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We study the existence and uniqueness of solutions of SDEs describing squared Bessel particle systems in
full generality. We define nonnegative and non-colliding squared Bessel particle systems and we study their
properties. Particle systems dissatisfying non-colliding and unicity properties are pointed out. The structure
of squared Bessel particle systems is described.
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1. Introduction

The main objective of the paper is to study in details the following system of stochastic differen-
tial equations

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt, i = 1, . . . , p, (1.1)

X1(t) ≤ X2(t) ≤ · · · ≤ Xp(t), t ≥ 0, (1.2)

with the initial condition Xi(0) = xi , i = 1, . . . , p and the drift parameter α ∈ R. We provide
results on the existence, unicity and properties of the solutions of the system (1.1) in the whole
generality of its parameters and initial values. The system (1.1) is called squared Bessel particle
system following the fact that for p = 1 it reduces to the classical squared Bessel stochastic
differential equation

dX = 2
√|X|dB + α dt, X(0) = x. (1.3)

It follows from the Yamada–Watanabe theorem [14] that there exists a unique strong solution to
(1.3) and the solution is called squared Bessel process of dimension α starting from x. It is usu-
ally denoted by BESQ(α)(x). In the classical setting, the nonnegativity of α and x are assumed.
However, Göing-Jaeschke and Yor studied squared Bessel processes starting from negative points
as well as having negative dimensions (see [4]), that play an important role in the stochastic cal-
culus in one dimension. The present paper generalizes the Göing-Jaeschke–Yor’s description of
squared Bessel processes to the multidimensional case.
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A systematic study of non-colliding particle systems was initiated by Rogers and Shi in [12],
for the Dyson Brownian Motion and for some more general interacting Brownian particles start-
ing from non-colliding points X1(0) < · · · < Xp(0). The study was continued by Bru in [2],
where the squared Bessel particle systems for α > p − 1 were considered as eigenvalues of re-
lated Wishart processes. However, the methods of the papers [2,12] can not be used to deal with
the general case (1.1). Considering initial conditions X1(0) ≤ · · · ≤ Xp(0), where some equali-
ties hold true, requires a different approach. Consequently, our results are partially based on the
theory built in [6], which allows to construct non-colliding solutions to general particle systems
with colliding starting points. However, there are some special cases of α and starting points
X(0) in (1.1), for which the results of [6] cannot be applied directly. These cases require more
in-depth analysis.

Although the coefficients of the equations are 1/2-Hölder continuous in the martingale part
(as in the classical one-dimensional Yamada–Watanabe theorem) and the repulsive force comes
from a drift term in (1.1), similar to logarithmic potential (as in the systems considered by Rogers
and Shi in [12]), there are some special values of α ∈ R and X(0) (having collisions), for which
there exist colliding solutions and consequently the unicity of solutions does not hold. It makes
the study much more complicated than in the one dimensional case studied in [4]. Moreover,
such phenomenon in the context of particle systems has not been noticed so far.

Note also a close relation of systems (1.1) to the random matrix theory. By [5], Theorem 3, the
system (1.1) describes the ordered eigenvalues of the solution to the following matrix stochastic
differential equation

dYt = √|Yt |dWt + dWT
t

√|Yt | + αIdt, (1.4)

where Yt ∈ Sp , the vector space of real symmetric matrices, Wt is a Brownian p × p matrix
and the eigenvalues of Y0 are all different. The equation (1.4) is usually considered with the
additional assumption α ≥ p − 1 (which for p = 1 corresponds to the condition α ≥ 0), and then
it is called Wishart SDE, which can be viewed as the matrix generalization of the squared Bessel
SDE (1.3) (see [2,3,5]). If α ≥ p − 1 and the eigenvalues X1(0), . . . ,Xp(0) of Y0 are supposed
to be nonnegative, then the particles Xi(t) (i.e., the eigenvalues of Yt ) remain nonnegative (i.e.,
X1(t) ≥ 0 for every t ≥ 0) and they never collide for t > 0. In fact in this case we can remove
absolute values and the indicators from (1.1) and (1.4). However, the matrix equations (1.4) are
also considered without any restrictions on α and the behaviour of their eigenvalues for α < p−1
is of great importance (see [7]).

Systems of stochastic differential equations with the indicators 1{Xi �=Xj } in the drift part were
introduced by Katori ([9], Theorem 1, [8]), but he uniquely considered cases when one can omit
these indicators.

Note that the results obtained for the solutions of the system (1.1) may be generalized for
the β-BESQ particle systems, obtained by multiplying the drift term in (1.1) by a β > 1, see
[5], Section III.D. When β = 2, these are the SDEs for p independent BESQ processes on R+,
conditioned not to collide ([10]). Such β-generalization of the present study will be done in the
upcoming paper.

The paper is organized as follows. In Section 2, we present all the main results of the paper.
We begin with introducing definitions and notations for non-colliding and nonnegative solutions
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of (1.1) together with the results on their existence and uniqueness (Theorems 1 and 3). In The-
orem 2, we give necessary and sufficient conditions on parameters of a squared Bessel particle
system to have a unique strong solution. In Section 2.2, we emphasize the examples dissatisfying
the non-colliding property, which are also examples of non-uniqueness of strong solutions. In
Theorem 4, we provide the stochastic description of the symmetric polynomials related to the
nonnegative solutions of the system (1.1). Finally, in Theorem 5 we describe the structure of
non-colliding solutions Xi(t) which are negative or positive. In Sections 3 and 4, the proofs of
the main results are provided.

2. Main results

2.1. Existence and uniqueness of solutions of BESQ particle system

We start our considerations with studying so-called non-colliding solutions.

Definition 1. A solution (X1, . . . ,Xp) of (1.1) is called non-colliding if there are no collisions
between particles after the start, i.e.

T = inf
{
t > 0 : Xi(t) = Xj(t) for some i �= j

}
is infinite almost surely.

It appears that we can always build a non-colliding solution of (1.1) and uniqueness among
non-colliding solutions holds, which is provided in the following theorem.

Theorem 1. For every α ∈ R and x1 ≤ · · · ≤ xp there exists a non-colliding solution to the
system of stochastic differential equations

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt, i = 1, . . . , p, (2.1)

X1(t) ≤ X2(t) ≤ · · · ≤ Xp(t), t ≥ 0 (2.2)

with the initial condition Xi(0) = xi for i = 1, . . . , p. Moreover, pathwise uniqueness among
non-colliding solutions holds and there exists unique non-colliding strong solution.

