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In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which
is based on the linear stochastic delay differential equation and produces stationary processes with hyper-
bolically decaying autocovariance functions. The model departs from the usual way of incorporating this
type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter
to the drift term rather than to the noise term. The advantages of this approach are that the corresponding
long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected
by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study
their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we
study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider
the task of simulating from the defining SFDDEs.

Keywords: long-range dependence; moving average processes; semimartingales; stochastic differential
equations

1. Introduction

Models for time series producing slowly decaying autocorrelation functions (ACFs) have been of
interest for more than 50 years. Such models were motivated by the empirical findings of Hurst in
the 1950s that were related to the levels of the Nile River. Later, in the 1960s, Benoit Mandelbrot
referred to a slowly decaying ACF as the Joseph effect or long-range dependence. Since then, a
vast amount of literature on theoretical results and applications have been developed. We refer to
[6,13,25,28,29] and references therein for further background.

A very popular discrete-time model for long-range dependence is the autoregressive fraction-
ally integrated moving average (ARFIMA) process, introduced by Granger and Joyeux [15] and
Hosking [19], which extends the ARMA process to allow for a hyperbolically decaying ACF.
Let B be the backward shift operator and for y > —1, define (1 — B)? by means of the binomial
expansion,

o0
(1—B)Y =) m;B/
j=0
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where 7; =[] <j HT_” An ARFIMA process (X;);ez is characterized as the unique purely
non-deterministic process (as defined in [9], page 189) satisfying

P(BY1—B)’X,=Q(B)e;, 1€, (D)

where P and Q are real polynomials with no zeroes on {z € C : |z]| < 1}, (&)ez is an i.i.d.
sequence with E[ep] =0, E[ag] € (0,00) and B € (0, 1/2). The ARFIMA equation (1) is some-
times represented as an ARMA equation with a fractionally integrated noise, that is,

P(B)X;=Q(B)(1—B) s, 1€ 2)

In (1) one applies a fractional filter to (X;);cz, while in (2) one applies a fractional filter to
(&1)1ez- One main feature of the solution to (1), equivalently (2), is that the autocovariance func-
tion yx (¢) := E[XoX;] satisfies

yx() ~ et 1 oo, 3)

for some constant ¢ > 0.

A simple example of a continuous-time stationary process which exhibits long-memory in the
sense of (3) is an Ornstein—Uhlenbeck process (X;);cr driven by a fractional Lévy process, that
is, (X¢)teRr 1s the unique stationary solution to

dX, = —kX,dt +dIPL,, 1€R, )

where « > 0 and
1 t
1°L :=7/ t—u)? — (—u)? dL,, teR, 5
S A1) _OO[( u)f — (=)l ] (5)

with (L;);cr being a Lévy process which satisfies E[L{] = 0 and IE[L%] € (0,00). In (5), T
denotes the gamma function and we have used the notation x4 = max{x, 0} for x € R. The way
to obtain long memory in (4) is by applying a fractional filter to the noise, which is in line
with (2). To demonstrate the idea of this paper, consider the equation obtained from (4) but by
applying a fractional filter to the drift term instead, that is,

t
X,—X‘Yz—r‘(lL_ﬁ)/_oo[(t—u)_ﬂ—(s—u)l’g]Xudu+Lt—Ls, s<t.  (6)

One can write (6) compactly as
dX, = —«DPX,dt +dL,, t€eR, (7

with (DPX,)ier being a suitable fractional derivative process of (X;);cr defined in Proposi-
tion 3.6. The equations (6)—(7) are akin to (1). It turns out that a unique purely non-deterministic
process (as defined in (23)) satisfying (7) exists and has the following properties:

(i) The memory is long and controlled by 8 in the sense that yx (1) ~ ct*#~! as t — oo for
some ¢ > 0.
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(ii) The L2(P) Holder continuity of the sample paths is not affected by f in the sense that
yx(0) — yx(¢) ~ct as t | O for some ¢ > 0 (the notion of Holder continuity in L3(P) is
indeed closely related to the behavior of the ACF at zero; see Remark 3.9 for a precise
relation).

(ii1) (Xy);er is a semimartingale.

While both processes in (4) and (7) exhibit long memory in the sense of (i), one should keep
in mind that models for long-memory processes obtained by applying a fractional filter to the
noise will generally not meet (ii)—(iii), since they inherit various properties from the fractional
Lévy process (IPL;);er rather than from the underlying Lévy process (L;);cr. In particular,
this observation applies to the fractional Ornstein—Uhlenbeck process (4) which is known not
to possess the semimartingale property for many choices of (L;);cr, and for which it holds that
yx (0) —yx () ~ ct?PH1 ag g 4 0 for some ¢ > 0 (see [21], Theorem 4.7, and [1], Proposition 2.5).
The latter property, the behavior of yx near 0, implies an increased L?(P) Holder continuity
relative to (7). See Example 4.4 for details about the models (4) and (7).

The properties (ii)—(iii) may be desirable to retain in many modeling scenarios. For instance,
if a stochastic process (X;);cRr is used to model a financial asset, the semimartingale property is
necessary to accommodate the No Free Lunch with Vanishing Risk condition according to the
(First) Fundamental Theorem of Asset Pricing, see [11], Theorem 7.2. Moreover, if (X;);cr is
supposed to serve as a “good” integrator, it follows by the Bichteler—Dellacherie theorem ([7],
Theorem 7.6) that (X;);cr must be a semimartingale. Also, the papers [4,5] find evidence that
the sample paths of electricity spot prices and intraday volatility of the E-mini S&P500 futures
contract are rough, and Jusselin and Rosenbaum [20] show that the no-arbitrage assumption
implies that the volatility of the macroscopic price process is rough. These findings suggest less
smooth sample paths than what is induced by models such as the fractional Ornstein—Uhlenbeck
process (4). In particular, the local smoothness of the sample paths should not be connected to
the strength of long memory.

Several extensions to the fractional Ornstein—Uhlenbeck process (4) exist. For example, it is
worth mentioning that the class of fractionally integrated continuous-time autoregressive moving
average (FICARMA) processes were introduced in Brockwell and Marquardt [8], where it is
assumed that P and Q are real polynomials with deg(P) > deg(Q) which have no zeroes on
{z € C:Re(z) > 0}. The FICARMA process associated to P and Q is then defined as the moving
average process

t
x,=/ gt —w)dIPL,, 1eR, (8)
o0

with g: R — R being the L function characterized by

QGy)
P(iy)’
In line with (2) for the ARFIMA process, a common way of viewing a FICARMA process is that

it is obtained by applying a CARMA filter to fractional noise, that is, (X;);er given by (8) is the
solution to the formal equation

Flly) = /R eV g (u) du = R,

P(D)X; = Q(D)DIPL,, teR.
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(See, e.g., [21].) Another class, related to the FICARMA process, consists of solutions (X;);er
to fractional stochastic delay differential equations (SDDEs), that is, (X;);cRr is the unique sta-
tionary solution to

dX,z/ X_un(du)dr +dIPL,, teR, )
[0,00)

for a suitable finite signed measure 5. For details about these processes, see [2,22]. Note that
the fractional Ornstein—Uhlenbeck process (4) is a FICARMA process with polynomials P(z) =
Z+k and Q(z) = 1 and a fractional SDDE with n = —«Jp, §p being the Dirac measure at zero.

