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Nonparametric volatility estimation in scalar
diffusions: Optimality across observation
frequencies
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The nonparametric volatility estimation problem of a scalar diffusion process observed at equidistant time
points is addressed. Using the spectral representation of the volatility in terms of the invariant density and
an eigenpair of the infinitesimal generator the first known estimator that attains the minimax optimal con-
vergence rates for both high and low-frequency observations is constructed. The proofs are based on a
posteriori error bounds for generalized eigenvalue problems as well as the path properties of scalar diffu-
sions and stochastic analysis. The finite sample performance is illustrated by a numerical example.
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1. Introduction

Consider the problem of estimating the volatility of a diffusion process (Xt , t ≥ 0). The statis-
tical properties depend, essentially, on the observation scheme. It is natural to assume discrete
observations:

X0,X�, . . . ,XN�, � > 0, T = N�.

The quality of an estimator is typically assessed by its asymptotic properties when the sample
size N tends to infinity. The usual assumptions are either � → 0 or T → ∞, which corresponds
to high and low-frequency regimes, respectively. Different frequency assumptions require very
different methods. Since the frequency regimes are a theoretical construct, for any given sample,
we need to choose among high and low-frequency estimators. Therefore, it is of crucial inter-
est to develop universal methods that will perform at optimal level regardless of the sampling
frequency. In this paper, the first nonparametric estimator of the volatility that attains minimax
optimal rates in both high and low-frequency regimes is introduced. In the parametric setting, the
problem of the universal scale estimation was first raised in Jacobsen [15,16]. The constructed
estimators were consistent and asymptotically Gaussian for all values of �, but nearly efficient
for small values of � only. The estimation method, which relied on the use of the estimating
functions, is different from the one applied in this paper.

It is a well-known consequence of the Girsanov theorem that when T is fixed, the drift coef-
ficient is not identifiable. Since we are interested in a universal scale method, we focus on the
volatility estimation and, henceforth, treat drift as a nuisance parameter.
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The existing high-frequency estimators (see Florens-Zmirou [9], Hoffmann [13], Jacod [17],
Bandi and Phillips [2]) are based on the interpretation of the squared volatility as the instanta-
neous conditional variance of the process. Consequently, the assumption � → 0 is crucial for
the consistency of these estimators, see [8] and [27], Section 3. On the other hand, it has been
conjectured that the minimax optimal low-frequency estimator introduced by Gobet, Hoffmann
and Reiß (GHR) [11] also performs well in the high-frequency regime. This conjecture is based
on the observation that the spectral representation of the volatility in terms of an eigenpair of the
infinitesimal generator can be generalized by replacing the invariant density with the occupation
density of the path (Xt , t ≤ T ). While this generalization might be sufficient to obtain the consis-
tency of the GHR estimator when applied to the high-frequency data, the numerical study reveals
that the convergence rates are not optimal. The reason for this is that when the time horizon of
the sample is fixed, the estimator inherits the poor regularity of the occupation density, which,
contrary to the invariant density, is not linked to the regularity of the diffusion coefficients. As we
show below, this difficulty can be solved with the appropriate averaging of the spectral estimator,
which is the main motivation behind the Definition 6 of the universally optimal estimator. For
more details, refer to Section 2.1.

Based on the spectral method, the low-frequency analysis of the universally optimal estimator
is similar to [5,11]. The real difficulty is in the high-frequency analysis, where the universal
estimator is compared to the benchmark high-frequency estimator introduced by Florens-Zmirou
[9] (see Section 2.2). In particular, we develop the perturbation theory for bilinear coercive forms
with Hölder regular coefficients (see Appendix B), which may be of independent interest.

In the next sections, we present the construction of the universal scale estimator and state
the high and low-frequency convergence rates. In Section 2, we discuss the relation of the pro-
posed estimator to the high and low-frequency benchmark estimators. Finite sample behaviour
of the new estimator compared with the Florens-Zmirou and GHR estimators is illustrated in
Section 2.3. In Section 2.4, we discuss the assumptions and possible extensions of the model.
The proofs of the high and low-frequency convergence rates are shown in Sections 3 and 4,
respectively.

1.1. Construction of the estimator

We follow the low-frequency literature [5,11,23] and consider a diffusion model on [0,1] with
boundary reflection (see Section 2.4 for a discussion of the model). Let ‖ · ‖∞ denote the supre-
mum norm on space B([0,1]) of bounded measurable functions on [0,1]. Finally, denote by

Hi = {f ∈ L2([0,1]) : f has i weak derivatives with f (j) ∈ L2([0,1]), j ≤ i
}

the L2-Sobolev spaces on [0,1] of order i = 1,2. Hi is a Hilbert space with the norm

‖f ‖Hi =
∑
j≤i

∥∥f (i)
∥∥

L2 .

Assumption 1. For given constants 0 < d < D suppose (σ, b) ∈ �, where

� := �(d,D) =
{
(σ, b) ∈ H 1([0,1])× B

([0,1]) : ‖b‖∞ ∨ ∥∥σ 2
∥∥

H 1 < D, inf
x∈[0,1]σ

2(x) ≥ d
}
.
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Let the process (Xt , t ≥ 0) be given by the following Skorokhod type stochastic differential
equation:

dXt = b(Xt ) dt + σ(Xt ) dWt + dKt ,

Xt ∈ [0,1] for every t ≥ 0,
(1)

where (Wt , t ≥ 0) is a standard Brownian motion and (Kt , t ≥ 0) is an adapted contin-
uous process with finite variation, starting from 0, such that for every t ≥ 0 we have∫ t

0 1(0,1)(Xs) dKs = 0. The Sobolev regularity of σ ensures that the SDE (1) has a unique strong
solution, see [28], Theorem 4. As shown in [11], X admits an invariant measure with Lebesgue
density.

Assumption 2. The initial condition x0 is distributed with respect to the invariant measure μ on
[0,1], independently of the driving Brownian motion W .

Under Assumption 2, the diffusion X is stationary and ergodic. We denote with Pσ,b the law of
X on the canonical space � of continuous functions over the positive axis with values in [0,1],
equipped with the topology of the uniform convergence on compact sets and endowed with its
σ -field F . We denote with Eσ,b the corresponding expectation operator.

Definition 3. Denote by μ̂N the empirical measure associated to the observed sample:

μ̂N = 1

2N
δ{X0} + 1

N

N−1∑
n=1

δ{Xn�} + 1

2N
δ{XN�}.

The underweighting of the first and the last observations is asymptotically negligible, but has
meaningful finite sample interpretation both in the low and high-frequency regimes (see remarks
before the equation (4) and after Definition 12). By ergodicity, when the time horizon T of the
observed sample grows to infinity, the empirical measure μ̂N (dx) converges weakly to the sta-
tionary distribution μ(dx). When T is fixed, but the observation frequency increases, the empir-
ical measure tends to the occupation measure μT of the path (Xt ,0 ≤ t ≤ T ) (see Definition 7).

Definition 4. For J ∈ N+, j = 1, . . . , J , let 1j (x) = 1(
j−1
J

≤ x <
j
J
) be the indicator function

of the j th sub-interval and

ψj(x) =
∫ x

0
1j (y) dy for j = 1, . . . , J,

ψ0(x) = 1.

Let VJ = span{ψj : j = 0, . . . , J } be the space of linear splines with knots at {0, 1
J
, 2

J
, . . . ,

J−1
J

,1} and V 0
J = {v ∈ VJ : ∫ 1

0 v(x)μ̂N(dx) = 0} be the subspace of functions L2(μ̂N )-
orthogonal to constants.

Consider the generalized symmetric eigenproblem:
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Eigenproblem 5. Find (γ̂ , û) ∈R× VJ with û 	= 0, such that

l̂ (̂u, v) = γ̂ ĝ(̂u, v) for all v ∈ VJ ,

where ĝ, l̂ : VJ × VJ →R are symmetric, bilinear forms defined by:

ĝ(u, v) =
∫ 1

0
u(x)v(x)μ̂N (dx),

l̂(u, v) = 1

2T

N−1∑
n=0

(
u(X(n+1)�) − u(Xn�)

)(
v(X(n+1)�) − v(Xn�)

)
.

When the observed sample visits at least twice every interval [ j−1
J

,
j
J
), the form ĝ is positive

definite on VJ , while l̂ is positive semi-definite on VJ and positive definite on V 0
J . In such a

case, Eigenproblem 5 has dim(VJ ) = J + 1 solutions (γ̂j , ûj )j=0,...,J , with non-negative eigen-
values 0 ≤ γ̂0 ≤ γ̂1 ≤ · · · ≤ γ̂J and ĝ-orthogonal eigenfunctions. It is easy to check that γ̂0 = 0
is an eigenvalue which corresponds to the constant function. Since the eigenfunctions are ĝ-
orthogonal, it follows that ûj ∈ V 0

J for 1 ≤ j ≤ J . Consequently, on the above event, which we
prove in Lemma 18 and Corollary 45 to be of high probability in the high and low-frequency
regimes respectively, it holds that γ̂1 > 0.

Definition 6. Let

ζ̂1 = log(1 − �γ̂1)

�
1(�γ̂1 < 1) and û1(x) =

J∑
j=0

û1,jψj (x).

When û1,j 	= 0, we define the spectral estimator by

σ̂ 2
S,j = −2̂ζ1

∫ 1
0 ψj(x)̂u1(x)μ̂N(dx)∫ 1

0 ψ ′
j (x)̂u1,j μ̂N (dx)

,

σ̂ 2
S (x) =

J∑
j=1

σ̂ 2
S,j 1j (x).

The condition 1(�γ̂1 < 1) is a technical assumption which ensures that the estimator ζ̂1 is well
defined. As explained in Section 2.1, 1 −�γ̂1 is the estimator of the largest nontrivial eigenvalue
of the transition operator. When �γ̂1 ≥ 1, the estimated transition operator is negative definite on
V 0

J , thus the spectral approach will not provide a reliable output. Proposition 20 and inequality
(69) ensure that �γ̂1 < 1 with high probability, both in high and low-frequency regimes.

1.2. High-frequency convergence rate

The estimation of volatility at point x is possible only when the process spends enough time
around x.
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Definition 7. Set T > 0. Define the occupation density

μT = LT

T σ 2
, (2)

where LT is the semimartingale local time of the path (Xt : 0 ≤ t ≤ T ).

For any bounded Borel measurable function f , the following occupation formula holds:

1

T

∫ T

0
f (Xs) ds =

∫ 1

0
f (x)μT (x) dx. (3)

In order to obtain the global rates of convergence, we must assume that the occupation density
of the observed path is bounded from below. Therefore, for a fixed level v, we study the risk of
the estimator conditioned to the event

L = L(v) =
{

inf
x∈[0,1]μT (x) ≥ v

}
.

Theorem 8. Grant Assumptions 1 and 2. Fix T > 0, 0 < a < b < 1, and c, v > 0. There exists
a positive constant C = C(T ,a, b, v, c, ε, d,D) such that for every � > 0 and J ∈ N satisfying
c−1�−1/3 ≤ J ≤ c�−1/3 there is an event R� =R�(T , a, b, v) ⊆ L such that

sup
(σ,b)∈�(d,D)

Eσ,b

[
1Rε,�∩ · ∥∥σ̂ 2

S − σ 2
∥∥

L1([a,b])
]≤ C�

1
3 ,

and lim�→0 Pσ,b(L \R�) = 0.

Hoffmann [14], Proposition 2, shows that the rate �1/3 is optimal in the minimax sense even
in the class of diffusions with Lipschitz volatility. To prove Theorem 8, we compare σ̂ 2

S with
the benchmark Florens-Zmirou estimator, see Section 2.2. While the consistency of the spec-
tral estimator can be obtained using the well-known path properties of diffusion processes, the
proof of the exact convergence rate is rather demanding. As explained in Section 3.2, it is nec-
essary to show the regularity properties of the estimated eigenfunction û1, which requires rather
sophisticated arguments from the perturbation theory of differential operators with non-smooth
coefficients.

1.3. Low-frequency convergence rate

In the low-frequency regime, we need to threshold the estimator in order to ensure integrability
and stability against large stochastic errors. As expected, σ̂ 2

S achieves the same mean L2 rate as
the original Gobet-Hoffmann and Reiß estimator. Furthermore, for σ ∈ H 1, this rate is minimax
optimal, which can be obtained by the same proof as [11], Theorem 2.5.
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Theorem 9. Grant Assumptions 1 and 2. Fix � > 0, 0 < a < b < 1 and c > 0. Choose J such
that c−1N1/5 ≤ J ≤ cN1/5. It holds

sup
(σ,b)∈�(d,D)

Eσ,b

[∥∥σ̂ 2
S ∧ D − σ 2

∥∥2
L2([a,b])

] 1
2 ≤ CN− 1

5 ,

where C = C(�,a, b, c, d,D) is a positive constant.

The general idea of the proof is the same as in Gobet et al. [11] or [5]. We use the mixing
property of the process X to control the approximation error of the stationary measure μ by
the empirical measure μ̂N , see Corollary 45. Then, as discussed in Section 2.1, we bound the
estimation error of (κ1, u1) – the first nontrivial eigenpair of the transition operator P�, obtaining

|̂κ1 − κ1| + ‖û1 − u1‖H 1 = OP

(
N−1/5).

Finally, we bound the plug-in error of the spectral estimator σ̂S . A tenuous point is in that the
estimator û1 converges to the eigenfunction u1 in the sense of mean H 1 norm only, hence we
can not postulate a uniform positive lower bound on infx∈[a,b] û′

1(x). Following Chorowski and
Trabs [5], we are able to overcome this difficulty by applying the threshold σ̂ 2

S ∧ D.

2. Discussion

2.1. Connection to the GHR low-frequency estimator

In this section, we explain the relation between the defined estimator σ̂S above and the original
spectral estimator introduced in [11], Section 3.2. First, let us review the construction of the GHR
estimator.

Definition 10. As in Gobet et al. [11], Eq. (3.8), for u,v ∈ VJ let

p̂(u, v) = 1

2N

N−1∑
n=0

(
u(Xn�)v(X(n+1)�) + v(Xn�)u(X(n+1)�)

)
.

A crucial observation is that, due to the appropriate weighting of the empirical measure, p̂

becomes a linear combination of l̂ and ĝ. Indeed, using the summation by parts formula, we
obtain

l̂ = 1

�
(ĝ − p̂). (4)

Hence, for (γ̂i , ûi ) – any solution of the Eigenproblem 5, we have

p̂(̂ui, v) = (1 − �γ̂i)ĝ(̂ui, v) for every v ∈ VJ . (5)

Denote

κ̂i = (1 − �γ̂i). (6)
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We conclude that the eigenpair (̂κ1, û1) is equal to the estimator of the eigenpair of the transition
operator which is defined in [11], Eq. (3.11). Taking into account that functions (ψj ) are not
orthonormal, following [11], Eq. (3.12) and Eq. (3.7), we define the GHR estimator as:

Definition 11.

σ̂ 2
GHR(x) = 2̂ζ1

∫ x

0 û1(y)μ̂N (dy)

û′
1(x)μ̂(x)

,

where

μ̂ =
J∑

j=0

μ̂jψj with (μ̂j )j =
([∫ 1

0
ψi(y)ψj (y) dy

]
i,j

)−1(∫ 1

0
ψi(x)μ̂N(dx)

)
i

,

is an estimator of the stationary density.

Note that estimator σ̂S can be seen as a local average of σ̂ 2
GHR. Indeed, since 1j = ψ ′

j , inte-
grating by parts gives us

σ̂ 2
S,j = 2̂ζ1

∫ 1
0 ψ ′

j (x)(
∫ x

0 û1(y)μ̂N(dy)) dx∫ j
J
j−1
J

û′
1(x)μ̂N(dx)

=
∫ j

J
j−1
J

σ̂ 2
GHR(x)̂u′

1(x)μ̂(x) dx∫ j
J
j−1
J

û′
1(x)μ̂N (dx)

.

(7)

Since we focus on volatility functions in H 1, the above averaging has no effect on the low-
frequency convergence rate. On the other hand, there are multiple reasons why it is beneficial for
optimality in the high-frequency regime. First, since û′

1 is constant on every interval [ j−1
J

,
j
J
],

after averaging we do not have to estimate the density of the occupation measure (which is not
regular in the high-frequency setting), but the occupation measure of the intervals [ j−1

J
,

j
J
]. Fur-

thermore, averaging reduces the variance of the estimator, which can be clearly seen in Figure 1.
The intuitive explanation of this phenomenon is that while the original estimator σ̂ 2

GHR inherits
the rough behaviour of the occupation density (via the inverse of the derivative of the eigenfunc-
tion u1 which has the same smoothness as the design density) this irregularity is removed by
multiplication with û′

1μ̂.

2.2. Connection to the Florens-Zmirou estimator

The general idea of the proof of the high-frequency convergence rate is to compare estimator
σ̂S with the minimax optimal (see [14], Proposition 2) high-frequency estimator introduced in
Florens-Zmirou [9]. In this section, we recall the definition of the Florens-Zmirou estimator and
discuss its relation to σ̂S .
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Definition 12. Define the time-symmetric version of the well-known Nadaraya–Watson type
estimator of the squared volatility coefficient, introduced in Florens-Zmirou [9], by

σ̂ 2
FZ,j =

∑N−1
n=0 (1j (Xn�) + 1j (X(n+1)�))(X(n+1)� − Xn�)2

�
∑N−1

n=0 (1j (Xn�) + 1j (X(n+1)�))
,

σ̂ 2
FZ(x) =

J∑
j=1

σ̂ 2
FZ,j 1j (x).