The proof of Theorem 1 is postponed until Section 4. It requires some knowledge of elemen-
tary symmetric polynomials studied in details in Section 3.

Remark 1. Note that if we study non-colliding solutions we can remove the indicators from the
drift parts of equations (2.1).

Theorem 1 enables us to introduce the following.
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Definition 2. The unique strong solution to (2.1), which has no collisions after the start is
called non-colliding squared Bessel particle system of dimension α ∈ R starting from the point
(x1, . . . , xp), where x1 ≤ x2 ≤ · · · ≤ xp and it will be denoted by BESQ(α)

nc (x1, . . . , xp).

Since, by Theorem 1, there always exists a unique non-colliding solution, it is natural to ask
if there are any other solutions. To formulate the result providing necessary and sufficient condi-
tions for (1.1) to have unique strong solution, we have to introduce the following notation. For a
fixed point x = (x1, . . . , xp) ∈ Rp , x1 ≤ · · · ≤ xp , we define

rk+(x) =
p∑

i=1

1(0,∞)(xi), rk−(x) =
p∑

i=1

1(−∞,0)(xi),

and set rk(x) = rk+(x)+ rk−(x), that is, rk+(x), rk−(x), rk(x) is the number of strictly positive,
strictly negative and all nonzero values among x1, . . . , xp .

Theorem 2. Pathwise uniqueness for the system

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt, i = 1, . . . , p,

X1(t) ≤ X2(t) ≤ · · · ≤ Xp(t), t ≥ 0

with the initial condition X(0) = x, where x = (x1, . . . , xp), holds if and only if one of the
following conditions holds

(a) |α| /∈ {0,1, . . . , p − 2},
(b) |α| ∈ {0,1, . . . , p − 2} and (rk+(x)≥ p+α−1

2 or rk−(x)≥ p−α−1
2 ).

Then there exists unique strong solution, which is non-colliding. If (a) and (b) are not satisfied,
then there exist strong solutions, but neither pathwise uniqueness nor uniqueness in law hold.

Remark 2. Note that the numbers (p + α − 1)/2 or (p − α − 1)/2 may not be integers.

Obviously, the unique strong solution from Theorem 2 must be, by Theorem 1, non-colliding.
Next, we consider the problem of existence and uniqueness of non-negative solutions. The

classical results related to p = 1 say that the squared Bessel process BESQ(α)(x) is non-negative
if and only if x ≥ 0 and α ≥ 0. In the multidimensional case, we can ask analogous question
introducing the following.

Definition 3. A solution (X1, . . . ,Xp) of (1.1) is called non-negative if X1(t) ≥ 0 for every
t > 0 a.s.

Looking at the matrix interpretation of considered particle systems, nonnegativity of (X1, . . . ,

Xp) is equivalent to the condition saying that the corresponding matrix value process stays in

S+
p , where S+

p is the open cone of positive definite symmetric matrices. The multidimensional
result is provided in the following theorem.
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Theorem 3. There exists a nonnegative solution to

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt, i = 1, . . . , p,

X1(t) ≤ X2(t) ≤ · · · ≤ Xp(t), t ≥ 0,

with the initial condition X(0) = x, where x = (x1, . . . , xp) and x1 ≥ 0, if and only if one of the
following conditions holds

(a) α ≥ p − 1,
(b) α ∈ {0,1, . . . , p − 2} and rk(x) ≤ α.

Then pathwise uniqueness among non-negative solutions holds and there exists unique nonnega-
tive strong solution.

Remark 3. Note that Theorem 3 is a spectral analogue of the characterization of the non-central
Gindikin set proved in [7].

2.2. Examples dissatisfying non-colliding property

Theorem 2 implies that when |α| ∈ {0,1, . . . , p − 2}, rk+(x) < (p + α − 1)/2 and rk−(x) <

(p − α − 1)/2, then the uniqueness of the strong solutions is violated, that is, there exist at least
two solutions. On the other hand, we deduce from Theorem 1 that only one of these solutions
is non-colliding, so they are all colliding, except one. Let us illustrate these new phenomena on
simple examples.

Example 1. Consider p = 2, α = 0. The system (1.1) is then reduced to

dX1 = 2
√|X1|dB1 + |X1| + |X2|

X1 − X2
1{X1 �=X2} dt,

dX2 = 2
√|X2|dB2 + |X1| + |X2|

X2 − X1
1{X1 �=X2} dt,

where X1(t) ≤ X2(t), t > 0 and X(0) = (x1, x2). Since (p+α−1)/2 = (p−α−1)/2 = 1/2, we
consider rk+(x) = rk−(x) = 0, which means x1 = x2 = 0. This is the only possible choice of the
starting point, where the unicity of the solution fails when p = 2. The process X1(t) = X2(t) ≡ 0
is a strong solution of the system and obviously it is colliding. Notice also that this is the unique
nonnegative solution. On the other hand, consider the process X̃ = (X̃1, X̃2) such that

dX̃1 = 2
√

|X̃1|dB1 − dt, X̃1(0) = 0,

dX̃2 = 2
√

|X̃2|dB2 + dt, X̃2(0) = 0.
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Figure 1. The unique non-colliding solution for p = 2, α = 0, starting from x = (0,0).

The processes X̃1, X̃2 are two independent squared Bessel processes of dimension −1 and +1
respectively. Note that the first one immediately after the start becomes nonpositive and X̃2(t) ≥
0 for every t > 0. By independence, these processes do not collide after the start. The fact that
(|x| + |y|)/(x − y) is equal −1 for x ≤ 0 ≤ y and it is 1 for x ≥ 0 ≥ y implies that X̃ is another
strong solution of the system, that is, the unique non-colliding strong solution (Figure 1). Thus,
we have two strong solutions and neither uniqueness in law nor pathwise uniqueness hold.

Example 2. Consider p = 5 and α = 1 and let us begin with the zero initial condition x =
(x1, . . . , x5) = 0. The unique nonnegative solution is the process X = (X1, . . . ,X5), where
X1(t) = X2(t) = X3(t) = X4(t) ≡ 0 and the last particle is BESQ(5)(0) described by

dX5 = 2
√

X5 dB5 + 5dt.

