
Bernoulli 25(4A), 2019, 2824–2853
https://doi.org/10.3150/18-BEJ1072

A multivariate Berry–Esseen theorem with
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We provide a Lyapunov type bound in the multivariate central limit theorem for sums of independent, but
not necessarily identically distributed random vectors. The error in the normal approximation is estimated
for certain classes of sets, which include the class of measurable convex sets. The error bound is stated with
explicit constants. The result is proved by means of Stein’s method. In addition, we improve the constant in
the bound of the Gaussian perimeter of convex sets.
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1. Introduction and results

Let I be a countable set (either finite or infinite) and let Xi , i ∈ I, be independent Rd -valued
random vectors. Assume that EXi = 0 for all i and that

∑
i∈I Var(Xi) = Id . It is well known that

in this case, the sum W :=∑i∈I Xi exists almost surely and that EW = 0 and Var(W) = Id .
For μ ∈R

d and � ∈ R
d×d , denote by N (μ,�) the d-variate normal distribution with mean μ

and covariance matrix �. For a measurable set A ⊆ R
d , let N (μ,�){A} := P(Z ∈ A), and for a

measurable function f : Rd → R, denote N (μ,�){f } := E[f (Z)], where Z ∼N (μ,�).
Roughly speaking, the d-variate central limit theorem for this set-up says that if none of the

summands Xi is “too large”, the sum W approximately follows N (0, Id). The error can be mea-
sured and estimated in various ways. Here, we focus on the Lyapunov type bound

sup
A∈A

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ K
∑
i∈I

E|Xi |3, (1.1)

where A is a suitable class of subsets of Rd and where |x| denotes the Euclidean norm of the
vector x.

Fixing a class of sets for all dimensions d , an important question is the dependence of the
constant K on the dimension. The latter has drawn the attention of many authors and was tack-
led by different techniques. The class of measurable convex sets appears as a natural extension
of the classical univariate Berry–Esseen theorem. For this case and for identically distributed
summands, Nagaev [18] uses Fourier transforms to derive a constant of order d . Bentkus [7]
succeeds to derive a constant of order d1/2 by the method of composition (Lindeberg–Bergström
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method). Improving this method and taking advantage of new bounds on Gaussian perimeters of
convex sets (see below), he obtains K = 400d1/4 in [5]. In [6], the latter result is extended to not
necessarily identically distributed summands, but with no explicit constant, just of order d1/4.

In 1970, Stein [26] developed a new elegant approach to bound the error in the normal approx-
imation. His method was subsequently extended and refined in many ways. Götze [16] derives
(1.1) with K = 157.85d + 10 using Stein’s method combined with induction. Combining with
part of Bentkus’s argument, Chen and Fang [10] succeed to improve this bound to 115d1/2.
However, this is still of larger order than Bentkus’s result.

There used to be certain doubts about the correctness of Götze’s paper [16]. To present a
more readable account of Götze’s paper, Bhattacharya and Holmes wrote an exposition [8] of the
arguments. However, they obtain a higher order dependence of the error rate on d , namely d5/2.
In Remark 2.2, we explain where they gain the extra factor of d3/2.

Here, we combine Götze’s and Bentkus’s arguments to derive the following explicit variant of
Bentkus’s result:

Theorem 1.1. For Xi and W as above and all measurable convex sets A ⊆R
d , we have

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ (42d1/4 + 16
)∑

i∈I

E|Xi |3. (1.2)

This result follows immediately from Theorems 1.2 and 1.3 below, also noticing the observa-
tions in Example 1.1.

To derive K in (1.1), it seems inevitable to include Gaussian perimeters of sets A ∈ A or
quantities closely related to them. The Gaussian perimeter of a set A ⊆R

d is defined as

γ (A) :=
∫

∂A

φd(z)Hd−1(dz),

where ∂A denotes the topological boundary of A, Hd−1 denotes the (d − 1)-dimensional Haus-
dorff measure and φd(z) := (2π)−d/2 exp(−|x|2/2) denotes the standard d-variate Gaussian den-
sity.

Gaussian perimeters are closely related to Gaussian measures of neighborhoods of the bound-
ary. Before stating it precisely, we introduce some notation:

• For a point x ∈R
d and a non-empty set A ⊆R

d , denote by dist(x,A) the Euclidean distance
from x to A.

• For a set A ⊆R
d , which is neither the empty set nor the whole Rd , define the signed distance

function of A as

δA(x) :=
{

−dist
(
x,Rd \ A

); x ∈ A,

dist(x,A); x /∈ A.

Moreover, for each t ∈ R, define At := {x ∈ R
d ; δA(x) ≤ t}. In addition, define ∅

t := ∅

and (Rd)t := R
d .
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• For A ⊆R
d , define

γ ∗(A) := sup

{
1

ε
N (0, Id)

{
Aε \ A

}
,

1

ε
N (0, Id)

{
A \ A−ε

}; ε > 0

}
.

• For a class of sets A, define γ (A) := supA∈A γ (A) and γ ∗(A) := supA∈A γ ∗(A).

The following proposition is believed by some authors to be evident. However, though the
proof is quite straightforward, the assertion is not immediate. As a special case of Proposition 3.1,
it is proved in Section 3.

Proposition 1.1. Let A be a class of certain convex sets. Suppose that At ∈ A ∪ {∅} for all
A ∈ A and all t ∈R. Then we have γ (A) = γ ∗(A).

Let Cd be the class of all convex sets in R
d . Denote γd := γ (Cd) = γ ∗(Cd). It is known

that γd ≤ 4d1/4 – see Ball [2]. Nazarov [19] shows that the order d1/4 is correct and improved
the upper bound asymptotically, showing that lim supd→∞ d−1/4γd ≤ (2π)1/4 < 0.64. Our next
result provides an explicit bound, which is asymptotically even slightly better than Nazarov’s
bound.

Theorem 1.2. For all d ∈N, we have

γd ≤
√

2

π
+ 0.59

(
d1/4 − 1

)
< 0.59d1/4 + 0.21. (1.3)

We defer the proof to Section 3.

Remark 1.1. Though γd is of order d1/4, this does not necessarily mean that this is the optimal
order of the constant K in (1.1). This remains an open question.

There are interesting classes of sets A where there exist better bounds on γ (A) than those of
order d1/4. For the class of all balls, γ (A) can be bounded independently of the dimension – see
Sazonov [22,23]. For the class of all rectangles, it is known that γ (A) is at most of order

√
logd ,

see Nazarov [19]. Apart from convex sets, other classes may also be interesting, e. g., the class of
unions of balls which are at least � apart, where � > 0 is a fixed number. Therefore, we derive
a more general result; Theorem 1.1 will follow from the latter and Theorem 1.2.

To generalize Theorem 1.1, we shall consider a class A of measurable sets in R
d . For each A ∈

A, take a measurable function ρA : Rd → R. The latter can be considered as a generalized signed
distance function: typically, one can take ρA = δA, but we allow for more general functions. For
each t ∈ R, define

At |ρ := {x;ρA(x) ≤ t
}
.



A multivariate Berry–Esseen theorem 2827

Next, define the generalized Gaussian perimeter as

γ ∗(A | ρ) := sup

{
1

ε
N (0, Id)

{
Aε|ρ \ A

}
,

1

ε
N (0, Id)

{
A \ A−ε|ρ}; ε > 0

}
,

γ ∗(A | ρ) := sup
A∈A

γ ∗(A | ρ).

We shall impose the following assumptions:

(A1) A is closed under translations and uniform scalings by factors greater than one.
(A2) For each A ∈ A and t ∈ R, At |ρ ∈ A ∪ {∅,Rd}.
(A3) For each A ∈ A and ε > 0, either A−ε|ρ =∅ or {x;ρA−ε|ρ (x) < ε} ⊆ A.
(A4) For each A ∈ A, ρA(x) ≤ 0 for all x ∈ A and ρA(x) ≥ 0 for all x /∈ A.
(A5) For each A ∈ A and each y ∈ R

d , ρA+y(x + y) = ρA(x) for all x ∈ R
d .

(A6) For each A ∈ A and each q ≥ 1, |ρqA(qx)| ≤ q|ρA(x)| for all x ∈ R
d .

(A7) For each A ∈ A, ρA is non-expansive on {x;ρA(x) ≥ 0}, i.e., |ρA(x)−ρA(y)| ≤ |x − y|
for all x, y with ρA(x) ≥ 0 and ρA(y) ≥ 0.

(A8) For each A ∈ A, ρA is differentiable on {x;ρA(x) > 0}. Moreover, there exists κ ≥ 0,
such that ∣∣∇ρA(x) − ∇ρA(y)

∣∣≤ κ|x − y|
min{ρA(x), ρA(y)}

for all x, y with ρA(x) > 0 and ρA(y) > 0; throughout this paper, ∇ denotes the gradient.

In addition, we state the following optional assumption:

(A1′) A is closed under symmetric linear transformations with the smallest eigenvalue at least
one.

Remark 1.2. It is natural to define ρA so that (A6) is satisfied with equality. However, for our
main result, Theorem 1.3, only the inequality is needed.

Remark 1.3. Assumptions (A3)–(A8) are hereditary: if the pair (A, (ρA)A∈A) meets them and
if B ⊆ A, the pair (B, (ρB)B∈B) meets them, too.

Remark 1.4. With ρA = δA, one can easily check that Assumptions (A3)–(A7) are met. As-
sumption (A8) is motivated by Lemma 2.2 of Bentkus [5] (see Example 1.1 below).

The following is the main result of this paper.