Note that the underweighting of the first and last observation in the denominator of σ̂ 2
FZ,j appears

naturally as an artifact of the time symmetry.

Remark 13. We call σ̂ 2
FZ a time-symmetrized version of the Florens-Zmirou estimator, since it

is an average of the standard Florens-Zmirou estimators (cf. [9], Eq. (1.1)) constructed for the
process (Xt ,0 ≤ t ≤ T ) and the time reversed process Yt = XT −t . Indeed, let

σ̂ 2
j (X0,X�, . . . ,XN�) =

∑N−1
n=0 1j (Xn�)(X(n+1)� − Xn�)2

�( 1
2 1j (X0) +∑N−1

n=1 1j (Xn�) + 1
2 1j (XN�))

. (8)

Then

σ̂ 2
FZ,j = σ̂ 2

j (X0,X�, . . . ,XN�) + σ̂ 2
j (Y0, Y�, . . . , YN�)

2
.

Since stationary scalar diffusions are reversible, under the Assumption 2, the process (Yt ,0 ≤
t ≤ T ) is identical in law to (Xt ,0 ≤ t ≤ T ). Hence, the L2(Pσ,b) bounds of estimator σ̂ 2

FZ are of
the same order as those of the classical Florens-Zmirou estimator.

Recall that (γ̂1, û1) is an eigenpair of the Eigenproblem 5. From Definition 6 of the spectral
estimator, it follows that

σ̂ 2
S,j = −ζ̂1

γ̂1

2̂l(̂u1,ψj )

û1,j

∫ j
J
j−1
J

μ̂N (dx)

. (9)

A similar representation formula can be established for the time symmetric Florens-Zmirou esti-
mator σ̂ 2

FZ.

Definition 14. Define a bilinear form f̂ : VJ × VJ → R by

f̂ (u, v) = 1

2

∫ 1

0
u′(x)v′(x)̂σ 2

FZ(x)μ̂N(dx).
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Consider vector (vj )j=1,...,J such that vj 	= 0 for every j = 1, . . . , J and the associated func-
tion v ∈ V 0

J . We have

σ̂ 2
FZ,j = 2f̂ (v,ψj )

vj

∫ j
J
j−1
J

μ̂N (dx)

. (10)

As will be thoroughly explained in Section 3.2, when � → 0, the eigenvalue ratio −ζ̂1/γ̂1 in (9)
tends to 1. Consequently, the difference between estimators σ̂ 2

S and σ̂ 2
FZ is controlled by

2|̂l(̂u1,ψj ) − f̂ (̂u1,ψj )|
û1,j

∫ j
J
j−1
J

μ̂N (dx)

. (11)

The main observation is that in the high-frequency analysis, we do not have to control the esti-
mation error of the derivative û′

1. Indeed, to bound (11), we need only to show a uniform lower
bound for û1,j and an upper bound for the difference |̂l(̂u1,ψj ) − f̂ (̂u1,ψj )|. Unfortunately,
|̂l(v,ψj ) − f̂ (v,ψj )| is not small enough for any bounded function v. To achieve the required
upper bound for the estimated eigenfunction, we need to first obtain some regularity properties
of û1, which is the most difficult part of the high-frequency analysis.

2.3. A numerical example

In this section, we present the numerical results for the volatility estimation across different
observation time scales. We compare three estimation methods: the time symmetric Florens-
Zmirou estimator σ̂ 2

FZ (see Definition 12), the spectral estimator σ̂ 2
GHR (see Definition 11, cf.

Gobet et al. [11], Section 3.2) with approximation space VJ of linear splines with equidistant
knots, and finally, the locally averaged spectral estimator σ̂ 2

S . We apply an oracle choice of the
projection level J , minimizing the risk.

We compare the locally averaged spectral estimator σ̂ 2
S with benchmark estimators σ̂ 2

FZ and
σ̂ 2

GHR in both high and low-frequency regimes. Following Chorowski and Trabs [5], Section 5,
we consider diffusion process X with mean reverting drift b(x) = 0.2 − 0.4x, quadratic squared
volatility function σ 2(x) = 0.4− (x −0.5)2, and two reflecting barriers at 0 and 1. This choice of
diffusion coefficients is supposed to minimize the reflection effect alongside with some variabil-
ity in the volatility function. Nevertheless, the depicted behaviour is typical for other diffusion
processes. The sample paths were generated using the Euler-Maruyama scheme with time step
size �/100 ∧ 0.001 with reflection after each step. All simulated paths were conditioned to have
an occupation time density greater than v = 0.2. Table 1 presents the oracle mean L1([0.1,0.9])
estimation error of σ 2, obtained by a Monte Carlo simulation with 1000 iterations, in high
(T = 5,� → 0) and low (� = 0.25, T → ∞) frequency regimes, respectively. The estimated
volatility functions for 20 independent paths are depicted in Figure 1.

In the case of high-frequency observations, σ̂ 2
S performs similarly to the benchmark esti-

mator σ̂ 2
FZ. Relative to ‖σ 2‖L1([0.1,0.9]) ≈ 0.28, the error decreases from approximately 6% for

� = 10−3 to 3% for � = 10−4. The estimation error of spectral estimator σ̂ 2
GHR is almost twice
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Table 1. Monte Carlo estimation errors in high and low-frequency regimes. The value of parameter J is
given in the subscript

High-Frequency Regime: T = 5

� = 0.001 � = 0.00075 � = 0.0005 � = 0.00035 � = 0.0002 � = 0.0001

σ̂ 2
GHR 0.0388(18) 0.0353(23) 0.0322(24) 0.0292(32) 0.0258(36) 0.0220(49)

σ̂ 2
S

0.0195(9) 0.0174(10) 0.0149(10) 0.0131(12) 0.0108(13) 0.0088(18)

σ̂ 2
FZ 0.0169(10) 0.0153(11) 0.0133(12) 0.0119(12) 0.0100(13) 0.0080(20)

Low-Frequency Regime: � = 0.25

T = 1k T = 3k T = 7k T = 10k T = 15k T = 20k

σ̂ 2
GHR 0.0386(5) 0.0333(6) 0.0256(11) 0.0226(11) 0.0198(11) 0.0178(11)

σ̂ 2
S

0.0310(4) 0.0245(6) 0.0200(7) 0.0182(8) 0.0166(8) 0.0155(9)

σ̂ 2
FZ 0.0821(5) 0.0823(5) 0.0823(5) 0.0822(5) 0.0823(5) 0.0824(5)

as large, although the quality of the estimation improves when � decreases. It is important to
note that the oracle values of space parameter J for σ̂ 2

GHR are much bigger than those for other
estimation methods. When � is small, the eigenfunctions inherit the regularity of the local time;

Figure 1. Estimated volatility functions for 20 independent trajectories.
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the increase in dimension compensates for the projection error. Due to local averaging, this irreg-
ularity problem does not appear for σ̂ 2

S , compare with Figure 1, where estimator σ̂ 2
GHR oscillates

heavily. Furthermore, there is no visible boundary effect, suggesting that the error rate of the
spectral estimator does not deteriorate outside the fixed interval [0.1,0.9].

In the low-frequency regime, σ̂ 2
S performs slightly better than the original spectral estimator

σ̂ 2
GHR. The boundary problem is visible, especially for σ̂ 2

GHR. The relative error decreases from
12% for T = 1000 to 5% for T = 30 000. The Florens-Zmirou estimator σ̂ 2

FZ underestimates the
volatility and commits a relative error of 30%. This is expected and due mostly to the boundary
reflection, which, for low-frequency observations, is not negligible in the interior of the state
space. As found by unreported simulations, in the case of low-frequency observations, the locally
averaged spectral estimator σ̂ 2

S will outperform the Florens-Zmirou estimator in the case of a
highly varying volatility function σ 2, even when the sampling frequency is big enough to ignore
the reflection effect.

2.4. Extensions and limitations

Stationarity of process X

In the high-frequency analysis, the stationarity assumption ensures that process X is time re-
versible. General initial distributions could be considered, but in order to preserve the perfor-
mance of the estimation for the time reversed process, the coefficients of the backward process
must belong to the nonparametric family �.

Due to the spectral gap of the generator, process X is geometrically ergodic. In particular,
as t → ∞, the one dimensional distributions of Xt converge exponentially fast to the invariant
measure μ. It follows that, in the low-frequency regime, the assumption of stationarity can be
made without loss of generality for asymptotic results.

Estimation at the boundaries

In the high-frequency regime, we prove the error bound in the interior of the state space. Re-
striction to the interval (a, b) allows us to obtain uniform lower bounds on the derivative of
eigenfunction û1, which, due to boundary conditions, are not valid in the entire state space. This
restriction could be omitted by obtaining uniform bounds on the ratio of derivatives û1,j±1/û1,j .
Unfortunately, since our proof relies on a posteriori error bounds on solutions for perturbed
eigenvalue problems, we do not have sufficient tools to control the pointwise relative error of the
eigenfunctions. Nevertheless, the numerical results suggest that the spectral estimation procedure
also behaves well at the boundaries of the state space.

In the low-frequency regime, the spectral estimator is unstable at the boundary due to Neu-
mann boundary conditions for the eigenfunctions of the infinitesimal generator. Refer to [11],
Section 3.3.8, for a discussion of the boundary problem.

Boundary reflection

Following previous works on the spectral estimation in the low frequency setting, for example,
[5,11,23], we consider an Itô diffusion model on the state space [0,1] with instantaneous reflec-
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tion at the boundaries. The assumption of a compact state space makes the construction of the
estimator easier and facilitates error analysis in the low-frequency setting, cf. Reiß [24]. We point
out, here, that the reflection assumption is not restrictive in the high-frequency setting. Indeed,
consider diffusion X defined on the entire real line with drift b and volatility σ . Let

A(t) =
∫ t

0
1[0,1](Xs) ds

be the occupation time of interval [0,1]. Assume that limt→∞ A(t) = ∞ and define the right-
continuous inverse

C(t) = inf
{
s > 0|A(s) > t

}
.

Process Yt = XC(t) follows the law of a reflected diffusion on [0,1] with drift b and volatility σ .
Assume now that we are given observations X0,X�, . . . ,XN�. The sub-sequence of the values
that lie in [0,1] forms a chain of observation of Y . The sampling frequency is random (and
depends on the path), but when � shrinks, it becomes close to equidistant. The difficulty in
handling irregularities at the boundaries is similar to these found when considering the reflection
effect. Unfortunately, while this reduction can be used under the assumption that � is small,
it can’t be applied in the low frequency setting, hence it is not practical in the context of scale
invariant estimation.

Linear spline basis

The use of the linear spline basis is very convenient, as functions ψj appear naturally after apply-
ing integration by parts to the locally averaged GHR estimator, see (7). Nevertheless, unreported
simulations suggest that the spectral estimation method performs as well with other bases. The
Fourier cosines basis in [0,1] is especially efficient, consisting of the eigenfunctions of the re-
flected Brownian motion process.

Adaptivity

An important decision in the spectral estimation is the choice of the basis dimension J . The
general problem is twofold: dimension J should adapt to the smoothness of the coefficients
and simultaneously to the observation frequency. In [5], the authors applied Lepski’s method
to construct a data-driven version of the GHR estimator that adapts to the smoothness of the
volatility. In the case of the low frequency data, the same selection rule can be applied for the
universal estimator σ̂S . The precise construction of a method that will adapt to the observation
frequency remains open.

The numerical study shows that the proposed estimator σ̂S smoothly interpolates between the
high and low-frequency estimators. The optimal convergence rates in both frequency regimes
leave out the question of the paradigm to use when one has to consider data. The different con-
vergence rates in high and low frequency regimes raise the question of bivariate asymptotics
with respect to both � and T . Nevertheless, because of the structural differences of the high and
low-frequency data, we believe that such an analysis would be particularly challenging.
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3. High-frequency analysis

The proof of Theorem 8 is presented in Section 3.5 and is accomplished in several steps. In
Section 3.3, we prove the convergence rate of the time-symmetric Florens-Zmirou estimator.
Section 3.4 is devoted to the proof of Proposition 20 – the uniform bounds on the estimated
eigenpair (γ̂1, û1). In Section 3.6, we prove some technical results on the crossing intensity of
the diffusion processes.

3.1. Preliminaries

From now on, we take the Assumptions 1 and 2 as granted. Fix 0 < a < b < 1, the level v > 0
and constant c > 0. For simplicity, we set T = 1. Assume that c−1�−1/3 ≤ J ≤ c�−1/3. Further-
more, we will write f � g (resp. g � f ) when f ≤ C · g for some constant C > 0 that depends
only on b, v, c, d , D. f ≈ g is equivalent to f � g and g � f .

Sobolev regularity of the volatility implies that it is 1/2-Hölder continuous. Indeed, by the
Cauchy–Schwarz inequality it holds

sup
x,y∈[0,1]

|σ(x) − σ(y)|
|x − y|1/2

= sup
x,y∈[0,1]

| ∫ y

x
σ ′(z) dz|

|x − y|1/2
≤ ‖σ‖H 1 . (12)

Recall Definition 7 of the occupation density μT . Formula (2), together with (12), imply that μT

inherits the regularity properties of the local time. In particular, is the following theorem.

Theorem 15. The function μ1 is almost surely Hölder continuous of order α for every α < 1/2.
Moreover, for every p ≥ 1, there exists a constant Cp such that

sup
(σ,b)∈�

Eσ,b

[
sup

x∈[0,1]
μ

p

1 (x)
]

< ∞, (13)

sup
(σ,b)∈�

Eσ,b

[∣∣μ1(x) − μ1(y)
∣∣2p] ≤ Cp|x − y|p. (14)

Proof. Since σ is uniformly bounded and 1/2-Hölder continuous, the claim of the theorem can
be deduced from the well-known properties of the family of the local times (Lt , t ≥ 0) of the
semimartingale X, see the proof of [25], Chapter VI, Theorem 1.7, and the subsequent remark.

�

Definition 16. Denote by ω the modulus of continuity of the path (Xt ,0 ≤ t ≤ 1), that is,

ω(δ) = sup
0≤s,t≤1,|t−s|≤δ

|Xt − Xs |.

Because of the ellipticity assumption σ > 0, the path (Xt ,0 ≤ t ≤ 1) shares the properties of
Brownian paths. In particular, we can apply the Brownian upper bounds (see Fischer and Nappo
[7]) on the moments of ω.
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Theorem 17. For every p ≥ 1, there exists a constant Cp > 0 such that

sup
(σ,b)∈�

Eσ,b

[
ωp(�)

]≤ Cp�p/2 lnp
(
�−1). (15)

For the proof of Theorem 17 refer to Appendix A. Using (15), we can show that on Lv the
occupation measure μ̂N is spread uniformly on [0,1] with high probability.

Lemma 18. Let

O� = L∩ {ω(�)‖μ1‖∞ ≤ �5/11v
}
. (16)

For � < 1 we have

Pσ,b(L \O�) � �2/3.

Furthermore, on the event O�, for every j = 1, . . . , J it holds

v � J

∫ j
J

j−1
J

μ̂N (dx) � ‖μ1‖∞.

The proof of Lemma 18 is postponed to Section 3.3.
As mentioned in Section 1.2, we want to compare the spectral estimator σ̂ 2

S with the benchmark
high-frequency estimator σ̂ 2

FZ. Before that, we have to prove a uniform upper bound on the mean
L2 error of the time symmetric Florens-Zmirou estimator. The result below is a generalization
of [14], Proposition 2, where the same rate was obtained under the assumptions of smooth drift
and Lipschitz volatility. As proved in [14], Proposition 2, the rate �1/3 is optimal in the minimax
sense even on the class of diffusions with Lipschitz volatility.

Theorem 19. We have

sup
(σ,b)∈�(d,D)

Eσ,b

[
1O�

· ∥∥σ̂ 2
FZ − σ 2

∥∥2
L2[1/J,1−1/J ]

] 1
2 � �1/3. (17)

Because of the reflection, the rate deteriorates at the boundary. For x ∈ [0,1/J ] ∪ [1 − 1/J,1]
sup

(σ,b)∈�(d,D)

Eσ,b

[
1O�

· ∣∣̂σ 2
FZ(x) − σ 2(x)

∣∣2] 1
2 � �1/33, (18)

where the constant on the right-hand side does not depend on x.

The proof of Theorem 19 is postponed to Section 3.3. The main idea is the decomposition of
the error into a martingale and deterministic approximation parts as in [14], Proposition 2. As
expected, under the high-frequency assumption, the reflection has an effect only at the boundary.
Inequalities (17) and (18) imply

sup
(σ,b)∈�(d,D)

Eσ,b

[
1O�

· ∥∥σ̂ 2
FZ(x) − σ 2(x)

∥∥
L1[0,1]

]
� �1/3,

but they are not sufficient to obtain the �1/3 rate for the root mean squared error on [0,1].
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3.2. Outline of the proof of the high-frequency convergence rate

Since by Theorem 19 the estimator σ̂ 2
FZ attains the optimal rate �1/3, to prove Theorem 8 it is

enough to upper bound the mean L1[0,1] error between σ̂ 2
FZ and σ̂ 2

S . Using representations (9)
and (10) σ̂ 2

FZ − σ̂ 2
S can be reduced to the difference of the forms f̂ and l̂ (cf. Lemma 35). First,

we need however to list the properties of the eigenpair (̂ζ1, û1). The proof of the next Proposition
is postponed to Section 3.4.