The model we present includes (6) and extends this process in the same way as the fractional
SDDE (9) extends the fractional Ornstein—Uhlenbeck (4). Specifically, we will be interested in a
stationary process (X;);cr satisfying

t
X — X5 = / (Déﬂ(s,t])(u)/ Xy—yn(dv)du+L; — Ly (10)
[0,00)

—00

almost surely for each s < ¢, where 7 is a given finite signed measure and

(P2 1.0) ) = [(-w? - -wi], ueR

1
ra-pg)
We will refer to (10) as a stochastic fractional delay differential equation (SFDDE). Equa-
tion (10) can be compactly written as

dXz=/ DPX,_un(du)dr +dL;, 1€eR, (11)
[0,00)

with (DFX 1)ter defined in Proposition 3.6. The representation (11) is, for instance, convenient
in order to argue that solutions are semimartingales.

In Section 3, we show that, for a wide range of measures 7, there exists a unique purely non-
deterministic process (X;);cr satisfying the SFDDE (10). In addition, we study the behavior of
the autocovariance function and the spectral density of (X;);ecr and verify that (i)—(ii) hold. We
end Section 3 by providing an explicit (prediction) formula for computing E[X; | X,,, u <s]. In
Section 4, we focus on delay measures 1 of exponential type, that is,

n(dt) = —«8p(dr) + f(¢) dt, (12)

where f(t) = 10.00)(t)b " e?ey with e; =[1,0,...,0]" € R", b € R" and A an n x n matrix
with a spectrum contained in {z € C : Re(z) < 0}. Besides relating this subclass to the FICARMA
processes we study two special cases of (12) in detail, namely the Ornstein—Uhlenbeck type
presented in (7) and

o0
dx,:/ DPX,_, f(u)dudr +dL,, teR. (13)
0

Equation (13) is interesting to study as it collapses to an ordinary SDDE (cf. Proposition 4.2),
and hence constitutes an example of a long-range dependent solution to equation (9) with I# L, —
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I1PL, replaced by L, — Ly. While (13) falls into the overall setup of [3], the results obtained in
that paper do, however, not apply. Finally, based on the two examples (6) and (13), we investigate
some numerical aspects in Section 5, including the task of simulating (X;);cr from the defining
equation. Section 6 contains the proofs of all the results presented in Sections 3 and 4. We start
with a preliminary section which recalls a few definitions and results that will be used repeatedly.

2. Preliminaries

For a measure p on the Borel o-field B(R) on R, let L” (1) denote the L? space relative to j.
If 1 is the Lebesgue measure, we suppress the dependence on w and write L? instead of L? (w).
By a finite signed measure, we refer to a set function : B(R) — R of the form =™ — u™,
where 1T and ™ are two finite and mutually singular measures. Integration of a function f
with respect to y is defined (in an obvious way) whenever f € L'(|u|) where |u| := ut 4+ .
The convolution of two measurable functions f, g: R — C is defined as

7rg@= [ 0 -wed

whenever f(t — -)g € L'. Similarly, if x is a finite signed measure, we set
Feu) = [ fe=wua

if f(t— )€ L(ju]). For such u, set

D(p) = {ZECI/e’_Re(Z)”IuI(du) < oo}.
R

Then we define the bilateral Laplace transform L£[u]: D(n) — C of u by

E[M](Z)=A€_wﬂ(du), z€ D),

and the Fourier transform by F[u](y) = L[ f](iy) for y e R. If f € L! we will write L[] =
L[ f w)du] and F[f] = F[f(u)du]. We also note that F[f] € L?> when f € L' N L? and that
F can be extended to an isometric isomorphism from L? onto L? by Plancherel’s theorem.
Recall that a Lévy process is the continuous-time analogue to the (discrete-time) random walk.
More precisely, a one-sided Lévy process (L;);>0, Lo = 0, is a stochastic process having station-
ary independent increments and cadlag sample paths. From these properties, it follows that the
distribution of L is infinitely divisible, and the distribution of (L;);>0 is determined from L via
the relation E[¢/YL1] = exp{rlog E[¢/*L1]} for y € R and 7 > 0. The definition is extended to a
two-sided Lévy process (L, ),cRr by taking a one-sided Lévy process (L, ),>0 together with an in-
dependent copy (le),zo and setting L; = L} ift>0and L; = _L%a)f ift <0.If IE[L%] < 00,



804 R.A. Davis, M.S. Nielsen and V. Rohde

E[L1]=0and f € L2, the integral fR f(u)dL, is well-defined as an L? limit of integrals of step
functions, and the following isometry property holds:

([ o) s s

For more on Lévy processes and integrals with respect to these, see [26,31]. Finally, for two
functions f, g: R — C and a € [—00, 0c0] we write f(t) =o0(g(t)), f(t) = O(g(¢)) and f(¢) ~
gt)ast— aif

t
lim & =0, lim sup
t—a g(t) t—a

respectively.

3. The stochastic fractional delay differential equation

Let (L;);er be a Lévy process with E[L%] <ooandE[L{] =0, andlet 8 € (0, 1/2). Without loss
of generality we will assume that ]E[L%] = 1. Moreover, denote by n a finite (possibly signed)
measure on [0, co) with

/ tin|(dt) < oo (14)
[0,00)
and set

(DP145.0) ) = [((—w’ =6 -w"], ueRr (15)

1
ra-g
(In line with [13] we write Df 15 ;) rather than D1, in (15) to emphasize that it is the right-
sided version of the Riemann-Liouville fractional derivative of 1 ;.) Then we will say that a
process (X;):er With E[|Xg|] < 0o is a solution to the corresponding SFDDE if it is stationary
and satisfies

t
X — X :/ (DE]l(M])(u)/ Xy—yn(dv)du + L; — Ly (16)
00 [0,00)

almost surely for each s < . Note that (16) is indeed well-defined, since 5 is finite, (X;);er
is bounded in L!(P) and D# L, € L. As noted in the introduction, we will often write (16)
shortly as
dx; =/ DX, n(du)dr +dL;, teR, (17)
[0,00)

where (D X,),cR is a suitable fractional derivative of (X;);cr (defined in Proposition 3.6).
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In order to study which choices of 1 lead to a stationary solution to (16) we introduce the
function h = hg;: {z € C:Re(z) > 0} — C given by

Bz =z"F — / e~ y(du), Re(2) = 0. (18)
[0,00)

Here, and in the following, we define z¥ = r?¢!?? using the polar representation z = re'? for
r>0and @ € (—m, 7). This definition corresponds to z¥ = e?1°22  using the principal branch of
the complex logarithm, and hence z — z? is analytic on C \ {z € R : z < 0}. In particular, this
means that /4 is analytic on {z € C: Re(z) > 0}.