One can easily check it using the fact that (|x| + |y|)/(x − y) is equal −1 for x ≤ 0 ≤ y and it
is 1 for x ≥ 0 ≥ y. This solution is not non-colliding (Figure 3). However, Theorem 1 ensures
existence of the unique non-colliding solution and such solution in the considered example is
the process X̃ = (X̃1, . . . , X̃5), where (X̃1, X̃2) is BESQ(−2)

nc (0,0), which is independent from
(X̃3, X̃4, X̃5) being BESQ(3)

nc (0,0,0) (Figure 2). Finally, taking X = (X1, . . . ,X5), where X1 is
BESQ(−3)(0), X2(t) = X3(t) ≡ 0 and (X4,X5) being independent BESQ(4)

nc (0,0) we construct
another solution which is neither non-collision nor nonnegative (Figure 4).

Notice that if we increase rank of the starting point assuming that x1 < 0 = x2 = x3 < x4 ≤ x5,
we still have rk+(x) = 2 < 5/2 = (p + α − 1)/2 and rk−(x) = 1 < 3/2 = (p − α − 1)/2 and the
unicity of the solution does not hold, although we obviously do not have non-negative solutions
in this case. The non-colliding solution is once again obtained by gluing BESQ(−2)

nc (x1,0) with
independent BESQ(3)

nc (0, x4, x5). A solution having collisions can be constructed as above by
taking BESQ(−3)(x1) to be the first particle, setting X2(t) = X3(t) ≡ 0 and the last two particles
evolving independently as BESQ(4)

nc (x4, x5).
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Figure 2. The unique non-colliding solution for p = 5, α = 1, starting from x = (0, . . . ,0).

Figure 3. The unique non-negative solution for p = 5 and α = 1 starting from x = (0, . . . ,0), where only
the last particle is not identically zero.

Note that if the condition x2 = x3 = 0 fails, only one solution exists and it is obtained by
gluing BESQ(−2)

nc (x1, x2) with independent BESQ(3)
nc (x3, x4, x5). This solution is non-colliding.

Remark 4. The general construction of non-unique and colliding solutions of the system (1.1)
is described in the proof of the “only if” part of Theorem 2. Let us point out here that a colliding
solution exists for each pair of nonnegative integers ñ and l̃ such that

(1) α + l̃ − ñ = 0,
(2) rk+(x) ≤ ñ < (p + α − 1)/2,
(3) rk−(x) ≤ l̃ < (p − α − 1)/2.
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Figure 4. The solution for p = 5 and α = 1, which is neither non-collision nor non-negative. Here the
second and the third particles are identically zero.

It is constructed as a triple of independent processes

X = (−BESQ(α−)
nc (−x

l̃
,−x

l̃−1, . . . ,−x1),0
p−l̃−ñ

,BESQ(α+)
nc (xp−ñ+1, . . . , xp)

)
,

where α− = p −α − l̃ and α+ = p +α − ñ. Note that p − l̃ − ñ ≥ 2 and X is colliding. The pair
(l̃, ñ) = ([p−α

2 ]−1, [p+α
2 ]−1) always verifies conditions (1), (2) and (3), but there may be more

of them. In Example 2, for p = 5, α = 1 and x = 0 we have (l̃, ñ) = (1,2) or (l̃, ñ) = (0,1).

2.3. Properties and structure of BESQ particle systems

As noticed in [6] for general particle systems, the study of properties of BESQ particle systems
will be greatly simplified if we control the symmetric polynomials of the particles Xi(t).

The elementary symmetric polynomials of X = (X1, . . . ,Xp) are defined by

en(X) =
∑

i1<i2<···<in

Xi1Xi2 · · · · · Xin

for every n = 1,2, . . . , p. We use the convention that e0(X) ≡ 1 and en(X) ≡ 0 for n > p.
The SDEs for symmetric polynomials of nonnegative BESQ particle systems are elementary

and we give them in the following theorem. In order to shorten the formulas, we write en instead
of en(X) and we set er ≡ 0 if r < 0 or r > p.

Theorem 4. The elementary symmetric polynomials of the non-colliding solution of (1.1) start-
ing from 0 ≤ x1 ≤ · · · ≤ xp are semi-martingales described up to the first exit time T = inf{t >

0 : X1(t) < 0} by the following system of p SDEs

den = 2

(
p∑

k=1

(2k − 1)en−ken+k−1

)1/2

dVn + (p − n + 1)(α − n + 1)en−1 dt, (2.3)
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where Vn are one-dimensional Brownian motions such that

d〈en, em〉 = 4
p∑

k=1

(m − n + 2k − 1)en−kem+k−1 dt (2.4)

for every 1 ≤ n ≤ m ≤ p.

Remark 5. The sum in formula (2.3) has nonzero terms for k = 1, . . . ,K = min(n,p + 1 − n)

and the sum in (2.4) for k = 1, . . . ,K = min(n,p + 1 − m).

Göing-Jaeschke and Yor in [4] studied the structure of squared Bessel processes with negative
dimensions. They showed that BESQ(−α)(x) starting from positive x with α > 0 hits zero almost
surely and then behaves as −BESQ(α)(0). We study the corresponding problem for non-colliding
squared Bessel particle systems BESQ(α)

nc (x1, . . . , xp). The negativity of the dimension in the
classical case is translated to the condition α < p − 1 and we assume that 0 ≤ x1 ≤ · · · ≤ xp . We
define the family of first hitting times

T
(i)
0 = inf

{
t ≥ 0 : Xi(t) = 0

}
, i = 1, . . . , p

and the family of first entrance times

T
(i)
− = inf

{
t ≥ 0 : Xi(t) < 0

}
, i = 1, . . . , p.

In the following theorem, we generalize the well-known fact saying that BESQ(α)(x) hits zero
whenever α ∈ [0,2), visits negative half-line for α < 0 and stays non-positive after first entrance
to the negative half-line. We also describe the evolution of the solution between the moments
when the succeeding particles become negative.

Theorem 5. Let X = (X1, . . . ,Xp) be BESQ(α)
nc (x1, . . . , xp), where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp and

α < p + 1. Let n = 
p−α+1
2 �. Then

T
(1)
0 ≤ T

(2)
0 ≤ · · · ≤ T

(n)
0 < ∞, T

(n+1)
0 = · · · = T

(p)

0 = ∞
and

T
(1)
− ≤ · · · ≤ T

(n−1)
− < ∞, T

(n)
− = · · · = T

(p)
− = ∞.

