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Unlike classical simple random walks, one-dimensional random walks in random environments (RWRE)
are known to have a wide array of potential limiting distributions. Under certain assumptions, however,
it is known that CLT-like limiting distributions hold for the walk under both the quenched and averaged
measures. We give upper bounds on the rates of convergence for the quenched central limit theorems for
both the hitting time and position of the RWRE with polynomial rates of convergence that depend on the
distribution on environments.
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1. Introduction

If {ξk}k≥1 is an i.i.d. sequence of zero mean random variables with finite variance σ 2 = E[ξ2
1 ],

then the central limit theorem implies that the rescaled sum Zn = 1
σ
√

n

∑n
k=1 ξk converges in

distribution to a standard Gaussian random variable. That is, Fn(x) = P(Zn ≤ x) → �(x) where
� is the c.d.f. of the standard normal distribution. The central limit theorem, however, offers
no quantitative bounds on the rate of convergence of Fn to � and in fact additional moment
assumptions are needed to obtain such rates of convergence. The classical Berry–Esseen theorem
(Berry [4], Esseen [9]) states that there is a universal constant A1 < ∞ such that if ξ1 has finite
third moment then

‖Fn − �‖∞ = sup
x∈R

∥∥Fn(x) − �(x)
∥∥≤ A1E[|ξ1|3]

σ 3
√

n
, ∀n ≥ 1.

More generally, one can obtain slower rates of convergence under weaker moment assumptions.
In particular, it follows from Katz [16] that for any δ ∈ (0,1] there exists a universal constant
Aδ < ∞ such that if ξk has finite (2 + δ)th moment then

‖Fn − �‖∞ ≤ AδE[|ξ1|2+δ]
σ 2+δnδ/2

, ∀n ≥ 1.

In this paper, we will be concerned with obtaining Berry–Esseen like rates of convergence
for central limit theorems arising in one-dimensional random walks in random environments.

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/18-BEJ1024
mailto:sahn02@roosevelt.edu
mailto:peterson@purdue.edu
http://www.math.purdue.edu/~peterson


Quenched CLT rates of convergence 1387

A random walk in a random environment (RWRE) is a simple model for random motion in
a non-homogeneous environment. The class of models that may be considered RWRE is quite
large, but we will be concerned here with the case of (nearest-neighbor) one-dimensional RWRE.
In this model, a random environment is a random sequence ω = {ωx}x∈Z ∈ [0,1]Z which can be
used to determine the transition probabilities for a Markov chain on Z with steps of size ±1. In
particular, given an environment ω and a starting point x ∈ Z we will denote by P x

ω the law of a
Markov chain {Xn}n≥0 defined by P x

ω(X0 = x) = 1 and

P x
ω(Xn+1 = y + 1 | Xn = y) = 1 − P x

ω(Xn+1 = y − 1 | Xn = y) = ωy.

The distribution P x
ω of the walk in a fixed environment is called the quenched law of the RWRE.

If P denotes the probability distribution of the environment ω, then by averaging the quenched
P x

ω law with respect to P we obtain the averaged (or annealed) law of the RWRE:

P
x(·) = E

[
P x

ω(·)].
Expectations with respect to the quenched and averaged laws of the walk are denoted by Ex

ω

and E
x , respectively. Usually the walk will be started at X0 = 0 and we will use Pω and P to

denote the quenched and averaged laws in this case and corresponding expectations by Eω and
E, respectively. Finally, variances under the quenched measure Pω will be denoted by Varω; that
is Varω(Z) = Eω[Z2] − Eω[Z]2.

While RWREs are a rather simple generalization of classical simple random walks, the behav-
iors of RWREs can be quite different than what is known for simple random walks. For instance,
if the distribution on environments is such that the walk is recurrent then (under rather tame
additional assumptions) the position of the walk converges in distribution to a non-Gaussian dis-
tribution when scaled by (logn)2 rather than the diffusive

√
n scaling in classical simple random

walks (Sinaı̆ [27]). Transient RWREs can also exhibit a variety of non-Gaussian limiting distri-
butions under non-diffusive scalings (Kesten, Kozlov and Spitzer [17], Mayer-Wolf, Roitershtein
and Zeitouni [18]), but in this paper we will be assuming conditions under which it is known that
CLT-like limiting distributions hold.

The first assumption that we will be making in this paper is that the environments are i.i.d.

Assumption 1. The distribution P on environments is such that ω = {ωx}x∈Z is i.i.d.

For our second main assumption, we will need to introduce some additional notation. First, let

ρx = 1 − ωx

ωx

, x ∈ Z.

Many of the known results for RWREs can be stated in terms of the distribution of this ratio
of transition probabilities. For instance, under Assumption 1 the RWRE is transient to the right
if E[logρ0] < 0 and the limiting speed v0 = limn→∞ Xn/n is positive if and only if E[ρ0] < 1
(Solomon [28]). In this paper we will be making the following assumption regarding the moments
of the random variable ρ0.

Assumption 2. κ := sup{p > 0 : E[ρp

0 ] < 1} > 2 (or equivalently E[ρ2+δ
0 ] < 1 for some δ > 0).
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Since t 
→ E[ρt
0] = E[et logρ0] is the moment generating function of logρ0 and is therefore a

convex function in t , it follows from Assumption 2 that E[logρ0] < 0 (that is the walk is transient
to the right) and that

rp := E
[
ρ

p

0

]
< 1 for all p ∈ (0, κ). (1)

In particular, this implies that r1 = E[ρ0] < 1 so that the speed v0 of the walk is positive.
It should be noted that under rather mild additional assumptions it holds that

E
[
ρκ

0

]= 1. (2)

In fact, in a number of previous results in RWRE the parameter κ is defined as the unique positive
solution to equation (2). For instance, the parameter κ defined this way is used in studying lim-
iting distributions of transient RWRE in Kesten, Kozlov and Spitzer [17], Peterson and Zeitouni
[24], Peterson [21], Peterson and Samorodnitsky [23], Peterson and Samorodnitsky [22], En-
riquez et al. [8], Dolgopyat and Goldsheid [7], identifying the subexponential rate of decay of
certain large deviation probabilities in Dembo, Peres and Zeitouni [6], Gantert and Zeitouni [12],
Ahn and Peterson [1], and identifying the maximal displacement of large “bridges” of RWRE
in Gantert and Peterson [10]. A number of these results assume additional technical conditions
(e.g., E[ρκ

0 logρ0] < ∞ and the distribution of logρ0 is non-lattice) to obtain certain precise tail
asymptotics, but we will not need these conditions nor the slightly more restrictive definition of
κ in (2).

The relevance of the parameter κ to the limiting distributions of transient RWRE comes from
the fact that κ determines what moments of the hitting times of the RWRE are finite (c.f.
Lemma 2.1 below); in particular, hitting times have finite second moment if κ > 2. The lim-
iting distributions under the averaged measure P for transient RWRE in Kesten, Kozlov and
Spitzer [17] show that CLT-like limiting distributions hold only when κ > 2. In particular, when
κ ∈ (0,2) the limiting distributions are non-Gaussian with non-diffusive scaling and when κ = 2
the limiting distribution is Gaussian but with scaling

√
n logn. However, when κ > 2 we have

the following CLT for both the position Xn of the walk and the hitting times

Tn = inf{k ≥ 0 : Xk = n}, n ∈ Z.

Theorem 1.1 (Kesten, Kozlov and Spitzer [17], Zeitouni [31]). If Assumptions 1 and 2 hold,
then

lim
n→∞P

(
Tn − n

v0

σ0
√

n
≤ x

)
= lim

n→∞P

(
Xn − nv0

σ0v3/2
0

√
n

≤ x

)
= �(x), ∀x ∈ R,

where

σ 2
0 = E

[
Varω(T1)

]+ Var
(
Eω[T1]

)+ 2
∞∑

k=1

Cov
(
Eω[T1],Ek

ω[Tk+1]
)
< ∞.

