinite series in the last line converges. �

Proof of Lemma 4.6. Since the {Vx,y}x,y∈X are i.i.d., we see that conditioned on X the events

{
Vx,y ≤ ϕ

(
b|x − y|d)}

are independent for different values of x and y. Hence, the sum in the exponential is stochasti-
cally dominated by ∑

x∈X

∑
z′:|z(x)−z′|>r/2

Nx,z′ ,

where the Nx,z′ are independent binomial random variables with m trials and success probability
ϕ(b(|z(x)−z′|−√

d)d). In particular, by the formula for the characteristic function of compound
Poisson sums,

1

n
logE

[
exp

(
λ

∑
x∈X

∑
z′:|x−z′|>r/2

Nx,z

)]

= E

[
exp

(
λ

∑
z:|z|>r/2

No,z

)]
− 1

= exp

(
m

∑
z:|z|>r/2

log
(
1 + ϕ

(
b
(|z| − √

d
)d)(

eλ − 1
))) − 1

≤ exp

(
m

(
eλ − 1

) ∑
z:|z|>r/2

ϕ
(
b
(|z| − √

d
)d)) − 1,

where the last sum converges by the integrability assumption on the profile function. Sending
r → ∞ concludes the proof. �

Appendix A: Auxiliary results

Here, we provide statements from the literature and auxiliary calculations used in the main text.
We start by a refined version of Lemma 3.5, where we write κd = |B1(o)| for the volume of the
unit ball in Rd .

Lemma A.1. Denote by Gλ
n the S-PAM built from a homogeneous Poisson point process Xλ

with intensity λ > 0. Let (x, s), (y, t) ∈ Xλ be two vertices satisfying s, t ≤ 1/2. Moreover, let
Zx(1/2) and Zy(1/2) denote their respective in-degrees in Gλ

n at time 1/2 and define

k(x, y) = f
(
Zx(1/2)

)
ϕ

(
(f (Zx(1/2))1/d + |x − y|)d

f (Zy(1/2))

)
,
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and

Q(x,y) = ϕ(1)κd

2

(
k(x, y) ∨ k(y, x)

)
.

Then, conditional on Xλ ∩ (Tn ×[0,1/2]), x and y are 2-connected in Gλ
n by using only vertices

from Xλ ∩ (Tn × [1/2,1]) with probability exceeding 1 − e−λQ(x,y).

Proof. Set zx = Zx(1/2), zy = Zy(1/2) and let X◦ denote those vertices (w, r) of Xλ which lie
in Bf (zx)1/d (y)×[1/2,1] and satisfy Vx,w ≤ ϕ(1) and Vy,w ≤ ϕ(r|y −w|d/f (zy)). In particular,
all (w, r) ∈ X◦ are 2-connectors. By the restriction theorem [14], Theorem 5.2, X◦ forms a
Poisson point process with intensity

∫
B

f (zx )1/d (y)

λϕ(1)

2
ϕ
(
r|y − w|d/f (zy)

)
dw ≥ λϕ(1)κdf (zx)

2
ϕ

(
(f (zx)

1/d + |x − y|)d
f (zy)

)
.

In particular,

P
(
X◦ =∅

) ≤ exp

(
−1

2
λϕ(1)κdk(x, y)

)
,

so that reversing the roles of x and y yields the assertion of the lemma. �

The next statement ensures that old vertices tend to be good. Let Zn(s, ·) denote the generic in-
degree evolution of a vertex born at time s in Gn, noting that its spatial position has no influence
on Zn(s, ·). Assume that Gn is built from a Poisson process of intensity λ > 0.

Lemma A.2 ([13], Lemma 24). Let (x, s) ∈ Gn be born at time s ≤ 1/2. There exists a function
g = gλ decaying faster than any power at ∞ such that

sup
n≥1

n logn≥s−1

P(x,s)

(
Zn(s,1/2) ≤ s−γ /g

(
s−1)) s→0−→ 0.

Consequently,

sup
n≥1

n logn≥s−1

P(x,s)

(
(x, s) is not good

) s→0−→ 0.

Proof. See [13], page 1720, for the proof with λ = 1. A higher intensity increases the degree of
(x, s). That lowering the intensity makes no difference to the sub-polynomial decay can be seen
easily, since g may be replaced by any other increasing function of sufficiently slow decay, cf. the
proofs of Lemma 23 and 24, [13], page 1720. In particular, reducing the intensity of the Poisson
process can be compensated for by increasing g by a constant factor. This has no influence on its
sub-polynomial decay. �
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The following corollary is obtained directly from the proof of [13], Lemma 24: for a given
birth time s, using a scaling property of the degree evolutions, it is actually sufficient to con-
sider connections to (x, s) in an s−1/d environment of x. This fact is also used, without explicit
mentioning, in the proof of [13], Proposition 13.