Moreover, for every k = 1, . . . , n − 1, on the interval [T (k)
− , T

(k+1)
− ) the subsystems of par-

ticles Yk = (X1, . . . ,Xk) and Zk = (Xk+1, . . . ,Xp) are conditionally independent given

(Yk(T
(k)
− ),Zk(T

(k)
− )) and they evolve as −BESQ(p−α−k)

nc on Rk and BESQ(α+k)
nc on Rp−k re-

spectively.
In particular, if T

(i)
− is finite then Xi(t) ≤ 0 for t ≥ T

(i)
− , that is, the particles do not go back

to the positive half-line after going below zero.

Remark 6. Note that for given p and α < p + 1 the number n = 
p−α+1
2 � is 1 for α ∈ [p −

1,p + 1), n = 2 for α ∈ [p − 3,p − 1) and so on. Consequently, the above-given result states
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that the ith particle Xi(t) hits zero if and only if p−α+3 > 2i and the ith particle visits negative
half-line (−∞,0) if and only if p − α + 1 > 2i.

Remark 7. Since the system becomes non-colliding immediately, we can have T
(i)

0 = T
(i+1)
0 or

T
(i)
− = T

(i+1)
− only if xi = xi+1 = 0. Consequently, if xi > 0 or xi < xi+1 then we have strict

inequalities between times T
(i)
0 and T

(i+1)
0 (analogously T

(i)
− < T

(i+1)
− ) in the above-given theo-

rem.

3. Symmetric polynomials of squared Bessel particles

This section concerns the results announced in the first part of the Section 2.3 and contains the
proof of Theorem 4.

We write e
j1,j2,...,jm
n (X) for an incomplete elementary symmetric polynomial

e
j1,j2,...,jm
n (X) =

∑
i1<i2<···<in

ik �=jl

Xi1Xi2 · . . . · Xin,

that is, the sum of all products of length n of different Xi ’s, not including any of Xj1, . . . ,Xjm .

Proposition 1. If X is a non-colliding solution of (1.1), then (e1, . . . , ep) are semi-martingales
described by

den(X) =
(

p∑
i=1

|Xi |
(
ei
n−1(X)

)2

)1/2

dVn

(3.1)

+
(

p∑
i=1

αei
n−1(X) −

∑
i<j

(|Xi | + |Xj |
)
e
i,j

n−2(X)

)
dt

for n = 1, . . . , p. Here (V1, . . . , Vp) is a collection of one-dimensional Brownian motions such
that

d
〈
en(X), em(X)

〉 = 4
p∑

i=1

|Xi |ei
n−1(X)ei

m−1(X)dt. (3.2)

Proof. We apply [6], Proposition 3.1. �

The map e = (e1, . . . , ep) is a diffeomorphism between C+ = {(x1, . . . , xp) ∈ Rp : x1 < x2 <

· · · < xp} and e(C+). Following [6], Chapter 3, we denote by f : e(C+) −→ C+ its inverse and
note that f can be continuously extended to

f : e(C+)
1−1−→ C+.
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It implies that using the map f we can write SDEs (3.1) and (3.2) only in terms of e1, . . . , ep .
The coefficients of those equations are continuous and the singularities of the form (Xi − Xj)

−1

disappear. In particular, there always exists a solution of those equations (see Proposition 3.2 in
[6]).

In Theorem 4, we manage to write the coefficients of equations (3.1) and (3.2) in a transparent
way in terms of e1, . . . , ep themselves (i.e., without incomplete polynomials and X).

Proof of Theorem 4. Since we consider only t < T , we remove all the absolute values from
(3.1) and (3.2). We first compute the drift part in equation (3.1). It is easy to see that

p∑
i=1

ei
n−1(X) = (p − n + 1)en−1(X),

since every product of length n− 1 appears p − (n− 1) times in the last sum. Similarly, we have

∑
i<j

(Xi + Xj)e
i,j

n−2(X) =
∑
i �=j

Xie
i,j

n−2(X) = (p − n + 1)(n − 1)en−1(X)

since the last sum consists of products of length n − 1 and every product appears (p − n +
1)(n − 1) times. Indeed, if we fix a product Xi1Xi2 · . . . · Xin−1 of length n − 1, it appears in

Xie
i,j

n−2(X) if and only if i ∈ {i1, i2, . . . , in−1} and j /∈ {i1, i2, . . . , in−1}. Consequently, we can
choose i on n − 1 ways and j on p − (n − 1) ways. It implies that the drift part of en(X) equals
(p − n + 1)(α − n + 1)en−1(X)dt . In order to show (2.3) and (2.4), it remains to show that

p∑
i=1

Xie
i
n−1(X)ei

m−1(X) =
p∑

k=1

(m − n + 2k − 1)en−k(X)em+k−1(X) (3.3)

for every 1 ≤ n ≤ m ≤ p (recall the notation er ≡ 0 if r < 0 or r > p). Observe that both sides
of (3.3) are symmetric polynomials of degree m + n − 1, where the variables X1, . . . ,Xp appear
at most in power 2. Due to symmetry, it is enough to show that, for a fixed l ≥ 0 and j ≥ 1, the
expression

X2
1 · . . . · X2

l Xl+1 · . . . · Xl+j

appears on both sides of (3.3) the same number of times. Here 2l + j = n+m− 1. Moreover, by
the form of the LHS of (3.3), we have l ≤ n−1 and, consequently, l+j = n−1− l+m ≥ m ≥ n.
The quadratic expression X2

1 · . . . · X2
l can only appear on the left-hand side of (3.3) from the

multiplication of ei
n−1(X) and ei

m−1(X) and X1 · . . . · Xl must appear in both of them. Thus, it
remains to count in how many terms of the LHS the factors Xl+1, . . . ,Xl+j appear, so that the
product X2

1 · . . . · X2
l Xl+1 · . . . · Xl+j is obtained.