Theorem 1.1 gives CLTs for the RWRE under the averaged measure. However, in this paper,
we will be primarily interested with CLTs under the quenched measure.
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Theorem 1.2 (Alili [2], Goldsheid [15], Peterson [25]). If Assumptions 1 and 2 hold, then

lim
n→∞Pω

(
Tn − Eω[Tn]

σ
√

n
≤ x

)
= lim

n→∞Pω

(
Xn − nv0 + Zn(ω)

σv3/2
0

√
n

≤ x

)
= �(x), P -a.s.,

for all x ∈R where

σ 2 = E
[
Varω(T1)

]
< ∞ and Zn(ω) = v0

(
Eω[T�nv0�] − �nv0�

v0

)
.

Before continuing, some important differences between the quenched and averaged CLTs in
Theorems 1.1 and 1.2 should be noted.

• The quenched CLTs in Theorem 1.2 require a random (depending on the environment)
centering. Indeed, when Assumptions 1 and 2 hold it follows from a CLT for sums of ergodic
sequences that Eω[Tn]−n/v0√

n
converges in distribution to a centered Gaussian (see Zeitouni

[31] for details) and therefore one cannot have a quenched CLT for either Tn or Xn with
determinstic centering.

• The quenched CLTs are much stronger statements than the averaged CLTs. Indeed, since the
quenched probabilities are random variables (randomness coming from the environment ω),
the limits in the quenched CLTs are required to hold for P -a.e. environment ω. Moreover,
the quenched CLTs in Theorem 1.2 together with the CLT for Eω[Tn]−n/v0√

n
can be used to

obtain the averaged CLTs in Theorem 1.1.
• Both the quenched and averaged CLTs are known to hold under somewhat more general

assumptions than we have used here. In particular, CLTs have been proved for RWRE in
ergodic environments with certain mixing conditions in Zeitouni [31], Goldsheid [15], Pe-
terson [25], though in these cases the parameter κ needs to be defined differently than in
Assumption 2 or (2).

1.1. Main results

The main results of the present paper concern the rates of convergence in the quenched CLT
results in Theorem 1.2. Rates of convergence for the averaged CLT are also of interest, but
require different methods and will be studied in a future paper.

Our approach to the quenched CLTs in this paper will be to follow the approach first used by
Alili [2] in which one first proves a CLT for the hitting times and then uses this to deduce the CLT
for the position of the walk. Therefore, our first two main results concern the rates of convergence
for the quenched CLT for hitting times. Note that while the centering in Theorem 1.2 needs to be
random, the scaling is deterministic. The following two theorems however show that the rate of
convergence in the quenched CLT can be improved by using an environment-dependent scaling
as well.

Theorem 1.3. Let Fn,ω(x) = Pω(Tn−Eω[Tn]√
Varω(Tn)

≤ x) be the normalized quenched distribution of Tn.
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• If κ > 3, then there exists a constant C ∈ (0,∞) such that

lim sup
n→∞

√
n‖Fn,ω − �‖∞ ≤ C, P -a.s.

• If κ ∈ (2,3], then for any ε > 0

lim
n→∞n

3
2 − 3

κ
−ε‖Fn,ω − �‖∞ = 0, P -a.s.

Theorem 1.4. Let Fn,ω(x) = Pω(Tn−Eω[Tn]
σ
√

n
≤ x) be the quenched distribution of Tn with random

(environment dependent) centering and deterministic scaling.

• If κ > 4, then for any ε > 0

lim
n→∞n

1
2 −ε‖Fn,ω − �‖∞ = 0, P -a.s.

• If κ ∈ (2,4], then for any ε > 0

lim
n→∞n1− 2

κ
−ε‖Fn,ω − �‖∞ = 0, P -a.s.

Our final main result is the following bounds on the rates of convergence in the quenched CLT
for Xn. Note that the results in this theorem give different almost sure and in probability rates of
convergence for the quenched CLT.

Theorem 1.5. Let Gn,ω(x) = Pω(
Xn−nv0+Zn(ω)

σv3/2
0

√
n

≤ x). If κ > 2, then for any ε > 0

lim
n→∞n

1
4 − 1

2κ
−ε‖Gn,ω − �‖∞ = 0, P -a.s.

Moreover, by relaxing the mode of convergence to that of in probability, then the following
stronger rates of convergence can be obtained.

• If κ ∈ (2, 12
5 ) then for any ε > 0,

lim
n→∞n

3
2 − 3

κ
−ε‖Gn,ω − �‖∞ = 0, in P -probability. (3)

• If κ ≥ 12
5 then for any ε > 0,

lim
n→∞n

1
4 −ε‖Gn,ω − �‖∞ = 0, in P -probability. (4)

A comparison of the different rates of convergence for the quenched CLTs in Theorems 1.3-1.5
can be seen in Figure 1.

An outline of the proofs of the main results is as follows. Sections 2 and 3 contain analysis
of quenched moments of hitting times that will be used later in the proofs of the main results.
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Figure 1. A comparison of the different polynomial exponents that appear in Theorems 1.3–1.5. The dotted
lines are at height 1/4 and 1/2.

In particular, in Section 2 we show that E[(Eω[T m
1 ])p] < ∞ if p ∈ (0, κ/m), and in Section 3

we control the fluctuations of Eω[Tn] and Varω(Tn) (Section 3 is the most technical and difficult
part of the paper). The proofs of Theorems 1.3 and 1.4 are then given in Section 4. If we let

τk = Tk − Tk−1, k ≥ 1,

then under the quenched measure Pω the random variables {τk}k≥1 are independent (but not
identically distributed). Therefore, applying known results for sums of independent random vari-
ables gives a bound of ‖Fn,ω −�‖∞ in terms of the centered quenched moments of the crossing
times τk . Control of these quenched moments then follows from results obtained in Section 2 and
gives the rates of convergence in Theorem 1.3. Since the quenched distributions Fn,ω and Fn,ω

differ only in the choice of scaling, Theorem 1.4 then follows from Theorem 1.3 and control of
the fluctuations of Varω(Tn) − σ 2n which were obtained in Section 3. Finally, in Section 5 the
quenched rates of convergence in Theorem 1.5 are obtained from Theorem 1.3 in much the same
way as the renewal process CLT is obtained from the standard CLT. It is here that the need for
the quenched centering in the quenched CLTs presents a real difficulty, and in fact the control of
the fluctuations of Eω[Tn] − n/v0 obtained in Section 3 are the main contributor to the almost
sure rates of convergence in Theorem 1.5.

1.2. Discussion of main results and future work

Central limit theorems for random motion in random media are closely related to problems in
stochastic homogenezation, a connection going back at least to Papanicolaou and Varadhan [20].
Results in quantitative stochastic homogenization (that is, results which give bounds on the rate
of convergence of the solution of a PDE with random coefficients to the solution of the determin-
istic homogenized PDE) were first obtained by Yurinskiı̆ [29,30], but recently there have been a
number of important breakthroughs (Caffarelli and Souganidis [5], Gloria and Otto [14], Arm-
strong and Smart [3], Gloria, Neukamm and Otto [13]). However, the only results of which we
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are aware of giving quantitative rates of convergence for central limit theorems for RWRE are in
Mourrat [19]. Mourrat’s results differ from those in the present paper as they are for the random
conductance model of RWRE rather than for RWRE in i.i.d. and he proves quantitative rates of
convergence for the averaged CLT rather than the quenched CLT. Mourrat also gives rates of
convergence for the random conductance model in any dimension d ≥ 1, while our methods are
restricted to one dimension. It should also be noted that the martingale method that Mourrat uses
is limited to proving at best rates of convergence of n−1/5, while the rates of convergence in
Theorems 1.3–1.5 are in many cases faster than n−1/5.