Theorem 1.3. Let W =∑i∈I Xi be as in Theorem 1.1 and let A be a class of sets meeting
Assumptions (A1)–(A8) (along with the underlying functions ρA). Then for each A ∈ A, the
following estimate holds true:

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ max
{
27,1 + 53γ ∗(A | ρ)

√
1 + κ

}∑
i∈I

E|Xi |3. (1.4)
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In addition, if A also satisfies (A1′), the preceding bound can be improved to

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ max
{
27,1 + 50γ ∗(A | ρ)

√
1 + κ

}∑
i∈I

E|Xi |3. (1.5)

We provide the proof in the next section.

Remark 1.5. Though explicit, the constants in Theorem 1.3 seem to be far from optimal. Con-
sider the classical case where A is the class of all half-lines (−∞,w], where w runs over R. It is
straightforward to check that A along with ρA = δA meets Assumptions (A1)–(A8) with κ = 1.
Observing that γ ∗(A | ρ) = γ ∗(A) = 1/

√
2π , estimate (1.5) reduces to (1.1) with K = 29.3.

This is much worse than K = 4.1 obtained by Chen and Shao [11] by Stein’s method, let alone
than K = 0.5583 obtained by Shevtsova [24] by Fourier methods.

Below we give further examples of classes of sets.

Example 1.1. Consider the class Cd of all measurable convex sets in R
d , along with ρA = δA,

which is defined in Cd \ {∅,Rd}. Clearly, the latter class satisfies (A1). It is easy to verify (A2).
By Lemma 2.2 of Bentkus [5], (A8) is met with κ = 1. By Remark 1.4, all other assumptions are
met, too.

Example 1.2. The class of all balls in R
d (excluding the empty set) along with ρA = δA meets

(A1) and (A2). Since the balls are convex, it meets all Assumptions (A1)–(A8).

Example 1.3. For a class of ellipsoids, ρA = δA is not suitable because an ε-neighborhood of
an ellipsoid is not an ellipsoid. However, one can set ρA(x) := δQA(Qx), where Q is a linear
transformation mapping A into a ball (may depend on A). Notice that Q must be non-expansive
in order to satisfy (A7).

Remark 1.6. If the random vectors Xi are identically distributed, that is, if I has n elements and
Xi follow the same distribution as ξ/

√
n, the sum

∑
i∈I E|Xi |3 reduces to n−1/2

E|ξ |3. However,
for the class of centered balls, this rate of convergence is suboptimal. Using Fourier analysis,
Esseen [13] succeeds to derive a convergence rate of order n−d/(d+1) under the existence of
the fourth moment. This is possible because of symmetry: that result is in fact an asymptotic
expansion of first order with vanishing first term.

Recently, Stein’s method has been used by Gaunt, Pickett and Reinert [15] to derive a con-
vergence rate of order n−1, but for sufficiently smooth radially symmetric test functions rather
than the indicators of centered balls. Applying Stein’s method to non-smooth test functions is
not straightforward: non-smoothness of test functions needs to be compensated by a kind of
smoothness of the distribution of W or its modifications.

In the present paper, this is resolved by a ‘bootstrapping’ argument which is essentially equiv-
alent to Götze’s [16] inductive argument. The probabilities of the sets in the class A are a kind
of invariant (see (2.22) and (2.30)). In view of characteristic functions, this is similar to the argu-
ment introduced by Tihomirov [27], which combines Stein’s idea with Fourier analysis. Instead
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of the set probabilities, the invariant are the expectations of functions x �→ ei〈t,x〉 for t of order
O(

√
n). This suffices to derive a convergence rate of order n−1/2.

Esseen [13] succeeds to go beyond this rate (in dimensions higher than one) by deriving a kind
of smoothness of the distribution of W directly: see Lemma 3 ibidem. This part of the argument
seems to have no relationship with Stein’s method. Similarly, Barbour and Čekanavičius [4] suc-
ceed to sharply estimate the error in the asymptotic expansions for integer random variables, but
although the main argument is based on Stein’s method, appropriate smoothness of modifications
of W is needed and derived separately: see the inequality (5.7) ibidem.

Unfortunately, smoothness of W in view of Lemma 3 of Esseen [13] is unlikely to be use-
ful in the argument used in this paper: another kind of smoothness would be desirable. Stein’s
method can be successfully combined with the concentration inequality approach, as in Chen
and Fang [10]. Certain modifications of that approach could be a key to improvements.

Now consider an example of a class of non-convex sets.

Example 1.4. Let A be the class of all unions of disjoint intervals on the real line, such that the
midpoints of any two intervals are at least � apart, where � > 0 is fixed. In this case, δA is not a
suitable function because it is not sufficiently smooth. We define ρA as follows (see Figure 1):

• If x ≥ b = supA, define ρA(x) := x − b.
• If x ≤ a = infA, define ρA(x) := a − x.
• If x /∈ A and b ≤ x ≤ a, where b and a are the endpoints of two successive intervals, define

ρA(x) := 1

a − b

[(
a − b

2

)2

−
(

x − b + a

2

)2]
.

• If x is an element of an interval with endpoints a and b, which constitutes A, define

ρA(x) := −
(

b − a

2
−
∣∣∣∣x − a + b

2

∣∣∣∣
)

.

Assumptions (A1), (A2) and (A4)–(A7) are easily verified (notice that some intervals may
be joined or may disappear under A �→ At |ρ , but the distances between their midpoints never
decrease). To verify (A3), observe that for ρA(x) ≥ δA(x)/2 for all x /∈ A. Consequently, Aε|ρ ⊆
A2ε for all ε > 0. Moreover, observe that A−ε|ρ = A−2ε for all ε > 0. As a result, either A−ε|ρ =
∅ or {x;ρA−ε|ρ (x) < ε} ⊆ {x; δA−2ε (x) < 2ε} ⊆ A.

Figure 1. Construction of ρA for A = [−2,0] ∪ [2,5].
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To verify (A8), observe that if x /∈ A and b ≤ x ≤ a, where b and a are the endpoints of two
successive intervals, we have ρ′′

A(x) ≤ 2/(a − b) ≤ 1/(2ρA(x)). Thus, (A8) is met with κ = 1/2.
Finally, we estimate γ ∗(A | ρ). Let A ∈ A be a union of disjoint intervals from aj to

bj , where j runs over J, which is a set of successive numbers in Z; we can assume that
the intervals appear in the same order as the indices. Since Aε|ρ ⊆ A2ε and A−ε|ρ = A−2ε ,
we have N (0,1)(Aε \ A) ≤ ∫ 2ε

0

∑
j∈J[φ(aj − t) + φ(bj + t)]dt and N (0,1)(A \ A−ε) ≤∫ 0

−2ε

∑
j∈J[φ(aj − t) + φ(bj + t)]dt , where φ denotes the standard univariate normal density,

i. e., φ(x) = (2π)−1/2e−x2/2. Fix t , consider the terms with aj and bj separately, and split the
sums over the indices where aj − t and bj + t are positive or negative. Estimating aj+n − aj ≥
aj+n−1+bj+n−1

2 − aj +bj

2 ≥ (n − 1)� and bj+n − bj ≥ aj+n+bj+n

2 − aj+1+bj+1
2 ≥ (n − 1)�, and

applying monotonicity of φ on (−∞,0] and on [0,∞), we obtain after some calculation

1

ε
max

{
N (0,1)

{
Aε \ A

}
,N (0,1)

{
A \ A−ε

}}≤ 8√
2π

(
2 +

∞∑
n=1

e−n2�2/2

)

≤ 8√
2π

(
2 +

∫ ∞

0
e−�2x2/2 dx

)

= 16√
2π

+ 4

�
.

The latter is the desired upper bound on γ ∗(A | ρ).

2. Derivation of the bound in the central limit theorem

In this section, we prove Theorem 1.3. We shall use the ideas of Bentkus [5] regarding smoothing
and Götze [16] regarding Stein’s method. Before going to the proof, we need a few auxiliary
results; we defer their proofs to the end of the section. We also introduce some further notation
and conventions.

Let x,u1, u2, . . . , ur ∈ R
d . By 〈∇rf (x), u1 ⊗ u2 ⊗ · · ·⊗ ur 〉, we denote the r-th order deriva-

tive of f at x in directions u1, u2, . . . , ur . By components, if ui = (ui1, ui2, . . . , uid), we have

〈∇rf (x),u1 ⊗ u2 ⊗ · · · ⊗ ur

〉= ∑
j1,j2,...,jr

∂rf (x)

∂xj1∂xj2 · · ·∂xjr

u1j1u2j2 · · ·urjr .

Thus, ∇rf (x) is a symmetric tensor of order r . We identify 2-tensors with linear maps or their
matrices by u ⊗ v ≡ uvT . Observe that the Laplace operator can then be expressed as

�f (x) = 〈∇2f (x), Id

〉
. (2.1)

By |T |∨, we denote the injective norm of tensor T , that is

|T |∨ := sup
|u1|,|u2|,...,|ur |≤1

∣∣〈T ,u1 ⊗ u2 ⊗ · · · ⊗ ur 〉
∣∣.
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For symmetric tensors, the supremum can be taken just over equal ui :

Proposition 2.1 (Banach [3]; Bochnak and Siciak [9]). If T is a symmetric tensor of order r ,
then |T |∨ = sup|u|≤1 |〈T ,u⊗r〉|.

Next, denote

M∗
0 (f ) := 1

2

[
sup

w∈Rd

f (w) − inf
w∈Rd

f (w)
]
,

Mr(f ) := sup
w,z∈Rd

w �=z

|∇r−1f (w) − ∇r−1f (z)|∨
|w − z| ; r = 1,2,3, . . .

If f is not everywhere (r − 1)-times differentiable, we put Mr(f ) = ∞.

Remark 2.1. This way, if Mr(f ) < ∞, then ∇r−1f exists everywhere and is Lipschitzian. In
this case, by Rademacher’s theorem (see Federer [14], Theorem 3.1.6), ∇r−1f is almost every-
where differentiable. In addition, Mr(f ) = supx |∇rf (x)|∨, where the supremum runs over all
points where ∇r−1f is differentiable.