Proposition 3.1. Suppose that h(z) defined in (18) is non-zero for every z € C with Re(z) > 0.
Then there exists a unique g: R — R, which belongs to LY for (1 — B)~! <y <2 and is van-
ishing on (—00,0), such that

(iy)~*

Flelly) = niy)

yeR. (19)

Moreover, the following statements hold:

(i) Fort > 0 the Marchaud fractional derivative DP g(t) at t of g given by

LI /°° g(t) — gt —u)
{1 —pB)s0Js ulth
exists, DPg € L' N L? and F{DPgl(y) =1/ h(iy) for y € R.
(ii) The function g is the Riemann—Liouville fractional integral of DP g, that is,

DPg(t) = du (20)

t
g(t):%ﬂ)/o Dfgu)(t —w)’~du, t>o0.

(iii) The function g satisfies

t
g(t)=1+/ (DPg) x nw)du, >0, 1)
0

and for v € R and with Déjl(x,,] given in (15),
g
gt—v)—gls—v)= / (DZ1511) () g % n(u — v) du + L5, (V). (22)
—00
Before formulating our main result, Theorem 3.2, recall that a stationary process (X;);cr With
E[X%] < 0o and E[X(] = 0 is said to be purely non-deterministic if

()5p(X; s <t} =10}, (23)

teR

see [1], Section 4. Here 5p denotes the L?(IP)-closure of the linear span.



806 R.A. Davis, M.S. Nielsen and V. Rohde

Theorem 3.2. Suppose that h(z) defined in (18) is non-zero for every z € C with Re(z) > 0 and
let g be the function introduced in Proposition 3.1. Then the process

t
X,:/ g(t —u)dL,, teR, 24)

—00

is well-defined, centered and square integrable, and it is the unique purely non-deterministic
solution to the SFDDE (16).

Remark 3.3. Note that we cannot hope to get a uniqueness result without imposing a condition
such as (23). For instance, the fact that

t
/ [ —w)? — (s —w;]du=0,

—00

shows together with (16) that (X; + U),cR is a solution for any U € L' (P) as long as (X;)/er
is a solution. Moreover, uniqueness relative to condition (23) is similar to that of discrete-time
ARFIMA processes, see [9], Theorem 13.2.1.

Remark 3.4. It is possible to generalize (16) and Theorem 3.2 to allow for a heavy-tailed distri-
bution of the noise. Specifically, suppose that (L;);cr is a symmetric «-stable Lévy process for
some « € (1,2), thatis, (L;);cRr is a Lévy process and

E[e’-yl“l] =e P yeR,

for some o > 0. To define the process (X;);cRr in (24) it is necessary and sufficient that g € L,
which is indeed the case if 8 € (1, 1 — 1 /) by Proposition 3.1. From this point, using (22), we
only need a stochastic Fubini result (which can be found in [1], Theorem 3.1) to verify that (16)
is satisfied. One will need another notion (and proof) of uniqueness, however, as our approach
relies on L? theory. For more on stable distributions and corresponding definitions and results,
we refer to [30].

Remark 3.5. The process (24) and other well-known long-memory processes do naturally share
parts of their construction. For instance, they are typically viewed as “borderline” stationary
solutions to certain equations. To be more concrete, the ARFIMA process can be viewed as an
ARMA process, but where the autoregressive polynomial P is replaced by P : z — P(z)(1—2)".
Although an ordinary ARMA process exists if and only if P is non-zero on the unit circle (and, in
the positive case, will be a short memory process), the autoregressive function P of the ARFIMA
model will always have a root at z = 1. The analogue to the autoregressive polynomial in the non-
fractional SDDE model (that is, (16) with D 1,1 replaced by 1, ;) is

2— 2z — Ln](2), (25)

where the critical region is on the imaginary axis {iy : y € R} rather than on the unit circle
{z € C:|z] = 1} (see [2]). The SFDDE corresponds to replacing (25) by z — z — 28 L[]1(2),
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which will always have a root at z = 0. Howeyver, to ensure existence both in the ARFIMA model
and in the SFDDE model, assumptions are made such that these roots will be the only ones in
the critical region and their order will be S. For a treatment of ARFIMA processes, we refer to
[9], Section 13.2.

The solution (X;);er of Theorem 3.2 is causal in the sense that X; only depends on past
increments of the noise L; — L, s < t. An inspection of the proof of Theorem 3.2 reveals that
one only needs to require that 4(iy) # O for all y € R for a (possibly non-causal) stationary
solution to exist. The difference between the condition that /(z) is non-zero when Re(z) =0
rather than when Re(z) > 0 in terms of causality is similar to that of non-fractional SDDEs (see,

e.g., [2]).

The next result shows why one may view (16) as (17). In particular, it reveals that the corre-
sponding solution (X;);cRr is a semimartingale with respect to (the completion of) its own filtra-
tion or equivalently, in light of (16) and (24), the one generated by the increments of (L;);cRr-

Proposition 3.6. Suppose that h(z) is non-zero for every z € C with Re(z) > 0 and let (X;)ter
be the solution to (16) given in Theorem 3.2. Then, for t € R, the limit

© X, — X,_
DPX, := P m / ST gy (26)
r'(1—pB)si0 /s ul+p

exists in L*(P), DX, = fioo DPg(t —u)dL,, and it holds that

[ o=~ |
SR [ PR SR Xuon(dv)d
ra—p ) L 0 fo) !

t
_ / / DX, _yn(dv)du 27)
s J[0,00)

almost surely for each s < t.

We will now provide some properties of the solution (X;);cr to (16) given in (24). Since the
autocovariance function yx takes the form

yx (1) =/ gt+u)gw)du, tekR, (28)
R

it follows by Plancherel’s theorem that (X;);cr admits a spectral density fx which is given by

FO) = [Pl = —— 1y, yeR. (29)
N

(See the appendix for a brief recap of the spectral theory.) The following result concerning yx and
fx shows that solutions to (16) exhibit a long-memory behavior and that the degree of memory
can be controlled by 8.
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Proposition 3.7. Suppose that h(z) is non-zero for every z € C with Re(z) > 0 and let yx and
fx be the functions introduced in (28)—(29). Then it holds that

r'(—28) 261
L(BT(1 = B)n([0, 00))?

yx (@) ~ ast — oo

and  fx(y) ~ IyI7%# asy—o0.

1([0, 00))?

In particular, [p|yx(1)|dt = oo,

While the behavior of yx(¢) as t — oo is controlled by 8, the content of Proposition 3.8 is
that the behavior of yx (7) as t — 0, and thus the L>(P) Holder continuity of the sample paths of
(Xt)ter (cf. Remark 3.9), is unaffected by §.