Proposition 20. For every � > 0 there exists an event P� satisfying lim�→0 Pσ,b(L \P�) = 0
such that

1P�
· |γ̂1| � 1. (19)

Furthermore, the eigenfunction û1 can be chosen such that on P�

J∑
j=1

û2
1,j = J and û1,j ∼ 1, and

J∑
j=1

û2
1,j 1(̂u1,j < 0) � 1

hold for any j = �aJ � − 1, . . . , �bJ � + 1.

Remark 21. The normalization
∑J

j=1 û2
1,j = J is natural, as it is equivalent to ‖û′

1‖L2 = 1. In
short, Proposition 20 states the existence of uniform bounds on û′

1|[a,b]. Because of the Neumann
boundary conditions on the generator, the separation from the boundary is necessary for the
existence of a lower bound.

Remark 22. From the general inequality∣∣1 + log(1 − x)/x
∣∣≤ x, 0 < x < 1/2,

together with the uniform bound (19) on the eigenvalue γ̂1, we deduce that, on the high proba-
bility event P�, |1 + ζ̂1/γ̂1| � � holds. Consequently, the eigenvalue ratio −ζ̂1/γ̂1 in (9) is of
no importance in the high-frequency analysis.

Definition 23. Define

σ̃ 2
S,j = 2̂l(̂u1,ψj )

û1,j

∫ j
J
j−1
J

μ̂N (dx)

,

σ̃ 2
S (x) =

J∑
j=1

σ̃ 2
S,j 1j (x).

(20)
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For simplicity, we will refer from now on to σ̃S as to the spectral estimator. Comparing the
representations (20) and (10) we obtain

∣∣̃σ 2
S,j − σ̂ 2

FZ,j

∣∣= 2|̂l(̂u1,ψj ) − f̂ (̂u1,ψj )|
û1,j

∫ j
J
j−1
J

μ̂N (dx)

.

Since by Proposition 20 the derivative û1,j has a uniform lower bound, Lemma 18 implies that
to show the convergence rate �1/3 we have to prove that∣∣̂l(̂u1,ψj ) − f̂ (̂u1,ψj )

∣∣= Op

(
�2/3).

As argued in Proposition 36, for any function v ∈ VJ with bounded derivative, it holds∣∣̂l(v,ψj ) − f̂ (v,ψj )
∣∣= Op

(
�1/2),

which leads to a suboptimal rate �1/6. In order to achieve the optimal rate �1/3 we need to
use the regularity of the first nontrivial eigenfunction û1. By the means of the Perron–Frobenius
theory, in Proposition 37, we define a high probability event R� such that

Eσ,b

[
1R�

·
∣∣∣∣ û′

1(
j
J

± 1
J
) − û′

1(
j
J
)

J−1/2

∣∣∣∣2] 1
2

� 1

holds, which can be interpreted as the almost 1/2-Hölder regularity of û′
1 (see Remark 38).

This regularity of the eigenfunction allows us to reduce the estimation error to an approximation
problem of the occupation time, see decomposition (57) and Lemma 39.

3.3. Proof of Theorem 19

We begin with the proof of Lemma 18.

Proof of Lemma 18. Note first that, on the event L, we have

v ≤ J

∫ j
J

j−1
J

μ1(dx) ≤ ‖μ1‖∞.

Using the occupation formula (3), we obtain that∣∣∣∣∣ 1

N

N−1∑
n=0

1j (Xn�) −
∫ j

J

j−1
J

μ1(x) dx

∣∣∣∣∣
≤

N−1∑
n=0

∫ (n+1)�

n�

∣∣1j (Xn�) − 1j (Xs)
∣∣ds
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≤
N−1∑
n=0

∫ (n+1)�

n�

(
1
(∣∣∣∣Xs − j − 1

J

∣∣∣∣< ω(�)

)
ds + 1

(∣∣∣∣Xs − j

J

∣∣∣∣< ω(�)

))
ds

=
∫ j−1

J
+ω(�)

j−1
J

−ω(�)

μ1(x) dx +
∫ j

J
+ω(�)

j
J

−ω(�)

μ1(x) dx ≤ 4ω(�)‖μ1‖∞.

Hence, and since J ∼ �−1/3, on the event O�

�
1
3 v � �

1
3 v − 4ω(�)‖μ1‖∞ �

∫ j
J

j−1
J

μ̂N (dx) �
(
�

1
3 + 4ω(�)

)‖μ1‖∞ � �
1
3 ‖μ1‖∞,

holds for any � < 1. Finally, to prove that O� is a high probability event, note that for any p ≥ 1,
Theorem 17 together with the inequality (13) imply

Pσ,b(L \O�) � �−5p/11
Eσ,b

[
ω(�)p‖μ1‖p∞

]
� �−5p/11

Eσ,b

[
ω(�)2p

]1/2
Eσ,b

[‖μ1‖2p∞
]1/2

� �−5p/11�p/2 lnp/2(�−1).
We obtain the claim by choosing p ≥ 15. �

Now, we are ready to prove Theorem 19. The main ideas are as in [14], Proposition 2. The nov-
elty consists on the direct treatment of the drift term and the analysis of the boundary behaviour,
which is an artifact of the reflection.

Proof of Theorem 19. Recall the definition (8) and the discussion thereafter. It follows, that it
is sufficient to prove the claim for σ̂ 2

j (X0,X�, . . . ,XN�).
Since

�

(
1

2
1j (X0) +

N−1∑
n=1

1j (Xn�) + 1

2
1j (XN�)

)
=
∫ j

J

j−1
J

μ̂N (dx),

by Lemma 18, on the event O�, the denominator of σ̂ 2
j (X0,X�, . . . ,XN�) has a uniform lower

bound of order �1/3. Hence, in order to prove (17), we have to show that, for any j = 2, . . . , J −1
and x ∈ [ j−1

J
,

j
J
], it holds

Eσ,b

[
1O�

·
∣∣∣∣∣
N−1∑
n=0

1j (Xn�)
(
(X(n+1)� − Xn�)2 − �σ 2(x)

)∣∣∣∣∣
2] 1

2

� �1/2
(∫ (j+2)

J
∧1

(j−3)
J

∨0

[(
σ 2)′(y)

]2
dy

) 1
2 + �2/3.

(21)
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Indeed, (21) implies

Eσ,b

[
1O�

· ∥∥σ̂ 2
FZ − σ 2

∥∥2
L2[1/J,1−1/J ]

]
�

J−1∑
j=2

1

J�
2
3

(
�

∫ (j+2)
J

∧1

(j−3)
J

∨0

[(
σ 2)′(y)

]2
dy + �

4
3

)

� �
2
3
(∥∥σ 2

∥∥2
H 1 + 1

)
.

Step 1. Error bound in the interior. Fix 2 ≤ j ≤ J −1 and x ∈ [ j−1
J

,
j
J
]. Note that on the event

O� the condition 1j (Xn�) = 1 implies that no reflection occurs for t ∈ [n�, (n + 1)�]. Using
Itô formula, we can decompose

N−1∑
n=0

1j (Xn�)
(
(X(n+1)� − Xn�)2 − �σ 2(x)

) := A1 + A2 + A3 + A4,

where

A1 =
N−1∑
n=0

1j (Xn�)

[(∫ (n+1)�

n�

σ(Xs) dWs

)2

−
∫ (n+1)�

n�

σ 2(Xs) ds

]
,

A2 =
N−1∑
n=0

1j (Xn�)

∫ (n+1)�

n�

(
σ 2(Xs) − σ 2(x)

)
ds,

A3 =
N−1∑
n=0

1j (Xn�)

(∫ (n+1)�

n�

b(Xs) ds

)2

,

A4 = −2
N−1∑
n=0

1j (Xn�)

∫ (n+1)�

n�

σ(Xs) dWs

∫ (n+1)�

n�

b(Xs) ds.

We will bound the second moment of each of the terms A1, . . . ,A4. First, note that arguing as in
the proof of Lemma 18, we obtain

1

N

N−1∑
n=0

1j (Xn�) ≤ (� 1
3 + 4ω(�)

)‖μ1‖∞. (22)

Consequently, from the Cauchy–Schwarz inequality, together with Theorem 17 and the inequal-
ity (13) it follows that

Eσ,b

[(
1

N

N−1∑
n=0

1j (Xn�)

)2] 1
2

� �
1
3 . (23)
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Denote by Fn the σ -field generated by {Xs : 0 ≤ s ≤ n�}. Let

ηn =
(∫ (n+1)�

n�

σ(Xs) dWs

)2

−
∫ (n+1)�

n�

σ 2(Xs) ds.

Since (ηn)n are (Fn)-martingale increments, they are conditionally uncorrelated. Using the
Burkholder–Davis–Gundy inequality, we obtain that Eσ,b[η2

n|Fn] � �2. Consequently,

Eσ,b

[
A2

1

] 1
2 =

(
N−1∑
n=0

Eσ,b

[
1j (Xn�)η2

n

]) 1
2

� �
1
2 Eσ,b

[
1

N

N−1∑
n=0

1j (Xn�)

] 1
2

� �
2
3 ,

where we used (23) to obtain the last inequality. On the event O�, when 1j (Xn�) = 1, we have

|Xs − x| ≤ |Xs − Xn�| + |Xn� − x| ≤ ω(�) + J−1 ≤ �5/11 + J−1 ≤ 2J−1,

for n� ≤ s ≤ (n + 1)�, x ∈ [ j−1
J

,
j
J
] and � small enough. Hence,

A2 ≤
N−1∑
n=0

1j (Xn�)

∫ (n+1)�

n�

∣∣∣∣∫ Xs

x

(
σ 2)′(y) dy

∣∣∣∣ds

≤
N−1∑
n=0

1j (Xn�)�

∣∣∣∣∫ (j+2)
J

∧1

(j−3)
J

∨0

(
σ 2)′(y) dy

∣∣∣∣
� 1

N

N−1∑
n=0

1j (Xn�)�1/6
(∫ (j+2)

J
∧1

(j−3)
J

∨0

[(
σ 2)′(y)

]2
dy

)1/2

,

where we used the Cauchy–Schwarz inequality. The above implies that

Eσ,b

[
1O�

· A2
2

] 1
2 ≤ �1/2

(∫ (j+2)
J

∧1

(j−3)
J

∨0

[(
σ 2)′(y)

]2
dy

)1/2

.

The drift function b is uniformly bounded, hence |A3| � �. Denote

Yt =
∫ t

0
σ(Xs) dWsandωY (�) = sup

0≤s,t≤1
|t−s|≤�

|Yt − Ys |.

The uniform bound on b, together with |Y(n+1)� − Yn�| ≤ ωY (�), and the inequality (22) imply

Eσ,b

[
1O�

· A2
4

] 1
2 � Eσ,b

[
1O�

·
(

1

N

N−1∑
n=0

1j (Xn�)ωY (�)

)2] 1
2

� Eσ,b

[(
�

1
3 ‖μ1‖∞ωY (�)

)2] 1
2 � �

2
3 ,



Nonparametric volatility estimation in scalar diffusions 2953

where we used uniform bounds on the moments of modulus of continuity of semimartingales
with bounded coefficients (see Theorem 17).

Step 2. Error bound at the boundaries. Set j = 1 (the case j = J follows analogously) and x ∈
[0,1/J ]. On O�, whenever Xn� ≥ �5/11, no reflection occurs for t ∈ [n�, (n + 1)�]. Denote

11(x) = 1
(
x < �5/11)+ 1

(
�5/11 ≤ x < J−1) := 11,0(x) + 11,1(x).

We decompose

N−1∑
n=0

11(Xn�)
(
(X(n+1)� − Xn�)2 − �σ 2(x)

) := E1 + E2,

with

E1 =
N−1∑
n=0

11,0(Xn�)
(
(X(n+1)� − Xn�)2 − �σ 2(x)

)
,

E2 =
N−1∑
n=0

11,1(Xn�)
(
(X(n+1)� − Xn�)2 − �σ 2(x)

)
.

On O� holds |(X(n+1)� − Xn�)2 − �σ 2(x)| � �10/11. Hence, arguing as in the proof of
Lemma 18, we obtain that

Eσ,b

[
1O�

· E2
1

] 1
2 � �− 1

11 Eσ,b

[
1O�

·
(

1

N

N−1∑
n=0

11,0(Xn�)

)2] 1
2

� �− 1
11 Eσ,b

[
1O�

·
(∫ 1

0
11,0(x)μ1(x) dx + 4ω(�)‖μ1‖∞

)2] 1
2

� �
4
11 .

To bound the second moment of E2, note that when 11,1(Xn�) = 1 no reflection occurs for
t ∈ [n�, (n + 1)�]. Consequently, we can proceed as in Step 1, obtaining

Eσ,b

[
1O�

· E2
2

] 1
2 � �1/2

(∫ 3∧J
J

0

[(
σ 2)′(y)

]2
dy

) 1
2 + �2/3 � �1/2

∥∥σ 2
∥∥

H 1 .

We conclude that

Eσ,b

[
1O�

· ∣∣̂σ 2
FZ(x) − σ 2(x)

∣∣2] 1
2 � �−1/3

Eσ,b

[
1O�

· (E1 + E2)
2] 1

2 � �1/33. �

Corollary 24. For every � there exists an event Õ� satisfying lim�→0 Pσ,b(L \ Õ�) = 0, such
that on Õ� it holds(∀x ∈ [0,1]) (

1 − 2−1/2)d ≤ σ̂ 2
FZ(x) ≤ (1 + 2−1/2)2D. (24)
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Proof. Since

∥∥σ̂ 2
FZ − σ 2

∥∥2
L2[0,1] = ∥∥σ̂ 2

FZ − σ 2
∥∥2

L2[1/J,1−1/J ] +
∫ 1

J

0

∣∣σ 2
FZ(x) − σ 2(x)

∣∣2 dx

+
∫ 1

1− 1
J

∣∣σ 2
FZ(x) − σ 2(x)

∣∣2 dx,

using Theorem 19 we obtain that

Eσ,b

[
1O�

· ∥∥σ̂ 2
FZ − σ 2

∥∥2
L2[0,1]

]
� �2/3 + J−1�2/33 � �1/3+2/33.

Define

Õ� =O� ∩
{∥∥σ̂ 2

FZ − σ 2
∥∥2

L2[0,1] ≤ (2J )−1 inf
x∈[0,1]σ

4(x)
}
.

From Markov’s inequality, together with the lower bound on the probability of the event O�, it
follows that

Pσ,b(L \ Õ�) � �2/3 + �2/33 → 0 as � → 0.

Fix j = 1, . . . , J . On the event Õ� it holds

∣∣∣∣̂σ 2
FZ,j − J

∫ j
J

j−1
J

σ 2(x) dx

∣∣∣∣≤ J

∫ j
J

j−1
J

∣∣̂σ 2
FZ,j − σ 2(x)

∣∣dx ≤ J 1/2
(∫ j

J

j−1
J

∣∣σ 2(x) − σ̂ 2
FZ,j

∣∣2 dx

) 1
2

≤ J 1/2
∥∥σ̂ 2

FZ − σ 2
∥∥

L2[0,1] ≤ 2−1/2 inf
x∈[0,1]σ

2(x)

≤ 2−1/2J

∫ j
J

j−1
J

σ 2(x) dx.

Since Assumption 1 implies d ≤ J
∫ j

J
j−1
J

σ 2(x) dx ≤ 2D, we conclude that the claim follows. �

3.4. Properties of the eigenpair (γ̂1, û1)

In this section, we want to prove Proposition 20. Because of the tridiagonal structure of the form
l̂, the direct analysis of the eigenfunction û1 is difficult. Instead, we consider the generalized
eigenvalue problem for forms f̂ (recall Definition 14) and ĝ:

Eigenproblem 25. Find (̂λ, ŵ) ∈R× V 0
J , with ŵ 	= 0, such that

f̂ (ŵ, v) = λ̂ĝ(ŵ, v) for every function v ∈ V 0
J .
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On the high probability event Õ� such that σ̂ 2
FZ ∼ 1 (see Corollary 24), the form f̂ is

positive-definite and symmetric. Consequently, on Õ� the Eigenproblem 25 has J solutions
(̂λj , ŵj )j=1,...,J with 0 < λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂J .

Definition 26. For j = 1, . . . , J define ψ0
j = ψj − ∫ 1

0 ψj (x)μ̂N(dx) ∈ V 0
J . Let

F̂i,j := f̂
(
ψ0

i ,ψ0
j

)= f̂ (ψi,ψj ) and M̂i,j = ĝ
(
ψ0

i ,ψ0
j

)
be the matrix representations of forms f̂ and ĝ on V 0

J × V 0
J with respect to the algebraic basis

(ψ0
j )j .

Arguing as in Gobet et al. [11], Lemma 6.1, we obtain that

M̂i,j =
∫ i

J

i−1
J

∫ j
J

j−1
J

∫ y∧z

0
μ̂N (dx)

∫ 1

y∨z

μ̂N (dx)dy dz. (25)

F̂ is a diagonal matrix with strictly positive diagonal entries, hence it is invertible. Eigenprob-
lem 25 is equivalent to

F̂−1M̂(ŵi,j )j = λ̂−1
i (ŵi,j )j ,

where (ŵi,j )j=1,...,J indicates the coefficient vector associated to the eigenfunction ŵi , i.e.

