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Concentration inequalities for separately
convex functions
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We provide new comparison inequalities for separately convex functions of independent random variables.
Our method is based on the decomposition in Doob martingale. However, we only impose that the mar-
tingale increments are stochastically bounded. For this purpose, building on the results of Bentkus (Lith.
Math. J. 48 (2008) 237–255; Lith. Math. J. 48 (2008) 137–157; Bounds for the stop loss premium for
unbounded risks under the variance constraints (2010) Preprint), we establish comparison inequalities for
random variables stochastically dominated from below and from above. We illustrate our main results by
showing how they can be used to derive deviation or moment inequalities for functions which are both
separately convex and separately Lipschitz, for weighted empirical distribution functions, for suprema of
randomized empirical processes and for chaos of order two.
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1. Introduction

Let E be a vector space. A function F from En into R is said to be separately convex if it
is convex in each coordinate. Let (�,F,P) be a probability space and X1, . . . ,Xn be a finite
sequence of independent and centered random variables with values in E. Throughout the paper,
F is a measurable separately convex function from En to R. In this work, we are concerned with
deviation inequalities for the random variable

Z := F(X1, . . . ,Xn). (1.1)

Before going further, let us introduce some notations which are used in this paper. Set
F0 := {∅,�} and for all k = 1, . . . , n, Fk := σ(X1, . . . ,Xk) and Fk

n := σ(X1, . . . ,Xk−1,Xk+1,

. . . ,Xn). Let Ek (respectively E
k
n) denote the conditional expectation operator associated to Fk

(resp. Fk
n ). Set also

Z(k) := F(X1, . . . ,Xk−1,0,Xk+1, . . . ,Xn), (1.2)

Zk := Ek

[
Z −E[Z]]. (1.3)

Our approach to obtain deviation inequalities is based on the martingale method. The idea is
to decompose the random variable Z − E[Z] as a sum of martingale increments. Precisely, the
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sequence (Zk) is an (Fk)-adapted martingale (the Doob martingale associated with Z − E[Z])
and

Z −E[Z] =
n∑

k=1

�k, where �k := Zk − Zk−1.

The main problem is to control the increments �k . Classical concentration inequalities for mar-
tingales assume that their increments are bounded (see, for example, Chapter 3 of Bercu, Delyon
and Rio [8]). In this paper, our hypotheses on F and on the random variables X1, . . . ,Xn do not
imply a deterministic boundedness condition on the martingale increments, but only a symmetric
two-sided stochastic one: −ξk � Zk − Z(k) � ξk , for some stochastic order �, where ξ1, . . . , ξn

are real-valued nonnegative random variables. �k and Zk − Z(k) are linked by the following
observation:

�k = Zk −Ek

[
Z(k)

]−Ek−1
[
Zk −Ek

[
Z(k)

]]
. (1.4)

Note that this observation was already made by Pinelis and Sakhanenko [24] (see their Inequality
(9)) when the function F is the norm of the sum. Let us now explain which stochastic order we
work with. Let α > 0. We define the class Hα+ of functions ϕ from R into R as follows:

Hα+ :=
{
ϕ : ϕ(u) =

∫ ∞

−∞
(u − t)α+μ(dt) for some Borel measure μ ≥ 0 on R

and all u ∈ R

}
.

Here, as usual, x+ := x ∨ 0 := max(0, x) and xα+ := (x+)α for all real x. Using the family Hα+,
we define a family of stochastic order by the formula

X �
Hα+

ξ if E
[
ϕ(X)

]≤ E
[
ϕ(ξ)

]
for all ϕ ∈Hα+, (1.5)

where X and ξ are real-valued random variables. We refer the reader to Pinelis [22] for more
on this stochastic order. Our main results in this paper will be expressed in terms of comparison
inequality with respect to �

Hα+
between Z −E[Z] and a function of ξ1, . . . , ξn.