Proposition 3.8. Suppose that h(z) is non-zero for every z € C with Re(z) > 0, let (X;);cr be
the solution to (16) and denote by pyx its ACF. Then it holds that 1 — px(h) ~h as h | 0.

Remark 3.9. Recall that for a given y > 0, a centered and square integrable process (X;);cr
with stationary increments is said to be locally y-Hélder continuous in L% (P) if there exists a
constant C > 0 such that

E[(X; — X0)?]

for all sufficiently small 7 > 0. By defining the semi-variogram
1 2
yv() = EE[(X' - X0)*], teR,

we see that (X;);cr is locally y-Holder continuous if and only if yy(¢) = 0(t%) as t — 0.
When (X;),cRr is stationary we have the relation yy = yx (0)(1 — px), from which it follows that
the L?(P) notion of Holder continuity can be characterized in terms of the behavior of the ACF
at zero. In particular, Proposition 3.8 shows that the solution (X;);cr to (16) is locally y -Holder
continuous if and only if ¥ < 1/2. The behavior of the ACF at zero has been used as a measure
of roughness of the sample paths in for example, [4,5].

Remark 3.10. As a final comment on the path properties of the solution (X;);cr to (16), observe
that

t
XI—XS=/ / DX, _yn(dv)du + L, — Ly
K [0,00)

for each s < ¢ almost surely by Proposition 3.6. This shows that (X;);cr can be chosen so that
it has jumps at the same time (and of the same size) as (L;);cr. This is in contrast to models
driven by a fractional Lévy process, such as (9), since (I#L;);cr is continuous in ¢ (see [21],
Theorem 3.4).
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We end this section by providing a formula for computing E[ X, | X, u < s] for any s < .
One should compare its form to those obtained for other fractional models (such as the one in
[3], Theorem 3.2, where, as opposed to Proposition 3.11, the prediction is expressed not only in
terms of its own past, but also the past noise).

Proposition 3.11. Suppose that h(z) is non-zero for every z € C with Re(z) > 0 and let (X;)ser
denote the solution to (16). Then for any s < t, it holds that

E[X; | Xu,u <s]= g(t —5)X;
N
+/ / X%/ (DP15.1—u1) (v + w)n(dv) dwg (du),
[0,t—s) J—00 [0,00)

where g(du) = 8o(du) + (DPg) x n(u) du is the Lebesgue—Stielties measure induced by g.

4. Delays of exponential type

Let A be an n x n matrix where all its eigenvalues belong to {z € C: Re(z) < 0}, and let b € R"
and « € R. In this section, we restrict our attention to measures 7 of the form

n(dr) = —«8o(dr) + f(t)dt  with (1) = 10,00 (1) eMey, (30)

where e1 :=11,0, ..., 0]T € R". Note that e; is used as a normalization; the effect of replacing e
by any ¢ € R” can be incorporated in the choice of A and b. It is well known that the assumption
on the eigenvalues of A imply that all the entries of e4* decay exponentially fast as u — 00,
so that 7 is a finite measure on [0, co) with moments of any order. Since the Fourier transform
FLf]of fis given by

FLAM =bT iy = A)~ler, yeR,
it admits a fraction decomposition; that is, there exist real polynomials Q, R : C — C, Q being
monic with the eigenvalues of A as its roots and being of larger degree than R, such that
_ R(iy)

Q(iy)

FLAy) = €29}

for y € R. (This is a direct consequence of the inversion formula Bl = adj(B)/det(B).) By
assuming that Q and R have no common roots, the pair (Q, R) is unique. The following existence
and uniqueness result is simply an application of Theorem 3.2 to the particular setup in question.

Corollary 4.1. Let Q and R be given as in (31). Suppose that k +b" A~ Ve; # 0 and

0@)[z +«P]+ R@)F #0 (32)

for all z € C\ {0} with Re(z) > 0. Then there exists a unique purely non-deterministic solution
(X1)ter to (16) with n given by (30) and it is given by (24) with g: R — R characterized through
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the relation
0(iy)
QUiy +x@y)P1+ R(iy)(iy)P’

Flgly) = yeR. (33)

Before giving examples we state Proposition 4.2, which shows that the general SFDDE (16)
can be written as

o0
dX, = —«kDP X, dt +f X,—uDP fydudt +dL,, teR, (34)
0

when 7 is of the form (30). In case ¥k = 0, (34) is a (non-fractional) SDDE. However, the usual ex-
istence results obtained in this setting (for instance, those in [2] and [18]) are not applicable, since
the delay measure D? f (1) du has unbounded support and zero total mass fooo DP f(u)du =0.

Proposition 4.2. Let f be of the form (30). Then DP f : R — R defined by D f (1) =0 fort <0
and

t
bl (AeAt / e My P au+ t_ﬂln>el

DPF(t) =
f@) T A

1
1-5)
for t > 0 belongs to L' N L?. If in addition (32) holds, k +bT A= e; # 0 and (X,);cr is the
solution given in Corollary 4.1, then

o o0
| PP X pwan= [ X o du
0 0
almost surely for any t € R.

Remark 4.3. Due to the structure of the function g in (33) one may, in line with the interpretation
of CARMA processes, think of the corresponding solution (X;);cr as a stationary process that
satisfies the formal equation

(Q(D)[D +«DP]+ R(D)DP)X, = Q(D)DL,, teR, (35)

where D denotes differentiation with respect to r and DP is a suitable fractional derivative.
Indeed, by heuristically applying the Fourier transform F to (35) and using computation rules
suchas F[DX](y) = iyF[X]1(y) and F[DP X](y) = (iy)? F[X]1(y), one ends up concluding that
(Xt)ter is of the form (24) with g characterized by (33). For two monic polynomials P and Q
with ¢ := deg(Q) = deg(P) — 1 and all their roots contained in {z € C : Re(z) < 0}, consider the
FICARMA(q + 1, B, q) process (X;);cr. Heuristically, by applying F as above, (X;);cr may
be thought of as the solution to P(D)DPX, = Q(D)DL;,t € R. By choosing the polynomial R
and the constant x such that P(z) = Q(z)[z + «]+ R(z) we can think of (X;);cRr as the solution
to the formal equation

(Q(D)[D'""* +«kDP] + R(D)DP)X, = Q(D)DL,, teR. (36)
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It follows that (35) and (36) are closely related, the only difference being that D + kDB is re-
placed by D'*# + x DP. In particular, one may view solutions to SFDDEs corresponding to
measures of the form (30) as being of the same type as FICARMA processes. While the consid-
erations above apply only to the case where deg(P) = g + 1, it should be possible to extend the
SFDDE framework so that solutions are comparable to the FICARMA processes in the general
case deg(P) > g by following the lines of [3], where similar theory is developed for the SDDE
setting.

We will now give two examples of (34).