A natural question regarding the main results of this paper is the optimality of the rates of con-
vergence obtained. The quenched rates in Theorem 1.3 when κ > 3 are clearly optimal, though
it is not clear if the other rates in Theorems 1.3 and 1.4 are optimal. However, we conjecture that
they are optimal in the sense that no better almost sure polynomial rate can be obtained. In par-
ticular, if one sets ε = 0 in these results we conjecture that the limits do not exist. For instance,
if κ ∈ (2,3) we conjecture that

lim inf
n→∞ n

3
2 − 3

κ ‖Fn,ω − �‖∞ = 0 and lim sup
n→∞

n
3
2 − 3

κ ‖Fn,ω − �‖∞ = ∞, P -a.s.

It is less clear to us if the rates of convergence in Theorems 1.5 are optimal or not. In par-
ticular, one wonders if a different method of proof of the quenched CLT for Xn would lead to
an improved rate of convergence. Zeitouni outlines in [31] how the quenched CLT for Xn can
be obtained from a martingale CLT via the “harmonic corrector” approach. However, since the
fluctuations of the harmonic corrector are given in this case by the fluctuations of Eω[Tn]−n/v0
it seems that this approach will not yield any better results than that of the approach in the cur-
rent paper. Also, given that Theorems 1.3 and 1.4 show that the choice of normalization can
affect the rates of convergence, one wonders if the rates of convergence in Theorem 1.5 can be
improved by using a different centering or an environment-dependent scaling. In particular, one

might suspect that better rates of convergence can be obtained for Xn−Eω[Xn]
σv3/2

0
√

n
or Xn−Eω[Xn]√

Varω(Xn)
. Un-

fortunately, as of now we are not aware of any proofs of the quenched central limit theorem that
work for these normalizations directly. (Of course one might be able to obtain a quenched CLT
for Xn−Eω[Xn]

σv3/2
0

√
n

indirectly by using the quenched CLT for Xn−nv0+Zn(ω)

σv3/2
0

√
n

and then proving that

Eω[Xn]−nv0+Zn(ω)√
n

→ 0, P -a.s., but this would not lead to any possible improvement in the rate
of convergence for the quenched CLT.)

2. Quenched moments of hitting times

In this section, we will collect some facts about quenched moments of hitting times that will be
useful later. The main result is the following Lp estimate for the quenched moments of hitting
times.

Lemma 2.1. If E[logρ0] < 0 and κ > 0, then for any integer m ≥ 1, E[Eω[τm
1 ]p] < ∞ for all

p ∈ (0, κ
m

).
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Remark 2.2. We will only need Lemma 2.1 for m ≤ 3 and κ > 2 in the present paper. Neverthe-
less, since the proof generalizes easily to all m ≥ 1 we give the more general proof here.

Remark 2.3. If the parameter κ satisfies the slightly stronger definition (2), and if the technical
conditions E[ρκ

0 logρ0] < ∞ and the distribution of logρ0 is non-lattice are also satisfied, then
it is known that P(Eω[τ1] > x) ∼ Cx−κ as x → ∞ which is a stronger statement than the Lp

bounds in the statement of Lemma 2.1 for the case m = 1. We conjecture that under these stronger
assumptions that similar tail asymptotics hold for Eω[τm

1 ] also; that is, we conjecture that for
any m ≥ 1 there exists a constant Cm > 0 such that P(Eω[τm

1 ] > x) ∼ Cmx−κ/m as x → ∞.
However, since such precise tail asymptotics are not needed for our purposes in this paper we
content ourselves with the weaker Lp bounds given here.

Proof. We begin by computing recursive formulas for Eω[τm
1 ]. To this end, it is helpful to intro-

duce the natural left shift operator θ on the space of environments. That is, for any k ∈ Z, θkω is
the environment with (θkω)x = ωx+k for every x ∈ Z. With this notation, by conditioning on the
first step of the walk,

Eω

[
τm

1

]= ω0 + (1 − ω0)E
−1
ω

[
(1 + T1)

m
]

= ω0 + (1 − ω0)Eθ−1ω

[
(1 + τ1 + τ2)

m
]

= ω0 + (1 − ω0)
∑

0≤k1,k2<m
k1+k2≤m

(
m

k1, k2,m − k1 − k2

)
Eθ−1ω

[
τ

k1
1

]
Eω

[
τ

k2
1

]

+ (1 − ω0)Eθ−1ω

[
τm

1

]+ (1 − ω0)Eω

[
τm

1

]
.

Assuming for the moment that all of the above quenched expectations are finite we can solve this
for Eω[τm

1 ] to obtain

Eω

[
τm

1

]= 1 + ρ0

∑
0≤k1,k2<m
k1+k2≤m

(
m

k1, k2,m − k1 − k2

)
Eθ−1ω

[
τ

k1
1

]
Eω

[
τ

k2
1

]+ ρ0Eθ−1ω

[
τm

1

]

=: fm(ω) + ρ0Eθ−1ω

[
τm

1

] (5)

(where the last equality gives the definition of fm(ω)), and iterating this we obtain

Eω

[
τm

1

]= fm(ω) +
n−1∑
k=1

�−k+1,0fm

(
θ−kω

)+ �−n+1,0Eθ−nω

[
τm

1

]
,

where

�i,j =
j∏

x=i

ρx for any i ≤ j.
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In the argument thus far, we have been assuming that all the quenched expectations are finite
which may not necessarily be true. To account for this, we can modify the environment by adding
a reflection to the right at a point to the left of the origin. In particular, for any n ≥ 1 let ω(n) =
{ω(n)x}x∈Z be the environment such with a reflection added at x = −n. That is,

ω(n)x =
{

ωx if x �= −n,

1 if x = −n.

The added reflection makes it so that τ1 has exponential tails under the measure Pω(n) so that in
particular Eθxω(n)[τm

1 ] < ∞ for any x ≥ −n. Therefore, repeating the above recursive argument
in the environment ω(n) gives

Eω(n)

[
τm

1

]= fm

(
ω(n)

)+ n−1∑
k=1

�−k+1,0fm

(
θ−kω(n)

)+ �−n+1,0.

We wish to then take n → ∞ in the above to obtain a formula for Eω[τm
1 ]. Since E[logρ0] < 0

the last term on the right vanishes almost surely as n → ∞. For the other terms, by coupling
the path of the walk in the environment ω to the paths in ω(n) up to the stopping time T−n we
see that Eθxω(n)[τ 


1 ] ↗ Eθxω[τ 

1 ] as n ↗ ∞ for any fixed x and 
. In particular, this implies that

fm(θ−kω(n)) is non-decreasing in n and so the monotone convergence theorem implies that

Eω

[
τm

1

]= fm(ω) +
∞∑

k=1

�−k+1,0fm

(
θ−kω

)
. (6)

We will now use (6) to prove the moment bounds for Eω[τm
1 ]. A key tool that we will use in

the proof is the following simple lemma which follows from Minkowski’s inequality when p ≥ 1
and the sub-additivity of x 
→ xp when p ∈ (0,1).

Lemma 2.4. Let Y1, Y2, . . . be non-negative random variables and let Z =∑∞
k=0 Yk .

• If p < 1 and
∑∞

k=0 E[Yp
k ] < ∞, then E[Zp] < ∞.

• If p ≥ 1 and
∑∞

k=0 E[Yp
k ]1/p < ∞, then E[Zp] < ∞.