Now we turn to auxiliary results regarding smoothing. The following one is a counterpart of
Lemma 2.3 of Bentkus [5].

Lemma 2.1. Let A be a class of sets which, along with the underlying functions ρA,
meets Assumptions (A1)–(A8). Then for each A ∈ A and each ε > 0, there exist functions
f ε

A,f −ε
A : Rd → R, such that:

(1) 0 ≤ f ε
A,f −ε

A ≤ 1.
(2) f ε

A(x) = 1 for all x ∈ A and f ε
A(x) = 0 for all x ∈R

d \ Aε|ρ .
(3) f −ε

A (x) = 1 for all x ∈ A−ε|ρ and f −ε
A (x) = 0 for all x ∈R

d \ A.
(4) The following bounds hold true:

M1
(
f ε

A

)≤ 2

ε
, M1

(
f −ε

A

)≤ 2

ε
, M2

(
f ε

A

)≤ 4(1 + κ)

ε2
, M2

(
f −ε

A

)≤ 4(1 + κ)

ε2
.

(5) For each u ∈ (0,1), {x;f ε
A(x) ≥ u} ∈ A ∪ {∅,Rd} and {x;f −ε

A (x) ≥ u} ∈ A ∪ {∅,Rd}.

Proof. First, define f ε
A(x) := g(

ρA(x)
ε

), where

g(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1; x ≤ 0,

1 − 2x2; 0 ≤ x ≤ 1/2,

2(1 − x)2; 1/2 ≤ x ≤ 1,

0; x ≥ 1.
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Requirements (1) in (2) are immediate, while (3) is irrelevant for f ε
A. To prove (5), observe

that {x;f ε
A(x) ≥ u} = Aεg−1(u)|ρ . Now we turn to (4). First, notice that M1(f

ε
A) ≤ 2/ε because

M1(ρA) ≤ 1 in M1(g) = 2. Next, f ε
A is continuously differentiable: see supplementary material

[20]. Letting B := {x;ρA(x) ≤ 0}, take x, y ∈R
d \ B with ρA(x) ≥ ρA(y) and estimate

∣∣∇f ε
A(x) − ∇f ε

A(y)
∣∣≤ 1

ε

∣∣∣∣g′
(

ρA(x)

ε

)
− g′

(
ρA(y)

ε

)∣∣∣∣∣∣∇ρA(x)
∣∣

+ 1

ε

∣∣∣∣g′
(

ρA(y)

ε

)∣∣∣∣∣∣∇ρA(x) − ∇ρA(y)
∣∣.

In the first term, we apply M2(g) = 4 and M1(ρA) ≤ 1, while in the second, we apply |g′(t)| ≤ 4t

and (A8). Combining these estimates, we obtain |∇f ε
A(x) − ∇f ε

A(y)| ≤ 4(1 + κ)ε−2|x − y|,
noticing that we may drop the assumption that ρA(x) ≥ ρA(y). In other words, on R

d \ B , ∇f ε
A

is Lipschitzian with constant 4(1+κ)ε−2. Trivially, this also holds true in the interior of B . Since
∇f ε

A is continuous, this also holds true on the closures of both sets. Since for each x ∈ IntB and

each y ∈ Rd \ B , there exists z on the line segment with endpoints x and y, which is an element
of both sets, ∇f ε

A is Lipschitzian with the above-mentioned constant on the whole R
d . Thus, f ε

A

meets all relevant requirements.
Now define f −ε

A ≡ 0 if A−ε = ∅ and f −ε
A := f ε

A−ε otherwise. From the above and from As-
sumption (A3), it follows that this function also satisfies all relevant requirements. This completes
the proof. �

Throughout this section, � will refer to a positive-definite matrix � with the largest eigenvalue
at most one and with the smallest eigenvalue σ 2, where σ > 0.

Lemma 2.2. Let A be a class of sets, which, along with the underlying functions ρA, meets
Assumptions (A1) and (A6). Then the following estimates hold true for all ε > 0:

N (μ,�)
{
Aε|ρ \ A

}≤ γ ∗(A | ρ)ε

σ
and N (μ,�)

{
A \ A−ε|ρ}≤ γ ∗(A | ρ)ε

σ
.

Proof. Take independent random vectors Z ∼ N (0, Id) and R ∼ N (μ,� − σ 2Id). Clearly,
σZ + R ∼N (μ,�). Now observe that, by (A5),

N (μ,�)
{
Aε|ρ \ A

}= P
(
σZ + R ∈ Aε|ρ \ A

)
= P
[
Z ∈ σ−1(Aε|ρ − R)

∖
σ−1(A − R)

]
= P
[
Z ∈ σ−1((A − R)ε|ρ

) ∖
σ−1(A − R)

]
= E
[
N (0, Id)

{
σ−1((A − R)ε|ρ

) ∖
σ−1(A − R)

}]
.

From (A6), it follows that σ−1Bε|ρ ⊆ (σ−1B)(ε/σ)|ρ for all B ∈ A. Therefore,

N (μ,�)
{
Aε|ρ \ A

}≤ E
[
N (0, Id)

{(
σ−1(A − R)

)(ε/σ )|ρ ∖ (
σ−1(A − R)

)}]≤ γ ∗(A | ρ)ε

σ



A multivariate Berry–Esseen theorem 2833

(notice that σ−1(A − R) ∈ A by (A1)). Analogously, we obtain N (μ,�){A \ A−ε} ≤ γ ∗(A |
ρ)ε/σ . This completes the proof. �

Lemma 2.3. Let a class A along with the underlying functions ρA meet Assumptions (A1)–
(A8). Take a linear map L : Rd → R

d with the smallest singular value at least one. Then the
class Ã := {LA;A ∈ A} along with the underlying functions ρ̃

Ã
(x) := ρL−1Ã

(L−1x) meets these
assumptions with the same κ in (A8). Moreover,

γ ∗(Ã | ρ̃) ≤ ‖L‖γ ∗(A | ρ). (2.2)

Proof. Assumptions (A1), (A3), (A4), (A5) and (A6) are straightforward to check. To ver-
ify (A2), observe that

Ãt |ρ̃ = {x; ρ̃
Ã
(x) ≤ t

}= {x;ρL−1Ã

(
L−1x

)≤ t
}= L

(
L−1Ã

)t |ρ
.

Assumption (A7) follows from the fact that L−1 is non-expansive. To verify (A8), observe that,
by the chain rule, ∇ρ̃

Ã
(x) = L−T ∇ρL−1Ã

(L−1x), and use again that L−1 is non-expansive.
Finally, observe that

N (0, Id)
{
Ãε|ρ̃ ∖ Ã

}=N (0, Id)
{
L
(
L−1Ã

)ε|ρ ∖
Ã
}

=N
(
0,L−1L−T

){(
L−1Ã

)ε|ρ ∖ L−1Ã
}

≤ ‖L‖γ ∗(A | ρ)ε

by Lemma 2.2. An analogous inequality holds true for Ã \ Ã−ε|ρ̃ . Taking the supremum over
Ã ∈ Ã, we obtain (2.2). �

Now we turn to Stein’s method, which will be implemented in view of the proof of Lemma 1 of
Slepian [25]. We recall the procedure briefly; for an exposition, see Röllin [21] and Appendix H
of Chernozhukov, Chetverikov and Kato [12]. Let f be a bounded measurable function. For
0 ≤ α ≤ π/2, define

Uαf (w) :=
∫
Rd

f (w cosα + z sinα)φd(z)dz. (2.3)

For a random variable W , E[Uαf (W)] can be regarded as an interpolant between E[f (W)] and
N (0, Id){f }. A straightforward calculation shows that

d

dα
Uαf (w) = SUαf (w) tanα,

where S denotes the Stein operator:

Sg(w) := �g(w) − 〈∇g(w),w
〉

(2.4)
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and where � denotes the Laplacian. Integrating over α and taking expectation, we find that

Ef (W) −N (0, Id){f } = −
∫ π/2

0
E
[
SUαf (W)

]
tanα dα. (2.5)

Notice that for 0 < α ≤ π/2, Uαf is infinitely differentiable, so that SUαf is well-defined.
Differentiability can be shown by integration by parts. In particular, we shall need

∇3Uαf (w) = − cot3 α

∫
Rd

f (w cosα + z sinα)∇3φd(z)dz (2.6)

= −cos3 α

sinα

∫
Rd

∇2f (w cosα + z sinα) ⊗ ∇φd(z)dz. (2.7)

The proof is straightforward and is therefore left to the reader (cf. Section 2 of Bhattacharya and
Holmes [8]). Observe that (2.7) remains true for all w if ∇f is Lipschitzian, that is, M2(f ) < ∞
(see Remark 2.1).

Now we turn to the Stein expectation E[Sg(W)]. The following result, which is essentially a
counterpart of Lemma 2.9 of Götze [16], expresses it in a way which is useful for its estimation.

Lemma 2.4 (Stein Expectation). Let Xi , i ∈ I, be independent Rd -valued random vectors with
sum W , which satisfies EW = 0 and Var(W) = Id . Then for any bounded three times continu-
ously differentiable function g with bounded derivatives,

E
[
Sg(W)

]=∑
i∈I

E
[〈∇3g(Wi + θXi),Xi ⊗ X̃⊗2

i − (1 − θ)X⊗3
i

〉]
,

where Wi = W −Xi , X̃i is an independent copy of Xi , θ is uniformly distributed over [0,1], and
X̃i and θ are independent of each other and all other variates.

Proof. Recalling (2.1), write

�g(W) = 〈∇2g(W), Id

〉= 〈∇2g(W),Var(W)
〉=∑

i∈I

〈∇2g(W),Var(Xi)
〉

=
∑
i∈I

〈∇2g(W),E
(
X⊗2

i

)〉
.