Example 4.4. Consider choosing n = —«§p for some « > 0 so that (16) becomes
X, — Xy = —— /t [¢—wF = —wXedu+Li—L,, s<t,  (37)
I'l—p) /-«
or, in short,
dX, = —«DPX,dt +dL,, teR. (38)

To argue that a unique purely non-deterministic solution exists, we observe that Q(z) = 1 and
R(z) =0 for all z € C. Thus, in light of Corollary 4.1 and (32), it suffices to argue that z 4+ kz# #
0 for all z € C \ {0} with Re(z) > 0. By writing such z as z = re!? for a suitable r > 0 and
0 € [—m /2, /2], the condition may be written as

(r cos(0) + krP cos(B6)) + i (rsin(8) + krP sin(86)) # 0. (39)

If the imaginary part of the left-hand side of (39) is zero it must be the case that & = 0, since
x > 0 while sin(f) and sin(86) are of the same sign. However, if 6§ = 0, the real part of the left-
hand side of (39) is r + kr? > 0. Consequently, Corollary 4.1 implies that a solution to (38) is
characterized by (24) and F[g](y) = ((iy)P«x +iy)~! for y € R. In particular, yx takes the form

el

Vx(l)Zf
R 32+ 2ucsin(G) |y 1+ + 2|y

dy, teR. (40)

In Figure 1, we have plotted the ACF of (X;);er using (40) with k =1 and 8 € {0.1,0.2,0.3,
0.4}. We compare it to the ACF of the corresponding fractional Ornstein—Uhlenbeck process
(equivalently, the FICARMA(1, B8, 0) process) which was presented in (4). To do so, we use that
its autocovariance function yg is given by

eity
ys(t) = / dy,
P R [yP0+A) 42 [y[2

From these plots it becomes evident that, although the ACFs share the same behavior at infinity,
they behave differently near zero. In particular, we see that the ACF of (X;);cr decays more
rapidly around zero, which is in line with Proposition 3.8 and the fact that the L*(P) Holder
continuity of the fractional Ornstein—Uhlenbeck process increases as B increases (cf. the intro-
duction).

teR. (41)
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0 ;3 1‘0 1 ‘5 2‘0 25 0 5‘ 1 ‘o 1‘5 2‘0 2‘5 3‘0 3‘5 46 4‘5 55
Figure 1. The left plot is the ACF based on (40) with 8 = 0.1 (yellow), 8 = 0.2 (green), § = 0.3 (black)

and § = 0.4 (blue). With 8 = 0.4 fixed, the plot on the right compares the ACF based on (40) with x =1
(blue) to the ACF based on (41) for x =0.125,0.25,0.5, 1, 2 (red) where the ACF decreases in «.

Example 4.5. Suppose that n is given by (30) with xk =0, A = —k| and b = —«; for some
K1, k2 > 0. In this case, f(t) = —k2e 1" and (34) becomes

o u
dxtz"—zf X,_u<lqe_'”“/ e"‘”v_ﬁdv—u_ﬁ>dudt+dL,, reR, (42
ra—-p) Jo 0

and since Q(z) = z + k1 and R(z) = k> we have that
20R) + R =27 + iz + 1.
To verify (32), set z =x + iy for x > 0 and y € R and note that
241z + k2P = (x* — y* + k1x + k2 cos(6:)|z|F)
+i(k1y +2xy + k2 sin(B0;) |z|P) (43)
for a suitable 6, € (—m/2, /2). For the imaginary part of (43) to be zero it must be the case that
(k1 +2x)y = —k2 sin(B6,) |z’

and this can only happen if y = 0, since x, k1, k2 > 0 and the sign of y is the same as that of
sin(B86,). However, if y = 0 it is easy to see that the real part of (43) cannot be zero for any
x > 0, so we conclude that (32) holds and that there exists a stationary solution (X;);cr given
through the kernel (33). With y| = cos(B87/2) and y» = sin(Bm/2) the autocovariance function
yx is given by

it y2 +K12
yx (1) =/ P dy, teR. 44)
R Y 200 nly TP — iy PP + kv + i3y |2P
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Figure 2. First row is ACF based on (44), second row is ACF based on (45), and the columns correspond
to kp = 0.5, kp =1 and kp = 2, respectively. Within each plot, the lines correspond to 8 = 0.1 (yellow),
B =0.2 (green), B = 0.3 (black) and 8 = 0.4 (blue). In all plots, k] = 1.

The polynomials to the associated FICARMA (2, f, 1) process are given by P (z) = z> 4+ k1242
and Q(z) =z + k1 (see Remark 4.3) and the autocovariance function yg takes the form

y2+K12

yp(t) = f ety dy, reR. (45)
R V2P 4 (67 — 20) [y 122 4 k3 |y [P

In Figure 2, we have plotted the ACF based on (44) for 1 = 1 and various values of k» and 8. For
comparison, we have also plotted the ACF based on (45) for the same choices of 1, k> and B.
From these plots, we see that both the ACF corresponding to (44) and (45) are decreasing in k>,
which is similar to the role of « in Example 4.4. It appears as well that a larger x> causes more
curvature, although this effect is less pronounced for (44) than for (45).

5. Simulation from the SFDDE

In the following, we will focus on simulating from (16). We begin this simulation study by
considering the Ornstein—Uhlenbeck type equation discussed in Example 4.4 with k = 1 and
under the assumption that (L;);cr is a standard Brownian motion. Let ¢y = 100/A and ¢; =
2000/ A. We generate a simulation of the solution process (X;);cr on a grid of size A =0.01
and with 3700/ A steps of size A starting from —c; — ¢3 and ending at 1600/ A. Initially, we set
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X, equal to zero for the first ¢1 points in the grid and then discretize (37) using the approximation

/R[(nA ~ )’ — (= 1A —u) P )Xy du

1

~— APx,_
=5 (n—1)A
n—l kA
Xia + X@—-1)a - _
+ Yy %/ (A — w7 — (1= 1A —u) ;"] du
Pt (k=1)A
1 1 ! Xin + X@k—1
=— A" PX A+ —— 2ka T 2G=DA

2 —k=1A) P —(n—0)A) TP — ((n—k—2)A)'7F)

forn=—cy+1,...,3700/A — ca — c1. Next, we disregard the first ¢; 4 ¢» values of the simu-
lated sample path to obtain an approximate sample from the stationary distribution. We assume
that the process is observed on a unit grid resulting in simulated values X1, ..., X1600. This is
repeated 200 times, and in every repetition the sample ACF based on X1, ..., X is computed
fort=1,...,25and L = 100, 400, 1600. In long-memory models, the sample mean X, can be
a poor approximation to the true mean E[X(] even for large L, and this may result in consider-
able negative (finite sample) bias in the sample ACF (see, e.g., [23]). Due to this bias, it may be
difficult to see if we succeed in simulating from (16), and hence we will assume that E[X¢] is
known to be zero when computing the sample ACF. We calculate the 95% confidence interval