By this lemma and (6) it will be enough to show that E[(�−k+1,0fm(θ−kω))p] is decreasing
exponentially fast if p ∈ (0, κ

m
). To prove this, first note fm(ω) depends only on the environment

to the left of the origin. Therefore, since the environment is i.i.d. we have that

E
[(

�−k+1,0fm

(
θ−kω

))p]= E
[
(�−k+1,0)

p
]
E
[
fm(ω)p

]= (rp)kE
[
fm(ω)p

]
.

Since it follows from (1) that rp < 1 we have thus reduced ourselves to proving

E
[
fm(ω)p

]
< ∞, for all p ∈

(
0,

κ

m

)
,m ≥ 1. (7)
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We will prove (7) by induction on m ≥ 1. In the case m = 1, we have that f1(ω) = 1 + ρ0 and so
E[f1(ω)p] = E[(1 + ρ0)

p] < ∞ for p ∈ (0, κ) holds. Next, we will assume that (7) holds up to
m − 1; that is, we will assume that E[Eω[τ k

1 ]p] < ∞ for any p ∈ (0, κ
k
) and k ≤ m − 1. Under

this assumption, if 0 ≤ k1, k2 < m and k1 + k2 ≤ m then Hölder’s inequality implies that

E
[(

Eθ−1ω

[
τ

k1
1

]
Eω

[
τ

k2
1

])p]
≤ (E[Eω

[
τ

k1
1

]mp
k1
]) k1

m
(
E
[
Eω

[
τ

k2
1

] mp
m−k1

])m−k1
m < ∞ if p ∈

(
0,

κ

m

)
,

where the expectations on the right are finite by the induction assumption since mp
k1

< κ
k1

and
mp

m−k1
≤ mp

k2
< κ

k2
. This is enough to conclude that (7) holds for m as well, and by induction for

all m ≥ 1. �

We close this section by noting some additional consequences of the recursive formula for
Eω[τm

1 ] that will be useful later in the paper. For ease of notation, we will introduce the following
notation for the quenched mean and variance of hitting times that will be used throughout the
paper.

μk = Eθkω[τ1] and Vk = Varθkω(τ1).

When m = 1,2, the recursive formula (5) (applied to the shifted environment θkω) yields

μk = 1 + ρk + ρkμk−1, (8)

and

Eθkω

[
τ 2

1

]= 1 + ρk

(
1 + 2μk−1 + 2μk + 2μk−1μk + Eθk−1ω

[
τ 2

1

])
.

Inserting the first formula into the second and then simplifying yields

Eθkω

[
τ 2

1

]= 1 + ρk

(
1 + 2μk−1 + 2

{
(1 + ρk) + (1 + 2ρk)μk−1 + ρkμ

2
k−1

}+ Eθk−1ω

[
τ 2

1

])
= 1 + ρk

(
1 + 2(1 + ρk) + 4(1 + ρk)μk−1 + 2ρkμ

2
k−1 + Eθk−1ω

[
τ 2

1

])
= (1 + ρk)(1 + 2ρk) + 4ρk(1 + ρk)μk−1 + 2ρ2

kμ2
k−1 + ρkEθk−1ω

[
τ 2

1

]
.

(9)

Combining (8) and (9) then yields the following recursive formula for the quenched variance.

Vk = Eθkω

[
τ 2

1

]− μ2
k

= (1 + ρk)(1 + 2ρk) + 4ρk(1 + ρk)μk−1 + 2ρ2
kμ2

k−1 + ρkEθk−1ω

[
τ 2

1

]
− (1 + ρk)

2 − 2ρk(1 + ρk)μk−1 − ρ2
kμ2

k−1

= ρk(1 + ρk) + 2ρk(1 + ρk)μk−1 + ρ2
kμ2

k−1 + ρkEθk−1ω

[
τ 2

1

]
= ρk(1 + ρk) + 2ρk(1 + ρk)μk−1 + ρk(1 + ρk)μ

2
k−1 + ρkVk−1

= ρk(1 + ρk)(1 + μk−1)
2 + ρkVk−1.

(10)
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Finally, we note that since μk−1 is independent of ρk , one can take expectations of both sides
of (8) (or square both sides and then take expectations) to obtain the following explicit formulas
for the first two moments of the quenched hitting times.

1

v0
= E[τ1] = E[μ0] = 1 + r1

1 − r1
, E

[
μ2

0

]= 1 + 3r1 + 3r2 + r1r2

(1 − r1)(1 − r2)
. (11)

This formula for E[τ1] is well known and in fact was originally obtained in this manner in the
seminal paper of Solomon [28]. Similarly, taking expectations of both sides of (10) and using the
formulas in (11) and the fact that Vk−1 is independent of ρk one can obtain

σ 2 = E
[
Varω(τ1)

]= E[V0] = 4(1 + r1)(r1 + r2)

(1 − r2)(1 − r1)2
. (12)

We will briefly provide the details of this argument for (12) since the formula here corrects for a
small typo in the formula given in Goldsheid [15].

E[V0] = (r1 + r2)
(
1 + 2E[μ0] + E

[
μ2

0

])+ r1E[V0]

= (r1 + r2)

(
1 + 2

1 + r1

1 − r1
+ 1 + 3r1 + 3r2 + r1r2

(1 − r1)(1 − r2)

)
+ r1E[V0]

= (r1 + r2)

(
4(1 + r1)

(1 − r1)(1 − r2)

)
+ r1E[V0].

Solving this for E[V0] we obtain the formula in (12).

3. Asymptotics of the quenched mean and variance of the
hitting times

Since Eω[Tn] =∑n−1
k=0 μk and Varω(Tn) =∑n−1

k=0 Vk and since {μk}k∈Z and {Vk}k∈Z are ergodic
sequences, it follows that Eω[Tn]/n → E[μ0] = E[τ1] = 1

v0
and Varω(Tn)/n → E[V0] = σ 2,

almost surely as n → ∞. However, for the proofs of our main results we will need control on
the fluctuations of Eω[Tn] and Varω(Tn) from these deterministic limits. The first such result we
need is the following lemma which was proved by Goldsheid.

Lemma 3.1 (Lemma 4 in Goldsheid [15]). If κ > 2, then for any ε > 0,

lim
n→∞

Eω[Tn] − n
v0

n1/2+ε
= 0, P -a.s.

The main results of this section are the following two propositions, the first of which gives an
improvement to Lemma 3.1 by controlling the fluctuations the quenched mean of hitting times
of nearby locations and the second of which which controls the fluctuations of the quenched
variance of hitting times.
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Proposition 3.2. For any n ≥ 1 and ε > 0 denote Iε,n = [nv0 − n1/2+ε, nv0 + n1/2+ε]. If κ > 2,
then

lim
n→∞ max

k,
∈Iε,n

|Eω[Tk] − Eω[T
] − k−

v0

|
n1/4+ε/2+ε′ = 0, in P -probability, for any ε′ > 0, (13)

and

lim
n→∞ max

k,
∈Iε,n

|Eω[Tk] − Eω[T
] − k−

v0

|
n

1
4 + 1

2κ
+ε( 1

2 − 1
κ
)+ε′ = 0, P -a.s., for any ε′ > 0. (14)

Proposition 3.3. If κ > 2, then for any ε > 0,

lim
n→∞

Varω(Tn) − σ 2n

n
2

4∧κ
+ε

= 0, P -a.s.

Remark 3.4. It was shown in Goldsheid [15], Lemma 5, that for any ε > 0

lim
n→∞ max

k,
∈Iε,n

|Eω[Tk] − Eω[T
] − k−

v0

|√
n

= 0, P -a.s.

Thus, for ε ∈ (0,1/2), Proposition 3.2 is an improvement on the results in Goldsheid [15].