Concerning general functions of independent random variables, Boucheron, Bousquet, Lu-
gosi and Massart [9] provided general moment inequalities, using an extension of the entropy
method proposed by Ledoux [17]. They derived moment inequalities for various functions such
as homogeneous tetrahedral polynomials in Rademacher variables or unbounded empirical pro-
cesses. Recently, Adamczak and Wolff [2] (see Theorem 1.4) gave a concentration inequality for
polynomials of independent sub-Gaussian random variables.

Moreover, if F is separately Lipschitz (E is then assumed equipped with a norm), Zk − Z(k)

satisfies naturally our stochastic boundedness conditions. When F is only separately Lipschitz,
a corollary of a result of Pinelis [18] gives that

F(X1, . . . ,Xn) �
H1+

n∑
k=1

εk‖Xk‖,
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where ε1, . . . , εn is a sequence of independent Rademacher random variables. Kontorovich [15]
gave extensions of McDiarmid’s inequality for metric spaces with unbounded diameter. He re-
quired a sub-Gaussian control of the symmetrized of ‖Xk − X′

k‖ where X′
k is an independent

copy of Xk .
A particular case of separately convex functions is suprema of empirical processes: F(x1, . . . ,

xn) = supt∈T
∑n

i=1 xi,t , where T is a countable index set. Only few results concern concentra-
tion inequalities for suprema of unbounded empirical processes: assuming weak tails with respect
to suitable Orlicz norms, Adamczak [1], and van de Geer and Lederer [27] obtained exponential
bounds. Later van de Geer and Lederer [16] required only weak moment conditions on an en-
velope of the class of functions and obtained generalized moment inequalities. In this paper, we
will also treat the case of F(x1, . . . , xn) = supt∈T

∑
1≤i<j≤n xi,t xj,t , which is a particular case

of supremum of polynomials in independent random variables.
We shall use the following notation throughout the paper. The quantile function of a real-

valued random variable X which is the general inverse of the nonincreasing and left continuous
tail function of X, P(X > t), is denoted by QX . It is defined by

QX(u) := inf
{
x ∈ R : P(X > x) ≤ u

}
.

Moreover, for p ≥ 1, let Lp be the space of real-valued random variables with a finite absolute
moment of order p and we denote by ‖X‖p the L

p-norm of X. Let (a1, . . . , an) ∈ R
n. As usual

for any r ≥ 1, we write

‖a‖r =
(

n∑
k=1

|ak|r
)1/r

, and ‖a‖∞ = max
1≤k≤n

|ak|.

Finally, for any real function f , we denote by f (a+) (respectively, f (a−)) the right (resp. left)
limit of f at point a.

The paper is organized as follows. In Section 2, we state the main results of this paper. In Sec-
tion 3, we explain how we can extract a tail comparison inequality from a comparison inequality
with respect to the stochastic order associated with the class Hα+. In Section 4, new comparison
inequalities for unbounded real-valued random variables are given. The results in this section will
allow us to control the increments of the Doob martingale associated to Z − E[Z]. We provide
detailed proofs of Sections 2 and 4 in Section 9. We give some applications of the main results
in other sections: in Section 5 we examine the special case where F is also separately Lips-
chitz. Section 6 considers the weighted empirical distribution functions, Section 7 deals with the
suprema of randomized empirical processes. Finally, Theorems 2.1 and 2.3 are applied to chaos
of order two in Section 8.

2. Main results

Theorem 2.1. Let Z and Z(k) be defined respectively by (1.1) and (1.2). Assume that for all k =
1, . . . , n, there exist nonnegative, square integrable and σ(Xk)-measurable random variables Tk

and Wk such that,

−Tk ≤ Z − Z(k) ≤ Wk, almost surely. (2.1)
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Let ξ1, . . . , ξn be any finite sequence of nonnegative random variables such that, for any real t ,

max
(
E
[
(Tk − t)+

]
,E
[
(Wk − t)+

])≤ E
[
(ξk − t)+

]
. (2.2)

Then

Z −E[Z] �
H2+

n∑
k=1

εkQξk
(Uk/2), (2.3)

where ε1, . . . , εn are independent Rademacher random variables, U1, . . . ,Un are independent
random variables distributed uniformly on [0,1] and these two families are independent.