) (k) (k)
0 —1.962% S +1.96 2% |
[p( ) Jaoo PO \/200}

for the mean of the sample ACF based on L observations at lag k. Here p(k) is the sample mean
and o (k) is the sample standard deviations of the ACF at lag k based on the 200 replications.
In Figure 3, the theoretical ACFs and the corresponding 95% confidence intervals for the mean
of the sample ACFs are plotted for 8 = 0.1,0.2 and L = 100, 400, 1600. We see that, when
correcting for the bias induced by an unknown mean K[ X(], simulation from equation (37) results
in a fairly unbiased estimator of the ACF for small values of 8. When 8 > 0.25, in the case where
the ACF of (X;);eRr is not even in L2, the results are more unstable as it requires large values of c|
and ¢, to ensure that the simulation results in a good approximation to the stationary distribution
of (X;);cr. Moreover, even after correcting for the bias induced by an unknown mean of the
observed process, the sample ACF for the ARFIMA process shows considerable finite sample
bias when B > 0.25, see [23], and hence we may expect this to apply to solutions to (16) as
well.

In Figure 4, we have plotted box plots for the 200 replications of the sample ACF for g =
0.1,0.2 and L = 100, 400, 1600. We see that the sample ACFs have the expected convergence
when L grows and that the distribution is more concentrated in the case where less memory is
present.
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Figure 3. Theoretical ACF and 95% confidence intervals of the mean of the sample ACF based on 200
replications of Xq,..., Xy . Columns correspond to L = 100, L =400 and L = 1600, respectively, and
rows correspond to 8 = 0.1 and 8 = 0.2, respectively. The model is (37).
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Figure 4. Box plots for the sample ACF based on 200 replications of Xy, ..., X together with the theo-
retical ACF. Columns correspond to L = 100, L =400 and L = 1600, respectively, and rows correspond to
B =0.1 and B = 0.2, respectively. The model is (37).
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Following the same approach as above, we simulate the solution to the equation discussed
in Example 4.5. Specifically, the simulation is based on equation (16), restricted to the case
where 1(df) = —e~?dr and (L;);cr is a standard Brownian motion. In this case, we use the
approximation

/[(nA—u);'3 —((n—1)A—u);ﬂ]/mxu,ve—vdvdu
R 0

o0 v
=/ X,,A_v/ [(u—A)lﬂ—u;ﬂ]e"_vdudv
0 0

1
~ EAX(nfl)Af(A)

Ccl 1
+2 78X ana + Xakina) (9kA) + o ((k —1)A))
k=2

where ¢: R — R is given by

p(v) = /v[(u — A)_?S — uiﬂ]e"*” du.
0

We approximate ¢ recursively by noting that

kA
o(kA) = / [ =27 —uPle 2 v
0

Le? ko -8 - —A
~— /(k I)A[(u—A)+ —u}"|dv+e Pp((k—1)A)

1 142 _ _ _
=153 [((k—1DA)' ™ — kA F]+ e 20(k— DA)
for k > 1. The theoretical ACFs and corresponding 95% confidence intervals are plotted in Fig-
ure 5 and the box plots in Figure 6. The findings are consistent with the first example that we
considered in the sense of convergence of the sample ACF and the effect of memory (the value

of B).

6. Proofs

Proof of Proposition 3.1. For y > 0 define h,(z) = z¥/h(z) for each z € C\ {0} with
Re(z) > 0. By continuity of & and the asymptotics |hy (z)| ~ [7([0, 00))| !z, |z| — 0, and
lhy ()| ~ |z]¥ 71, |z] = oo, it follows that

sup/ |y (x +iy)[* dy < 00 (46)
x>0JR
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Figure 5. Theoretical ACF and 95% confidence intervals of the mean of the sample ACF sample based on
200 replications of X1, ..., X . Columns correspond to L = 100, L =400 and L = 1600, respectively, and
rows correspond to 8 = 0.1 and B = 0.2, respectively. The model is (42).

Figure 6. Box plots for the sample ACF based on 200 replications of Xy, ..., X together with the theo-
retical ACF. Columns correspond to L = 100, L =400 and L = 1600, respectively, and rows correspond to
B =0.1 and B = 0.2, respectively. The model is (42).
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for y € (—=1/2,1/2). In other words, h, is a certain Hardy function, and thus there exists a
function f,: R — R in L? which is vanishing on (—o0, 0) and has L[ f,1(z) = h,(z) when
Re(z) > 0, see [2,12,14]. Note that f), is indeed real-valued, since h, (x —iy) = h, (x +iy)
for y € R and a fixed x > 0. We can apply [24], Proposition 2.3, to deduce that there exists
a function g € L? satisfying (19) and that it can be represented as the (left-sided) Riemann—
Liouville fractional integral of fj, that is,

t
gm:%ﬁ)/o fo)@ —w)P~'du, t>0.

Conversely, [24], Theorem 2.1, ensures that DB g given by (20) is a well-defined limit and that
D# g = fo. In particular, we have shown (ii) and if we can argue that fj € L', we have shown (i)
as well. This follows from the assumption in (14), since then we have that y — L[ fo](x +iy) is
differentiable for any x > 0 (except at O when x = 0) and

d
Llu ufo)](x +iy) =i@£[fo](x +iy)

_ Llun(d)](x +iy) + (1= B)(x +iy) P
h h(x +iy)? ’

47)
The function L[u — ufo(u)] is analytic on {7z € C : Re(z) < 0} and from the identity (47) it is not
too difficult to see that it also satisfies the Hardy condition (46). This means u +— u fo(u) belongs
to L2, and hence we have that f belongs to L!. Since g is the Riemann-Liouville integral of fo

of order 8 and fy € L'nL?, [3], Proposition 4.3, implies that g € LY for (1 — ,B)_l <y <2
It is straightforward to verify (22) and to obtain the identity

t
/ (Dﬁg) *n(u— -)du = / (ijl(s’,])(u)g *n(u— -)du
s R
almost everywhere by comparing their Fourier transforms. This establishes the relation
t
gt —v)—g(s—v) =/ (D’Bg) *1(u —v)du + L (V).
s

By letting s — —o0, and using that Df g and g are both vanishing on (—oo0, 0), we deduce that

t
g(1) = Jl[o,oo)(t)(l +/ (DPg) = n(u)du>,
0
for almost all + € R which shows (21) and, thus, finishes the proof. O

Proof of Theorem 3.2. Since g € L%, according to Proposition 3.1, and IE[L%] < oo and
E[L;]=0,

1
X,:/ gt —u)dL,, teR,
—00
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is a well-defined process (e.g., in the sense of [26]) which is stationary with mean zero and finite
second moments. By integrating both sides of (22) with respect to (L;);cr, We obtain

X, — X, =/ </ (Df]l(s,,])(u)g *n(u — r)du) dL, +L; — L;.
R \JR

By a stochastic Fubini result (e.g., [1], Theorem 3.1) we can change the order of integration
(twice) and obtain

/R(A{(Dfﬂ(”])(u)g *n(u—r) du) dL, = /R(Dfll(g,;])(u)x *n(u)du.