Remark 3.5. The change in the magnitude of the fluctuations of Varω(Tn) at κ = 4 in Proposi-
tion 3.3 is due to the fact that Varω(Tn) has finite second moment when κ > 4. In fact, though
we will not need this here, it can be shown that if κ > 4 then Varω(Tn)−σ 2n√

n
converges in distribu-

tion to a zero mean Gaussian random variable. We also suspect that under additional regularity
assumptions (E[ρκ

0 ] = 1, E[ρκ
0 logρ0] < ∞ and the distribution of logρ0 is non-lattice) that if

κ ∈ (2,4) then Varω(Tn)−σ 2n

n2/κ converges in distribution to a κ/2-stable random variable.

The main idea of the proofs of both Propositions 3.2 and 3.3 is that Eω[Tn] − n/v0 and
Varω(Tn) − σ 2n can be approximated by martingales which are sums of stationary ergodic se-
quences. To this end, it will be helpful to first state and prove the following general lemma.

Lemma 3.6. Let that {Zk}k∈Z be a stationary ergodic sequence and let {Wn}n≥0 be the martin-
gale defined by W0 = 0 and

Wn =
n−1∑
k=0

(
Zk − E[Zk|Fk−1]

)
, where Fk = σ(Zj : j ≤ k),

and let W ∗
n = maxk≤n |Wk|. If E[|Z1|p] < ∞ for all 1 ≤ p < α, then for any ε > 0,

lim
n→∞

W ∗
n

n
1

α∧2 +ε
= 0, P -a.s.

Additionally, if α > 2 then E[|W ∗
n |p] =O(np/2) for all p ∈ [2, α).
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Proof. We will divide the proof into two cases: α > 2 and α ∈ (1,2]. In both cases, however we
will use that

E

[
n∑

k=1

|Wk − Wk−1|p
]

=
n∑

k=1

E
[∣∣Zk−1 − E[Zk−1 |Fk−2]

∣∣p]

= nE
[∣∣Z1 − E[Z1 | F0]

∣∣p]= O(n), for p < α.

Case I: α > 2. If p ∈ [2, α), it follows from the Burkholder–Davis–Gundy inequality and then
Jensen’s inequality that there exists a constant Cp > 0 depending only on p such that

E
[∣∣W ∗

n

∣∣p]≤ CpE

[(
n∑

k=1

(Wk − Wk−1)
2

)p/2]

≤ Cpnp/2−1E

[
n∑

k=1

|Wk − Wk−1|p
]

= O
(
np/2).

From this it follows that P(W ∗
n > δn1/2+ε) = O(n−εp), and so if we let nk = �k2/(εp)� it follows

from the Borel–Cantelli lemma that

lim
k→∞

W ∗
nk

n
1/2+ε
k

= 0, P -a.s.

Finally, since W ∗
n is non-decreasing in n and nk+1/nk → 1 as k → ∞ the conclusion of the

lemma follows easily.
Case II: α ∈ (1,2]. If p ∈ [1, α) then the Burkholder–Davis–Gundy inequality implies that

E
[∣∣W ∗

n

∣∣p]≤ CpE

[(
n∑

k=1

(Wk − Wk−1)
2

)p/2]

≤ CpE

[
n∑

k=1

|Wk − Wk−1|p
]

= O(n),

where in the second inequality we used that p/2 < 1. Therefore, if max{1,
1+εα/2
1/α+ε

} ≤ p < α,
then

P
(
W ∗

n > δn1/α+ε
)= O

(
n1−p( 1

α
+ε)
)= O

(
n−εα/2),

where the last equality follows from 1 − p( 1
α

+ ε) ≤ 1 − 1+εα/2
1/α+ε

( 1
α

+ ε) = − εα
2 . Letting nk =

�k4/(εα)�, it follows from the Borel–Cantelli lemma that

lim
k→∞

W ∗
nk

n
1/α+ε
k

= 0, P -a.s.
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As in Case I, the conclusion of the lemma follows easily from this since nk+1/nk → 1 as
k → ∞. �

We are now ready to give the proofs of the main results of this section.

Proof of Proposition 3.2. Consider the martingale defined by M0 = 0 and

Mn =
n−1∑
k=0

(
μk − E[μk | Fk−1]

)
, n ≥ 1,where Fm = σ(ωx : x ≤ m).

To see the relevance of this martingale, note that it follows from the recursion for μk in (8) and
the fact that ρk is independent of Fk−1 that E[μk | Fk−1] = 1 + r1 + r1μk−1. Using this we can
re-write the martingale as

Mn =
n−1∑
k=0

μk − (1 + r1)n − r1

n−2∑
k=−1

μk

= (1 − r1)

n−1∑
k=0

μk − (1 + r1)n + r1(μn−1 − μ−1)

= (1 − r1)

(
Eω[Tn] − n

v0

)
+ r1(μn−1 − μ−1),

where in the last equality we used the explicit formula for v0 in (11). It follows from this repre-
sentation of the martingale that

max
k,
∈Iε,n

∣∣∣∣Eω[Tk] − Eω[T
] − k − 


v0

∣∣∣∣≤ max
k,
∈Iε,n

|Mk − M
|
1 − r1

+ 2r1

1 − r1
max
k∈Iε,n

μk−1. (15)

To control the first term on the right in (15), it follows from Lemmas 2.1 and 3.6 imply that for
any p ∈ [2, κ) there exists a constant C > 0 such that

E
[

max

∈[k,k+n] |M
 − Mk|p

]
≤ Cnp/2, ∀k ≥ 0,

and thus

P
(

max
k,
∈Iε,n

|Mk − M
| ≥ δn1/4+ε/2+ε′)

≤ P

(
max

∈Iε,n

|M
 − M�nv0−n1/2+ε�| ≥
δ

2
n1/4+ε/2+ε′

)

≤ E[max
∈Iε,n |M
 − M�nv0−n1/2+ε�|p]
(δ/2)pnp(1/4+ε/2+ε′)

=O
(
n−pε′)

.

(16)
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To control the second term on the right in (15), note that it follows from Lemma 2.1 and a pth
moment bound for p ∈ [2, κ) that

P
(

max
k∈Iε,n

μk−1 > δn
1
4 + ε

2 +ε′)≤ |Iε,n|P
(
μ0 > δn

1
4 + ε

2 +ε′)
=O

(
n

1
2 +ε−p( 1

4 + ε
2 +ε′))=O

(
n−pε′)

.

(17)

Applying (16) and (17) to (15) proves the convergence in probability statement in (13).
For the proof of the almost sure convergence in (14), we will use the bounds in (16) and

(17) but we will need to restrict ourselves to ε′ >
1/2−ε

κ
. For any such ε′, fix p such that

max{2,
1/2−ε

ε′ } < p < κ and then γ > 0 such that 1
2 − ε < 1

γ
< pε′. If we let nk = �kγ � then

since γpε′ > 1 it follows from (16) and (17) applied to (15) that

lim
k→∞ max


,m∈Iε,nk

|Eω[Tm] − Eω[T
] − m−

v0

|
n

1/4+ε/2+ε′
k

= 0, P -a.s. (18)

Next, since γ (1/2 − ε) < 1 it follows that nk+1v0 − n
1/2+ε

k+1 < nkv0 + n
1/2+ε
k for k large, so that

Iε,nk
∩ Iε,nk+1 �=∅ for all k large. If nk ≤ n < nk+1 and Iε,nk

∩ Iε,nk+1 , then it follows that

max

,m∈Iε,n

|Mm − M
|
n1/4+ε/2+ε′ ≤ max


,m∈Iε,nk
∪Iε,nk+1

|Eω[Tm] − Eω[T
] − m−

v0

|
n

1/4+ε/2+ε′
k

,

and using (18) and the fact that nk+1/nk → 1 as k → ∞ the right-hand side vanishes almost
surely as k → ∞. Thus, we have shown that

lim
n→∞ max

k,
∈Iε,n

|Eω[Tk] − Eω[T
] − k−

v0

|
n1/4+ε/2+ε′ = 0, P -a.s., for any ε′ > 1/2 − ε

κ
.