Remark 2.2. Using new results of Pinelis [23] (see his Corollary 5.8), it is straightforward to
extend (2.3) to the larger class of differentiable convex nondecreasing function with a convex
derivative.

In the following result, we relax the assumption (2.1) and we instead assume that the bounds
have a Fk

n -measurable component.

Theorem 2.3. Let r > 2. Let Z and Z(k) be defined respectively by (1.1) and (1.2). Assume
that for all k = 1, . . . , n, there exist nonnegative, Lr -integrable and σ(Xk)-measurable random
variables Tk and Wk and nonnegative, Lr -integrable and Fk

n -measurable random variable ψk

such that

−Tkψk ≤ Z − Z(k) ≤ Wkψk, almost surely. (2.4)

Let ξ1, . . . , ξn be any finite sequence of nonnegative random variables such that, for any real t ,

max
(
E
[
(Tk − t)+

]
,E
[
(Wk − t)+

])≤ E
[
(ξk − t)+

]
. (2.5)

Then ∥∥(Z −E[Z])+∥∥2
r
≤ (p − 1)

n∑
k=1

∥∥Ek−1[ψk]
∥∥2

r

∥∥Qξk
(Uk/2)

∥∥2
r
, (2.6)

where U1, . . . ,Un are independent random variables uniformly distributed on [0,1].

3. Concentration inequalities from comparison inequalities
in Hα+

In this section, we repeat the relevant materials from [20] and [21] without proofs, of how one
obtains a deviation inequality from a comparison inequality with respect to the stochastic order
associated with the class Hα+, α > 0, such as in Theorem 2.1.

First, let us mention some facts about the class Hα+. It is easy to see that 0 ≤ β < α implies

Hα+ ⊂ Hβ
+. Moreover, for any real t and any positive λ, the functions x �→ (x − t)α+ and x �→

eλ(x−t) belong to Hα+. Finally, the following assertions are equivalent:
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(i) X �
Hα+

ξ ,

(ii) E[(X − t)α+] ≤ E[(ξ − t)α+] for all real t .

The following is a special case of Theorem 4 of Pinelis [21].

Theorem 3.1. Suppose that α > 0, X and ξ are real-valued random variables, and the tail
function x �→ P(ξ ≥ x) is log-concave on R. Then the comparison inequality X �

Hα+
ξ implies

that, for all real x,

P(X ≥ x) ≤ Pα(ξ ;x) := inf
t<x

E[(ξ − t)α+]
(x − t)α

(3.1)

≤ cα,0P(ξ ≥ x), (3.2)

where the constant factor cα,0 := �(α + 1)(e/α)α is the best possible.

Remark 3.2. A thorough study of Pα(ξ ;x) can be found in Pinelis [22]. See also Bentkus,
Kalosha and van Zuijlen [7] for a description of the calculation for specific α and specific families
of distribution.

Remark 3.3. Since the class Hα+ contains all increasing exponential functions, Pα(ξ ;x) is also
majorized by the exponential bound infλ>0 e−λx

E[eλξ ]. For all small enough x, the exponential
bound is better than (3.2). However, for large values of x, the latter will be significantly better
than the exponential one.

4. New comparison inequalities

The purpose of this section is to obtain extensions of an inequality of Hoeffding to unbounded
random variables. In particular, Lemma 4.6 below will be our main tool to control the incre-
ments of the Doob martingale associated to Z − E[Z]. First, let us recall the definition of
the usual stochastic order. Let X and Y be two real-valued random variables. X is said to be
smaller than Y in the usual stochastic order, denoted by X ≤st Y , if P(X ≥ x) ≤ P(Y ≥ x) for all
real x.