This shows that (X;);cr is a solution to (16). To show uniqueness, note that the spectral pro-
cess Ay (with spectral distribution, say, Fx) of any purely non-deterministic solution (X;);er
satisfies

/R]"[Jl(s,z]](—y)(iy)’sh(iy)Ax(dy) =L — L (48)

almost surely for all choices of s < ¢. This follows from the results in the supplementary material
on spectral representations (see [10]). Using the fact that (X;);egr is purely non-deterministic,
Fy is absolutely continuous with respect to the Lebesgue measure, and hence we can extend
(48) from 1, ;) to any function f € L? using an approximation of f with simple functions of the
form s = Z’}:l oLy foraj e Cand 19 <1 <--- <t,. Specifically, we establish that

A;{J:[f](—y)(iy)ﬂh(iy)l\x(dy)=/H;<f(u)dLu (49)

almost surely for any f € L2. In particular, we may take f = g(r — -), g being the solution
kernel characterized in (19), so that F[ f](y) = e~ 'Y (—iy)_ﬂ/h(—iy) and (49) thus implies that
X, = fioog(t —u)dL,, which ends the proof. O

Proof of Proposition 3.6. We start by arguing that the limit in (26) exists and is equal to
fi oQD'B g —u)dL,. For a given § > 0 it follows by a stochastic Fubini result that

B X —Xiw oo
F(l_ﬁ)/a ul+p d"‘—/RDag(t r)dL,, (50)

where

B *g(t) —glt —u)
ng(t):r(l_ﬁ)/a 8 ufi;s Ddu, t>0,

and ng(t) =0 for ¢ <0. Suppose for the moment that (L;);cgr is a Brownian motion, so that
(X#)ser is y-Holder continuous for all y € (0, 1/2) by (16). Then, almost surely, u — (X; —
Xi—u)/ u! TP isin L! and the relation (50) thus shows that

/[Dg}g(l‘—r)—Df,g(t—r)]dLri)O as 8,8’ = 0,
R
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which in turn implies that (D(’s3 2)s=0 has a limit in L2. We also know that this limit must be
DPg, since Df g — DPg pointwise as 8 |, 0 by (20). Having established this convergence, which
does not rely on (L;);cr being a Brownian motion, it follows immediately from (50) and the
1sometry property of the integral map fR dL that the limit in (26) exists and that Df X, =
f Dﬁg(t — u)dL,. To show (27), we start by recalling the definition of D# 1¢s,7 in (15) and

that f[Df]l(AY,,J](y) =(— ly)ﬁ}"[]l(s,,]](y). Thls identity can be shown by using that the improper
integral foooei‘”vy’] dv is equal to ' (y)e™™¥/2 for any y € (0, 1). Now observe that

f[ /R (D 1.1 (W) g % (u — ->du]<y> = (—iy)P Fl1.01 0 FLgl (=) Flnl(—y)
= Fl1(s, 1) F[(DPg) % n](—y)

t
=F[/ (DPg) % n(u — -)du]m,

N

and hence fR(D T.)W)g*nu—-)du= f (DPg) s n(u — -)du almost everywhere. Conse-
quently, using that DA X, = f DPg(t —u)dL, and applying a stochastic Fubini result twice,

fl(DﬁX)*n(u)duzf/I(Dﬁg)*n(u—r)dudLr
RJs

N

=/ /(Dﬁ(s,r])(u)g*n(u—r)dudL,

F(]—ﬂ)/ —(s—u), ]X*n(u)du.

The semimartingale property of (X;);cr is now an immediate consequence of (16). O

Proof of Proposition 3.7. Using (29) and that 4#(0) = —7([0, 00)), it follows that fx(y) ~
1|72 /1([0, 00))? as y — 0. To show the asymptotic behavior of yx at co we start by recalling
that, for u, v e R,

/00 (s — u)ﬁfl(s — v)ﬂ*1 ds = —F(ﬂ)f‘(l —2P) lu — v|2’371
uvv F(l _,3)

by [17], page 404. Having this relation in mind we use Proposition 3.1(ii) and (28) to do the
computations

yx(t)=%W/R/R/RDﬂg(u)Dﬂg(v)(s-i-t—u)ﬁ_l(s—v)f__ldvduds

1
- DP o(u)DP
RTIE /R/R gw)D" g(v)

o
/ (s—(u—t))ﬁf](s—v)ﬂfldsdvdu
(u—t)Vv
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__ra-2p 5 P s
TR -p) R/RD gw)D"g()u —v — 1" dvdu
(1 -28)

_ _ +128-1
STETA—py Jp M eb

where y (1) = fRDﬂg(u + v)DP g(v)dv. Note that y € L' since DPg € L' by Proposition 3.1
and, using Plancherel’s theorem,

y(u)=Ae—f“y|f[0ﬁg](y>|2dy=f[|h(i->|‘2]<u>.

In particular fRy(u) du = |h(0)|~2 = 5([0, 00)) "2, and hence it follows from (51) that we have
shown the result if we can argue that

Jr v @lu — P71 du :/ y ()
R |7

It is clear by Lebesgue’s theorem on dominated convergence that

0 0
/ Ll)_zdue/ y()du ast— oo.
_1| p —00

u
7oo|7

Moreover, since |h(i -)|~2 is continuous at 0 and differentiable on (—oo, 0) and (0, 0o) with
integrable derivatives, it is absolutely continuous on R with a density ¢ in L'. As a consequence,
y (u) = Fl$1(u)/(iu) and, thus,

fw&du—/wﬂdu——i/wwdu (53)
t 1 !

p =12 fip =128y ufu = 112

By the Riemann—Lebesgue lemma and Lebesgue’s theorem on dominated convergence it fol-
lows that the right-hand side of expression in (53) tends to zero as ¢ tends to infinity. Finally,
integration by parts and the symmetry of y yields

/2 1 1/2 1
/0 V(u)<l—7|%_1|12ﬂ)du=/0 tV(tu)(l—i(l_u)lzﬁ)du

_ (21—2ﬂ B 1) /—t/2
= y (1) du

e ¢]

172 1—2’3 —tu
_/0 a—w>2p | yWdvdu,

where both terms on the right-hand side converge to zero as ¢ tends to infinity. Thus, we have
shown (52), and this completes the proof. ]



822 R.A. Davis, M.S. Nielsen and V. Rohde

Proof of Proposition 3.8. Observe that it is sufficient to argue E[(X; — Xo)z] ~tast ] 0.By
using the spectral representation X; = fRe”yA x(dy) and the isometry property of the integral
map [ - dAx: L*(Fx) — L*(P), see [16], page 389, we have that

EI(X: = X1 _
14

/}1 — & fx(y/1)dy
R

_/ S d (54)
= S PRI B — B F Iy R

Consider now a y € R satistfying |y| > Ct with C; := (2|n|([0, 00)))/1=P) n this case,
Iy|'=8 /2 — |t'=B Fn1(y/t)| > 0, and we thus get by the reversed triangle inequality that

11— eiv)? 11— ey
Iy 1) =P — ' =B Fnl(y/0)|> ~ y?