Plugging into (2.4), we obtain

E
[
Sg(W)

]=∑
i∈I

E
[〈∇2g(Wi + Xi),EX⊗2

i

〉− 〈∇g(Wi + Xi),Xi

〉]

=
∑
i∈I

E
[〈∇2g(Wi + Xi), X̃

⊗2
i

〉− 〈∇g(Wi + Xi),Xi

〉]
.
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Taylor expansion centered at Wi yields

E
[
Sg(W)

]= ∑
i∈I

E
[〈∇2g(Wi), X̃

⊗2
i

〉+ 〈∇3g(Wi + θXi),Xi ⊗ X̃⊗2
i

〉

− 〈∇g(Wi),Xi

〉− 〈∇2g(Wi),X
⊗2
i

〉− (1 − θ)
〈∇3g(Wi + θXi),X

⊗3
i

〉]
.

By independence, the first and the fourth term cancel and the third term vanishes because
EXi = 0. This completes the proof. �

Now we turn to the estimation of several integrals related to the multivariate normal distribu-
tion. Define constants c0, c1, c2, . . . by

cr :=
∫ ∞

−∞
∣∣φ(r)

1 (z)
∣∣dz.

Lemma 2.5. For each bounded measurable function f , each r ∈ N and each u ∈R
d , we have∣∣∣∣

∫
Rd

f (z)
〈∇rφd(z), u⊗r

〉
dz

∣∣∣∣≤ crM
∗
0 (f )|u|r .

Proof. First, observe that since the function F(x) = ∫
Rd φd(z + x)dz is constant, we have∫

Rd 〈∇rφd(z), u⊗r 〉dz = 〈∇rF (0), u⊗r 〉 = 0. Therefore, f can be replaced by f − b, where b

is arbitrary constant. As a result,∣∣∣∣
∫
Rd

f (z)
〈∇rφd(z), u⊗r

〉
dz

∣∣∣∣≤ sup |f − b|
∫
Rd

∣∣〈∇rφd(z), u⊗r
〉∣∣dz.

Choosing b = (inff + supf )/2, we have sup |f − b| = M∗
0 (f ). Next, since φd is spherically

symmetric, we can replace u by |u|e1, where e1 = (1,0, . . . ,0). Writing z = (z1, z
′), we have

〈∇rφd(z), e⊗r
1 〉 = φ

(r)
1 (z1)φd−1(z

′), so that∫
Rd

∣∣〈∇rφd(z), e⊗r
1

〉∣∣dz =
∫
R

∣∣φ(r)
1 (z1)

∣∣dz1

∫
Rd−1

φd−1
(
z′)dz′ = cr .

Combining this with previous observations, the result follows. �

Remark 2.2. At this step, Bhattacharya and Holmes [8] gain the extra factor of d3/2 in their
bound. Instead of taking advantage of spherical symmetry, they estimate by components – see
the estimates (3.12)–(3.15) ibidem. Götze’s paper [16] comes to this step in the estimate (2.7)
ibidem, where the result of Lemma 2.5 is actually used, but no argument is provided.

Lemma 2.6. Let f : Rd → R be bounded and measurable. Take 0 < α ≤ π/2. Then for all r ∈ N

and all μ,u ∈R
d ,

∣∣〈N (μ,�)
{∇rUαf

}
, u⊗r

〉∣∣≤ crM
∗
0 (f )

cosr α

σ r
|u|r .
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Remark 2.3. The expression N (μ,�){∇rUαf } is an expectation of a random tensor of order
r and is therefore a deterministic tensor. This allows us to define 〈N (μ,�){∇rUαf }, u⊗r 〉.

Proof of Lemma 2.6. Write〈
N (μ,�)

{∇rUαf
}
, u⊗r

〉= E
[〈∇rUαf

(
�1/2Z + μ

)
, u⊗r

〉]= 〈∇rF (μ),u⊗r
〉
, (2.8)

where F(μ) := E[Uαf (�1/2Z+μ)] and where Z is a standard d-variate normal random vector.
If Z′ is another such vector independent of Z, we can write

F(μ) = E
[
f
((

�1/2Z + μ
)

cosα + Z′ sinα
)]= ∫

Rd

f (μ cosα + Qαz)φd(z)dz,

where Qα := (� cos2 α + Id sin2 α)1/2. Substituting y = Q−1
α μ cosα + z, we obtain

F(μ) =
∫
Rd

f (Qαy)φd

(
y − Q−1

α μ cosα
)

dy.

Differentiation yields

〈∇rF (μ),u⊗r
〉= (−1)r cosr α

∫
Rd

f (Qαy)
〈∇rφd

(
y − Q−1

α μ cosα
)
, v⊗r

〉
dy

= (−1)r cosr α

∫
Rd

f (μ cosα + Qαz)
〈∇rφd(z), v⊗r

〉
dz,

where v = Q−1
α u. By Lemma 2.5, we can estimate∣∣〈∇rF (μ),u⊗r

〉∣∣≤ cr cosr αM∗
0 (f )|v|r . (2.9)

Noting that ‖Q−1
α ‖ = (σ 2 cos2 α + sin2 α)−1/2 ≤ 1/σ and plugging into (2.9) and (2.8) in turn,

the result follows. �

Lemma 2.7. Let A be a family of measurable sets in R
d , which, along with the underlying

functions ρA, meets Assumptions (A1)–(A8). Take an R
d -valued random vector W , such that

there exist a vector μ ∈R
d , a positive-definite matrix � and a constant D ≥ 0, such that for each

A ∈ A, ∣∣P(W ∈ A) −N (μ,�)(A)
∣∣≤ D. (2.10)

Then for each ε > 0 and each f ∈ {f ε
A,f −ε

A }, where f ε
A and f −ε

A are as in Lemma 2.1, we have

∫ π/2

0

∣∣E(∇3Uαf (W)
)∣∣∨ tanα dα ≤ c3

6σ 3
+√2(1 + κ)c1c3

(
γ ∗(A | ρ)

σ
+ 4D

ε

)
. (2.11)

Proof. Fix A ∈ A and ε > 0, and let f = f ε
A or f = f −ε

A . In the first case, define A1 := A and
A2 := Aε|ρ , while in the second case, define A1 := A−ε|ρ and A2 := A.
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Similarly as observed in Remark 2.3, E(∇3Uαf (W)) is a tensor because it is an expectation
of a random tensor. Since the latter is symmetric, so is its expectation. By Proposition 2.1, its
injective norm can be expressed as

∣∣E(∇3Uαf (W)
)∣∣∨ = sup

|u|≤1

∣∣Hα(u)
∣∣, (2.12)

where

Hα(u) := 〈E(∇3Uαf (W)
)
, u⊗3〉= E

[〈∇3Uαf (W),u⊗3〉]. (2.13)

Fix 0 < β < π/2 and u ∈ R
d with |u| ≤ 1. We distinguish the cases 0 < α ≤ β and β < α ≤ π/2.

In the first case, write, applying (2.7),

Hα(u) = −cos3 α

sinα

∫
Rd

Fα(z)
〈∇φd(z), u

〉
dz,

where

Fα(z) := E
[〈∇2f (W cosα + z sinα),u⊗2〉].

Notice that by Part (4) of Lemma 2.1 and Rademacher’s theorem (see Remark 2.1), ∇2f is
defined almost everywhere. By Fubini’s theorem, the latter also holds for Fα . Moreover, where
it is defined, we have, by Parts (2) and (4) of Lemma 2.1,

∣∣Fα(z)
∣∣≤ 4(1 + κ)

ε2
P(W cosα + z sinα ∈ A2 \ A1). (2.14)

First, we estimate the right-hand side with W replaced by a d-variate normal random vector with
the same mean and covariance matrix. Lemma 2.2 yields

N
(
μ cosα + z sinα,� cos2 α

){A2 \ A1} ≤ γ ∗(A | ρ)ε

σ cosα
. (2.15)

To estimate the remainder, combine (2.10), (A1), (A2) and the fact that A1 ⊆ A2, resulting in

∣∣P(W cosα + z sinα ∈ A2 \ A1) −N
(
μ cosα + z sinα,� cos2 α

){A2 \ A1}
∣∣≤ 2D. (2.16)

Combining (2.14), (2.15) and (2.16), we obtain

∣∣Fα(z)
∣∣≤ 4(1 + κ)

ε2

(
γ ∗(A | ρ)ε

σ cosα
+ 2D

)
≤ 4(1 + κ)

ε2 cosα

(
γ ∗(A | ρ)ε

σ
+ 2D

)
.