Let si = Xie
i
n−1(X)ei

m−1(X) be a term of the left-hand side of (3.3). Observe that obligatorily
Xi ∈ {Xl+1, . . . ,Xl+j }. Thus, there are j possible choices of a term si . We fix such a choice

and count the terms of the polynomial ei
n−1(X), which contain the product X1 · . . . · Xl and



On squared Bessel particle systems 839

have remaining n − 1 − l variables in the set {Xl+1, . . . ,Xl+j } \ {Xi}. Equivalently, we count
all choices of n − 1 − l elements in a set with j − 1 elements. The remaining factors of X2

1 ·
. . . · X2

l Xl+1 · . . . · Xl+j come from the polynomial ei
m−1(X). Finally, the coefficient of X2

1 · . . . ·
X2

l Xl+1 · . . . · Xl+j on the LHS of (3.3) is

j

(
j − 1

n − 1 − l

)
= (n − l)

(
j

n − l

)

(recall that 1 ≤ n − l ≤ j ). Similarly, the considered product X2
1 · . . . · X2

l Xl+1 · . . . · Xl+j ap-

pears in en−k(X)em+k−1(X) exactly
(

j
n−k−l

)
times. Thus, it is enough to show that for j, l,m,n

satisfying 1 ≤ n − l ≤ j and 2l + j = n + m − 1, the following combinatorial identity holds:

(n − l)

(
j

n − l

)
=

n∑
k=1

(m − n + 2k − 1)

(
j

n − k − l

)
.

We use a convention that the Newton’s symbol
(
n
r

)
is zero whenever r > n or r < 0.

Using the relation 2l + j = m + n − 1, we can rewrite the right-hand side as

n∑
k=1

(m − n + 2k − 1)

(
j

n − k − l

)
=

n−l∑
k=1

(
j − 2(n − l − k)

)( j

n − l − k

)
.

Substitutions N = n − l − 1 and r = n − l − k together with reordering the sum lead to a combi-
natorial formula

N∑
r=0

(j − 2r)

(
j

r

)
= (N + 1)

(
j

N + 1

)
, (3.4)

where 0 ≤ N ≤ j − 1. Formula (3.4) is known (see, e.g., [13]) and can be easily proved by
elementary induction on N . �

4. Proofs

In the sequel, we use the following corollary of results of [6]. It is contained in Corollaries 6.5
and 6.6 of [6] (in the statement of Corollary 6.6, R should be R+). Recall that condition (A4)
from [6] fails if α ∈ {0,1, . . . , p − 2} and this case is not covered by the results of [6].

Corollary 1. Let α ∈ R+ \ {0,1, . . . , p − 2}. Then the system

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

)
dt, i = 1, . . . , p,

X1(t) ≤ X2(t) ≤ · · · ≤ Xp(t), t ≥ 0,
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has a unique non-colliding solution for t > 0. If α ≥ p − 1 and X1(0) ≥ 0, then the solution is
non-negative, that is, X1(t) ≥ 0.

Proof of Theorem 1. Since we consider all possible starting points x1 ≤ · · · ≤ xp (without re-
striction that x1 must be nonnegative), we can and we do assume that α ≥ 0. The general case
follows immediately by multiplying equations (1.1) by −1 and reordering the particles.

By Corollary 1, we focus on α ∈ {0,1, . . . , p − 2} and consider a general starting point x =
(x1, . . . , xp). First, we note that the conditions (C1) and (A1) (or equivalently (A1′)) from [6]
hold for functions σ(x) = 2

√|x|, b(x) = α and H(x,y) = |x| + |y|. For (A1), see the proof of
[6], Corollary 6.5.

By Theorem 5.3 and Remark 2.4 in [6], we get the pathwise uniqueness for non-colliding
solutions (the other assumptions in Theorem 5.3 of [6] were used to construct such non-colliding
solution). Consequently, it is enough to prove the existence of a non-colliding solution.

For simplicity, we denote rk+(x) = n, rk−(x) = l and m = p − rk(x), i.e.

x1 ≤ · · · ≤ xl < 0 = xl+1 = xl+2 = · · · = xl+m < xl+m+1 ≤ · · · ≤ xp.

Now we consider two cases.
Case 1: rk+(x) < (p + α − 1)/2 and rk−(x) < (p − α − 1)/2. In this case, we construct a

solution by gluing two independent processes. We define an integer number n∗ by requesting

2n∗ ∈ {p + α,p + α + 1}. (4.1)

Note that n∗ is uniquely determined, since exactly one of the consecutive integer numbers is even.
Moreover, we have α < n∗ < p since α ≤ p − 2. We set p− = p − n∗ > 0 and α− = n∗ − α > 0
and consider a system of p− SDEs

dZi = 2
√|Zi |dBp−n∗−i+1 +

(
α− +

p−∑
j=1,j �=i

|Zi | + |Zj |
Zi − Zj

)
dt, i = 1, . . . , p−,

starting from Zi(0) = −xp−n∗−i+1 for i = 1, . . . , p−.
Note that our assumption n = rk+(x) < (p + α − 1)/2 < n∗ implies p − n∗<p − n and con-

sequently Z = (Z1, . . . ,Zp−) starts from nonnegative point, that is, Z1(0) = −xp−n∗ ≥ 0. More-
over, we have α− ≥ p−, since 2n∗ ≥ p + α. It follows, by Corollary 1, that there exists a
unique strong solution Z(t) which is non-colliding and this solution is nonnegative. Then, we
put p+ = n∗ and α+ = α + p − n∗ and consider a system of p+ SDEs

dYi = 2
√|Yi |dBi +

(
α+ +

p∑
j=p−n∗+1,j �=i

|Yi | + |Yj |
Yi − Yj

)
dt, i = p − n∗ + 1, . . . , p,

where Yi(0) = xi for i = p − n∗ + 1, . . . , p. Using the bounds on rk−(x) in the following way:
l = rk−(x) < (p − α − 1)/2 = p − (p + α + 1)/2 ≤ p − n∗ we get p −n∗ + 1 > l + 1 and con-
sequently the considered starting point is nonnegative, that is, xp−n∗+1 ≥ 0. Moreover, we have
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α+ ≥ p+ − 1 since 2n∗ ≤ p + α + 1, which means, by Corollary 1, that there exists a unique
strong non-colliding solution Y(t) which is also nonnegative. Now we put