Note that by taking ε′ arbitrarily close to 1/2−ε
κ

this is equivalent to the statement (14) we are
trying to prove. �

Proof of Proposition 3.3. Consider the martingale {Ln}n≥0 defined by L0 = 0 and

Ln = Varω(Tn) −
n−1∑
k=0

E[Vk | Fk−1] =
n−1∑
k=0

(
Vk − E[Vk | Fk−1]

)
.

It follows from Lemma 2.1 that E[|V0|p] ≤ E[|Eω[τ 2
1 ]|p] < ∞ for any p < κ/2, and thus

Lemma 3.6 implies that

lim
n→∞

Ln

n
2

4∧κ
+ε

= 0, P -a.s., for any ε > 0. (19)
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To compare Ln to Varω(Tn) − σ 2n we need to give a different representation of Ln. To this end,
it follows from the recursive formula for the quenched variance in (10) that

E[Vk |Fk−1] = E
[(

ρk + ρ2
k

)
(1 + μk−1)

2 + ρkVk−1|Fk−1
]= (r1 + r2)(1 + μk−1)

2 + r1Vk−1,

and thus

Ln = Varω(Tn) −
n−1∑
k=0

{
(r1 + r2)(1 + μk−1)

2 + r1Vk−1
}

= Varω(Tn) − (r1 + r2)

{
n + 2

n−2∑
k=−1

μk +
n−2∑

k=−1

μ2
k

}
− r1

n−2∑
k=−1

Vk

= (1 − r1)Varω(Tn) − (r1 + r2)

{
n + 2Eω[Tn] +

n−1∑
k=0

μ2
k

}

− (r1 + r2)
(
2μn−1 + μ2

n−1 − 2μ−1 − μ2−1

)+ r1(Vn−1 − V−1).

(20)

To further simplify this, note that it follows from (11) and (12) that

(1 − r1)σ
2 − (r1 + r2)

(
1 + 2E[μ0] + E

[
μ2

0

])
= 4(r1 + r2)(1 + r1)

(1 − r1)(1 − r2)
− (r1 + r2)

(
1 + 2(1 + r1)

1 − r1
+ 1 + 3r1 + 3r2 + r1r2

(1 − r1)(1 − r2)

)

= 4(r1 + r2)(1 + r1)

(1 − r1)(1 − r2)
− 4(r1 + r2)(1 + r1)

(1 − r1)(1 − r2)
= 0.

Therefore, we have that

Ln = (1 − r1)
(
Varω(Tn) − σ 2)− (r1 + r2)

{
2

(
Eω[Tn] − n

v0

)
+

n−1∑
k=0

(
μ2

k − E
[
μ2

0

])}

− (r1 + r2)
(
2μn−1 + μ2

n−1 − 2μ−1 − μ2−1

)+ r1(Vn−1 − V−1).

From this representation of Ln, by (19) and Lemma 3.1 we see that to finish the proof of Propo-
sition 3.3 it is enough to show that

lim
n→∞

∑n−1
k=0(μ

2
k − E[μ2

0])
n

2
4∧κ

+ε
= 0, P -a.s. (21)

and

lim
n→∞

μ2
n−1 + Vn−1

n
2

4∧κ
+ε

= lim
n→∞

Eθn−1ω[τ 2
1 ]

n
2

4∧κ
+ε

= 0, P -a.s. (22)
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To prove (22), note that it follows from Lemma 2.1 that

P
(
Eθn−1ω

[
τ 2

1

]≥ δn
2

4∧κ
+ε
)=O

(
n− κ

4∧κ
− εκ

4
)=O

(
n−1− εκ

4
)
,

and then (22) follows from the Borel–Cantelli lemma.
It remains only to prove (21), and to do this we will use another martingale. Define Hn = 0

and

Hn =
n−1∑
k=0

{
μ2

k − E
[
μ2

k | Fk−1
]}

, n ≥ 1.

Note that Lemmas 2.1 and 3.6 imply that for any ε > 0,

lim
n→∞

Hn

n
2

4∧κ
+ε

= 0, P -a.s. (23)

To use this to prove (21), we need to give a different representation of Hn. Using the recursive
formula for μk in (8), it follows that

E
[
μ2

k | Fk−1
]= E

[
(1 + ρk)

2 + 2ρk(1 + ρk)μk−1 + ρ2
kμ2

k−1 |Fk−1
]

= 1 + 2r1 + r2 + 2(r1 + r2)μk−1 + r2μ
2
k−1.

Consequently, the martingale Hn can be re-written as

Hn =
n−1∑
k=0

μ2
k − (1 + 2r1 + r2)n − 2(r1 + r2)

n−2∑
k=−1

μk − r2

n−2∑
k=−1

μ2
k

= (1 − r2)

n−1∑
k=0

μ2
k − (1 + 2r1 + r2)n − 2(r1 + r2)Eω[Tn]

+ 2(r1 + r2)(μn−1 − μ−1) + r2
(
μ2

n−1 − μ2−1

)
.

Since the explicit formulas for E[μ0] and E[μ2
0] in (11) imply that

(1 − r2)E
[
μ2

0

]− 2(r1 + r2)E[μ0] = 1 + 3r1 + 3r2 + r1r2

1 − r1
− 2(r1 + r2)

1 + r1

1 − r1

= 1 + r1 + r2 − 2r2
1 − r1r2

1 − r1

= 1 + 2r1 + r2,
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we can further simplify the expression for Hn as

Hn = (1 − r2)

n−1∑
k=0

(
μ2

k − E
[
μ2

0

])− 2(r1 + r2)

(
Eω[Tn] − n

v0

)

+ 2(r1 + r2)(μn−1 − μ−1) + r2
(
μ2

n−1 − μ2−1

)
.

(24)

An argument similar to the proof of (22) shows that limn→∞
μ2

n−1

n
2

4∧κ
+ε

= 0, P -a.s., and thus the

proof of (21) follows from applying (23) and Lemma 3.1 to (24). �

4. Quenched CLT rates of convergence for hitting times

Since the hitting times Tn =∑n
k=1 τk are the sum of random variables that are independent under

the quenched measure, a key element in our proof of Theorems 1.3 and 1.4 will be the following
generalization of the Berry–Esseen estimates.

Theorem 4.1 (Theorem V.3.6 in Petrov [26]). Let Sn =∑n
k=1 ξi be the sum of independent zero

mean random variable with finite variance. For any δ ∈ (0,1] there exists a universal constant
Aδ > 0 such that

sup
x

∣∣∣∣P
(

Sn√
Var(Sn)

≤ x

)
− �(x)

∣∣∣∣≤ Aδ

Var(Sn)
1+ δ

2

n∑
k=1

E
[|ξi |2+δ

]
.

Proof of Theorem 1.3. Since under the quenched measure Tn − Eω[Tn] =∑n
k=1(τk − Eω[τk])

is the sum of independent zero mean random variables, it follows immediately from Theorem 4.1
(with δ = 1) that

sup
x

∣∣Fn,ω(x) − �(x)
∣∣≤ A1

Varω(Tn)3/2

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]. (25)

Since Varω(Tn)/n → σ 2 almost surely as n → ∞ we need only to consider the asymptotics of
the last sum on the right. The analysis is different in the cases κ > 3 and κ ∈ (2,3].