From Lemma 2.5, it follows that

∣∣Hα(u)
∣∣≤ 4(1 + κ)c1 cos2 α

ε sinα

(
γ ∗(A | ρ)

σ
+ 2D

ε

)
. (2.17)



2838 M. Raič

Now we turn to the case α ≥ β , where we estimate |Hα(u)| in a different way. First, we estimate
the right-hand side of (2.13) with W replaced by a d-variate normal random vector with the same
mean and covariance matrix. Lemma 2.6 yields

∣∣〈N (μ,�)
{∇3Uαf

}
, u⊗3〉∣∣≤ c3 cos3 α

2σ 3
. (2.18)

To estimate the remainder, write, applying (2.6),

Hα(u) − 〈N (μ,�)
{∇3Uαf

}
, u⊗3〉= − cot3 α

∫
Rd

Gα(z)
〈∇3φd(z), u⊗3〉dz, (2.19)

where

Gα(z) := E
[
f (W cosα + z sinα)

]−N
(
μ cosα + z sinα,� cos2 α

){f }.
Noting that 0 ≤ f ≤ 1, write f (x) = ∫ 1

0 1(x ∈ Ãt )dt , where Ãt := {x;f (x) ≥ t}. Consequently,

Gα(z) =
∫ 1

0

[
P(W cosα + z sinα ∈ Ãt ) −N

(
μ cosα + z sinα,� cos2 α

){Ãt }
]

dt

=
∫ 1

0

[
P(W ∈ Ãt,α,z) −N (μ,�){Ãt,α,z}

]
dt,

where Ãt,α,z := (Ãt − sinαz) cos−1 α. By Part (5) of Lemma 2.1, Ãt ∈ A ∪ {∅,Rd} for all
t ∈ (0,1). By Assumption (A1), the same is true for Ãt,α,z. Therefore, |Gα(z)| ≤ D (observe
that (2.10) is trivially true for A ∈ {∅,Rd}). Applying (2.18), (2.19) and Lemma 2.5, we obtain

∣∣Hα(u)
∣∣≤ c3 cos3 α

2σ 3
+ c3D cot3 α. (2.20)

Taking the supremum over u in (2.17) and (2.20), applying (2.12) and integrating, we obtain

∫ π/2

0

∣∣E[∇3Uαf (W)
]∣∣∨ tanα dα ≤

∫ β

0

4(1 + κ)c1 cosα

ε

(
γ ∗(A | ρ)

σ
+ 2D

ε

)
dα

+ c3

∫ π/2

β

(
cos2 α sinα

2σ 3
+ D cot2 α

)
dα

≤ 4(1 + κ)c1 tanβ

ε

(
γ ∗(A | ρ)

σ
+ 2D

ε

)

+ c3

6σ 3
+ c3D cotβ. (2.21)

Now choose β so that the sum of the terms with D is optimal. This occurs at β = arctan(ε ×√
c3

8(1+κ)c1
). Plugging into (2.21), we obtain (2.11), completing the proof. �
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Now we are ready to prove the main result.

Proof of Theorem 1.3. First, we prove the case where A also meets (A1′). Throughout the
argument, fix A along with the underlying functions ρA. For each β0 > 0, define

K(β0) := sup
|P(W ∈ A) −N (0, Id){A}|

max{∑i∈I E|Xi |3, β0} , (2.22)

where the supremum runs over the family of all sums W =∑i∈I Xi of independent random
vectors with EXi = 0 and Var(W) = Id , and over all A ∈ A. Now fix β0 > 0, a sum W =∑

i∈I Xi in the aforementioned family and a set A ∈ A. From Lemma 2.1, it follows that

0 ≤ N (0, Id)
{
f

ε|ρ
A

}−N (0, Id){A} ≤N (0, Id)
{
Aε|ρ}−N (0, Id){A} ≤ γ ∗(A | ρ)ε,

0 ≤ N (0, Id){A} −N (0, Id)
{
f

−ε|ρ
A

}≤N (0, Id){A} −N (0, Id)
{
A−ε|ρ}≤ γ ∗(A | ρ)ε.

Consequently,

P(W ∈ A) −N (0, Id){A} ≤ Ef ε
A(W) −N (0, Id)

{
f ε

A

}+ γ ∗(A | ρ)ε,

P(W ∈ A) −N (0, Id){A} ≥ Ef −ε
A (W) −N (0, Id)

{
f −ε

A

}− γ ∗(A | ρ)ε.

Therefore,∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ max
{∣∣Ef (W) −N (0, Id){f }∣∣;f ∈ {f ε

A,f −ε
A

}}
+ γ ∗(A | ρ)ε (2.23)

Let f ∈ {f ε
A,f −ε

A }, and let X̃i and θ be as in Lemma 2.4. Applying (2.5) and Lemma 2.4 in turn,
and conditioning on Xi, X̃i and θ , we obtain

Ef (W) −N (0, Id){f } = −
∫ π/2

0

∑
i∈I

E
[〈
Ti(α),Xi ⊗ X̃⊗2

i − (1 − θ)X⊗3
i

〉]
tanα dα,

where

Ti(α) := E
[∇3Uαf (Wi + θXi)|Xi, X̃i, θ

]
is a random tensor of order three. Now estimate

∣∣Ef (W) −N (0, Id){f }∣∣≤∑
i∈I

E

[∫ π/2

0

∣∣Ti(α)
∣∣∨ tanα dα

(|Xi ||X̃i |2 + (1 − θ)|Xi |3
)]

. (2.24)

To estimate
∫ π/2

0 |Ti(α)|∨ tanα dα, we shall use the conditional counterpart of Lemma 2.7 given
Xi , X̃i and θ . To apply it, we need to estimate

Di,A := ∣∣P(Wi + θXi ∈ A | Xi, X̃i, θ) −N (θXi,�i ){A}∣∣,
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where �i = Var(Wi). Assume that �i is non-singular. In this case, we may write

Di,A = ∣∣P(�−1/2
i Wi ∈ �

−1/2
i (A − θXi) | Xi, X̃i, θ

)−N (0, Id)
{
�

−1/2
i (A − θXi)

}∣∣.
To estimate Di,A, we apply the ‘bootstrapping’ argument: we refer to (2.22) with �

−1/2
i Wi in

place of W , noting independence of Wi and (Xi, X̃i, θ), and observing that �
−1/2
i Wi is a sum

of independent random vectors with vanishing expectations and with Var(�−1/2
i Wi) = Id . Fur-

thermore, observe that, given θ and Xi , we have �
−1/2
i (A − θXi) ∈ A by (A1′). Denoting by

σ 2
i the smallest eigenvalue of �i (with σi > 0), observe that E|�−1/2

i Xj |3 ≤ σ−3
i E|Xj |3 (notice

that σi ≤ 1). By (2.22), we have

Di,A ≤ K(β0)max

{
1

σ 3
i

∑
j∈I\{i}

E|Xj |3, β0

}
≤ K(β0)β̄

σ 3
i

,

where β̄ := max{∑j∈I E|Xj |3, β0}. Applying Lemma 2.7 to the conditional distribution of W

given Xi , X̃i and θ , we find that∫ π/2

0

∣∣Ti(α)
∣∣∨ tanα dα ≤ Bi := c3

6σ 3
i

+√2(1 + κ)c1c3

(
γ ∗(A | ρ)

σi

+ 4K(β0)

σ 3
i

β̄

ε

)
.

Now (2.24) reduces to

∣∣Ef (W) −N (0, Id){f }∣∣≤∑
i∈I

BiE
(|Xi ||X̃i |2 + (1 − θ)|Xi |3

)≤ 3

2

∑
i∈I

BiE|Xi |3, (2.25)

with the last inequality being due to Hölder’s inequality.
Now fix 0 < β∗ < 1 (an explicit value will be chosen later) and assume first that β̄ ≤ β∗. By

Jensen’s inequality, E|Xi |2 ≤ (E|Xi |3)2/3 ≤ β̄2/3 ≤ β
2/3∗ for all i ∈ I. Next, for each unit vector

u ∈R
d ,

〈�iu, u〉 = uT �iu = uT
(
Id −EXiX

T
i

)
u = 1 −E〈Xi,u〉2 ≥ 1 −E|Xi |2 ≥ 1 − β

2/3∗ .

Therefore, σ 2
i ≥ 1 − β

2/3∗ for all i ∈ I. In particular, the matrices �i are non-singular and the

quantities Bi can be uniformly bounded. Letting σ∗ := (1 − β
2/3∗ )1/2, (2.25) reduces to

∣∣Ef (W) −N (0, Id){f }∣∣≤ [ c3

4σ 3∗
+√2(1 + κ)c1c3

(
3γ ∗(A | ρ)

2σ∗
+ 6K(β0)

σ 3∗
β̄

ε

)]
β̄. (2.26)

Recalling (2.23), we obtain

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ [ c3

4σ 3∗
+√2(1 + κ)c1c3

(
3γ ∗(A | ρ)

2σ∗
+ 6K(β0)

σ 3∗
β̄

ε

)]
β̄

+ γ ∗(A | ρ)ε.
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Choosing ε := 12β̄
√

2(1 + κ)c1c3/σ
3∗ , this reduces to∣∣P(W ∈ A) −N (0, Id){A}∣∣

≤
[
K(β0)

2
+ c3

4σ 3∗
+ γ ∗(A | ρ)

√
2(1 + κ)c1c3

(
3

2σ∗
+ 12

σ 3∗

)]
β̄. (2.27)

Now we are left with the case β̄ ≥ β∗. We trivially estimate

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ 1 ≤ β̄

β∗
. (2.28)

Dividing estimates (2.27) and (2.28) by β̄ , taking the supremum over all A ∈ A and all sums W ,
and plugging into (2.22), we obtain

K(β0) ≤ max

{
1

β∗
,
K(β0)

2
+ c3

4σ 3∗
+ γ ∗(A | ρ)

√
2(1 + κ)c1c3

(
3

2σ∗
+ 12

σ 3∗

)}
.

Since K(β0) ≤ 1/β0 < ∞, it follows that

K(β0) ≤ max

{
1

β∗
,

c3

2σ 3∗
+ γ ∗(A | ρ)

√
2(1 + κ)c1c3

(
3

σ∗
+ 24

σ 3∗

)}
. (2.29)

Choose β∗ := 1/27, which is approximately optimal for the class of all half-lines on the real
line. Straightforward numerical estimation yields K(β0) ≤ max{27,1 + 50γ ∗(A | ρ)

√
1 + κ};

this holds true for all β0 > 0. Thus, for a fixed sum W =∑i∈I Xi , one can plug the preceding
estimate into (2.22), choosing β0 :=∑i∈I E|Xi |3; (1.5) follows.

Now we turn to the case where A does not necessarily meet Assumption (A1′). This time, fix
κ ≥ 0 and for each β0, γ0 > 0, define

K(β0, γ0) := sup
|P(W ∈ A) −N (0, Id){A}|

max{∑i∈I E|Xi |3, β0}max{γ ∗(A | ρ), γ0} , (2.30)

where the supremum runs over the family of all sums W =∑i∈I Xi of independent random
vectors with EXi = 0 and Var(W) = Id , all classes A which, along with the underlying functions
ρA, satisfy Assumptions (A1)–(A8) (with the chosen κ), and all A ∈ A.