ŵi =
J∑

j=1

ŵi,jψ
N
j =

J∑
j=1

ŵi,jψj + ŵi,0,

with some ŵi,0 such that ŵi ∈ V 0
J . On the event O� the matrix M̂ has all entries strictly positive,

hence F̂−1M̂ satisfies the conditions of the Perron–Frobenius theorem. Consequently, the eigen-
vector (ŵ1,j )j can be chosen strictly positive, which corresponds to the monotonicity property
of the eigenfunction ŵ1. In what follows, we will show that the Eigenproblem 25 is an approx-
imation of the Eigenproblem 5 for forms l̂ and ĝ, and deduce that the eigenfunction û1 inherits
the properties of ŵ1. Let ‖ · ‖l2 denote the standard Euclidean norm on R

J .

Definition 27. Theorem 17, Corollary 24, Theorem 19 and the regularity properties of the occu-
pation density μ1 ensure that for α = 1/60 the set Q� of paths contained in L that satisfy

(i) ω(�) ≤ �1/2−α ;
(ii) for every x ∈ (0,1) holds (1 − 2−1/2)d ≤ σ̂ 2

FZ(x) ≤ (1 + 2−1/2)2D;
(iii) ‖σ̂ 2

FZ −σ 2‖L2([1/J,1−1/J ]) ≤ �1/3−α and for x ∈ [0,1/J ]∪[1−1/J,1] it holds |̂σ 2
FZ(x)−

σ 2(x)| ≤ �1/33−α ;
(iv) occupation density μ1 is 1/2−α Hölder continuous with Hölder norm bounded by �−α ;

is of high-probability, more precisely

lim
�→0

Pσ,b(L \Q�) = 0.
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Remark 28. By the assumption (iv), on Q� we have ‖μ1‖∞ � �−α . Furthermore, arguing as
in the proof of Lemma 18, we obtain

∣∣∣∣∫ j
J

j−1
J

μ̂N (dx) −
∫ j

J

j−1
J

μ1(dx)

∣∣∣∣� ω(�)‖μ1‖∞ � �1/2−2α. (26)

In particular, on Q�

∫ j
J

j−1
J

μ̂N (dx) ∼ �1/3 holds for every j = 1, . . . , J. (27)

Finally, the assumption (iii) and Hölder regularity of σ 2 (12) imply that on Q�∣∣̂σ 2
FZ(x) − σ 2(x)

∣∣� �1/6−α for all x ∈ [1/J,1 − 1/J ]. (28)

Proof of (28). Fix j = 2, . . . , J − 1 and x ∈ [ j−1
J

,
j
J
]. We have

∣∣̂σ 2
FZ,j − σ 2(x)

∣∣≤ ∣∣∣∣̂σ 2
FZ,j − J

∫ j
J

j−1
J

σ 2(y) dy

∣∣∣∣+ ∣∣∣∣σ 2(x) − J

∫ j
J

j−1
J

σ 2(y) dy

∣∣∣∣
� J

∫ j
J

j−1
J

∣∣̂σ 2
FZ,j − σ 2(y)

∣∣dy + �1/6

� J 1/2
(∫ 1− 1

J

1
J

∣∣̂σ 2
FZ,j − σ 2(y)

∣∣2 dy

) 1
2 + �1/6

� J 1/2
∥∥σ̂ 2

FZ − σ 2
∥∥

L2([1/J,1−1/J ]) + �1/6,

where we used the 1/2-Hölder regularity of σ 2 (12) and the Cauchy–Schwarz inequality to get
the second and third inequalities respectively. Finally, since J 1/2 ∼ �−1/6, we conclude by Def-
inition 27(iii) that the claim holds. �

To bound the error between the solutions of the Eigenproblems 5 and 25 we need to establish
uniform bounds on the spectral gap of the Eigenproblem 25.

Lemma 29. On the event Q� the eigenvalue λ̂1 is uniformly bounded by positive constants from
below and above. Furthermore, the Eigenproblem 25 has a uniform spectral gap, i.e. λ̂−1

1 −
λ̂−1

2 � 1.

Proof. Consider the generalized eigenvalue problem:
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Eigenproblem 30. Find (λ,w) ∈ R× VJ with w 	= 0 and
∫ 1

0 w(x)μ1(x) dx = 0 such that∫ 1

0
w′(x)v′(x)σ 2(x)μ1(x) dx = λ

∫ 1

0
w(x)v(x)μ1(x) dx

for all v ∈
{
v ∈ VJ :

∫ 1

0
v(x)μ1(x) dx = 0

}
.

Eigenproblem 30 has J solutions, denoted by (λj ,wj ) with 0 < λ1 < λ2 ≤ · · · ≤ λJ . By
Proposition B.7 we have λ1 ≈ 1 and λ−1

1 − λ−1
2 � 1. Let M,F be J × J matrices corresponding

to the Eigenproblem 30 tested with functions (ψ1
j )j=1,...,J , where ψ1

j = ψJ − ∫ 1
0 ψjμ1(x) dx.

As in the case of the data driven Eigenproblem 25, we have

Mi,j =
∫ i

J

i−1
J

∫ j
J

j−1
J

∫ y∧z

0
μ1(x) dx

∫ 1

y∨z

μ1(x) dx dy dz,

Fi,j =

⎧⎪⎨⎪⎩
0, i 	= j,∫ i

J

i−1
J

σ 2(x)μ1(x) dx, i = j

and

F−1M(wi,j )j = λ−1
i (wi,j )j .

From Weyl’s theorem for symmetric eigenvalue problems it follows that∣∣̂λ−1
i − λ−1

i

∣∣≤ ∥∥F−1M − F̂−1M̂
∥∥

l2
. (29)

We will show that ‖F−1M − F̂−1M̂‖l2 � �1/6−2α . Then, the uniform bound on the eigenvalue
λ̂1 and the lower bound on the spectral gap will follow from the properties of the Eigenprob-
lem 30. First, let us observe that

|F̂j,j − Fj,j | =
∣∣∣∣∫ j

J

j−1
J

σ̂ 2
FZ,j μ̂N (dx) −

∫ j
J

j−1
J

σ 2(x)μ1(x) dx

∣∣∣∣
� σ̂ 2

FZ,j

∣∣∣∣∫ j
J

j−1
J

μ̂N (dx) −
∫ j

J

j−1
J

μ1(x) dx

∣∣∣∣+ ∫ j
J

j−1
J

∣∣̂σ 2
FZ(x) − σ 2(x)

∣∣μ1(x) dx.

On Q�, the first term of the above display is by (26) of order �1/2−2α . The second term is
for j = 2, . . . , J − 1 of order �1/2−α by (28) and for j = 1 or J of order �1/3+1/33−α by
Definition 27(iii) directly. In any case, for � small enough it holds F̂j,j ≈ Fj,j ≈ �1/3. Next,
arguing as in the proof of Lemma 18, for any i, j = 1, . . . , J , we obtain

|Mi,j − M̂i,j | � J−2ω(�)‖μ1‖∞ � �7/6−2α.
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Furthermore, Mi,j , M̂i,j � �2/3. Since F and F̂ are diagonal matrices, it follows that∣∣(F−1M − F̂−1M̂
)
i,j

∣∣� �1/2−2α.

Hence, ‖F−1M − F̂−1M̂‖2
l2

≤∑J
i,j=1(F

−1M − F̂−1M̂)2
i,j � �1/3−4α . �

Proposition 31. Choose the eigenfunction ŵ1 increasing and normalized so that ‖(ŵ1,j )j‖l2 =
J 1/2 (i.e. ‖ŵ′

1‖L2 = 1). On the event Q�, for any �aJ �− 1 ≤ j ≤ �bJ �+ 1 and any i = 1, . . . , J

we have

1 ∨ ŵ1,i � ŵ1,j ∧ 1, (30)

Furthermore for j s.t. J 1/2 ≤ j ≤ J − J 1/2∣∣∣∣ ŵ1,j±1

ŵ1,j

− 1

∣∣∣∣� �1/6−2α. (31)

Proof. In the proof, we will use standard techniques from the Perron-Frobenius theory of non-
negative matrices (cf. Minc [20], Chapter II). In particular, we shall repeatedly use the fol-
lowing inequality Minc [20], Chapter II, Section 2.1, Eq. (7): for any q1, q2, . . . , qn > 0 and
p1,p2, . . . , pn ∈R

min
i=1,...,n

pi

qi

≤ p1 + p2 + · · · + pn

q1 + q2 + · · · + qn

≤ max
i=1,...,n

pi

qi

. (32)

Step 1: (ŵ1,i � 1). Fix 1 ≤ i ≤ J . By Definition 27(ii), relation (27) and Lemma 29, on the
event Q�, we have

J−1ŵ1,i ≈ ŵ1,i σ̂
2
FZ,i

∫ i
J

i−1
J

μN(dx) = f̂ (ŵ1,ψi) = λ̂1ĝ(ŵ1,ψi)

≈ ĝ(ŵ1,ψi) =
J∑

m=1

M̂i,mŵ1,m.

(33)

Hence, by the Cauchy–Schwarz inequality

ŵ1,i � J

(
J∑

m=1

M2
i,m

)1/2( J∑
m=1

ŵ2
1,m

)1/2

� 1,

where we used Mi,m ≤ J−2 and the normalization of (ŵ1,j ).
Step 2: (ŵ1,i � ŵ1,j ). Fix �aJ � − 1 ≤ j ≤ �bJ � + 1. On the event Q�, for any 1 ≤ i ≤ J the

relation (33) together with the inequality (32) imply

ŵ1,i

ŵ1,j

≈
∑J

m=1 M̂i,mŵ1,m∑J
m=1 M̂j,mŵ1,m

� max
m=1,...,J

M̂i,m

M̂j,m

. (34)
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We need to show that for arbitrary m M̂i,m/M̂j,m � 1 holds. Consider first the case i < j . Then
by (25)

M̂i,m

M̂j,m

=
∫ i

J
i−1
J

∫ m
J

m−1
J

∫ y∧z

0 μ̂N (dx)
∫ 1
y∨z

μ̂N (dx)dy dz∫ j
J
j−1
J

∫ m
J

m−1
J

∫ y∧z

0 μ̂N (dx)
∫ 1
y∨z

μ̂N (dx)dy dz

≤
∫ i

J
i−1
J

∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)
∫ 1
y∨ i−1

J
μ̂N (dx)dy dz∫ j

J
j−1
J

∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)
∫ 1
y∨ j

J

μ̂N (dx)dy dz

=
∫ m

J
m−1

J

f (y)
∫ 1
y∨ i−1

J
μ̂N (dx)dy∫ m

J
m−1

J

f (y)
∫ 1
y∨ j

J

μ̂N (dx)dy

,

where f (y) = ∫ y∧ j−1
J

0 μ̂N (dx). Consider m > j . For y ∈ [m−1
J

, m
J

] holds y = y ∨ j
J

= y ∨ i−1
J

,
hence the numerator and denominator are equal. Consider m ≤ j . For y ∈ [m−1

J
, m

J
] holds y ∨

j
J

= j
J

. Hence, using (27), we obtain

M̂i,m

M̂j,m

≤
∫ m

J
m−1

J

f (y)
∫ 1
y∨ i−1

J
μ̂N (dx)dy∫ m

J
m−1

J

f (y)
∫ 1
y∨ j

J

μ̂N (dx)dy

≤
∫ m

J
m−1

J

f (y) dy∫ m
J

m−1
J

f (y) dy
∫ 1

j
J

μ̂N (dx)

=
(∫ 1

j
J

μ̂N (dx)

)−1

≈
(

1 − j

J

)−1

� 1.

We conclude that for i < j and arbitrary m bound M̂i,m/M̂j,m � 1 holds. Proceeding analo-
gously, we obtain the same claim for i > j . From (34), it follows that on the event Q�, for
�aJ � − 1 ≤ j ≤ �bJ � + 1 and any 1 ≤ i ≤ J , we have

ŵ1,i � ŵ1,j . (35)

Step 3: (1 � ŵ1,j ). Let ŵ1,j0 = min�aJ �−1≤j≤�bJ �+1 ŵ1,j . Inequality (35) implies

1 = 1

J

J∑
i=1

ŵ2
1,i � ŵ2

1,j0
.
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Step 4: (proof of (31)). We will only show | ŵ1,j+1
ŵ1,j

− 1| � �1/6−2α , the other bound can be
obtained by a symmetric argument. First, note that from Definition 27(iv) together with the in-
equality (26) it follows that

∣∣∣∣∫ j+1
J

j
J

μ̂N (dx) −
∫ j

J

j−1
J

μ̂N (dx)

∣∣∣∣
≤
∣∣∣∣∫ j+1

J

j
J

μ̂N (dx) −
∫ j+1

J

j
J

μ1(x) dx

∣∣∣∣
+
∣∣∣∣∫ j+1

J

j
J

μ1(x) dx −
∫ j

J

j−1
J

μ1(x) dx

∣∣∣∣
+
∣∣∣∣∫ j

J

j−1
J

μ1(x) dx −
∫ j

J

j−1
J

μ̂N (dx)

∣∣∣∣
� �1/2−2α + �1/3�−α�(1/2−α)/3 + �1/2−2α � �1/2−2α.

Hence, by (27)

∣∣∣∣
∫ j+1

J
j
J

μ̂N (dx)∫ j
J
j−1
J

μ̂N (dx)

− 1

∣∣∣∣� �1/6−2α.

Similarly, by the 1/2-Hölder regularity of σ 2 and (28) we have

∣∣∣∣ σ̂ 2
FZ,j+1

σ̂ 2
FZ,j

− 1

∣∣∣∣� �1/6−2α.

Consequently, instead of
ŵ1,j+1
ŵ1,j

we may consider

ŵ1,j+1σ̂
2
FZ,j+1

∫ j+1
J

j
J

μ̂N (dx)

ŵ1,j σ̂
2
FZ,j

∫ j
J
j−1
J

μ̂N (dx)

=
∑J

m=1 M̂j+1,mŵ1,m∑J
m=1 M̂j,mŵ1,m

.

By the inequality (32)

min
m=1,...,J

M̂j+1,m

M̂j,m

≤
∑J

m=1 M̂j+1,mŵ1,m∑J
m=1 M̂j,mŵ1,m

≤ max
m=1,...,J

M̂j+1,m

M̂j,m

.
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Thus, it is enough to show, that for any m = 1, . . . , J bound | M̂j+1,m

M̂j,m
− 1| � �1/6 holds.

M̂j+1,m

M̂j,m

=
∫ j+1

J
j
J

∫ m
J

m−1
J

∫ y∧z

0 μ̂N (dx)
∫ 1
y∨z

μ̂N (dx)dy dz∫ j
J
j−1
J

∫ m
J

m−1
J

∫ y∧z

0 μ̂N (dx)
∫ 1
y∨z

μ̂N (dx)dy dz

≤
∫ j+1

J
j
J

∫ m
J

m−1
J

∫ y∧ j+1
J

0 μ̂N (dx)
∫ 1
y∨ j

J

μ̂N (dx)dy dz∫ j
J
j−1
J

∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)
∫ 1
y∨ j

J

μ̂N (dx)dy dz

≤
∫ m

J
m−1

J

∫ y∧ j+1
J

0 μ̂N (dx)f (y) dy∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)f (y) dy

= 1 +
∫ m

J
m−1

J

∫ y∧ j+1
J

y∧ j−1
J

μ̂N (dx)f (y) dy∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)f (y) dy

,

where f (y) = ∫ 1
y∨ j

J

μ̂N (dx). Consider m ≤ j − 1. For y ∈ [m−1
J

, m
J

] we have y = y ∧ j+1
J

=
y∧ j−1

J
, hence the error term is zero. Consider m ≥ j . For y ∈ [m−1

J
, m

J
], we have y∧ j−1

J
= j−1

J
.

Consequently, using (27), we obtain that for j ≥ J 1/2 ≈ �−1/6

∫ m
J

m−1
J

∫ y∧ j+1
J

y∧ j−1
J

μ̂N (dx)f (y) dy∫ m
J

m−1
J

∫ y∧ j−1
J

0 μ̂N (dx)f (y) dy

≤
∫ m

J
m−1

J

∫ j+1
J

j−1
J

μ̂N (dx)f (y) dy∫ m
J

m−1
J

∫ j−1
J

0 μ̂N (dx)f (y) dy

≈ 2J−1

j−1
J

= 2

j − 1
� �1/6.

Finally, symmetric bound 1 − M̂j+1,m

M̂j,m
� �1/6 can be obtained by similar calculations. �

In previous proposition, we have established uniform bounds on the eigenfunction ŵ1. Next,
we show that ŵ1 is a good approximation of û1.

Definition 32. Let L̂ be the matrix representation of the form l̂ with respect to the algebraic
basis (ψ0

j )j (see Definition 26), that is,

L̂i,j := l̂
(
ψ0

i ,ψ0
j

)= l̂(ψi,ψj ).

On the event Q�, when �is sufficiently small, L̂ is symmetric tridiagonal. We want to bound the
error between the solutions of the generalized eigenproblems:

M̂(ŵi) = λ̂−1
1 F̂ (ŵi) and M̂(̂ui) = γ̂ −1

1 L̂(̂ui).
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Lemma 33. On the event Q� holds

‖F̂ − L̂‖l2 � �1/2−4α. (36)

Furthermore matrix L̂ is invertible and

‖L̂‖l2,‖F̂‖l2,
∥∥L̂−1

∥∥−1
l2

,
∥∥F̂−1

∥∥−1
l2

≈ �1/3.