If |y| < Cyt, we note that the assumption on the function in (18) implies that

Cr:= inf |(ix)17ﬂ — Flnlx)| >0,

[x|<Cy
which shows that

- _ _ &) _
(@' =P Finy 0| 2172 gy
1

This establishes that
|1 _ eiy|2 Clz(l—ﬁ) |1 _ eiy|2
IYPRIGI=F =t 1=BFInl(y/0? = €3 y?

Consequently, it follows from (54) and Lebesgue’s theorem on dominated convergence that

E[(X; — X0)*] .

[1—e? >
—dy= [ [Flloyl»["dy=1 ast |0,
! R Y R

which was to be shown. ]

Proof of Proposition 3.11. We start by arguing that the first term on the right-hand side of the
formula is well-defined. In order to do so, it suffices to argue that

t—s s
E[/O / | X o )|(Dfll(s,zu])(v+w)||n|(dv)dw|g|(du)]

t—s S
<E[1Xo]] fo /[0 | / (D 1sma) (0 + w)| dwlnl@)gl()  (55)
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is finite. This is implied by the facts that
" 1(pP
A=) [ (071 o+ w)]du
—00

0 1
5/ (t—s—u+w)—ﬁdw+/[w—ﬁ—(t—s—u+w)—ﬁ]dw
u+s—t 0

+(1+,3)foow_1_’3(t—s—u)dw
1

:Lﬂ(z(t—s—u)l—ﬁﬂ—(t—s—u+1)1—f‘

T )+%(r—s—u)

(r—s)l—ﬁ+(“;fﬂ)(t—s)

=

-8

for u € [0,t — s] and g(du) is a finite measure (since Dﬁg elL! by Proposition 3.1). Now fix an
arbitrary z € C with Re(z) > 0. It follows from (16) that

LIX1(5,00)](2) = X5 L[L(5,00](2) + L[L5,00) (L. — Ly)](2)

+£[1<S,w)/ xu/ (Dfﬂ(s_])(u+v)n(dv)du}(z). (56)
R [0,00)

By noting that (Dé]l(w])(u) =0 when t <s < u we obtain

E|:]l(s,oo)/ Xuf (Dé]l(s,.])(u+v)77(dv) du](z)
K [0,00)

= L[L5,00 X1(2) LIN1(2) 2P 1.

Combining this observation with (56), we get the relation

(z — 2" LIn1(2)) L1 (5,00 X1(2)
=2 X L[1L(5,00)1(2) + 2L[L(5,00) (L — Ly)](2)

+z£[1l(s,oo)/ Xu/ (Dﬂ]l(s,-])(u+U)77(dv)du}(Z),
—00 [0,00)

which implies

L[1(5,00 X1(2)
= LIg1()L[Xs80(s — )]@) + 2LIEIR) L[ 15,00 (L = L)] (@)
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N
+z£[g](z)£[n<s,oo> / X, f (Df]l(s,.])(u+v)n(dv)du}(z)
—00 [0,00)

=L[g(- —)X;]) +/$|:/. g(- —u)dLu:|(Z)

”U Ry (Dfﬂ<s~—u1)<v+w>n(dv)dwg<du>](z>.
0 —00 [0.00)

This establishes the identity
t
X =g —9)X;s +/ gt —u)dL,

[ / / (DP15.1—u) (v + W) (dv) dwg (du) 57)
[0, 00)

almost surely for Lebesgue almost all # > s. Since both sides of (57) are continuous in L (P), the
identity holds for each fixed pair s < ¢ almost surely as well. By applying the conditional mean
E[- | X,, u < s] on both sides of (57), we obtain the result. O

Proof of Corollary 4.1. In this setup, it follows that the function 4 in (18) is given by

R(2)
0’

where Q(z) # 0 whenever Re(z) > 0 by the assumption on A. This shows that % is non-zero (on
{z € C:Re(z) > 0}) if and only if

h(z)=2"P +x+ —2=

Q@)[z' P +«]+R(z)#0 forall z € C with Re(z) > 0. (58)

Condition (58) may equivalently be formulated as Q(z)[z + kzP1+ R(2)ZP #0forall zeC\
{0} with Re(z) > 0 and h(0) =k + b" A~le; % 0, which by Theorem 3.2 shows that a unique
solution to (34) exists. It also provides the form of the solution, namely (24) with

Flel(y) = (iy)~# 0(iy)
GNP+ + R(”g Q(iy)liy + k(iy)P1+ R(iy)(iy)B’

yeR.

This finishes the proof. O

Proof of Proposition 4.2. We will first show that D f € L'. By using that foooeA” du=—A""
we can rewrite DP f as

1 t _ _ e e} v
Dﬁf(t)zm—_ﬂ)bTA</O Mt —uy P —1 ﬁ]du—/t et f’du)el, t>0,
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from which we see that it suffices to argue that (each entry of)
t
t— / eA”[(t —u) P - t_ﬁ]du
0

belongs to L!. Since u — e4* is continuous and with all entries decaying exponentially fast as

u — 00, this follows from the fact that, for a given y > 0,

oo t
/ f e_y”‘(t —u) P - t_ﬂ’du dr
0 0
o0

u+1 00
5/ e v </ [(t—u)_’g—f-t_ﬂ] dt—i—ﬂu/ t_ﬁ_ldt) du < oo.
0 u 1

Here we have used the mean value theorem to establish the inequality
[t —w)™F =17 < Bu(t —w)~F~!

for 0 < u < t. To show that D? fe L2, note that it is the left-sided Riemann-Liouville fractional
derivative of f, that is,

DW(;):LE/If(t—u)u—ﬂdu >0
ra-—pgd ’ ‘

Consequently, it follows by [27], Theorem 7.1, that the Fourier transform F[D? f] of f is given
by
FIDP 1) = (P FLAID = (0P iy — A7 er, yeR,

in particular it belongs to L? (e.g., by Cramer’s rule), and thus D? f € L2. By comparing Fourier
transforms, we establish that (Dfg) x f = g % (D f), and hence it holds that

/oo Dﬁx,_uf(u)du=/(Dﬂg)*f(t—r)dL,=/ooX,_qu’f(u)du
0 R 0

using Proposition 3.6 and a stochastic Fubini result. This finishes the proof. [
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Supplementary Material

Spectral representations of continuous-time stationary processes (DOI: 10.3150/18-
BEJ1086SUPP; .pdf). The supplement provides an exposition of the spectral representation and
related results for continuous-time stationary, centered and square integrable processes.
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