Now fix β0, γ0 > 0, a sum W =∑i∈I Xi in the aforementioned family, a class A along with
functions ρA satisfying Assumptions (A1)–(A8), and a set A ∈ A. We proceed as in the previous
case up to the estimation of Di,A. For the latter, we now refer to (2.30), again with �

−1/2
i Wi

in place of W . However, the set �
−1/2
i (A − θXi) might not be in A. Instead, it is in the class

Ã := {�−1/2
i A′;A′ ∈ A}. Thus, we may take �

−1/2
i (A − θXi) in place of A provided that we

take Ã in place of A. By Lemma 2.3, we may take the latter provided that we take the underlying
family of functions ρ̃

Ã′(x) := ρ
�

1/2
i Ã′(�

1/2
i x), Ã′ ∈ Ã, in place of the family ρA′ , A′ ∈ A: in this

case, κ stays the same. Denoting by σ 2
i the smallest eigenvalue of �i (with σi > 0), recall that
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E|�−1/2
i Xj |3 ≤ σ−3

i E|Xj |3 and observe that, again by Lemma 2.3, γ ∗(Ã | ρ̃) ≤ γ ∗(A | ρ)/σi

(notice that σi ≤ 1). By (2.30), we have

Di,A ≤ K(β0, γ0)max

{
1

σ 3
i

∑
j∈I\{i}

E|Xj |3, β0

}
max

{
γ ∗(A | ρ)

σi

, γ0

}
≤ K(β0, γ0)β̄γ̄

σ 4
i

,

where β̄ := max{∑j∈I E|Xj |3, β0} and γ̄ := max{γ ∗(A | ρ), γ0}. Applying Lemma 2.7 to the

conditional distribution of W given Xi , X̃i and θ , we find that∫ π/2

0

∣∣Ti(α)
∣∣∨ tanα dα ≤ Bi := c3

6σ 3
i

+√2(1 + κ)c1c3

(
γ̄

σ 2
i

+ 4K(β0, γ0)

σ 4
i

β̄γ̄

ε

)
.

Again, fix 0 < β∗ < 1, let σ∗ := (1−β
2/3∗ )1/2 and assume first that β̄ ≤ β∗. By the same argument

as in the first part, we derive

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ [ c3

4σ 3∗
+√2(1 + κ)c1c3

(
3γ̄

2σ 2∗
+ 6K(β0, γ0)

σ 4∗
β̄γ̄

ε

)]
β̄ + γ̄ ε.

Choosing ε := 12β̄
√

2(1 + κ)c1c3/σ
4∗ , this reduces to∣∣P(W ∈ A) −N (0, Id){A}∣∣

≤ c3β̄

4σ 3∗
+
[
K(β0, γ0)

2
+√2(1 + κ)c1c3

(
3

2σ 2∗
+ 12

σ 4∗

)]
β̄γ̄

≤
[
K(β0, γ0)

2
+ c3

4γ0σ 3∗
+√2(1 + κ)c1c3

(
3

2σ 2∗
+ 12

σ 4∗

)]
β̄γ̄ . (2.31)

In the case β̄ ≥ β∗, we trivially estimate

∣∣P(W ∈ A) −N (0, Id){A}∣∣≤ 1 ≤ β̄γ̄

β∗γ0
. (2.32)

Divide the estimates (2.27) and (2.28) by β̄γ̄ and take the supremum over all A ∈ A, all sums
W , and all families A (along with functions ρA). Plugging into (2.30), we obtain

K(β0, γ0) ≤ max

{
1

β∗γ0
,
K(β0, γ0)

2
+ c3

4σ 3∗ γ0
+√2(1 + κ)c1c3

(
3

2σ 2∗
+ 12

σ 4∗

)}
.

Since K(β0, γ0) ≤ 1/(β0γ0) < ∞, it follows that

K(β0, γ0) ≤ max

{
1

β∗γ0
,

c3

2σ 3∗ γ0
+√2(1 + κ)c1c3

(
3

σ 2∗
+ 24

σ 4∗

)}
. (2.33)

As in the first case, choose β∗ := 1/27. Straightforward numerical estimation yields K(β0, γ0) ≤
max{27/γ0,1/γ0 + 53

√
1 + κ}; this holds true for all β0, γ0 > 0. Thus, for a fixed sum W =
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∑
i∈I Xi and a fixed class A along with functions ρA, one can plug the preceding estimate

into (2.30), choosing β0 :=∑i∈I E|Xi |3 and γ0 := γ ∗(A | ρ); (1.4) follows. This completes the
proof. �

3. Derivation of the bound on the Gaussian perimeter of convex
sets

In this section, we prove Theorem 1.2, and also state and prove Proposition 3.1, which is a
generalization of Proposition 1.1. Throughout this section, fix d ∈ N and denote by Cd the class
of all measurable convex sets in R

d . From Section 1, recall the definitions of δA and At for a set
A ⊆R

d . Recall also that H r denotes the r-dimensional Hausdorff measure.
The first result of the section is closely related to Lemma 11 of Livshyts [17].

Proposition 3.1. Let A be a class of certain convex sets in R
d . Suppose that At ∈ A ∪ {∅} for

all A ∈ A and all t ∈ R. Take a continuous function f : Rd → [0,∞), which is integrable with
respect to the Lebesgue measure. Then we have γf (A) = γ ∗

f (A), where

γf (A) = sup

{∫
∂A

f (x)Hd−1(dx);A ∈ A

}
,

γ ∗
f (A) = sup

{
1

ε

∫
Aε\A

f (x)dx,
1

ε

∫
A\A−ε

f (x)dx; ε > 0,A ∈ A

}
.

Before proving the preceding assertion, we need to introduce some notation and auxiliary
results. For a map g : A → R

n, where A ⊆ R
d is a measurable set, and for a point x ∈ A where

g is differentiable, denote by Dg(x) its derivative (i.e., Jacobian matrix) at x. For each r =
0,1,2, . . . , define Jrg(x), the r-dimensional absolute Jacobian, as follows: if rank Dg(x) < r ,
set Jrg(x) := 0. If rank Dg(x) > r , set Jrg(x) := ∞. Finally, if rank Dg(x) = r , define Jrg(x) to
be the product of r non-zero singular values in the singular-value decomposition of Dg(x), that
is, Dg(x) = U�V, where U and V are orthogonal matrices and where � is a diagonal rectangular
matrix with non-negative diagonal elements referred to as singular values. It is easy to see that the
definition is independent of the decomposition. Notice that for n = 1, we have J1g(x) = |∇g(x)|.

The main tool used in the proof of Proposition 3.1 will be the following assertion, which can
be regarded as a curvilinear variant of Fubini’s theorem. As a special case, it also includes the
change of variables formula in the multi-dimensional integral.

Proposition 3.2 (Federer [14], Corollary 3.2.32). Let A ⊆R
d be a measurable set, f : A → R

a measurable function and g : A → R
n a locally Lipschitzian map. Take 0 ≤ r ≤ d and assume

that f Jrg is integrable with respect to the Lebesgue measure. Then f |g−1({y}) is Hd−r -integrable

for almost all y with respect to H r , the function y �→ ∫
g−1({y}) f dHd−r is measurable and

∫
{x∈A;Hd−r (g−1({g(x)}))>0}

f (x)Jrg(x)dx =
∫
Rn

∫
g−1({y})

f dHd−rH r (dy).
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Remark 3.1. The integrand in the left-hand side is defined for almost all x ∈ A, because g is
almost everywhere differentiable by Rademacher’s theorem.

Corollary 3.1 (Coarea Formula). Let d , n, A, f and g be as in the preceding statement. Sup-
pose that d ≥ n. Then we have∫

A

f (x)Jng(x)dx =
∫
Rn

∫
g−1({y})

f dHd−n dy.

Proof. Apply Proposition 3.2 with d = n and observe that by the implicit function theorem,
Jng(x) > 0 implies Hd−n(g−1({g(x)})) > 0. �

Now we turn to some simple properties of convex sets. First, one can easily check that if C is
a non-empty convex set and x ∈R

d , there exists a unique point in C which is closest to x.

Definition 3.1. The orthogonal projection to a non-empty convex set C is a map p⊥
C : Rd → C,

where p⊥
C (x) is defined to be the unique point in C which is closest to x.

Proposition 3.3. Let C be a convex set, which is neither the empty set nor the whole R
d .

(1) For each x ∈ R
d and each ε > 0, there exists y ∈ R

d with 0 < δC(y) − δC(x) =
|y − x| < ε.

(2) δC is almost everywhere differentiable.
(3) For each x where δC is differentiable, we have |∇δC(x)| = 1.
(4) For each t ∈ R, we have ∂Ct = {x; δC(x) = t}.

Proof. If x ∈ IntC, there exists a point z ∈ R
d \ IntC which is closest to x. For all y = (1 −

τ)x+τz, where 0 ≤ τ ≤ 1, we have dist(y,Rd \C) = dist(x,Rd \C)−|x−y|, that is, −δC(y) =
−δC(x) − |x − y|. Next, if x ∈R

d \ C, take τ ≥ 0 and let y = (1 + τ)x − τp⊥
C (x). By convexity,

we have 〈w−p⊥
C (x), x −p⊥

C (x)〉 ≤ 0 for all w ∈ C. As a result, dist(y,C) = dist(x,C)+|x −y|
for all τ ≥ 0. Finally, if x ∈ ∂C, it is well known that there exist a unit outer normal vector u

(possibly more than one); then, for all y = x + τu, where τ ≥ 0, we again have dist(y,C) =
dist(x,C) + |x − y|. This proves (1).