Case I: κ > 3. In this case it follows from Lemma 2.1 that E[|τ1 − Eω[τ1]|3] < ∞. Therefore,
Birkhoff’s Ergodic theorem implies that

lim
n→∞

1

n

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]= E

[∣∣τ1 − Eω[τ1]
∣∣3].
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Applying this to (25), we obtain that

lim sup
n→∞

√
n sup

x

∣∣Fn,ω(x) − �(x)
∣∣≤ lim

n→∞
A1

√
n

Varω(Tn)3/2

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]

= A1E[|τ1 − Eω[τ1]|3]
σ 3

.

Case II: κ ∈ (2,3]. It follows from Lemma 2.1 that for any p < κ/3,

E
[(

Eω

[∣∣τ1 − Eω[τ1]
∣∣3])p]≤ 4pE

[(
Eω

[
τ 3

1

]+ (Eω[τ1]
)3)p]

≤ 4p2p−1E
[
Eω

[
τ 3

1

]p + Eω[τ1]3p
]
< ∞.

Since the quenched expectations Eω[|τk −Eω[τk]|3] are an ergodic sequence in k, it follows that
if p < κ

3 ≤ 1 then

lim sup
n→∞

1

n1/p

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]= lim sup

n→∞

{
1

n

(
n∑

k=1

Eω

[∣∣τk − Eω[τk]
∣∣3])p}1/p

≤ lim
n→∞

{
1

n

n∑
k=1

(
Eω

[∣∣τk − Eω[τk]
∣∣3])p}1/p

= {E[(Eω

[∣∣τ1 − Eω[τ1]
∣∣3])p]}1/p

< ∞, P -a.s.

By taking p arbitrarily close to κ/3, we can therefore conclude that

lim
n→∞

1

n
3
κ
+ε

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]= 0, P -a.s.

Applying this to (25) we obtain that for any ε > 0,

lim sup
n→∞

n
3
2 − 3

κ
−ε sup

x

∣∣Fn,ω(x) − �(x)
∣∣

≤ A1

(
n

Varω(Tn)

)3/2 1

n
3
κ
+ε

n∑
k=1

Eω

[∣∣τk − Eω[τk]
∣∣3]= 0, P -a.s.

�

Remark 4.2. In the case of κ ∈ (2,3] one might wonder if better rates of convergence could be
obtained by applying Theorem 4.1 with 2 + δ < κ . However, it’s easy to see that this only gives
n

κ
2 −1−ε‖Fn,ω − �‖∞ → 0 for any ε > 0, and since κ

2 − 1 < 3
2 − 3

κ
when κ ∈ (2,3) the bounds

in the statement of Theorem 1.3 are better.
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Proof of Theorem 1.4. Since

Fn,ω(x) = Pω

(
Tn − Eω[Tn]√

Varω(Tn)
≤ x

√
σ 2n

Varω(Tn)

)
= Fn,ω

(
x

√
σ 2n

Varω(Tn)

)
,

we note that

sup
x

∣∣Fn,ω(x) − �(x)
∣∣≤ sup

x

∣∣Fn,ω(x) − �(x)
∣∣+ sup

x

∣∣∣∣�
(

x

√
σ 2n

Varω(Tn)

)
− �(x)

∣∣∣∣. (26)

The first term on the right can be controlled by Theorem 1.3, while for the second term on the
right we note (see, for instance, Petrov [26], Section V.3, equation (3.3)) that

sup
x

∣∣�(x) − �(ax)
∣∣≤
⎧⎪⎪⎨
⎪⎪⎩

1√
2πe

1 − a

a
if a ∈ (0,1),

1√
2πe

(a − 1) if a ≥ 1.

It follows from Proposition 3.3 that for any ε > 0, P -a.e. environment ω,

√
σ 2n

Varω(Tn)
= 1 + o

(
n

2
4∧κ

+ε−1), for P -a.e. environment ω,

and therefore

lim
n→∞n1− 2

4∧κ
−ε sup

x

∣∣∣∣�
(

x

√
σ 2n

Varω(Tn)

)
− �(x)

∣∣∣∣= 0, P -a.s.

Since in all cases the rate of decay of the first term on the right in (25) given by Theorem 1.3
decays faster than n−1+ 2

4∧κ
+ε this completes the proof of Theorem 1.4. �

5. Quenched CLT rates of convergence for the walk

As noted in the introduction, we will obtain rates of convergence for the quenched CLT for Xn

from the rates of the quenched CLT for Tn in Theorem 1.3. The transfer of limiting distributions
from hitting times to the position of the walk hinges on the fact that Pω(Tk > n) = Pω(X∗

n < k)

where X∗
n = maxk≤n Xk is the running maximum of the walk up to time n. In preparation for the

proof of Theorem 1.5, we will first prove the following lemma which will allow us to compare
the distribution of X∗

n and Xn.

Lemma 5.1. If κ > 0, then there exists a constant B > 0 such that Pω(X∗
n −Xn ≥ B logn) ≤ 1√

n
for P -a.e. environment ω and for all n sufficiently large.
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Proof. It was shown in Gantert and Shi [11] that if κ > 0 then P(T−m < ∞) ≤ C1e
−C2m for

some constants C1,C2 > 0 and all m ≥ 1. It follows from this that

P
(
X∗

n − Xn ≥ m
)≤ n−1∑

k=0

P

(
inf

i>Tk

Xi ≤ k − m
)

=
n−1∑
k=0

P
k(Tk−m < ∞) = nP(T−m < ∞) ≤ C1ne−C2m.

Therefore, by Chebychev’s inequality, we have

P

(
Pω

(
X∗

n − Xn ≥ B logn
)
>

1√
n

)
≤ √

nP
(
X∗

n − Xn ≥ B logn
)

≤ C1n
3/2e−C2B logn.

If B > 5
2C2

, then this bound is summable and the conclusion of the lemma follows from the
Borel–Cantelli lemma. �

Proof of Theorem 1.5. Since the distribution function �(x) is continuous, rates of convergence
for Gn,ω are equivalent to rates of convergence for

G◦
n,ω(x) = lim

ε→0+ Gn,ω(x + ε) = Pω

(
Xn − nv0 + Zn(ω)

σv3/2
0

√
n

< x

)
.

Since it is more convenient for the proof, we will prove rates of convergence for G◦
n,ω . In fact,

the strategy of the proof will be to first prove rates of convergence for

G∗
n,ω(x) = Pω

(
X∗

n − nv0 + Zn(ω)

σv3/2
0

√
n

< x

)

and then use Lemma 5.1 to obtain corresponding rates of convergence for G◦
n,ω . Indeed, since

∣∣G◦
n,ω(x) − �(x)

∣∣
≤
∣∣∣∣G◦

n,ω(x) − G∗
n,ω

(
x + B logn

σv3/2
0

√
n

)∣∣∣∣+ sup
y∈R

∣∣G∗
n,ω(y) − �(y)

∣∣
+
∣∣∣∣�
(

x + B logn

σv3/2
0

√
n

)
− �(x)

∣∣∣∣
≤ Pω

(
X∗

n − Xn ≥ B logn
)+ sup

y∈R

∣∣G∗
n,ω(y) − �(y)

∣∣+ B logn

σv3/2
0

√
2πn

,
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it follows from Lemma 5.1 that to prove the almost sure convergence rate of convergence in
Theorem 1.5 we need only to show

lim
n→∞n

1
4 − 1

2κ
−ε sup

x∈R

∣∣G∗
n,ω(x) − �(x)

∣∣= 0, P -a.s., for any ε > 0. (27)

For the proof of (27) we begin by noting that since Pω(X∗
n < k) = Pω(Tk > n) for any n, k ≥ 1

that

G∗
n,ω(x) = Pω

(
X∗

n < nv0 − Zn(ω) + xσv3/2
0

√
n
)= Pω(Tk(n,ω,x) > n) (28)

whenever

k(n,ω,x) := ⌈nv0 − Zn(ω) + xσv3/2
0

√
n
⌉≥ 1.