Xi(t) =
{

−Zp−n∗−i+1(t), i = 1, . . . , p − n∗,
Yi(t), i = p − n∗ + 1, . . . , p

and obviously we have Xi(0) = xi for every i = 1, . . . , p. Moreover, for every i = 1, . . . , p − n∗
and j = p − n∗ + 1, . . . , p we have

|Xi | + |Xj |
Xi − Xj

= −1,
|Xj | + |Xi |
Xj − Xi

= 1

since Xi(t) ≤ 0 and Xj(t) ≥ 0. It implies that for i = 1, . . . , p − n∗ we can write

dXi = 2
√|Xi |dBi +

(
α − n∗ +

p−n∗∑
j=1,j �=i

|Xi | + |Xj |
Xi − Xj

)
dt

= 2
√|Xi |dBi +

(
α +

p∑
j=1,j �=i

|Xi | + |Xj |
Xi − Xj

)
dt

and the analogous computations can be done for remaining i = p − n∗ + 1, . . . , p. Note also
that X = (X1, . . . ,Xp) is non-colliding. Indeed, as we have seen, there are no collisions between
X1, . . . ,Xp−n∗ and separately between Xp−n∗+1, . . . ,Xp . Moreover, the first particle system is
non-positive and the other is non-negative, that is, Xp−n∗(t) ≤ 0 ≤ Xp−n∗+1(t) for every t > 0
a.s. It remains to show that these two particles do not collide at zero. However, if 2n∗ = p+α+1,
then α− = n∗ − α = p − n∗ + 1 = p− + 1 and consequently Xp−n∗(t) < 0 for every t > 0. If
2n∗ = p + α then we have α− = p− and α+ = p+ which implies that particles Xp−n∗ and
Xp−n∗+1 visit zero but the sets {t : Xp−n∗(t) = 0} and {t : Xp−n∗+1(t) = 0} are of Lebesgue
measure zero (see Proposition 4 in [2]). In particular, there exists a sequence ti ↘ 0 such that
Xp−n∗(ti) > 0 a.s. and consequently, there are no collisions at any ti . By Proposition 4.2 in [6],
we know that the particles will never collide after ti and thus there are no collisions for any
t > 0.

Case 2: rk+(x) ≥ (p + α − 1)/2 or rk−(x) ≥ (p − α − 1/2). Following the main idea of [6],
we get a solution, solving first the SDEs for the elementary symmetric polynomials, that is, we
use a solution e = (e1, . . . , ep) of (3.1). We set (X1, . . . ,Xp) = f (e1, . . . , ep), where f is the
diffeomorphism described in Section 3. It remains to show that (X1, . . . ,Xp) is non-colliding. If
m ≤ 1 (rk(x) ≥ p − 1), that is, there is at most one particle starting from zero, the result follows
directly from the argument in the first part of the proof of Proposition 4.3 in [6].

The same argument implies that it is enough to show that if m > 1 (rk(x) < p − 1), the m

particles starting from zero will exit that point just after the start. Let τ1 = inf{t > 0 : Xl(t) =
0} ∧ inf{t > 0 : Xl+m+1(t) = 0}. By continuity of the paths, we have τ1 > 0 a.s., that is, we do
not have any additional zero particle up to time τ1. Assume that all the m particles starting from
zero remain at zero for some τ2 > 0 with positive probability and put τ = τ1 ∧ τ2. Then it is clear
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that eN(X) ≡ 0 for t < τ , where N = l +n+ 1, since every product of length N contains at least
one zero particle. In particular, the drift of eN(X) vanishes for t < τ , but from the other side, by
Proposition 1, it is equal to

drift[eN ] =
p∑

i=1

αei
N−1(X) −

∑
i<j

(|Xi | + |Xj |
)
e
i,j

N−2(X)

= meN−1(X)(α + l − n).

Indeed, for t < τ , we have ei
N−1(X) ≡ 0 if Xi(t) �= 0 and ei

N−1(X) = eN−1(X) (the product of

all nonzero particles) if Xi(t) = 0. Moreover, the expression (|Xi | + |Xj |)ei,j

N−2(X) is non-zero
only if exactly one of particles Xi , Xj is zero and

∑
i<j

(|Xi | + |Xj |
)
e
i,j

N−2(X) =
l+m∑

i=l+1

p∑
j=1

|Xj |ei,j

N−2(X)1{Xj �=0} =
l+m∑

i=l+1

p∑
j=1

|Xj |eN−1(X)

Xj

1{Xj �=0}

= meN−1(X)

p∑
j=1

sgn(Xj ) = meN−1(X)(l − n).

However, if n ≥ (p + α − 1)/2, then α + l − n ≤ l + n − p + 1 = 1 − m < 0. On the other
hand, if l ≥ (p − α − 1)/2, then α + l − n ≥ p − n − l − 1 = m − 1 > 0. In both cases we
have α + l − n �= 0. It leads to a contradiction since eN−1(X(t)) does not vanish for t < τ as
the product of non-zero particles. It means that at least one zero particle must become nonzero
immediately. It will increase the number of nonzero particles on {t < τ1} and consequently we
will still have n′ ≥ (p + α − 1)/2 or l′ ≥ (p − α − 1)/2, where l′ and n′ are numbers of strictly
negative and positive particles after instant exit from zero of some particles. Thus, we can proceed
using Strong Markov property and inductively show that all the m particles must leave zero just
after the start. This ends the proof. �

In fact, the above-given proof leads directly to the result presented in Theorem 2.

Proof of Theorem 2. As in Theorem 1, we can suppose that α ≥ 0.
The “if” part. Existence of a solution was proved in Theorem 1. Thus, it is enough to show that

under the hypotheses (a) or (b) of Theorem 2, any solution of (1.1) is non-colliding. Then, using
uniqueness of non-colliding solutions proved in Theorem 1, we get the “if” part of Theorem 2.
Thus let X = (X1, . . . ,Xp) be a solution. Then by Itô formula and the computations provided
in Proposition 3.1 in [6], we obtain that the SDEs for en(X) are of the same form as (3.1), but
with |Xi | + |Xj | replaced by (|Xi | + |Xj |)1{Xi �=Xj }. However, it does not affect the arguments
presented above in the proof of Theorem 1, which say that whenever α /∈ {0, . . . , p − 2} or
α ∈ {0, . . . , p−2} but rk+(x) ≥ (p + α − 1)/2 or rk−(x) ≥ (p − α − 1)/2, the particles become
immediately distinct and never collide again. Note that adding the indicators 1{Xi �=Xj } does not
affect conditions (A1), (A3), (A4) and (A5) needed in [6] and used above. The condition (A2),
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which here simplifies to

|x| + |y| ≤ (|x| + |y|)1{x �=y},

holds for every x �= y, but it is enough for Theorem 4.4 from [6] to be true.
The “only if” part. We construct a solution for α ∈ {0, . . . , p − 2}, starting from x =

(x1, . . . , xp) such that rk+(x) < (p + α − 1)/2 and rk−(x) < (p − α − 1)/2, which is not non-
colliding, that is, the uniqueness of a solution does not hold. First, we note that there exist non-
negative integers ñ and l̃ such that

(1) α + l̃ − ñ = 0,
(2) rk+(x) ≤ ñ < (p + α − 1)/2,
(3) rk−(x) ≤ l̃ < (p − α − 1)/2.