Proof. Consider vector (vj )j ∈ R
J with ‖(vj )j‖l2 = 1 and the corresponding function v =∑J

j=1 vjψ
0
j (x) ∈ V 0

J . Since

∥∥(F̂ − L̂)v
∥∥2

l2
=

J∑
j=1

∣∣f̂ (v,ψj ) − l̂(v,ψj )
∣∣2

=
J∑

j=1

(
vj−1L̂j−1,j + vj (F̂j,j − L̂j,j ) + vj+1L̂j+1,j

)2
,

to obtain (36), we just have to argue that L̂j−1,j , |F̂j,j − L̂j,j | and L̂j+1,j are of order �1/2−4α .
By the definition of the forms l̂ and ĝ from the Eigenproblem 5

2|L̂j−1,j | =
N−1∑
n=0

(
ψj−1(X(n+1)�) − ψj−1(Xn�)

)(
ψj (X(n+1)�) − ψj(Xn�)

)

=
N−1∑
n=0

1
(

Xn� <
j − 1

J

)
1
(

X(n+1)� >
j − 1

J

)

·
(

j − 1

J
− Xn�

)(
X(n+1)� − j − 1

J

)

+
N−1∑
n=0

1
(

Xn� >
j − 1

J

)
1
(

X(n+1)� <
j − 1

J

)

·
(

j − 1

J
− X(n+1)�

)(
Xn� − j − 1

J

)

�
N−1∑
n=0

1
(

Xn� <
j − 1

J

)
1
(

X(n+1)� >
j − 1

J

)
(X(n+1)� − Xn�)2

+
N−1∑
n=0

1
(

Xn� >
j − 1

J

)
1
(

X(n+1)� <
j − 1

J

)
(X(n+1)� − Xn�)2.



Nonparametric volatility estimation in scalar diffusions 2963

Moreover,

|F̂j,j − L̂j,j | ≤ 1

2

N−1∑
n=0

∣∣∣∣1(Xn� <
j − 1

J

)
− 1
(

X(n+1)� <
j − 1

J

)∣∣∣∣(X(n+1)� − Xn�)2

+ 1

2

N−1∑
n=0

∣∣∣∣1(Xn� <
j

J

)
− 1
(

X(n+1)� <
j

J

)∣∣∣∣(X(n+1)� − Xn�)2.

Hence, it suffices to show that for any x ∈ (0,1)

N−1∑
n=0

1(Xn� < x)1(X(n+1)� > x)(X(n+1)� − Xn�)2 � �1/2−4α. (37)

By Definition 27(i), on the event Q�, we have

N−1∑
n=0

1(Xn� < x)1(X(n+1)� > x)(X(n+1)� − Xn�)2

≤ �−2α 1

N

N−1∑
n=0

1
(|Xn� − x| ≤ �1/2−α

)
.

Arguing as in the proof of Lemma 18, we finally obtain

1

N

N−1∑
n=0

1
(|Xn� − x| ≤ �1/2−α

)
�
∫ x+�1/2−α

x−�1/2−α

μ1(x) dx + ω(�)‖μ1‖∞ � �1/2−2α.

Since F̂ is a diagonal matrix with diagonal entries of order �1/3, we have ‖F̂‖l2,‖F̂−1‖−1
l2

≈
�1/3. As argued above, on Q�, the upper and lower diagonal entries of L̂ are of order �1/2−4α .
Since for any 1 ≤ j ≤ J holds |L̂j,j − F̂j,j | � �1/2−4α , matrix L̂ is diagonally dominant with
diagonal entries of order �1/3. Hence, it is invertible and ‖L̂‖l2,‖L̂−1‖−1

l2
≈ �1/3. �

Lemma 34. Eigenvectors (ŵ1,j ), (̂u1,j ), normalized so that ‖ŵ1‖l2 = ‖û1‖l2 = J 1/2, satisfy on
Q� ∥∥(ŵ1,j ) − (̂u1,j )

∥∥
l2

� �−1/3
∥∥(F̂ − L̂)ŵ1

∥∥
l2
.

Proof. Recall that (̂λj , ŵj )j are the eigenpairs of the Eigenproblem 25, with ‖(ŵj )‖l2 = √
J .

[5], Theorem 26, implies that there exists an eigenpair (̂λj0 , J
−1/2ŵj0) such that∣∣̂λ−1

j0
− γ̂ −1

1

∣∣ � J−1/2
∥∥F̂−1

∥∥
l2

∥∥(F̂ − L̂)ŵ1
∥∥

l2
�
∥∥F̂−1

∥∥
l2
‖F̂ − L̂‖l2,∥∥(ŵj0,j ) − (̂u1,j )

∥∥
l2

� δ−1(̂λ−1
j0

)∥∥F̂−1
∥∥3/2

l2
‖F̂‖1/2

l2

∥∥(F̂ − L̂)ŵ1
∥∥

l2
,
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where δ(̂λ−1
j0

) is the so called localizing distance, i.e. δ(̂λ−1
j0

) = minj 	=j0 |̂λ−1
j − γ̂ −1

1 |. From
Lemma 33, we deduce ∣∣̂λ−1

j0
− γ̂ −1

1

∣∣� �1/6−4α.

By Nakatsukasa [21], Theorem 8.3, for any i = 1, . . . , J we have∣∣̂λ−1
i − γ̂ −1

i

∣∣� ∥∥L̂−1
∥∥

l2

∥∥̂λ−1
i (F̂ − L̂)

∥∥
l2
,

which together with Lemmas 29 and 33 imply∣∣̂λ−1
1 − γ̂ −1

1

∣∣� �1/6−4α. (38)

By Lemma 29 holds |̂λ−1
1 − λ̂−1

2 | � 1, hence we must have j0 = 1. Furthermore, from the same
uniform lower bound on the spectral gap it follows

δ
(̂
λ−1

j0

)= δ
(̂
λ−1

1

)
� 1.

Since by Lemma 33, we have ‖F̂−1‖3/2
l2

‖F̂‖1/2
l2

� �−1/3, we conclude that the claim holds. �

Proof of Proposition 20. Set

P� =Q� ∩ {‖ŵ1 − û1‖2
l2

≤ �1/7−8α
}
.

Step 1. We will show that

Eσ,b

[
1Q�

· ∥∥(F̂ − L̂)ŵ1
∥∥2

l2

]1/2 � �5/12−4α. (39)

In the proof of Lemma 33, we argued that for any j = 1, . . . , J it holds

l̂(ψj ,ψj−1), l̂(ψj ,ψj+1),
∣∣̂l(ψj ,ψj ) − f̂ (ψj ,ψj )

∣∣� �1/2−4α. (40)

Hence, using the uniform upper bound ∀i = 1, . . . , J ŵ1,i � 1 from (30), we obtain that∣∣̂l(ŵ1,ψj ) − f̂ (ŵ1,ψj )
∣∣� �1/2−4α for any j = 1, . . . , J. (41)

We will use the regularity of the eigenfunction ŵ1 to strengthen (41). Consider J 1/2 ≤ j ≤
J − J 1/2. By the tridiagonal structure of the form l̂ it holds

l̂(ŵ1,ψj ) − f̂ (ŵ1,ψj )

= l̂(ψj−1,ψj )(ŵ1,j−1 − ŵ1,j ) + ŵ1,j l̂(I,ψj )

− ŵ1,j f̂ (ψj ,ψj ) + l̂(ψj+1,ψj )(ŵ1,j+1 − ŵ1,j )

= ŵ1,j

[̂
l(ψj−1,ψj )

(
ŵ1,j−1

ŵ1,j

− 1

)
+ l̂(I,ψj ) − f̂ (I,ψj ) + l̂(ψj+1,ψj )

(
ŵ1,j+1

ŵ1,j

− 1

)]
.
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Hence, using the upper bound ŵ1,j � 1 from (30), we obtain that

∣∣̂l(ŵ1,ψj ) − f̂ (ŵ1,ψj )
∣∣ � l̂(ψj−1,ψj )

∣∣∣∣ ŵ1,j−1

ŵ1,j

− 1

∣∣∣∣
+ ∣∣̂l(I,ψj ) − f̂ (I,ψj )

∣∣+ l̂(ψj+1,ψj )

∣∣∣∣ ŵ1,j+1

ŵ1,j

− 1

∣∣∣∣.
Inequalities (40) and (31) imply

l̂(ψj−1,ψj )

(
ŵ1,j−1

ŵ1,j

− 1

)
+ l̂(ψj+1,ψj )

(
ŵ1,j+1

ŵ1,j

− 1

)
) � �2/3−6α,

while, since Q� ⊂O�, from Lemma 39 it follows that

Eσ,b

[
1Q�

· ∣∣̂l(I,ψj ) − f̂ (I,ψj )
∣∣2] 1

2 � �
2
3 .

We conclude that for J 1/2 ≤ j ≤ J − J 1/2

Eσ,b

[
1Q�

· ∣∣̂l(ŵ1,ψj ) − f̂ (ŵ1,ψj )
∣∣2] 1

2 � �
2
3 −6α. (42)

Since α < 1
24 inequalities (41) and (42) imply

Eσ,b

[
1Q�

· ∥∥(F̂ − L̂)ŵ1
∥∥2

l2

]= J∑
j=1

Eσ,b

[
1Q�

· ∣∣f̂ (ŵ1,ψj ) − l̂(ŵ1,ψj )
∣∣2]

� J 1/2�1−8α + J�4/3−12α � �5/6−8α.

Step 2. P� is a high probability event. Indeed, inequality (39) and Lemma 34 imply

Eσ,b

[
1Q�

· ‖ŵ1 − û1‖2
l2

]1/2 � �1/12−4α.

Hence, by Markov’s inequality,

Pσ,b(L \P�) ≤ Pσ,b(L \Q�) + �−1/7+8α
Eσ,b

[
1Q�

· ‖ŵ1 − û1‖2
l2

]
� Pσ,b(L \Q�) + �1/6−1/7 → 0,

when � → 0.
Step 3. On the event P� it holds

max
i=1,...,J

|ŵ1,i − û1,i |2 ≤
J∑

i=1

|ŵ1,i − û1,i |2 = ‖ŵ1 − û1‖2
l2

� �1/7−8α.
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Since α < 1/56 the eigenvector (̂u1,j ) inherits the uniform bounds of the eigenvector (ŵ1,j ). In
particular, for any j = �aJ � − 1, . . . , �bJ � + 1, we have

û1,j ≈ 1.

Moreover, since for any j = 1, . . . , J holds ŵ1,j > 0, we deduce that

J∑
j=1

û2
1,j 1(̂u1,j < 0) ≤ ‖ŵ1 − û1‖2

l2
� 1.

Finally, note that on the event P� the eigenvalue γ̂1 ≈ 1 since on Q�, by (38), holds |̂λ−1
1 −

γ̂ −1
1 | � �1/6−4α � 1 and λ̂−1

1 ≈ 1 by Lemma 29. �

3.5. Proof of Theorem 8

As announced in Section 2.2, we will bound the approximation error of the spectral estimator
and the time symmetric Florens-Zmirou estimator by the difference of forms f̂ and l̂.

Lemma 35. On the high probability event P� from Proposition 20 it holds

∥∥σ̃ 2
S − σ̂ 2

FZ

∥∥
L1([a,b]) �

�bJ �∑
j=�aJ �

∣∣̂l(̂u1,ψj ) − f̂ (̂u1,ψj )
∣∣.

Proof. From representations (20) and (10), it follows that

∥∥σ̃ 2
S − σ̂ 2

FZ

∥∥
L1([a,b]) = 1

J

�bJ �∑
j=�aJ �

∣∣̃σ 2
S,j − σ̂ 2

FZ,j

∣∣� 1

J

�bJ �∑
j=�aJ �

|̂l(̂u1,ψj ) − f̂ (̂u1,ψj )|
û1,j

∫ j
J
j−1
J

μ̂N (dx)

.

By Proposition 20, for j = �aJ � − 1 ≤ j ≤ �bJ � + 1, we have û1,j ∼ 1. Since, by Lemma 18,

J
∫ j

J
j−1
J

μ̂N (dx) ≈ 1, we conclude that the claim holds. �

Proposition 36. For every function v ∈ V 0
J and any j = 1, . . . , J we have

Eσ,b

[
1O�

· ∣∣f̂ (v,ψj ) − l̂(v,ψj )
∣∣2] 1

2 �
(|vj−1|2 + |vj |2 + |vj+1|2

) 1
2 �

1
2 ,

where v corresponds to the vector (vj )j=1,...,J and v0, vJ+1 = 0.

Proof. First, note that since for i 	= j holds f̂ (ψi,ψj ) = 0 we have f̂ (v,ψj ) = vj f̂ (ψj ,ψj ).
Moreover, on the event O�, for � sufficiently small, the increments of the process X are smaller
than J−1. Hence, for |i − j | > 1, holds l̂(ψi,ψj ) = 0. Linearity implies

l̂(v,ψj ) = vj−1̂l(ψj−1,ψj ) + vj l̂(ψj ,ψj ) + vj+1̂l(ψj+1,ψj ). (43)
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Consequently, it is sufficient to show that

Eσ,b

[∣∣̂l(ψj−1,ψj )
∣∣2] 1

2 +Eσ,b

[∣∣f̂ (ψj ,ψj ) − l̂(ψj ,ψj )
∣∣2] 1

2

+Eσ,b

[∣∣̂l(ψj ,ψj−1)
∣∣2] 1

2 � �
1
2 .

(44)

Decomposing the terms above like in Lemma 33, we obtain that (44) follows from Theorem 41.
�

We are now able to prove the suboptimal rate �1/6 for the root mean squared L2([a, b]) error
of the spectral estimator σ̃S .

Proposition 37. There exists an event R� ⊆P� satisfying lim�→0 Pσ,b(L \R�) = 0, such that
for every x ∈ (a, b)

Eσ,b

[
1R�

· ∣∣̃σ 2
S (x) − σ 2(x)

∣∣2] 1
2 � �

1
6 . (45)

Furthermore, on R�, for every �aJ � ≤ j ≤ �bJ � we have

σ̃ 2
S,j ≈ 1, (46)

Eσ,b

[
1R�

·
∣∣∣∣ û1,j±1

û1,j

− 1

∣∣∣∣2] 1
2

� �
1
6 . (47)

Remark 38. Given the uniform lower bound on the derivative û1,j , and since �1/6 ≈ J−1/2,
inequality (47) can be reformulated as

Eσ,b

[
1R�

·
∣∣∣∣ û′

1(
j
J

± 1
J
) − û′

1(
j
J
)

J−1/2

∣∣∣∣2] 1
2

� 1.

By means of Markov’s inequality the latter can be interpreted as almost 1/2-Hölder regularity
of û′

1. In that sense, Proposition 37 is a discrete time equivalent of Proposition B.4, which states
that the derivatives of the eigenfunctions inherit the regularity of the design density, in the high-
frequency case the regularity of the local time.

Proof of Proposition 37. Let P� be the high probability event introduced in Proposition 20. On
P�, we choose the eigenfunction û1 s.t.

J∑
j=1

û2
1,j = J and û1,j ≈ 1 for every �aJ � − 1 ≤ j ≤ �bJ � + 1. (48)

Step 1. Proof of (46). On the event O�, for � sufficiently small, using the representation (20)
together with (43) and (48) we obtain that

l̂(ψj ,ψj )∫ j
J
j−1
J

μ̂N (dx)

� σ̃ 2
S,j � l̂(ψj−1 + ψj + ψj+1,ψj )∫ j

J
j−1
J

μ̂N (dx)

(49)
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holds for every �aJ � ≤ j ≤ �bJ �. Since

l̂(ψj−1 + ψj + ψj+1,ψj ) �
N−1∑
n=0

(
1j (Xn�) + 1j (X(n+1)�)

)
(X(n+1)� − Xn�)2,

we deduce that σ̃ 2
S,j � σ̂ 2

FZ,j . Furthermore, since on P� holds

l̂(ψj ,ψj ) ≥ 1

2

N−1∑
n=0

1
(

j − 1

J
+ �5/11 ≤ Xn� ≤ j − 1

J
− �5/11

)
(X(n+1)� − Xn�)2, (50)

the spectral estimator can be bounded from below by a time symmetric Florens-Zmirou estimator
with bandwidth 1

2�1/3 − �5/11 ≈ �1/3. Arguing as in Corollary 24, we deduce that there exists
a high probability event R(1)

� , such that on R(1)
� , bound σ̃ 2

S (x) � 1 holds for any x ∈ (a, b). Set

R� =P� ∩R(1)
� .

Step 2. Proof of (45). Fix x ∈ (a, b) and chose j s.t. j−1
J

≤ x <
j
J

. Representations (20) and
(10), together with Lemma 18, imply∣∣̃σ 2

S,j − σ̂ 2
FZ,j

∣∣� �−1/3
∣∣̂l(̂u1,ψj ) − f̂ (̂u1,ψj )

∣∣.
Hence, from Proposition 36 and (48) it follows that

Eσ,b

[
1R�

· ∣∣̃σ 2
S (x) − σ̂ 2

FZ(x)
∣∣2] 1

2 � �1/6.

By Theorem 19 and Hölder regularity of σ 2

Eσ,b

[
1R�

· ∥∥σ 2 − σ̂ 2
FZ

∥∥2
∞
] 1

2 � �1/6.

By the triangle inequality, we conclude that (45) holds.
Step 3. Proof of (47). Set �aJ � ≤ j ≤ �bJ �. We will only prove

Eσ,b

[
1R�

·
∣∣∣∣ û1,j+1

û1,j

− 1

∣∣∣∣2] 1
2

� �
1
6 , (51)

as the symmetric bound on the second moment of 1R�
· | û1,j−1

û1,j
−1| can be obtained analogously.