One can easily check that δC is non-expansive. By Rademacher’s theorem (see also Re-
mark 2.1), it is almost everywhere differentiable and |∇δC(x)| ≤ 1 for all x where it is dif-
ferentiable. This proves (2). However, by (1), we have |∇δC(x)| ≥ 1. This proves (3).

From the continuity of δC , it follows that ∂Ct ⊆ {x; δC(x) = t}. The opposite follows from
(1). This proves (4). �

Proof of Proposition 3.1. Without loss of generality, we may assume that ∅ and R
d are not

elements of A. Take A ∈ A. By the Coarea formula, we have∫
Aε\A

f (x)J1δA(x)dx =
∫ ε

0

∫
δ−1
A ({t})

f (x)Hd−1(dx)dt.
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Applying Parts (3) and (4) of Proposition 3.3, this reduces to∫
Aε\A

f (x)dx =
∫ ε

0

∫
∂At

f (x)Hd−1(dx)dt ≤ εγf (A).

Similarly, we obtain∫
A\A−ε

f (x)dx =
∫ 0

−ε

∫
∂At

f (x)Hd−1(dx)dt ≤ εγf (A)

(remember that At ∈ A ∪ {∅}; for A =∅, the inner integral vanishes). Dividing by ε, and taking
the supremum over ε and A, we obtain γ ∗

f (A) ≤ γf (A).

To prove the opposite inequality, observe first that, by Parts (2) and (3) of Proposition 3.3, p⊥
A

is non-expansive. Next, observe that p⊥
A((1 + τ)x − τp⊥

A(x)) = p⊥
A(x) for all x ∈ R

d \ A and
all τ ≥ 0. Therefore, if p⊥

A is differentiable at x ∈ R
d \ A, we have rank Dp⊥

A(x) ≤ d − 1 and,
moreover, Jd−1p

⊥
A(x) ≤ 1. By Proposition 3.2, we have∫

Aε\A
f (x)dx ≥

∫
{x∈Aε\A;H1((p⊥

A)−1({p⊥
A(x)}))>0}

f (x)Jd−1p
⊥
A(x)dx

=
∫

∂A

∫
(p⊥

A)−1({y}∩(Aε\A))

f dH1Hd−1(dy).

If u is a unit outer normal vector at y ∈ ∂C, then p⊥
A(y + τu) = y for all τ ≥ 0. Moreover,

y + τu ∈ (p⊥
A)−1({y})∩ (Aε \A) for all 0 < τ ≤ ε. Therefore, H1((p⊥

A)−1({y})∩ (Aε \A)) ≥ ε.
As a result, ∫

Aε\A
f (x)dx ≥ ε

∫
∂A

f −ε(y)Hd−1(dy),

where f −ε(x) := inf|v|≤ε f (x + v). Dividing by ε, we obtain∫
∂A

f −ε(y)Hd−1(dy) ≤ γ ∗
f (A).

Since f is continuous, we have limε↓0 f −ε(x) = f (x) for all x ∈ R
d . Applying the dominated

convergence theorem and taking the supremum over all A, we obtain γf (A) ≤ γ ∗
f (A). This

completes the proof. �

The orthogonal projection will be one of two key maps used in the proof of Theorem 1.2. The
other one will be the radial projection.

Definition 3.2. Let C be a convex set with 0 ∈ IntC. We define the radial function of C to be
the map ρC : Rd \ {0} → (0,∞] defined by

ρC(x) := sup

{
r > 0; r x

|x| ∈ C

}
= inf

{
r > 0; r x

|x| /∈ C

}
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and the radial projection of C to be the map p
ρ
C : {x ∈ R

d \ {0};ρC(x) < ∞} → ∂C defined by

p
ρ
C(x) := ρC(x)

x

|x| .

Lemma 3.1. Let C be as before. Define the set D := {x ∈R
d \ {0};ρC(x) < ∞}. Then:

(1) D is open and ρC and p
ρ
C are locally Lipschitzian on D.

(2) If ρC is differentiable at x, so is p
ρ
C , there is a unique outer unit normal vector at p

ρ
C(x)

and we have

Jd−1p
ρ
C(x) =

(
ρC(x)

|x|
)d−1 1

cos θ
,

where θ is the angle between x and the outer unit normal vector at p
ρ
C(x).

Proof. Since 0 ∈ IntC, there exists r0 > 0, such that {y ∈ R
d; |y| < r0} ⊆ C. Fix x ∈ R

d \ {0}.
Let r1 := ρC(x) and v := x/|x|. Take w ⊥ v and s, t ∈ R, and let z := sv + tw. By convexity,
z ∈ C if 0 ≤ s < r1(1 − |t |

r0
), and z /∈ C if s > r1(1 + |t |

r0
). Consequently,

|z|
s
r1

+ |t |
r0

≤ ρC(z) ≤ |z|
s
r1

− |t |
r0

,

provided that s > 0 and |t | < sr0/r1. Letting s = |x| + σ and t = τ , we obtain√
(1 + σ

|x| )2 + ( τ
|x| )2

1 + σ
|x| + ρC(x)

r0

|τ |
|x|

≤ ρC(x + σv + τw)

ρC(x)
≤
√

(1 + σ
|x| )2 + ( τ

|x| )2

1 + σ
|x| − ρC(x)

r0

|τ |
|x|

,

provided that σ > −|x| and |τ | < (|x| + σ)r0/ρC(x). From the preceding inequality, we deduce
first that D is open, then that ρC is continuous on D, then that ρC is locally Lipschitzian on D

and finally that the latter also holds for p
ρ
C . This proves (1).

Now suppose that ρC is differentiable at x. By the chain rule, so is p
ρ
C and straightforward

computation yields

Dp
ρ
C(x)v = 〈∇ρC(x), v

〉 x

|x| + ρC(x)

(
v

|x| − 〈x, v〉x
|x|3

)
. (3.1)

Observe that since p
ρ
C(kx) = p

ρ
C(x) for all k > 0, we have, by the chain rule, Dp

ρ
C(kx) =

1
k

Dp
ρ
C(x). Thus, letting y := p

ρ
C(x) = ρC(x)

|x| x, we have Dp
ρ
C(x) = ρC(x)

|x| Dp
ρ
C(y). Taking y in

place of x in (3.1) and noting that ρC(y) = |y|, we obtain

Dp
ρ
C(y)v = v − 〈y − |y|∇ρC(y), v

〉 y

|y|2 .

Differentiating ρC(ky) = ρC(y) with respect to k, we obtain 〈∇ρC(y), y〉 = 0. Making use of
this identity, we find after some calculation that Dp

ρ
C(y) is a projector.
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If u is a unit outer normal vector at y, then u is perpendicular to the image of Dp
ρ
C(y). How-

ever, since Dp
ρ
C(y) is a projector, its image is the same as the set of its fixed points, which

are precisely the vectors perpendicular to y − |y|∇ρC(y). Therefore, u must be parallel to
y −|y|∇ρC(y). Since 〈u,y〉 > 0 and since 〈∇ρC(y), y〉 = 0, we have u = y−|y|∇ρC(y)

|y|
√

1+|∇ρC(y)|2 . Thus,

there is indeed a unique unit outer normal vector. Taking the inner product with y, we find that
|∇ρC(y)| = tan θ .

Without loss of generality, we may assume that y/|y| is the first base vector and that
∇ρC(y)/|∇ρC(y)| is the second one, the latter provided that ∇ρC(y) �= 0. This way, we have

Dp
ρ
C(y) =

⎡
⎣0 tan θ

0 1
Id−2

⎤
⎦=

⎡
⎣ cos θ sin θ

− sin θ cos θ

Id−2

⎤
⎦
⎡
⎣0 0

0 1/ cos θ

Id−2

⎤
⎦ Id .

The latter singular-value decomposition yields Jd−1p
ρ
C(y) = 1/ cos θ . Recalling Dp

ρ
C(x) =

ρC(x)
|x| Dp

ρ
C(y), we obtain (2). �

Before finally turning to the proof of Theorem 1.2, we still need some inequalities regarding
elementary and special functions. The first one regards the Mills ratio:

R(x) := ex2/2
∫ ∞

x

e−z2/2 dz =
∫ ∞

0
e−tx−t2/2 dt. (3.2)

For y > 0, define

I (y) := inf
x≥0

(
xy + R(x)

)
(3.3)

and observe that I (y) > 0 and that I is strictly increasing.

Lemma 3.2. For all 0 < y < 1, the function I satisfies I (y) ≥ 2
√

y(1 − y).

Proof. By Formula 7.1.13 of Abramowitz and Stegun [1], we have R(x) ≥ 2

x+
√

x2+4
for all

x ≥ 0. A straightforward calculation shows that the expression infx≥0(xy + 2

x+
√

x2+4
) equals

2
√

y(1 − y) for y ≤ 1/2 and 1 for y ≥ 1/2. �

Lemma 3.3. For all 0 ≤ x < α, we have

(
1 − x

α

)−α2

e−αx ≥ ex2/2, (3.4)

(
1 − x

α

)α2−1

eαx ≥ e−x2/2
(

1 − x3

α

)
. (3.5)
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Lemma 3.4. Consider the function

G(x,α,β) :=
(

1 − x

α

)−α2

e−αx

[
β +

∫ α

x

(
1 − y

α

)α2−1

eαy dy

]
.

For all α ≥ 1 and β ≥ 1/
√

e, this function satisfies

inf
x<α

G(x,α,β) = inf
0≤x≤1

G(x,α,β).

The proofs of Lemmas 3.3 and 3.4 are deferred to the supplementary material [20].