Indeed, it is easy to check that l̃ = [p−α
2 ] − 1 and ñ = [p+α

2 ] − 1 satisfy the conditions (1), (2)
and (3). The choice of ñ and l̃ is not unique in many cases, cf. Remark 4 and Example 2. Observe
that l̃ + ñ ≤ p − 2 and consequently l̃ ≤ p − ñ − 2 ≤ p − rk+(x) − 2 ≤ p − rk+(x). Similarly,
ñ ≤ p − rk−(x).

Let Z = (Z1, . . . ,Zl̃
) be the process BESQ(α−)

nc (−x
l̃
,−x

l̃−1, . . . ,−x1), where α− = p−α − l̃,
described by

dZi = 2
√|Zi |dB

l̃−i+1 +
(

α− +
l̃∑

j=1,j �=i

|Zi | + |Zj |
Zi − Zj

)
dt, i = 1, . . . , l̃.

Inequality l̃ < (p − α − 1)/2 implies α− > l̃ + 1. Since l̃ ≤ p − rk+(x) we have −x
l̃
≥ 0, we

are in the classical setting of Corollary 1 and consequently the process Z is well-defined and
non-negative. Moreover, we consider

dYi = 2
√|Yi |dBi +

(
α+ +

p∑
j �=i,j=p−ñ+1

|Yi | + |Yj |
Yi − Yj

)
dt, i = p − ñ + 1, . . . , p,

where Y(0) = (xp−ñ+1, . . . , xp) and α+ = α + p − ñ. Similarly, this process is

BESQ(α+)
nc (xp−ñ+1, . . . , xp) with α+ > ñ + 1 and the starting point is non-negative.

Now we glue these solutions together with p − ñ − l̃ ≥ 2 particles constantly equal to zero,
that is, we set

Xi =

⎧⎪⎨
⎪⎩

−Z
l̃−i+1, i = 1, . . . , l̃,

0, i = l̃ + 1, . . . , p − ñ,

Yi, i = p − ñ + 1, . . . , p.

We can easily check that X = (X1, . . . ,Xp) solves

dXi = 2
√|Xi |dBi +

(
α +

∑
j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt.
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Indeed, since X1, . . . ,Xp−ñ are non-positive and X
l̃+1, . . . ,Xp are nonnegative we have

|Xi | + |Xj |
Xi − Xj

= −1 for i = 1, . . . , l̃, j = l̃ + 1, . . . , p,

|Xi | + |Xj |
Xi − Xj

= 1 for i = p − ñ + 1, . . . , p, j = 1, . . . , p − ñ,

and the drift parts for i = 1, . . . , l̃ and i = p − ñ + 1, . . . , p are reduced to those for Z and Y

respectively. Moreover, for i = l̃ + 1, . . . , p − ñ the drift part equals α − ñ + l̃ which is zero as
we have assumed. Finally, it is obvious that X = (X1, . . . ,Xp) has collisions after the start since
there are at least two zero particles (l̃ + ñ ≤ p − 2), that is, they collide for every t > 0. �

Proof of Theorem 3. If α ≥ p − 1 then, by Theorem 2, there exists unique strong solution X(t),
which is non-colliding (by Theorem 1). By Corollary 1, X(t) is nonnegative.

In the case α ∈ {0,1, . . . , p − 2} and rk(x) ≤ α, the nonnegative solution was constructed in
[1,2], see also [7]. Note that one can construct such solution in the same way as in the proof of
Theorem 2 by letting l̃ = 0.

Assume that there exists a nonnegative solution (X1, . . . ,Xp) in one of the following cases:

(i) α < p − 1 but not in {0,1, . . . , p − 2} or
(ii) α ∈ {0,1, . . . , p − 2} but rk(X(0)) > α.

Then there are at least α + 1 particles different from X1 on some positive time interval [0, T ],
T > 0. Indeed, in the case (i) and in the case (ii) with x1 > 0 we have only non-colliding solution,
so all the particles are different (for the case (ii) with x1 > 0 we apply the first part of the proof
of Proposition 4.3 in [6], where the condition (A4) is not needed. The instant diffraction takes
place, if the start is from a collision).

In the case (ii) with x1 = 0 we just use the continuity of the paths. In both cases, the drift of
X1 can be estimated as follows

drift(X1) = α +
p∑

j=2

|X1| + |Xj |
X1 − Xj

1{Xi �=Xj } ≤ α − (α + 1) ≤ −1. (4.2)

Here we used the simple inequality (|x|+|y|)/(x−y) ≤ −1 valid for every x < y. Consequently,
by the comparison theorem and the fact that BESQ(−1)(X1(0)) becomes strictly negative on every
time interval with positive probability [4], we get a contradiction with our initial assumption that
X1 is nonnegative.

Thus, it remains to show that for α ∈ {0,1, . . . , p − 2} and rk(x) ≤ α the solution is unique
among nonnegative solutions. We show that the first p − α particles of non-negative solutions
must stay at zero. Indeed, if at any time there are more than α particles different from X1, then
we go back to the above-described situation when (4.2) holds. Using Strong Markov property, we
can conclude that the solution becomes negative with positive probability. Consequently X1(t) =
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· · · = Xp−α(t) for every t ≥ 0. Moreover, if X1(t) > 0 at some time t > 0, then by the first part
of the proof of Proposition 4.3 in [6], the solution immediately becomes non-colliding and there
are p − 1 particles different from X1. Once again, by Strong Markov property, we get that X1

becomes negative with positive probability. Finally, knowing that X1(t) = · · · = Xp−α(t) = 0 for
every t , the equations for the remaining Xp−α+1, . . . ,Xp are

dXi = 2
√|Xi |dBi +

(
p +

∑
j=p−α+1,...,p

j �=i

|Xi | + |Xj |
Xi − Xj

1{Xi �=Xj }
)

dt,

i = p − α + 1, . . . , p.