Throughout this section, η and ψ are random variables such that

η ∈ L1, ψ ∈ L2, and η ≤st ψ. (4.1)

We introduce a family of probability distribution related to the distributions of η and ψ . We
recall first some classical notations. The distribution function of a real-valued random variable
X is denoted by FX . The generalized inverse of FX is defined by

F−1
X (u) := inf

{
x ∈ R : P(X ≤ x) ≥ u

}
.
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Definition 4.1. Let assumption (4.1) hold. For every q in (0,1), set aq := F−1
η (1 − q), bq :=

F−1
ψ (1 − q) and let Fq be the distribution function defined by

Fq(x) :=

⎧⎪⎨⎪⎩
Fη(x) if x < aq,

1 − q if aq ≤ x < bq,

Fψ(x) if x ≥ bq.

We also set F0 := Fη and F1 := Fψ . In the following, we always denote by ζq a random variable
having the distribution function Fq .

Remark 4.2. A similar construction can be found in Bentkus [4,5] and [6].

The following bound was obtained by Bentkus [6] (see Theorem 1) with a little stronger as-
sumption on the stochastic boundedness condition. Indeed Bentkus supposed that η ≤st X ≤st ψ ,
which implies our hypothesis (4.2).

Lemma 4.3. Let assumption (4.1) hold. Let ζq be as in Defintion 4.1 and let X be an integrable
random variable such that for any real t ,

E
[
(X − t)+

]≤ E
[
(ψ − t)+

]
, E

[
(t − X)+

]≤ E
[
(t − η)+

]
. (4.2)

Let q0 be the highest real in [0,1] such that∫ 1

1−q0

(
F−1

ψ (u) − F−1
η (u)

)
du = E[X] −E[η]. (4.3)

Then, X and ζq0 have the same expectation and for any real t ,

E
[
(X − t)+

]≤ E
[
(ζq0 − t)+

]
. (4.4)

Consequently, for any convex function ϕ,

E
[
ϕ
(
X −E[X])]≤ E

[
ϕ
(
ζq0 −E[ζq0 ]

)]
. (4.5)

Remark 4.4. As noticed by Bentkus [4–6], we can see this lemma as an extension of an inequal-
ity of Hoeffding. Indeed, if η and ψ are two constants, respectively equal to a and b, it easy to
see that (4.1) and (4.2) imply that a ≤ X ≤ b a.s. Then we obtain for all convex function ϕ that
E[ϕ(X)] ≤ E[ϕ(θ)] where θ is two-valued random variable taking the values a and b, and such
that E[X] = E[θ ].

Remark 4.5. The special case 0 ≤ X ≤st ψ was considered by Bentkus [4,5]. In [6], Bentkus
obtained similar results in the situation where X ≤st ψ and the variance of X is known.

The right-hand side of (4.5) still depends on the expectation of X by the term E[ζq0 ]. The next
lemma provides a bound in the symmetric case η = −ψ , which does not depend of E[X]. The
drawback is that we have to pick ϕ in the smaller class of functions H2+.
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Lemma 4.6. Let ψ and η be two random variables, respectively nonnegative and nonpositive,
satisfying (4.1). Let ζq , aq and bq be given by Definition 4.1.

(i) Let q̃ := inf{q ≥ 1/2 : bq + aq ≤ 2E[ζq ]}. Then for all real t ,

q �→ E
[(

ζq −E[ζq ] − t
)2
+
]

is nonincreasing on [q̃,1].
(ii) Assume that η = −ψ and let X be an integrable random variable satisfying (4.2). If

E[X] ≥ 0, then

X −E[X] �
H2+

ζ1/2. (4.6)

Remark 4.7. We have a better understanding of the random variable ζ1/2 if we observe that it
has the same distribution than εQψ(U/2), where ε is a Rademacher random variable, U is a
random variable distributed uniformly on [0,1] and these random variables are independent.

The following result is a corollary of a result obtained by Pinelis [19]. It will be needed in the
proof of Theorem 2.3 and in Section 8.

Proposition 4.8. Let r > 2 and let X and Y be random variables in L
r such that E[Y | X] = 0

almost surely. Then ‖(X + Y)+‖2
r ≤ ‖(X)+‖2

r + (r − 1)‖Y‖2
r .