Corollary A.3. For any x ∈ Tn we have

inf
s<1/2
n≥1

P(x,s)

(
(x, s) is locally good

)
> 0.

The following short calculation shows that the error in the proof of Proposition 3.2 can be
made arbitrarily small.

Lemma A.4. For any q, ε > 0 and α > 1 we have

lim
s→0

∑
k≥1

exp
(−qs−εαk ) = 0.

Proof. Clearly r(x) = exp(−qx−ε) → 0 as x → 0, and

∑
k≥1

r
(
sαk ) ≤

∑
k:αk≤k

r
(
sαk ) + 1

1 − r(s)
− 1,

which vanishes as r(s) → 0. �

Appendix B: Proof of Corollary 2.5

Since Theorem 2.4 already provides an LDP for fixed times, the proof of Corollary 2.5 reduces
to verifying exponential tightness in the Skorohod topology.

Proof of Corollary 2.5. By Corollary 2.4, the rescaled number of nodes L
deg;≤k
n of degree at

most k satisfies an LDP in the product topology. In particular, by [3], Corollary 4.2.6, it suf-
fices to establish exponential tightness in the Skorohod topology. To this end, we use a criterion
established in [7], Theorem 4.1:

1. L
deg;≤k
n (t) is exponentially tight for every t ≤ 1, and

2. lim supη→0 lim supn→∞ 1
n

logP(w′
η(L

deg;≤k
n ) > ε) = −∞,

where

w′
η

(
L

deg;≤k
n

) = inf
0=t0<···<tj =1:mini≤k |ti−ti−1|>η

max
i≤j

sup
s,t∈[ti−1,ti )

∣∣Ldeg;≤k
n (s) − L

deg;≤k
n (t)

∣∣

denotes the Skorohod-adapted modulus of continuity.
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Exponential tightness of |Ldeg;≤k
n (t)| ≤ n−1#X is a consequence of the exponential tightness

of the rescaled Poisson random variable n−1#X. Therefore, we concentrate on item (2). Here, we
proceed along the lines of the proof of Proposition 4.2. Fixing an interval I ⊂ [0,1] of length η,
we distinguish two cases. First, assume that I ⊂ [0,2σ ] for some small σ > 0. Then, during the
time interval I , the truncated in-degree of each node can change by at most k ≥ 1. Therefore,

1

n
logP

(
w′

η

(
L

deg;≤k
n

)
> ε

) ≤ n−1 logP
(
k#

(
X ∩ (

Tn × [0, σ ])) > nε
)
,

which by Lemma 4.3 tends to −∞ as σ → 0.
Hence, from now on we may assume that I ⊂ [σ,1]. Then, setting again ϕ∗(ρ) = ϕ(σρ/f (�)),

we proceed similarly to Proposition 4.2 and introduce the quantity

N = #
{
x ∈ X : Vx,y ≤ ϕ∗

(|x − y|d)
and Zx(t−) ≤ k for some (y, t) ∈ X ∩ (Tn × I )

}
.

Since the total number of in-degree changes during the time interval I is at most kN , it suffices
to derive a suitable upper bound for the latter. In particular, N ≤ N(s) + ∑

z∈Dm
Nz, where

N(s) =
∑

x,y∈X
z(x)/∈Dm

1
{
(y, t) ∈ X ∩ (Tn × I ) and Vx,y ≤ ϕ∗

(|x − y|d)}
.

Using the exponential Markov inequality and Lemma 4.4, it suffices to show that for any fixed
λ > 0 we have that

logE
[
exp

(
λN(s))] ≤ 2n

if η is chosen sufficiently small. To achieve this goal, we note that as in the proof of Lemma 4.6
the random variable N(s) is stochastically dominated by

∑
(y,t)∈X∩(Tn×I )

∑
z∈Zd/n′

Ny,z,

where again the Ny,z are independent binomial random variables with m trials and success prob-
ability ϕ(b(|z| − √

d)d+). Since X ∩ (Tn × I ) is a Poisson point process with intensity ηn, this
time we arrive at

1

n
logE

[
exp

(
λN(s))] ≤ η

(
E

[
exp

(
λ

∑
z∈Zd

N ′
z

)]
− 1

)
,

which by Lemma 4.5 tends to 0 as η → 0. �
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