Note that this is just the system (1.1) of SDEs describing p̃ = α particles with drift parameter
α̃ = p. Since α̃ > p̃ + 1, by Theorem 1 there exists unique non-negative solution, which ends the
proof. �

Proof of Theorem 5. Let (X1, . . . ,Xp) be a non-colliding solution to (1.1) with given Brownian
motions (B1, . . . ,Bp). Bru in [2] showed that for α ∈ (p − 1,p + 1), the first particle hits zero

almost surely (T (1)
0 < ∞), but it remains nonnegative (T (1)

− = ∞).
For α ≤ p − 1, we define X̃1 as a solution to the following SDE

dX̃1 = 2
√

|X̃1|dB1 + (α − p + 1) dt

starting from x1. This process is BESQ(α−p+1)(x1) driven by the same Brownian motion as X1.
Following the proof of the comparison theorem (see Theorem 3.7, p. 394 in [11]), we notice that
the local time at zero L0(X̃1 − X1) vanishes and consequently, using the Tanaka’s formula, we
can write

E(X1 − X̃1)
+ = E

∫ t

0
1{X1(s)>X̃1(s)}

(
p − 1 +

p∑
i=2

|X1(s)| + |Xi(s)|
X1(s) − Xi(s)

)
ds ≤ 0.

The last inequality follows from the inequality (|x| + |y|)/(x − y) ≤ −1 for y > x. Thus,
X1(t) ≤ X̃1(t) for every t ≥ 0 a.s. This implies that X1 hits zero. Moreover, for α < p − 1
the process X1(t) becomes strictly negative (T (1)

0 = T
(1)
− < ∞) and remains nonpositive for

t > T
(1)

0 , because the same holds for the squared Bessel process X̃1 with negative dimension
α −p + 1. For α = p − 1 the process X is non-negative (by Theorems 2 and 3, that is, the unique
non-colliding solution is nonnegative), that is, T

(1)
− = ∞. Consequently, in the case α = p − 1,

we have X1(t) = 0 for t ≥ T
(1)
0 .

To examine the behaviour of the system after the time T
(1)
− (for α < p −1), we define X∗

i (t) =
Xi(T

(1)
− + t) and B∗

i (s) = Bi(T
(1)
− + s)−Bi(T

(1)
− ) for i = 1, . . . , p. Note that, by Strong Markov

property, the process (B∗
1 , . . . ,B∗

p) is again a p-dimensional Brownian motion and in particular
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B∗
i are independent. Moreover, we have X∗

1(0) = 0 and for t < T
(1)
− − T

(2)
− we have

X∗
1(t) =

∫ T
(1)
− +t

T
(1)
−

2
√∣∣X1(s)

∣∣dB1(s) + tα +
∫ T

(1)
− +t

T
(1)
−

p∑
k=2

|X1(s)| + |Xk(s)|
X1(s) − Xk(s)

ds

=
∫ T

(1)
− +t

T
(1)
−

2
√∣∣X1(s)

∣∣dB1(s) + (α − p + 1)t =
∫ t

0
2
√∣∣X∗

1(s)
∣∣dB∗

1 (s) + (α − p + 1)t,

where we used the fact that (|x| + |y|)/(x − y) = −1 whenever x ≤ 0 ≤ y. Similarly, for i =
2, . . . , p we get

X∗
i (t) − X∗

i (0) =
∫ T

(1)
− +t

T
(1)
−

2
√∣∣Xi(s)

∣∣dBi(s) + tα +
∫ T

(1)
− +t

T
(1)
−

p∑
k �=i

|Xi(s)| + |Xk(s)|
Xi(s) − Xk(s)

ds

=
∫ T

(1)
− +t

T
(1)
−

2
√∣∣Xi(s)

∣∣dBi(s) + t (α + 1)

+
∫ T

(1)
− +t

T
(1)
−

∑
k>1,k �=i

|Xi(s)| + |Xk(s)|
Xi(s) − Xk(s)

ds

=
∫ t

0
2
√∣∣X∗

i (s)
∣∣dB∗

i (s) + t (α + 1) +
∫ t

0

∑
k>1,k �=i

X∗
i (s) + X∗

k (s)

X∗
i (s) − X∗

k (s)
ds.

Note that the interactions between particles X∗
1 and X∗

2, . . . ,X∗
p disappeared from the cor-

responding drift parts and, consequently, the processes Y1 = X1 and Z1 = (X2, . . . ,Xp) on

[T (1)
− , T

(2)
− ) are conditionally independent, given the starting point Z1(T

(1)
− ). Moreover, Y1 is

−BESQ(p−1−α)(0) and Z1 evolves as a non-colliding squared Bessel system of p − 1 particles
with drift parameter α + 1.

By Strong Markov property, we can apply the above-given argument to the squared Bessel
system of p∗ = p − 1 particles (X∗

2, . . . ,X∗
p) with drift parameter α∗ = α + 1 and show that

if α < p − 3 (which is equivalent to α∗ < p∗ − 1) then T
(2)
− < ∞. Moreover, after going into

(−∞,0] the second particle becomes invisible (independent) for the nonnegative particles, but
starts to interact with the first one. Indeed, we have

X̄i(t) − X̄i(0) =
∫ t

0
2
√∣∣X̄i(s)

∣∣dB̄i(s) + t (α + 2) +
∫ t

0

∑
k>2,k �=i

X̄i(s) + X̄k(s)

X̄i(s) − X̄k(s)
ds

for i = 3,4, . . . , p and

X̄j (t) =
∫ t

0
2
√∣∣X̄j (s)

∣∣dB̄j (s) + (α − p + 2)t, j = 1,2,

where X̄(t) = X(T
(2)
− + t) and B̄(t) = B(T

(2)
− + t) − B(T

(2)
− ).
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We complete the proof by iterating this procedure. When α is small enough the consecutive
particles become negative and then the nonnegative and nonpositive particle subsystems evolve
independently as squared Bessel particle systems with appropriate drift parameters. �
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