The general idea of the proof is similar to the proof of (31) in Proposition 31. First, we will show
that (51) follows from

Eσ,b

[
1R�

·
∣∣∣∣ û1,j+1σ̃

2
S,j+1

∫ j+1
J

j
J

μ̂N (dx)

û1,j σ̃
2
S,j

∫ j
J
j−1
J

μ̂N (dx)

− 1

∣∣∣∣2] 1
2

� �
1
6 . (52)
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To that purpose, by the triangle inequality and since on R� the derivatives û1,j , û1,j+1 ≈ 1, we
have to argue that

Eσ,b

[
1R�

·
∣∣∣∣ σ̃

2
S,j+1

∫ j+1
J

j
J

μ̂N (dx)

σ̃ 2
S,j

∫ j
J
j−1
J

μ̂N (dx)

− 1

∣∣∣∣2] 1
2

� �1/6. (53)

Step 3.1. Proof of (53). By Lemma 18 holds J
∫ j

J
j−1
J

μ̂N (dx), J
∫ j+1

J
j
J

μ̂N (dx) ≈ 1. We defined

above the event R� so that σ̃ 2
S,j ,≈ 1. Hence, to prove (53), it suffices to show

Eσ,b

[
1R�

· ∣∣̃σ 2
S,j+1 − σ̃ 2

S,j

∣∣2] 1
2 � �1/6 (54)

Eσ,b

[
1R�

·
∣∣∣∣∫ j+1

J

j
J

μ̂N (dx) −
∫ j

J

j−1
J

μ̂N (dx)

∣∣∣∣2] 1
2

� �1/2. (55)

(54) follows from (45) and 1/2 Hölder regularity of σ 2. Indeed

Eσ,b

[
1R�

· ∣∣̃σ 2
S,j+1 − σ̃ 2

S,j

∣∣2] 1
2

� Eσ,b

[
1R�

·
∣∣∣∣̃σ 2

S,j+1 − σ 2
(

j + 1/2

J

)∣∣∣∣2] 1
2

+Eσ,b

[
1R�

·
∣∣∣∣σ 2
(

j + 1/2

J

)
− σ 2

(
j − 1/2

J

)∣∣∣∣2] 1
2

+Eσ,b

[
1R�

·
∣∣∣∣σ 2
(

j − 1/2

J

)
− σ̃ 2

S,j

∣∣∣∣2] 1
2

� �1/6.

To prove (55), let∣∣∣∣∫ j+1
J

j
J

μ̂N (dx) −
∫ j

J

j−1
J

μ̂N (dx)

∣∣∣∣ ≤
∣∣∣∣∫ j+1

J

j
J

μ̂N (dx) −
∫ j+1

J

j
J

μ1(x) dx

∣∣∣∣
+
∣∣∣∣∫ j+1

J

j
J

μ1(x) dx −
∫ j

J

j−1
J

μ1(x) dx

∣∣∣∣
+
∣∣∣∣∫ j

J

j−1
J

μ1(x) dx −
∫ j

J

j−1
J

μ̂N (dx)

∣∣∣∣
:= E1 + E2 + E3.
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Arguing like in the proof of Lemma 18 we obtain

Eσ,b

[
E2

1 + E2
3

] 1
2 � �2/3,

while the Cauchy–Schwarz inequality, together with Theorem 15 yield

Eσ,b

[
E2

2

] 1
2 = Eσ,b

[∣∣∣∣∫ J−1

0
μ1

(
j

J
+ x

)
− μ1

(
j − 1

J
+ x

)
dx

∣∣∣∣2] 1
2

≤
[

1

J

∫ J−1

0
Eσ,b

[∣∣∣∣μ1

(
j

J
+ x

)
− μ1

(
j − 1

J
+ x

)∣∣∣∣2]dx

] 1
2

� �
1
2 .

Step 3.2. Proof of (52). The representation (20), together with the eigenpair property of
(γ̂1, û1), imply that

û1,j+1σ̃
2
S,j+1

∫ j+1
J

j
J

μ̂N (dx)

û1,j σ̃
2
S,j

∫ j
J
j−1
J

μ̂N (dx)

= l̂ (̂u1,ψj+1)

l̂(̂u1,ψj )
= ĝ(̂u1,ψj+1)

ĝ(̂u1,ψj )
.

In what follows, we want to apply methods from the Perron-Frobenius theory for nonnegative
matrices. To that purpose, recall the definition of matrix M̂ from Section 3.4, Eq. (25). We have

ĝ(̂u1,ψj+1)

ĝ(̂u1,ψj )
=
∑J

m=1 M̂m,j+1û1,m∑J
m=1 M̂m,j û1,m

.

To bound the above ratio, we would like to proceed as in the proof of inequality (31) in Proposi-
tion 31. Unfortunately, we can’t, as we don’t know if the vector of derivatives (̂u1,j ) is positive.
Still, using the inequality (32) and arguing as in the proof of (31), we obtain that∣∣∣∣∑J

m=1 M̂m,j+1û1,m1(̂u1,m > 0)∑J
m=1 M̂m,j û1,m1(̂u1,m > 0)

− 1

∣∣∣∣� �1/6.

To finish the proof, we need to show that the possible error due to the negative derivative terms
is small enough. On the event R� we have

ĝ(̂u1,ψj ) = γ̂ −1
1 l̂ (̂u1,ψj ) ≈ l̂ (̂u1,ψj ) ≥ û1,j l̂(ψj ,ψj ) ∼ l̂(ψj ,ψj ).

Furthermore, on the event R� we have l̂(ψj ,ψj ) �
∫ j

J
j−1
J

μ̂N (dx); indeed we defined R� such

that the left hand side of (49) has a uniform lower bound. Thus, by Lemma 18

J∑
m=1

M̂m,j û1,m = ĝ(̂u1,ψj ) �
∫ j

J

j−1
J

μ̂N (dx) � �1/3.
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Consequently, we need to show that

J∑
m=1

(M̂m,j + M̂m,j+1)|̂u1,m|1(̂u1,m ≤ 0) � �
1
2 .

From (25) it follows M̂i,j � J−2. By the Cauchy–Schwarz inequality and Proposition 20

J∑
m=1

(M̂m,j + M̂m,j+1)|̂u1,m|1(̂u1,m ≤ 0)

� J−3/2

(
J∑

m=1

|̂u1,m|21(̂u1,m ≤ 0)

) 1
2

� �
1
2 .

�

To obtain the suboptimal rate �1/6 we only used uniform bounds on the derivatives vector
(̂u1,j )j together with the general error bound from Proposition 36. Having established the reg-
ularity of the eigenfunction û1, we are now able to argue that the error Eσ,b[1R�

· |̂l(̂u1,ψj ) −
f̂ (̂u1,ψj )|] is at most of order �2/3.

Lemma 39. Denote I (x) = x − c0, with c0 such that I ∈ V 0
J . For � sufficiently small, for every

j = 1, . . . , J , it holds

Eσ,b

[
1O�

· ∣∣f̂ (I,ψj ) − l̂(I,ψj )
∣∣2] 1

2 � �2/3. (56)

Proof. We will reduce (56) to the term bounded in Theorem 42. By definition of the forms l̂, f̂

and the representation (10) it holds

l̂(I,ψj ) = 1

2

N−1∑
n=0

(X(n+1)� − Xn�)
(
ψj(X(n+1)�) − ψj (Xn�)

)
,

f̂ (I,ψj ) = 1

4

N−1∑
n=0

(
1j (Xn�) + 1j (X(n+1)�)

)
(X(n+1)� − Xn�)2.

We will analyze the error contribution of a single summand. When Xn�,X(n+1)� ∈ [ j−1
J

,
j
J
]

both forms contribute by 1
2 (X(n+1)� − Xn�)2, hence cancel perfectly. When both Xn�,

X(n+1)� /∈ [ j−1
J

,
j
J
] neither of the forms contribute. Since on O�, for � sufficiently small, the

increment |X(n+1)� − Xn�| ≤ 1/J we deduce that the overall error |f̂ (I,ψj ) − l̂(I,ψj )| is due
only to summands with the increment Xn�,X(n+1)� crossing the boundary of [ j−1

J
,

j
J
]. In such

case, the form f̂ contributes by 1
4 (X(n+1)� − Xn�)2, while l̂ by 1

2 (X(n+1)� − Xn�)β , where

β = sgn(X(n+1)� − Xn�) · length

(
[Xn�,X(n+1)�] ∩

[
j − 1

J
,
j

J

])
.
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Let γ = X(n+1)� − Xn� − β . The contribution of a single boundary crossing summand equals

1

4
(X(n+1)� − Xn�)2 − 1

2
(X(n+1)� − Xn�)β = 1

4
(β + γ )(γ − β) = γ 2 − β2

4
.

Considering all four possible crossing configurations, we obtain that

f̂ (I,ψj ) − l̂(I,ψj ) =
N−1∑
n=0

(
1
(

j
J

,1](X(n+1)�) − 1
(

j
J

,1](Xn�)
)

·
((

X(n+1)� − j

J

)2

−
(

Xn� − j

J

)2)

+
N−1∑
n=0

(
1
(

j−1
J

,1](X(n+1)�) − 1
(

j−1
J

,1](Xn�)
)

·
((

X(n+1)� − j − 1

J

)2

−
(

Xn� − j − 1

J

)2)
.

Thus, (56) indeed follows from Theorem 42. �

Proof of Theorem 8. Let R� be the high probability event introduced in Proposition 37. In
view of Remark 22, it is enough to prove the claim for the estimator σ̃ 2

S . By Lemma 35 and since
J ∼ �−1/3, it is sufficient to show that for any �aJ � ≤ j ≤ �bJ � holds

Eσ,b

[
1R�

· ∣∣̂l(̂u1,ψj ) − f̂ (̂u1,ψj )
∣∣]� �2/3.

By Definition 14 holds f̂ (̂u1,ψj ) = û1,j f̂ (ψj ,ψj ) = û1,j f̂ (I,ψj ). Since on the event R�, for
� sufficiently small, the increments |X(n+1)� − Xn�| ≤ J−1, we have

l̂ (̂u1,ψj ) = û1,j−1̂l(ψj ,ψj−1) + û1,j l̂(ψj ,ψj ) + û1,j+1̂l(ψj ,ψj+1),

l̂(I,ψj ) = l̂(ψj ,ψj−1) + l̂(ψj ,ψj ) + l̂(ψj ,ψj+1).

Consequently, since by Proposition 20 û1,j ≈ 1, we deduce that

l̂ (̂u1,ψj ) − f̂ (̂u1,ψj ) ≈ l̂(ψj ,ψj−1)

(
û1,j−1

û1,j

− 1

)
+ l̂(I,ψj ) − f̂ (I,ψj )

+ l̂(ψj ,ψj+1)

(
û1,j+1

û1,j

− 1

)
.

(57)

By the Cauchy–Schwarz inequality together with Proposition 36 and the inequality (47) we can
uniformly bound the mean absolute value of the first and third term by �2/3. Since R� ⊂ O�

the mean absolute value of the second term is bounded in Lemma 39. �
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3.6. Technical results

We devote this chapter to the proof of two technical results that provide us with control over,
properly rescaled, mean number of crossing of a given level α.

Definition 40. For α ∈ (0,1) and n = 0, . . . ,N − 1 define

χ(n,α) = 1[0,α)(X(n+1)�) − 1[0,α)(Xn�).

The random variable χ codifies the event of the increment Xn�,X(n+1)� crossing the level α.
The sign of χ contains information about the direction of the crossing. Since∣∣χ(n,α)

∣∣≤ 1
(|Xn� − α| ≤ ω(�)

)
,

arguing as in the proof of Lemma (18) we can show that

1

N

N−1∑
n=0

∣∣χ(n,α)
∣∣≤ 4ω(�)μ1.

Consequently, Theorem 17 implies that the mean number of crossings, rescaled by the sample
size, can be upper bounded by �1/2 log(�). Keeping in mind that (X(n+1)� − Xn�)2 is of the
order � = 1/N , the next result is a refinement of the bound above.

Theorem 41. For every α ∈ (0,1), we have

Eσ,b

[(
N−1∑
n=0

∣∣χ(n,α)
∣∣(X(n+1)� − Xn�)2

)2] 1
2

� �1/2.

Proof. Fix α ∈ (0,1). Since |χ(n,α)| = 1 if and only if the increment (Xn�,X(n+1)�) crosses
the level α, the claim is equivalent to the inequalities:

Eσ,b

[(
N−1∑
n=0

1(Xn� < α)1(X(n+1)� > α)(X(n+1)� − Xn�)2

)2] 1
2

� �1/2,

Eσ,b

[(
N−1∑
n=0

1(Xn� > α)1(X(n+1)� < α)(X(n+1)� − Xn�)2

)2] 1
2

� �1/2.

Below, we only prove the first inequality. The second one can be obtained in a similar way or
by a time reversal argument. Denote

ηn = 1(Xn� < α)1(X(n+1)� > α)(X(n+1)� − Xn�)2.
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We have

Eσ,b

[(
N−1∑
n=0

1(Xn� < α)1(X(n+1)� > α)(X(n+1)� − Xn�)2

)2]

=
N−1∑
n=0

Eσ,b

[
η2

n

]+ 2
N−1∑

0≤n<m

Eσ,b[ηnηm].

Denote by pt the transition kernel of the diffusion X. Uniform bounds on diffusion coefficients
imply that

pt(x, y) ≤ M1
1√
t

exp

(
− (x − y)2

M2t

)
, (58)

with M1, M2 positive constants uniform on �, see [26], Lemma 2. From (58) and the inequality
[1], Formula 7.1.13: ∫ ∞

x

e−z2
dz ≤ e−x2

x +√x2 + 4/π
≤

√
π

2
e−x2

, (59)

it follows that∫ α

0

∫ 1

α

p�(x, y)(y − x)4 dy dx �
∫ α

0

∫ 1

α

1√
�

e
− (y−x)2

M2� (y − x)4 dy dx

� �2
∫ α

0

∫ 1−x√
�M2

α−x√
�M2

e−z2
z4 dzdx

� �2
∫ α

0

∫ 1−x√
�M2

α−x√
�M2

e− z2
2 dzdx

� �2
∫ α

0
e
− (α−x)2

2M2� dx � �5/2.

(60)

Similarly ∫ α

0

∫ 1

α

p�(x, y)(y − x)2 dy dx � �3/2. (61)

For simplicity, we will use the stationarity of X, which is granted by Assumption 2. Using more
elaborated arguments, the result could be obtained for an arbitrary initial condition. By stationar-
ity, for any t , the one dimensional margin Xt is distributed with respect to the invariant measure
μ(x)dx. Conditioning on Xn�, from (60) and uniform bounds on the density μ it follows

Eσ,b

[
η2

n

]= ∫ α

0

∫ 1

α

p�(x, y)(y − x)4 dyμ(x)dx � �5/2.
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Hence,

N−1∑
n=0

Eσ,b

[
η2

n

]
� N�

5
2 = �

3
2 .

The Cauchy–Schwarz inequality implies

N−2∑
n=0

Eσ,b[ηnηn+1] �
N−2∑
n=0

Eσ,b

[
η2

n

] 1
2 Eσ,b

[
η2

n+1

] 1
2 � N�

5
2 � �

3
2 .

Finally, using (61), for m > n + 1, we obtain

Eσ,b[ηnηm] =
∫ α

0

∫ 1

α

∫ α

0

∫ 1

α

p�(x, y)(y − x)2p(m−n−1)�(z, x)(z − w)2

· p�(w, z)μ(w)dy dx dzdw

�
∫ α

0

∫ 1

α

p�(x, y)(y − x)2 dy dx
1√

(m − n − 1)�

·
∫ α

0

∫ 1

α

(z − w)2p�(w, z) dz dw

� �5/2 1√
m − n − 1

.

Consequently

N−3∑
n=0

N−1∑
m=n+2

Eσ,b[ηnηm] � �5/2
N−3∑
n=0

N−n−2∑
k=1

1√
k

� �5/2
N−3∑
n=0

√
N − n − 2

= �5/2
N−2∑
n=1

√
n � �5/2N3/2 = �.

�

Note that the claim of Theorem 41 still holds when we replace (X(n+1)� − Xn�)2 by
(X(n+1)� − α)2 or (Xn� − α)2. Next, we show that, when considering the direction of the
crossings, cancellations occur that make the difference of

∑N−1
n=0 χ(n,α)(X(n+1)� − α)2 and∑N−1

n=0 χ(n,α)(Xn� − α)2 even smaller.

Theorem 42. For any α ∈ [ 1
J
,1 − 1

J
] we have

Eσ,b

[
1O�

·
∣∣∣∣∣
N−1∑
n=0

χ(n,α)
(
(X(n+1)� − α)2 − (Xn� − α)2)∣∣∣∣∣

2] 1
2

� �2/3.
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Due to the sign of the summands the proof of the next theorem cannot be done in a similar
way as the previous result. In what follows, we show that on the event O�

N−1∑
n=0

χ(n,α)
(
(X(n+1)� − α)2 − (Xn� − α)2)= ∫ 1

0
1(Xs < α)ds − 1

N

N−1∑
n=0

1(Xn� < α) + R,

where the remainder term is of the right order. Thus we are left with showing that

Eσ,b

[∣∣∣∣∣
∫ 1

0
1(Xs < α)ds − 1

N

N−1∑
n=0

1(Xn� < α)

∣∣∣∣∣
2] 1

2

� �2/3. (62)

Note that 1
N

∑N−1
n=0 1(Xn� < α) is a Riemann type estimator of the occupation time of the interval

[0, α). The problem of establishing the rate of convergence was recently considered in [19,22].
Although obtained results do not apply, as they require higher smoothness of the coefficients,
they suggest that an even better rate �3/4 holds. Indeed, in the case of a reflected diffusion with
bounded coefficients, we can show that

Eσ,b

[∣∣∣∣∣
∫ 1

0
f (Xs) ds − 1

N

N−1∑
n=0

f (Xn�)

∣∣∣∣∣
2] 1

2

� �
1+s

2 ‖f ‖Hs ,

for any cadlag function f with Sobolev regularity 0 ≤ s ≤ 1, see [4].