Exactly as in Rio [26] (see Theorem 2.1), we deduce from Proposition 4.8 the following in-
equality by induction on n.

Corollary 4.9. Let r > 2 and (Mn)n≥0 be a sequence of random variables in L
r . Set �Mk :=

Mk − Mk−1. Assume that E[�Mk | Mk−1] = 0 almost surely for any positive k. Then

∥∥(Mn)+
∥∥2

r
≤ ∥∥(M0)+

∥∥2
r
+ (r − 1)

n∑
k=1

‖�Mk‖2
r . (4.7)

5. Lipschitz functions of independent random vectors

Throughout this section, we assume that (E,‖ · ‖) is a separable Banach space. In addition to
being separately convex, we suppose that F is separately 1-Lipschitz. Precisely, F satisfies the
following Lipschitz type condition:

∣∣F(x1, . . . , xn) − F(y1, . . . , yn)
∣∣≤ n∑

k=1

‖xi − yi‖.

Now, Z = F(X1, . . . ,Xn) naturally fulfills the hypotheses (2.1)–(2.2) of Theorem 2.1 with ξk =
‖Xk‖.
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5.1. Moment inequality

Proposition 5.1. Let r ≥ 2 and define the function Q by

Q2(u) :=
n∑

k=1

Q2‖Xk‖(u).

Then

E
[(

Z −E[Z])r+]≤ ‖g‖r
r

∫ 1/2

0
Qr(u)du, (5.1)

where g is standard Gaussian random variable.

Example 5.2. Let X be a centered random vector with values in E and a1, . . . , an be determin-
istic reals. Let X1, . . . ,Xn be n independent copies of X. Define the function F by

Z := F(X̃1, . . . , X̃n) :=
∥∥∥∥∥

n∑
k=1

akXk

∥∥∥∥∥,
where X̃k := akXk . Then Proposition 5.1 yields for any r ≥ 2 that

E
[(

Z −E[Z])r+]≤ ‖g‖r
r

(
n∑

k=1

a2
i

)r/2 ∫ 1/2

0
Qr‖X‖(u) du (5.2)

≤ ‖g‖r
r

(
n∑

k=1

a2
i

)r/2

‖X‖r . (5.3)

We now apply this result to suprema of empirical processe, that is,

Z = sup
f ∈F

∣∣∣∣∣
n∑

k=1

f (Xk)

∣∣∣∣∣,
where F is a countable class of measurable real-valued functions. To do this, we first assume
that F is finite and we then conclude by the monotonous convergence theorem. We suppose that
F has an r-integrable envelop function � and we set Mr := E[�r(X)]. Thus (5.3) yields

∥∥(Z −E[Z])+∥∥r
≤ π−1/2r

√√√√2
n∑

k=1

a2
i M

(
�

(
r + 1

2

))1/r

, (5.4)

where � is the usual Gamma function. This result improves Theorem 4.1 of Lederer and van de
Geer [16].
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Proof of Proposition 5.1. Theorem 2.1 applied with ξk = ‖Xk‖ and (1.5) specified to ϕ(x) = xr+
yield that

E
[(

Z −E[Z])r+]≤ E

[(
n∑

k=1

εkQ‖Xk‖(Uk/2)

)r

+

]
. (5.5)

Since the random variables εkQ‖Xk‖(Uk/2) are symmetric,

E

[(
n∑

k=1

εkQ‖Xk‖(Uk/2)

)r

+

]
= 1

2
E

[∣∣∣∣∣
n∑

k=1

εkQ‖Xk‖(Uk/2)

∣∣∣∣∣
r]

. (5.6)

Conditioning by Fn and using the classical Khintchine inequality with the best possible constant
founded by Whittle (for r ≥ 3) and Haagerup (for r > 0) (see the Introduction of Figiel et al. [13]
and references therein for a statement of these results), one has

1

2
E

[∣∣∣∣∣
n∑

k=1

εkQ‖Xk‖(Uk/2)