Throughout the remainder of our proof, we will fix an arbitrary ε ∈ (0,1/2). Let x−
n,ε = x−

n,ε(ω)

and x+
n,ε = x+

n,ε(ω) be such that k(n,ω,x−
n,ε) = �nv0 − n1/2+ε� and k(n,ω,x+

n,ε) = �nv0 +
n1/2+ε�. We will use (28) and Theorem 1.3 to control |G∗

n,ω(x) − �(x)| but our analysis will
be different depending on whether or not x ∈ [x−

n,ε, x
+
n,ε].

Case I: x ∈ [x−
n,ε, x

+
n,ε]. In this case, it follows from (28) that∣∣G∗

n,ω(x) − �(x)
∣∣

=
∣∣∣∣Pω

(
Tk(n,ω,x) − Eω[Tk(n,ω,x)]√

Varω(Tk(n,ω,x))
>

n − Eω[Tk(n,ω,x)]√
Varω(Tk(n,ω,x))

)
− �(x)

∣∣∣∣
=
∣∣∣∣Fk(n,ω,x),ω

(
n − Eω[Tk(n,ω,x)]√

Varω(Tk(n,ω,x))

)
− �(−x)

∣∣∣∣
≤ sup

t∈R

∣∣Fk(n,ω,x),ω(t) − �(t)
∣∣+ ∣∣∣∣�

(
n − Eω[Tk(n,ω,x)]√

Varω(Tk(n,ω,x))

)
− �(−x)

∣∣∣∣
≤ sup

|m−nv0|≤n1/2+ε

‖Fm,ω − �‖∞ + 1√
2π

∣∣∣∣Eω[Tk(n,ω,x)] − n√
Varω(Tk(n,ω,x))

− x

∣∣∣∣.

(29)

The first term in (29) can be controlled by Theorem 1.3. For the second term in (29), note first of
all that (recalling the definition of Zn(ω) from the statement of Theorem 1.2)

n = Eω[T�nv0�] −
(

Eω[T�nv0�] − �nv0�
v0

)
+ nv0 − �nv0�

v0

= Eω[T�nv0�] − Zn(ω)

v0
+O(1),

where here (and below) we will use O(1) to denote uniformly bounded error terms coming from
integer rounding. Therefore,

Eω[Tk(n,ω,x)] − n

= Eω[Tk(n,ω,x)] − Eω[T�nv0�] + Zn(ω)

v0
+O(1)
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=
(

Eω[Tk(n,ω,x)] − Eω[T�nv0�] − k(n,ω,x) − nv0

v0

)

+ k(n,ω,x) − nv0 + Zn(ω)

v0
+O(1)

=
(

Eω[Tk(n,ω,x)] − Eω[T�nv0�] − k(n,ω,x) − nv0

v0

)
+ xσ

√
nv0 +O(1),

where the last equality follows from the definition of k(n,ω,x). Since x ∈ [x−
n,ε, x

+
n,ε] implies

that k(n,ω,x) ∈ Iε,n = [nv0 − n1/2+ε, nv0 + n1/2+ε] it follows from Proposition 3.2 that the
first term in the last line is bounded (uniformly over x ∈ [x−

n,ε, x
+
n,ε]) by something that is

o(n
1
4 + 1

2κ
+ε( 1

2 − 1
κ
)+ε′

) for any ε′ > 0. Finally, we claim that Varω(Tk(n,ω,x)) is asymptotically close
to σ 2v0n uniformly over x ∈ [x−

n,ε, x
+
n,ε]. Indeed, since

Varω(Tnv0−n1/2+ε ) ≤ Varω(Tk(n,ω,x)) ≤ Varω(Tnv0+n1/2+ε ),

it follows from the fact that Varω(Tm) ∼ σ 2m that

lim
n→∞ sup

x∈[x−
n,ε,x

+
n,ε]

∣∣∣∣Varω(Tk(n,ω,x))

σ 2nv0
− 1

∣∣∣∣= 0, P -a.s.

We have therefore shown that for any ε′ > 0,

lim
n→∞n

1
4 − 1

2κ
−ε( 1

2 − 1
κ
)−ε′

sup
x∈[x−

n,ε,x
+
n,ε]

∣∣∣∣Eω[Tk(n,ω,x)] − n√
Varω(Tk(n,ω,x))

− x

∣∣∣∣= 0, P -a.s. (30)

Since Theorem 1.3 implies that the first term in (29) decays strictly faster than n− 1
4 + 1

2κ , we can
conclude that

lim
n→∞n

1
4 − 1

2κ
−ε( 1

2 − 1
κ
)−ε′

sup
x∈[x−

n,ε,x
+
n,ε]

∣∣G∗
n,ω(x) − �(x)

∣∣= 0, P -a.s. (31)

Case II: x /∈ [x−
n,ε, x

+
n,ε]. Since Lemma 3.1 implies that Zn(ω)/n1/2+ε → 0, it follows that for

n large enough (depending on ω) x−
n,ε < −n−ε/2 and x+

n,ε > nε/2. Therefore, by the monotonicity
of the distribution functions we have

sup
x<x−

n,ε

∣∣G∗
n,ω(x) − �(x)

∣∣≤ G∗
n,ω

(
x−
n,ε

)+ �
(
x−
n,ε

)

≤ ∣∣G∗
n,ω

(
x−
n,ε

)− �
(
x−
n,ε

)∣∣+ 2�
(
x−
n,ε

)
≤ ∣∣G∗

n,ω

(
x−
n,ε

)− �
(
x−
n,ε

)∣∣+ 2�
(−nε/2),

(32)
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and similarly

sup
x>x−

n,ε

∣∣G∗
n,ω(x) − �(x)

∣∣= sup
x>x−

n,ε

∣∣(1 − G∗
n,ω(x)

)− (1 − �(x)
)∣∣

≤ 1 − G∗
n,ω

(
x+
n,ε

)+ 1 − �
(
x+
n,ε

)
≤ ∣∣G∗

n,ω

(
x+
n,ε

)− �
(
x+
n,ε

)∣∣+ 2
(
1 − �

(
nε/2)).

(33)

Since �(−nε/2) = 1 − �(nε/2) decays faster than any polynomial in n, applying (31) to (32)
and (33) we obtain that

lim
n→∞n

1
4 − 1

2κ
−ε( 1

2 − 1
κ
)−ε′

sup
x∈R

∣∣G∗
n,ω(x) − �(x)

∣∣= 0, P -a.s.

Finally, note that since ε, ε′ > 0 were arbitrary this completes the proof of the almost sure rate of
convergence in Theorem 1.5.

The proof of the weaker in probability rates of convergence for Gn in (3) and (4) are almost the
same as the above proof of the almost sure convergence rates. The only difference is that instead
of (30), the convergence in probability statement in Proposition 3.2 gives that for any ε′ > 0

lim
n→∞n

1
4 − ε

2 −ε′
sup

x∈[x−
n,ε,x

+
n,ε]

∣∣∣∣Eω[Tk(n,ω,x)] − n√
Varω(Tk(n,ω,x))

− x

∣∣∣∣= 0, in P -probability.

The rest of the proof is essentially the same with the exception that when κ ∈ (2, 12
5 ) and

ε > 0 is sufficiently small the dominant term in (29) is the first term which by Theorem 1.3

is o(n− 3
2 + 3

κ
+ε′′

) for any ε′′ > 0. �
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