Proof. Fix α ∈ [ 1
J
,1 − 1

J
]. On the event O�, whenever 1[0,α)(X(n+1)�) − 1[0,α)(Xn�) 	= 0 we

must have |Xn� − α|, |X(n+1)� − α| ≤ ω(�) < �4/9. Consider function d : [0,1] → R given by

d(x) = (x − α)21
(|x − α| ≤ �4/9)+ �8/91

(|x − α| > �4/9).
We have (

1[0,α)(X(n+1)�) − 1[0,α)(Xn�)
)(

(X(n+1)� − α)2 − (Xn� − α)2)
= (1[0,α)(X(n+1)�) − 1[0,α)(Xn�)

)(
d(X(n+1)�) − d(Xn�)

)
.

Step 1. We will first show that

Eσ,b

[
1O�

·
∣∣∣∣∣
N−1∑
n=0

1[0,α)(Xn�)
(
d(X(n+1)�) − d(Xn�)

)∣∣∣∣∣
2] 1

2

� �2/3. (63)

Note that

d ′(x) = 2(x − α)1
(|x − α| ≤ �4/9),

1

2
d ′′(x) = −�4/9δ{α−�4/9} + 1

(|x − α| ≤ �4/9)− �4/9δ{α+�4/9},
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where the second derivative must be understood in the distributional sense. Since we fixed α

separated from the boundaries, d ′(0) = d ′(1) = 0 for � small enough. Denote by

Lx
s,t := Lx

t − Lx
s ,

the local time of the path fragment (Xu, s ≤ u ≤ t). From the Itô–Tanaka formula [25], Chap-
ter VI, Theorem 1.5, it follows that

d(X(n+1)�) − d(Xn�) =
∫ (n+1)�

n�

d ′(Xs)σ (Xs) dWt +
∫ (n+1)�

n�

d ′(Xs)b(Xs) ds

+
∫ (n+1)�

n�

σ 2(Xs)1
(|Xs − α| ≤ �4/9)ds

− �4/9Lα−�4/9

n�,(n+1)�
− �4/9Lα+�4/9

n�,(n+1)�

:=
∫ (n+1)�

n�

d ′(Xs)σ (Xs) dWt + Dn.

First, we will bound the sum of the martingale terms. Since martingale increments are uncorre-
lated, using Itô isometry, we obtain that

Eσ,b

[∣∣∣∣∣
N−1∑
n=0

1[0,α)(Xn�)

∫ (n+1)�

n�

d ′(Xs)σ (Xs) dWt

∣∣∣∣∣
2]

=
N−1∑
n=0

Eσ,b

[
1[0,α)(Xn�)

∫ (n+1)�

n�

(
d ′(Xs)σ (Xs)

)2
ds

]

� �
8
9 Eσ,b

[∫ 1

0
1
(|Xs − α| ≤ �

4
9
)
ds

]

= �
8
9

∫ α+�
4
9

α−�
4
9

Eσ,b

[
μ1(x)

]
dx � �

4
3 ,

where the last inequality follows from (13). Now, we will bound the sum of the finite variation
terms:

∑N−1
n=0 1[0,α)(Xn�)Dn. Note first that since b is uniformly bounded, we have

N−1∑
n=0

1[0,α)(Xn�)

∣∣∣∣∫ (n+1)�

n�

d ′(Xs)b(Xs) ds

∣∣∣∣� �4/9
∫ 1

0
1
(|x − α| ≤ �4/9)μ1(x) dx

� �8/9‖μ1‖∞.

Since by the inequality (13) ‖μ1‖∞ has all moments finite, the root mean squared value of this
sum is of smaller order than �2/3. Now, note that since on the event O� we have ω(�) < �4/9,
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condition Xn� < α implies that Lα+�4/9

n�,(n+1)� = 0. On the other hand, whenever Lα−�4/9

n�,(n+1)� 	= 0
we must have Xn� < α. Hence,

N−1∑
n=0

1[0,α)(Xn�)
(
�4/9Lα−�4/9

n�,(n+1)� + �4/9Lα+�4/9

n�,(n+1)�

)= �4/9Lα−�4/9

1 .

Using first the Cauchy–Schwarz inequality and then the regularity of the local time (see [25],
Chapter VI, Corollary 1.8 and the remark before), we obtain

Eσ,b

[∣∣∣∣�4/9Lα−�4/9

1 −
∫ α

α−�4/9
Lx

1 dx

∣∣∣∣2]≤ �4/9
∫ α

α−�4/9
Eσ,b

[∣∣Lx
1 − Lα−�4/9

1

∣∣2]dx

� �4/9
∫ α

α−�4/9

∣∣x − (α − �4/9)∣∣dx � �4/3.

Consequently, to prove (63), we just have to argue that the root mean squared error of

∫ α

α−�4/9
Lx

1 dx −
N−1∑
n=0

1[0,α)(Xn�)

∫ (n+1)�

n�

σ 2(Xs)1
(|Xs − α| ≤ �4/9)ds

=
N−1∑
n=0

∫ (n+1)�

n�

(
1(Xs < α) − 1(Xn� < α)

)
σ 2(Xs)1

(|Xs − α| ≤ �4/9)ds (64)

=
N−1∑
n=0

∫ (n+1)�

n�

(
1(Xs < α) − 1(Xn� < α)

)
σ 2(Xs) ds

is of order �2/3. From the 1/2-Hölder property of σ 2 it follows that∣∣∣∣∣
N−1∑
n=0

∫ (n+1)�

n�

(
1(Xs < α) − 1(Xn� < α)

)(
σ 2(Xs) − σ 2(α)

)
ds

∣∣∣∣∣
�

N−1∑
n=0

∫ (n+1)�

n�

1
(|Xs − α| ≤ �

4
9
)
�

2
9 ds � �

2
9

∫ α+�4/9

α−�4/9
μ1(dx) � �

2
3 ‖μ1‖∞.

Thus, by (13), we reduced (64) to

∫ 1

0
1(Xs < α)ds − 1

N

N−1∑
n=0

1(Xn� < α),

which is of the right order by (62). We conclude that (63) holds.
Step 2. Consider the time reversed process Yt = X1−t . Since X is reversible, the process Y ,

under the measure Pσ,b , has the same law as X. Furthermore, the occupation density and the
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modulus of continuity of processes Y and X are identical, hence O� is a “good” event also
for Y . Inequality (63) is equivalent to

Eσ,b

[
1O�

·
∣∣∣∣∣
N−1∑
m=0

1[0,α)(Ym�)
(
d(Y(m+1)�) − d(Ym�)

)∣∣∣∣∣
2] 1

2

� �
2
3 .

Substituting n = N − m, we obtain

N−1∑
m=0

1[0,α)(Ym�)
(
d(Y(m+1)�) − d(Ym�)

)

= −
N−1∑
n=0

1[0,α)(X(n+1)�)
(
d(X(n+1)�) − d(Xn�)

)
.

�

4. Low-frequency analysis

4.1. Spectral estimation method

In 1998, Hansen et al. [12] explained how the coefficients of a diffusion process are related to
the spectral properties of its infinitesimal generator. In this section, we want to shortly introduce
the main idea of their method.

The generator L of the reflected diffusion X is an unbounded operator on L2([0,1]) with

dom(L) = {f ∈ H 2 : f ′(0) = f ′(1) = 0
}
,

Lf (x) = μ−1(x)

(
1

2
σ 2(x)μ(x)f ′(x)

)′
for f ∈ dom(T ).

Spectral properties of L are discussed in Appendix B. Seen as an operator on the equivalent
Hilbert space L2([0,1],μ), generator L is elliptic, self-adjoint and has a compact resolvent op-
erator. Consequently, the eigenproblem

Eigenproblem 43. Find (ζ, u) ∈ R× L2, with u 	= 0, such that

Lu = ζu

has countably many non-positive eigenvalues 0 = ζ0 > ζ1 > ζ2 ≥ · · · , with μ-orthogonal eigen-
functions (ui)i=0,.... The eigenvalue ζ1 is simple and the corresponding eigenfunction u1 is
strictly monotone, see Proposition B.4. The main idea of the spectral estimation method is that
the diffusion coefficient σ 2 can be expressed in terms of the invariant density μ and the eigenpair
(ζ1, u1) (cf. Hansen et al. [12], Eq. (5.2)):

σ 2(x) = 2ζ1
∫ x

0 u1(y)μ(y)dy

u′
1(x)μ(x)

. (65)



2980 J. Chorowski

4.2. Estimation error of the invariant measure

From now on, we take the Assumptions 2 and 1 as granted. Fix � > 0 and 0 < a < b < 1. Set
J ∼ N1/5. Since the generator L has a spectral gap, diffusion X is geometrically ergodic. Below,
we state general bounds on the variance of integrals with respect to the empirical measure μ̂N ,
which are due to the mixing property of the observed sample (Xn�)n=0,...,N . For the proof, refer
to Chorowski and Trabs [5], Lemma 10.

Lemma 44. For any v,u ∈ L2([0,1]), we have

Varσ,b

[∫ 1

0
v(x)μ̂N(dx)

]
� N−1‖v‖2

L2,

Varσ,b

[
1

N

N−1∑
n=0

v(Xn�)u(X(n+1)�)

]
� N−1‖v · P�u‖2

L2 .

Corollary 45. There exists a high probability event T1, with Pσ,b(� \ T1) � N−1J 2, such that,
for any 1 ≤ j ≤ J , on T1 we have

J

∫ j
J

j−1
J

μ̂N (dx) ∼ 1.

Proof. Since the invariant density μ is uniformly bounded on �, there exist constants 0 < c < C

such that c ≤ J
∫ j

J
j−1
J

μ(x)dx ≤ C. Let

T1 =
{
∀j = 1, . . . , J it holds

∣∣∣∣∫ 1

0
ψ ′

j (x)μ̂N (dx) −
∫ 1

0
ψ ′

j (x)μ(x)dx

∣∣∣∣≤ c

2J

}
.

Using first the Markov inequality and then ‖ψ ′
j‖2

L2 = J−1 with ‖ψ ′
j‖2

L2 = J−1 we conclude that
the claim holds. �

4.3. Proof of Theorem 9

First, we state the approximation properties of the spaces VJ .

Definition 46. Denote by πJ and π
μ
J the L2 and L2(μ)-orthogonal projections on VJ respec-

tively.

Since VJ is the space of linear spline functions with regular knots at {0, 1
J
, 2

J
, . . . , J−1

J
,1}, it

satisfies the following Jackson and Bernstein type inequalities:∥∥(I − πJ )f
∥∥

Hk � J−(2−k)α‖f ‖C1,α for f ∈ C1,α
([0,1]) and k = 0,1, (66)

‖v‖H 1 � J‖v‖L2 for v ∈ VJ . (67)
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Definition 47. Denote by (φj )j=0,...,J the Franklin system on [0,1], i.e. the L2-orthogonal basis
of VJ , obtained from the Schauder algebraic basis by the Gram–Schmidt orthonormalization
procedure.

For construction and properties of the Franklin system refer to Ciesielski [6]. In particular,
basis functions (φj )j satisfy the following uniform bound (cf. Ciesielski [6], Theorem 5):∥∥∥∥∥

J∑
j=0

φ2
j

∥∥∥∥∥
∞

� J. (68)

Proof of Theorem 9. As noted in Section 2.1, the estimator (̂ζ1, û1) is constructed in the exactly
same way as the eigenpair estimator in Gobet et al. [11], Chorowski and Trabs [5]. Given the
properties of the Franklin system, arguing as in Chorowski and Trabs [5], Corollary 19, we
obtain that there exists a high probability event T2, with Pσ,b(� \ T2) � N−2/5, such that

Eσ,b

[
1T2 · (|γ1 − ζ̂1|2 + ‖u1 − û1‖2

H 1

)] 1
2 � N−1/5. (69)

Furthermore, on the event T2, we have |̂v1| ∼ 1 and ‖û1‖H 1 � 1.
Before we can prove the upper bound on the estimation error, we need to face one more

technical difficulty. Since the estimator û1 converges to the eigenfunction u1 in the sense of the
mean H 1 norm, we can’t postulate a uniform positive lower bound on infx∈[a,b] û′

1(x). Following
Chorowski and Trabs [5], Lemma 20, this difficulty can be overcome by applying the threshold
σ̂ 2

S ∧D. We conclude that there exists a high probability event T3 ⊂ T2 ∩T1, with Pσ,b(� \T3) �
N−2/5, such that on T3, for j s.t. [ j−1

J
,

j
J
] ⊂ (a, b), we have

σ̂ 2
S,j ∧ D = −2̂ζ1

∫ 1
0 ψj (x)̂u1(x)μ̂N(dx)

(̂u1,j ∨ ca,b)
∫ 1

0 ψ ′
j (x)μ̂N (dx)

∧ D, (70)

for a deterministic constant ca,b > 0 satisfying ca,b ≤ infx∈[a,b] u′
1(x).

Having established (69) and (70), the plug-in error can be controlled by similar considerations
as in the proof of Chorowski and Trabs [5], Theorem 7. �

Appendix A: Construction and properties of a scalar diffusion
with two reflecting barriers

In this section, we construct a weak solution of the SDE (1). Later, we will use presented con-
struction to generalize properties of scalar diffusions to reflected processes. The main idea of the
following reasoning is to extend the diffusion coefficients b and σ to the whole real line, apply
general SDEs theory to obtain a solution on R and finally project this solution to the interval
[0,1] in a way that corresponds to the instantaneous reflection. We refer the reader to [10], I.23,
for a very similar construction of a diffusion on [−1,1] with two reflecting barriers.
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Definition A.1. Define f : R→ [0,1] by

f (x) =
{

x − 2n, 2n ≤ x < 2n + 1,

2(n + 1) − x, 2n + 1 ≤ x < 2n + 2
for n ∈N.

Function f is almost everywhere differentiable with the derivative

f ′(x) =
{

1, 2n < x ≤ 2n + 1,

−1, 2n + 1 < x ≤ 2n + 2.

For σ,b : [0,1] → R define the extended coefficients σ̃ , b̃ :R→ R by

b̃(x) = f ′(x) · b ◦ f (x),

σ̃ (x) = σ ◦ f (x).

Theorem A.2. Grant Assumption 1. For every initial condition x0 ∈ [0,1] that is independent of
the driving Brownian motion W the SDE

dYt = b̃(Yt ) dt + σ̃ (Yt ) dWt ,

Y0 = x0,
(71)

has a non-exploding unique strong solution. Define

Xt = f (Yt ).

The process (Xt , t ≥ 0) is a weak solution of the SDE (1).

Proof. b̃ is bounded and σ̃ ′ ∈ L2
loc(R). Hence, the existence of a unique strong solution (Yt , t ≥

0) of the SDE (71) follows from [28], Theorem 4. As discussed in the proof of [18], Chapter 5,
Proposition 5.17, the boundedness of b̃ prevents the explosion of the solution. Process Y is a con-
tinuous semimartingale, hence by [25], Chapter VI, Theorem 1.2, it admits a local time process
(LY

t , t ≥ 0). By the Itô–Tanaka formula ([25], Chapter VI, Theorem 1.5) process X satisfies

Xt = x0 +
∫ t

0
b̃(Ys)f

′(Ys) ds +
∫ t

0
σ̃ (Ys)f

′(Ys) dWs +
∑
n∈Z

LY
t (2n) −

∑
n∈Z

LY
t (2n + 1)

= x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dBs + Kt,

where Bt = ∫ t

0 f ′(Ys) dWs and Kt =∑n∈Z LY
t (2n) −∑n∈Z LY

t (2n + 1). Note that for any T >

0 the path (Xt ,0 ≤ t ≤ T ) is bounded, hence K is well defined. Process B is a continuous
martingale with quadratic variation

〈B〉t =
∫ t

0

(
f ′(Ys)

)2
ds = t.
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Hence, Lévy’s characterization theorem implies that B is a standard Brownian motion. From
the properties of the local time LY

t follows that K is an adapted continuous process with finite
variation, starting from zero and varying on the set

⋃
n∈Z{Yt = 2n} ∪ {Yt = 2n + 1} ⊆ {Xt ∈

{0,1}}. Consequently, X satisfies the SDE (1). �

Next, we use the above construction of a reflected diffusion process to prove Brownian bounds
on the moments of the modulus of continuity of X.

Proof of Theorem 17. Fischer and Nappo [7] proved claimed upper bound for the standard
Brownian motion. We will now generalize their result to diffusions with boundary reflection.

Step 1. Consider a martingale M satisfying dMt = σ(Xt ) dWt . By the Dambis, Dubins–
Schwarz theorem, Mt = B∫ t

0 σ 2(Xu)du
for some Brownian motion B . Consequently,

|Mt − Ms | = |B∫ t
0 σ 2(Xu)du

− B∫ s
0 σ 2(Xu)du| ≤ ωB

(|t − s|∥∥σ 2
∥∥∞
)
,

where ωB is the modulus of continuity of B . Thus, (15) holds for the martingale M , with a
constant that depends only on the uniform upper bound on the volatility σ .