Proof of Theorem 1.2. We basically follow Nazarov’s [19] argument, tackling certain technical
matters differently and expanding some arguments. First, observe that if a convex set C has no
interior, then it is contained in the boundary of some half-space H , so that γ (C) ≤ γ (H). There-
fore, in the supremum in the definition of γd , it suffices to consider sets with non-empty interior.
Next, if 0 /∈ C, we have γ (C) ≤ γ (C − p⊥

C (0)) (for details, see Section 4 of Livshyts [17]).
Therefore, it suffices only to consider sets C with the origin in the closure and with non-empty
interior. Moreover, by continuity, it suffices to take sets containing the origin in the interior.

Let C be a convex set with 0 ∈ IntC. Take a random locally Lipschitzian map G : Rd \ {0} →
∂C with Jd−1G(x) ≤ J (x) for almost all x ∈ A, where J : Rd \ {0} → (0,∞) is another random
function (random maps should be measurable as maps from the product of R

d \ {0} and the
probability space with respect to the product of the Borel σ -algebra and the σ -algebra of the
probability space). The random choices of G and J will depend on a parameter p ∈ (0,1] (see
below). By Proposition 3.2, we have

1 =
∫
Rd

φd(x)dx ≥ Ep

[∫
Rd\{0}

φd(x)
Jd−1G(x)

J (x)
dx

]
≥
∫

∂C

Ep

[∫
G−1({y})

φd

J
dH1

]
Hd−1(dy).

Thus,

γ (C) ≤ inf
0<p≤1

1

infy∈∂C ξC(y,p)
, (3.6)

where

ξC(y,p) := 1

φd(y)
Ep

[∫
G−1({y})

φd

J
dH1

]
.

Now define G as follows: for x ∈ C, let G(x) := p
ρ
C(x); for x ∈ R

d \ C, let G(x) := p
ρ
C(x) with

probability 1−p and G(x) := p⊥
C (x) with probability p. To define J (x), recall Lemma 3.1 along

with the fact that p⊥
C is non-expansive. Thus, we may take J (x) := 1 where G = p⊥

C and J (x) :=
(
ρC(x)

|x| )d−1 1
cos θ(p

ρ
C(x))

where G = p
ρ
C ; here, θ(y) denotes the maximal angle between y and the

outer normal of C at y. Notice that the maximum is attained because the set of all unit outer
normal vectors is compact, and is strictly less than π/2 because 0 ∈ IntC; typically, the outer
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normal vector is unique by Lemma 3.1. As a result, we have ξC(y,p) ≥ ξ1,C(y,p) + ξ2,C(y,p),
where

ξ1,C(y,p) := cos θ(y)

|y|d−1φd(y)

[∫
(p

ρ
C)−1({y})∩C

|x|d−1φd(x)H1(dx)

+ (1 − p)

∫
(p

ρ
C)−1({y})\C

|x|d−1φd(x)H1(dx)

]
,

ξ2,C(y,p) := p

φd(y)

∫
(p⊥

C )−1({y})
φd(x)H1(dx).

Observe that ξ1,C(y,p) = cos θ(y)ξ1(|y|, d,p), where

ξ1(r, d,p) := er2/2

rd−1

[∫ r

0
td−1e−t2/2 dt + (1 − p)

∫ ∞

r

td−1e−t2/2 dt

]

= er2/2

rd−1

[
2d/2−1(1 − p)�

(
d

2

)
+ p

∫ r

0
td−1e−t2/2 dt

]
. (3.7)

As for ξ2,C(y,p), observe that (p⊥
C )−1({y}) ⊇ {y + su; s > 0}, where u is a unit outer normal

vector at y. Take u with the maximal angle between u and y. As a result, we have

ξ2,C(y,p) ≥ p

φd(y)

∫ ∞

0
φd(y + tu)dt = p

∫ ∞

0
e−t〈y,u〉−t2/2 dt = pR

(|y| cos θ(y)
)
,

recalling the Mills ratio defined in (3.2). Combining all estimates after (3.6), plugging into the
latter and taking the supremum over all convex sets with the origin in the interior, we find that

γd ≤ γ̄d := inf
0<p≤1

γ̄d,p, (3.8)

where

γ̄d,p := 1

infr,c>0(cξ1(r, d,p) + pR(cr))
.

Substituting cr = b and recalling that the function I defined in (3.3) is strictly increasing, we
find the following alternative expression of γ̄d,p:

γ̄d,p = 1

infr,b>0(
b
r
ξ1(r, d,p) + pR(b))

= 1

pI (infr>0
1
pr

ξ1(r, d,p))
. (3.9)

For each d , γ̄d can be evaluated numerically. Some values are given in Table 1.

Remark 3.2. For d = 1, we obtain the actual maximal Gaussian perimeter: we have γ1 = γ̄1 =
γ̄1,1. First, observe that infr>0

1
r
ξ1(r,1,1) = infr>0

er2/2

r

∫ r

0 e−t2/2 dt = 1. Differentiating (3.2),
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Table 1. Upper bounds on the Gaussian perimeter for some dimensions (with all values rounded upwards)

d γ̄d γ̄d/d1/4

1 0.798 0.798
2 0.864 0.726
3 0.929 0.706
4 0.981 0.694
5 1.025 0.685
6 1.063 0.679
7 1.096 0.674
8 1.126 0.670

d γ̄d γ̄d/d1/4

9 1.154 0.666
10 1.179 0.663
20 1.364 0.645
50 1.666 0.627

100 1.949 0.617
200 2.288 0.609
500 2.842 0.601

1000 3.357 0.597

we find that R′(x) = − ∫∞
0 te−tx−t2/2 dt and R′′(x) = ∫∞

0 t2e−tx−t2/2 dt . Since R′(0) = −1 and
R′′(x) > 0 for all x, we have R′(x) ≥ −1 for all x ≥ 0. Therefore, for y = 1, the infimum in (3.3)
is attained at x = 0, so that γ̄1,1 = 1/I (1) = 1/R(0) = √

2/π .

Now we continue with the estimation. From Stirling’s formula with remainder (e.g., For-

mula 6.1.38 of Abramowitz and Stegun [1]), one can easily deduce that �(x) ≥
√

2π
x

( x
e
)x for

all x > 0. Plugging into (3.7), we obtain

1

pr
ξ1(r, d,p) ≥ er2/2

rd

(
1 − p

p

√
π

d

(
d

e

)d/2

+
∫ r

0
td−1e−t2/2 dt

)
.

Substituting α := √
d/2, x = α − r2/(2α), y = α − t2/(2α), we obtain after some calculation

inf
r>0

1

pr
ξ1(r, d,p) ≥ 1

2α
inf
x<α

(
1 − x

α

)−α2

e−αx

[
1 − p

p

√
2π +

∫ α

x

(
1 − y

α

)α2−1

eαy dy

]
.

Now suppose that α ≥ 1 and 1−p
p

√
2π ≥ 1√

e
; this is ensured if d ≥ 2 and p < 0.8. In this case,

we can apply Lemma 3.4 to reduce the infimum over x < α to the infimum over [0,1]. By
Lemma 3.3, we can further estimate

inf
r>0

1

pr
ξ1(r, d,p) ≥ 1

2α
inf

0≤x≤1
ex2/2

[
1 − p

p

√
2π +

∫ α

x

e−y2/2
(

1 − y3

α

)
dy

]
.

Since α ≥ 1, y ≥ α implies y3 ≥ α, so that the upper limit α can be replaced with the infinity:

inf
r>0

1

pr
ξ1(r, d,p) ≥ 1

2α
inf

0≤x≤1
ex2/2

[
1 − p

p

√
2π +

∫ ∞

x

e−y2/2
(

1 − y3

α

)
dy

]

= 1

2α
inf

0≤x≤1

[
1 − p

p

√
2πex2/2 + R(x) − x2 + 2

α

]
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≥ 1

2α
K(p) − 3

2α2

= 1√
2d

K(p) − 3

d
,

where K(p) := inf0≤x≤1[ 1−p
p

√
2πex2/2 + R(x)]. Plugging into (3.9) and applying Lemma 3.2,

we find that

γ̄d,p ≤ 1

2p
√

( 1√
2d

K(p) − 3
d
)(1 − 1√

2d
K(p) + 3

d
)
,

provided that d ≥ 2, p ≤ 0.8 and d > max{ (K(p))2

2 , 18
(K(p))2 }. As d → ∞, the preceding upper

bound asymptotically equals d1/4

23/4p
√

K(p)
. Now choose p so that this asymptotic bound is opti-

mal, that is, so that p2K(p) is maximal. Numerical calculation shows that this occurs approx-
imately at p = p∗ := 0.72 (which is less than 0.8). Moreover, one can numerically check that
K(p∗) > K∗ := 1.98. This indicates that the coefficient at d1/4 in the bound on γd can be set to

1
23/4p∗√K∗ < 0.59.

Choosing p = p∗, we re-estimate γ̄d , using Lemma 3.2 once again:

γ̄d ≤ γ̄d,p∗ ≤ 1

p∗I ( K∗√
2d

− 3
d
)

≤ 1

2p∗
√

( K∗√
2d

− 3
d
)(1 − K∗√

2d
+ 3

d
)

=

≤ 0.59d1/4√
1 − ( 3

√
2

K∗ + K∗√
2
)d−1/2

≤ 0.59d1/4

√
1 − 3.55d−1/2

,

provided that d ≥ 3.552, that is, d ≥ 13. Taking d = 932, observe that (1 − 3.55d−1/2)−1/2 ≤
1 + ( 1

0.59

√
2
π

− 1)d−1/4; this inequality also holds in the limit as d → ∞. Since the function

x �→ (1 − 3.55x2)−1/2 is convex, the latter inequality must hold for all d ≥ 932. This completes
the proof for the latter case. For d < 932, the desired result can be verified numerically, evaluating
(3.8) directly. �
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Supplementary Material

Proofs of certain technical issues (DOI: 10.3150/18-BEJ1072SUPP; .pdf). The supplementary
file contains a proof of continuous differentiability of f ε

A in Lemma 2.1, and proofs of Lem-
mas 3.3 and 3.4.
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