Step 2. Consider a semimartingale Y satisfying dYt = b(Xt ) dt + dMt . Then

|Yt − Ys | ≤
∣∣∣∣∫ t

0
b(Yu) du −

∫ s

0
b(Yu) du

∣∣∣∣+ |Mt − Ms | ≤ |t − s|‖b‖∞ + ωM
(|t − s|).

Consequently, (15) holds for the semimartingale Y , with a constant that depends only on the
upper bounds on σ and b.

Step 3. For (σ, b) ∈ � consider the reflected diffusion process X satisfying the SDE (1). Let

dYt = b̃(Yt ) dt + σ̃ (Yt ) dWt ,

Xt = f (Yt ),

where b̃, σ̃ and f are as in Definition A.1. From Step 2, it follows that (15) holds for the semi-
martingale Y with a uniform constant on �. By the construction of the reflected process X, we
have |Xs − Xt | ≤ |Ys − Yt |. We conclude that ωX ≤ ωY , hence the claim holds for the reflected
diffusion X. �

Appendix B: Bilinear coercive form

Recall that H 1, H 2 denote the L2-Sobolev spaces on [0,1] of orders 1 and 2, respectively. For
differentiable, strictly positive functions σ and μ consider an elliptic operator T on L2([0,1]),
with Neumann type domain dom(T ) = {v ∈ H 2 : v′(0) = v′(1) = 0}, given in the divergence
form by

T v(x) = − (σ 2(x)μ(x)v′(x))′

2μ(x)
for v ∈ dom(T ). (72)
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Note that the operator −T is an infinitesimal generator of the diffusion process on [0,1] with
instantaneous reflection at the boundaries, volatility function σ and an invariant measure with
density μ. We want to analyze the eigenvalue problem for T , that is,

Eigenproblem B.1. Find (λ,w) ∈R× dom(T ), with w 	= 0, such that

T w = λw.

Integrating by parts, one can check, that the eigenpairs of the Eigenproblem B.1 solve

Eigenproblem B.2. Find (λ,w) ∈R× H 1, with w 	= 0, such that∫ 1

0
w′(x)v′(x)σ 2(x)μ(x)dx = 2λ

∫ 1

0
w(x)v(x)μ(x)dx for all v ∈ H 1. (73)

Eigenproblem B.2 is a weak formulation of the Eigenproblem B.1 for the associated Dirichlet
form l(u, v) = 〈T u, v〉μ. The biggest advantage of the weak formulation is that the Eigenprob-
lem B.2 makes sense for any, not necessarily regular, functions μ. When μ is not differentiable,
the Eigenproblem B.1 has no longer probabilistic interpretation in terms of the infinitesimal
generator. Nevertheless, such problems arise naturally when one considers spectral estimation
method with fixed time horizon, when the role of the invariant measure is taken by the non
differentiable occupation density.

In what follows, we want to generalize the results of [11] on the spectral properties of an in-
finitesimal generator, to the solutions of the Eigenproblem B.2 with a Hölder regular function μ.
For 0 < α ≤ 1 denote by Cα the space of α-Hölder regular functions on [0,1]. Furthermore, for
k ∈N let Ck,α be the space of k-times differentiable functions with kth derivative in Cα .

Definition B.3. For any given 0 < d < D let

Θα :=
{
(σ,μ) ∈ H 1([0,1])× Cα

([0,1]) : ‖σ‖H 1,‖μ‖Cα ≤ D,

inf
x∈[0,1]

(
σ(x) ∧ μ(x)

)≥ d,

∫ 1

0
μ(x)dx = 1

}
Eigenproblem B.2 is a conforming eigenvalue problem for a bilinear coercive form on the

Hilbert space L2(μ). [3] is a standard reference.

Proposition B.4. Let (σ,μ) ∈ Θα . The Eigenproblem B.2 has countably many solutions
(λi,wi)i , with real nonnegative eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · and μ-orthogonal eigen-
functions, satisfying Neumann boundary conditions w′

i (0) = w′
i (1) = 0. The smallest positive

eigenvalue λ1 is simple, the derivative w′
1 of the corresponding eigenfunction is 1/2 ∧ α Hölder

continuous and strictly monotone.
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Proof. It is easy to check that for any (σ,μ) λ0 = 0 and w0 ≡ 1 form an eigenpair. Let
L2

0(μ) = {v ∈ L2(μ) : ∫ 1
0 v(x)μ(x)dx = 0} and H 1

0 (μ) = L2
0(μ)∩H 1. L2

0(μ) with the L2(μ) in-

ner product and H 1
0 (μ) with 〈u,v〉H 1(μ) = 〈u,v〉L2

0(μ)+
∫ 1

0 u′(x)v′(x)μ(x)dx are Hilbert spaces.

The identity embedding I : H 1
0 (μ) → L2

0(μ) is compact.
For u,v ∈ H 1

0 (μ) let

l(u, v) =
∫ 1

0
u′(x)v′(x)σ 2(x)μ(x)dx.

l is a symmetric positive-definite bilinear form on H 1
0 (μ) × H 1

0 (μ). Furthermore, for any u ∈
H 1

0 (μ) holds

c‖u‖2
H 1

0 (μ)
≤ l(u,u) ≤ C‖u‖2

H 1
0 (μ)

, (74)

for some constants 0 < c < C that depend only on d , D. Indeed, since σ and μ are uniformly
bounded, we only have to show that

∫ 1
0 u2(x) dx ≤ ∫ 1

0 (u′(x))2 dx. Consider u ∈ C1([0,1]) ∩
H 1

0 (μ). Since u is continuous and integrates to zero, there exists x0 ∈ [0,1] s.t. u(x0) = 0. Since
u(x) = ∫ x

x0
u′(y) dy, the upper bound ‖u‖L2 ≤ ‖u′‖L2 follows from the Cauchy–Schwarz in-

equality. As Lipschitz functions are dense in H 1, we conclude that (74) holds.
l is the Dirichlet form of an unbounded operator T on L2

0(μ). Define D = dom(T ) as these
u ∈ H 1

0 (μ), that the functional v �→ l(u, v) is continuous on H 1
0 (μ) with norm ‖ · ‖L2(μ). By the

definition of the weak differentiability, domain D = {u : H 1
0 (μ) : u′σ 2μ ∈ H 1}. Furthermore, D

is dense in L2
0(μ) (see [3], Exercise 4.51). For u ∈ D, we define T u via the Riesz representation

theorem by l(u, v) = 〈T u, v〉L2(μ). Such defined T is an elliptic, densely defined, self-adjoint
operator with compact resolvent (see [3], Proposition 4.17). Consequently, T has a discrete spec-
trum (λi)i=1,..., with all eigenvalues positive and corresponding eigenfunctions μ-orthogonal.

Integrating by parts the right-hand side of (73), we obtain∫ 1

0
w′

i (x)σ 2(x)μ(x)v′(x) dx = −2λi

∫ 1

0

∫ x

0
wi(y)μ(y)dyv′(x) dx for all v ∈ H 1.

Since {v′ : v ∈ H 1} is dense in L2, it follows that

w′
i (x) = 2λi

∫ x

0 wi(y)μ(y)dy

σ 2(x)μ(x)
. (75)

By Sobolev embedding σ 2 is 1/2-Hölder regular. Consequently w′
i lies in C1/2∧α . Since the

eigenfunctions μ-integrate to zero, we deduce that w′
i (0) = w′

i (1) = 0.
Finally, we need to show that λ1 is simple and that w1 is strictly monotone. By the variational

formula for the eigenpairs of a self-adjoint operator

2λ1 = inf
u∈H 1

0 (μ)

∫ 1
0 (u′(x))2σ 2(x)μ(x)dx∫ 1

0 u2(x)μ(x)dx
. (76)
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Arguing as in [11], Lemma 6.1, we obtain that
∫ 1

0 u2(x)μ(x)dx = ∫ 1
0

∫ 1
0 m(y, z)u′(y)u′(z) dy dz

with m(y, z) = ∫ y∧z

0 μ(x)dx
∫ 1
y∨z

μ(x)dx. We deduce that the derivative of the eigenfunction
w1 must have a constant sign, otherwise we could reduce the ratio in (76) by considering

w̃1 = w11
(
w′

1 ≥ 0
)− w11

(
w′

1 ≤ 0
)
.

Hence, the set {x : w′
1(x) = 0} has zero Lebesgue measure. From (75), it follows that w′

1(x) = 0
only for x = 0,1, meaning that w1 is strictly monotone on (0,1). Consequently, for any two
eigenfunctions w1 and w̄1, which correspond to λ1, the scalar product∫ 1

0
w1(x)w̄1(x)μ(x)dx =

∫ 1

0

∫ 1

0
m(y, z)w′

1(y)w̄′
1(z) dy dz 	= 0,

hence the eigenspace corresponding to λ1 is one dimensional. �

Proposition B.5. The eigenvalues λ1, λ2 and the norm ratio ‖w1‖C1,1/2∧α /‖w1‖L2(μ) are uni-
formly bounded for all (σ,μ) ∈ Θα . Furthermore, for every 0 < a < b < 1, infx∈[a,b] |w′

1(x)|
and the spectral gap λ2 − λ1 have uniform lower bounds on Θα .

Proof. We adapt the notation from the proof of Proposition B.4. Choose w1 normalized s.t.
‖w1‖L2(μ) = 1. We will first argue that λ1, λ2 and ‖w1‖C1,1/2∧α are uniformly bounded on �α .
From (74), we imply that

2λ1 = l(w1,w1) ≥ c‖w1‖2
H 1(μ)

≥ c,

with c > 0 depending only on the bounds on σ and μ. It follows that the eigenvalues are uni-
formly separated from zero. By the variational formula

2λ2 = inf
S⊂H 1

dim(S)=3

sup
u∈S

∫ 1
0 (u′(x))2σ 2(x)μ(x)dx∫ 1

0 u2(x)μ(x)dx
≤ inf

S⊂H 1

dim(S)=3

sup
u∈S

D3
∫ 1

0 (u′(x))2 dx

d
∫ 1

0 u2(x) dx
≤ 4π2 D3

d
,

since 4π2 is the third eigenvalue of the negative Laplace operator on L2([0,1]) with Neumann
boundary conditions. We conclude that the eigenvalues λ1 and λ2 are uniformly bounded. The
uniform bound on ‖w1‖C1,1/2∧α follows from the representation (75).

We will now prove a uniform lower bound on the spectral gap λ2 − λ1. Assume by contra-
diction that for some sequence of coefficients (σn,μn) ∈ Θα the corresponding spectral gaps
(λn,2 − λn,1) converge to zero. Since Θα is compact in the uniform convergence metric, we
can assume that (σn,μn) converges uniformly to some (σ,μ) ∈ Θα . We will argue that the uni-
form convergence of the coefficients leads to convergence of the eigenvalues, hence contradicts
Proposition B.4 (cf. [11], proof of Proposition 6.5). However, since the function μ is embedded
in the definition of spaces L2

0(μ) and H 1
0 (μ), we need first to reduce the Eigenproblem B.2 to a

universal function space.
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Let U(x) = ∫ x

0 μ(y)dy be the distribution function of μ. Substituting U(x) = y, we find that
the Eigenproblem B.2 is equivalent to∫ 1

0
w̃′(x)̃v′(x)̃σ 2 dx = 2λ

∫ 1

0
w̃′(x)̃v′(x) dx for all ṽ ∈ H 1,

w̃ = w ◦ U−1,

with σ̃ = (σμ) ◦ U−1. Consider (̃σn)n and σ̃ corresponding to (σn,μn) and (σ,μ) respectively.
Note that σ̃n converges to σ̃ in the uniform norm. Denote L2

0 = L2
0(1) and H 1

0 := H 1
0 (1). For

u,v ∈ H 1
0 denote

l̃n(u, v) =
∫ 1

0
u′(x)v′(x)̃σn(x)2 dx

and by T̃n the corresponding operators on L2
0. Recall that the operators T̃n are unbounded and

self-adjoint on L2
0, with dense domains D̃n. Domains D̃n do not have to possess a common core,

which is needed to study the convergence of the sequence (T̃n)n. We circumvent this difficulty
by introducing inverse operators R̃n = T̃ −1

n . Using the divergence formula (72) for T̃n, we check
that for u ∈ L2

0

R̃nu(x) = −2
∫ x

0
σ̃−2

n (y)

∫ y

0
u(z) dz + cn(u), (77)

where cn(u) ∈ R is such that
∫ 1

0 R̃nu(x) dx = 0. The convergence σ̃n → σ̃ in C1[(0,1)] implies
that operators R̃n converge to R̃ in the operator norm on L2

0. By [3], Proposition 5.28, this entails
the regular convergence, which, by [3], Theorem 5.20, is equivalent to the strongly stable conver-
gence. Finally, [3], Proposition 5.6, ensures the convergence of the eigenvalues with preservation
of their multiplicities.

Set 0 < a < b < 1. We finally have to prove the uniform lower bound on infx∈[a,b] |w′
1(x)|.

We will use the same indirect arguments as when bounding the spectral gap. Assume that for
some sequence (σn,μn) ∈ Θα , with (σn,μn) converging in the uniform norm to (σ,μ) ∈ Θα ,
the corresponding eigenfunctions w1,n satisfy infn infx∈[a,b] |w′

1,n(x)| = 0. Arguing as for the

spectral gap, we reduce the problem to bounded operators (R̃n)n and R̃. From formula (77), we
deduce that the uniform convergence of coefficients implies R̃n → R̃ in the operator norm on
C([0,1]). We conclude, that the eigenfunctions converge in the uniform norm, which contradicts
Proposition B.4. �

Eigenproblem B.6. Let VJ be a finite dimensional subspace of L2. Find (λJ ,wJ ) ∈ R × VJ ,
with wJ 	= 0 such that∫ 1

0
w′(x)v′(x)σ 2(x)μ(x)dx = λ

∫ 1

0
w(x)v(x)μ(x)dx for any v ∈ VJ .
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Proposition B.7. Let (VJ )J=1,... be a sequence of approximation spaces satisfying the following
Jackson’s type inequality:∥∥(I − πJ )v

∥∥
H 1 ≤ CJ−α‖v‖C1,α for v ∈ C1,α,

where πJ is the L2-orthogonal projection on VJ and C > 0 some universal constant . Further-
more, assume that every VJ contains constant functions.

For (σ,μ) ∈ Θα the Eigenproblem B.6 has dim(VJ ) solutions (λJ,i ,wJ,i)i with real eigenval-
ues 0 = λJ,0 < λJ,1 < λJ,2 ≤ · · · ≤ λJ,dim(VJ )−1. For J big enough, the eigenvalue λJ,1 and the
spectral gap λJ,2 − λJ,1 are uniformly bounded on Θα .

Proof. We adapt the notation from the proof of Proposition B.4. By the Lax–Milgram theorem,
there exists an isomorphism Sl : H 1

0 (μ) → H 1
0 (μ) such that

l(Slv, u) = 〈v,u〉H 1(μ) for all v,u ∈ H 1
0 (μ).

Note that since for any v ∈ L2
0(μ) the functional H 1

0 (μ) � u �−→ 〈v,u〉L2(μ) ∈ R is continuous
on H 1

0 (μ), by the Riesz representation theorem there exists a continuous operator K : L2
0(μ) →

H 1
0 (μ) such that

〈v,u〉L2(μ) = 〈Kv,u〉H 1(μ).

Define the operator Bl = Sl ◦ K ◦ I , where I is the identity embedding of H 1
0 (μ) into L2

0(μ). By
(74), the form l defines an equivalent norm on H 1

0 (μ). Note that Bl is a self-adjoint and compact
operator on the Hilbert space H 1

0 (μ) with l-induced inner product. Consider (λi,wi), a solution
of the Eigenproblem B.2. For any v ∈ H 1

0 (μ) we have

l(wi, v) = λi〈wi, v〉L2(μ) = λi〈Kwi, v〉H 1(μ) = λil(SlKwi, v) = l(λiBlwi, v),

hence (λ−1
i ,wi) is an eigenpair of the operator Bl . In particular, Proposition B.4 implies that the

biggest eigenvalue λ−1
1 is simple.

Denote by πl
J the l-orthogonal projection on the subspace VJ . Define the operator Bl,J =

πl
J Blπ

l
J . Since Bl,J is a self-adjoint operator on VJ , with the l-induced inner product, it has

dim(VJ )−1 solutions (λ−1
J,i ,wJ,i)i , with the eigenvalues λ−1

J,1 ≥ λ−1
J,2 ≥ · · · ≥ λ−1

J,dim(VJ )−1. Anal-
ogously as for the operator Bl , we check that (λJ,i ,wJ,i) are solutions of the finite dimensional
Eigenproblem B.6. From (74) together with the uniform bound on μ it follows that∥∥(I − πl

n

)
w1
∥∥

l
≤ ∥∥(I − πl

n

)
(I − πJ )w1

∥∥
l
≤ 2
∥∥(I − πJ )w1

∥∥
l
≤ C

∥∥(I − πJ )w1
∥∥

H 1,

for some, uniform on Θα , constant C. Using Jackson’s inequality, the uniform bound on the
Hölder norm of w1 and uniform bounds on the eigenvalues λ1, λ2, we conclude that, for J large
enough, ∥∥(I − πl

n

)
w1
∥∥

l
<

λ−1
1 − λ−1

2

6λ−1
1

.

The claim follows from [5], Theorem 25. �
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