∣∣∣∣∣
r]

≤ 1

2
‖g‖r

rE

[(
n∑

k=1

Q2‖Xk‖(Uk/2)

)r/2]
, (5.7)

where g is a standard Gaussian random variable. Next, it is an easy exercise which is left to the
reader, to see that Riesz Representation Theorem and Lemma 2.1(a) and (c) of Rio [25] imply
that

E

[(
n∑

k=1

Q2‖Xk‖(Uk/2)

)r/2]
≤ E

[(
n∑

k=1

Q2‖Xk‖(U/2)

)r/2]
, (5.8)

where U is a random variable distributed uniformly on [0,1]. Finally, combining (5.5)–(5.8), one
has (5.1) which ends the proof. �

5.2. A deviation inequality for the bounded case

Consider the bounded case ‖Xk‖ ≤ ak a.s., for some positive reals ak . Theorem (2.1) implies that

Z −E[Z] �
H2+

n∑
k=1

akεk, (5.9)

where εk are i.i.d. Rademacher random variables.

Remark 5.3. Inequality (5.9) can be obtained directly via Lemma 4.4. of Bentkus [3].

Proposition 5.4. Let � be the function defined by �(t) := log(cosh(t)) and let �∗ denote the
Legendre–Fenchel transform of �, which is defined for any positive x by �∗(x) := supt>0{xt −
�(t)}. Then for any x in [0,1],

�∗(x) = 1

2

(
(1 + x) log(1 + x) + (1 − x) log(1 − x)

)
,
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and

P
(
Z −E[Z] ≥ ‖a‖1x

)≤ exp

(
−‖a‖2

1

‖a‖2
2

�∗(x)

)
. (5.10)

Proof. Since the exponential function x �→ etx belongs to H2+ for any positive t , (5.9) ensures
that

logE
[
exp
(
t
(
Z −E[Z]))]≤ logE

[
exp

(
t

n∑
k=1

εkak

)]
=

n∑
k=1

�(akt). (5.11)

Note that �′(·) = tanh(·) is a concave function on [0,∞). Now, from (5.11), proceeding exactly
as in Bercu, Delyon and Rio [8] (see Inequality (2.98)) we get

logE
[
exp
(
t
(
Z −E[Z]))]≤ ‖a‖2

1

‖a‖2
2

�

(‖a‖2
2t

‖a‖1

)
. (5.12)

Finally, (5.10) follows from Markov’s inequality together with (5.12). �

6. Weighted empirical distribution functions

Let U be a random variable uniformly distributed on [0,1], Ũ1, . . . , Ũn be n independent copies
of U , and denote the uniform empirical process by

en(t) = 1√
n

n∑
k=1

(1Ũk≤t − t).

Let q : [0,1] → R be a weight function such that

q(t) = q(1 − t), q(t) > 0 on (0,1),

∫ 1/2

0

dt

q2(t)
< ∞,

t �→ q(t)

t
is nonincreasing, and t �→ q(t)

1 − t
is nondecreasing.

Example 6.1. The most common such weight functions q are

q(t) = (√t (1 − t)
)α

, for any α in (0,1),

q(t) = max
(√

t (1 − t),
√

δ(1 − δ)
)
, for some 0 < δ < 1.

In this section, the quantity of interest is

Z := sup
0≤t≤1

en(t)

q(t)
.
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We refer the reader to Csörgő and Horváth [11] for asymptotic results on this object. Setting now
the class of function F := {1[0,t]−t

q(t)
: t ∈ [0,1]} and X̃k := (f (Ũk))f ∈F , we can write Z as

Z = F(X̃1, . . . , X̃n) := 1√
n

sup
f ∈F

n∑
k=1

f (Ũk).

Proposition 6.2. We have

Z −E[Z] �
H2+

1√
n

n∑
k=1

εk

1 − Uk/2

q(Uk/2)
. (6.1)

Remark 6.3. Define �∞(F ) := {x : F → R : supf ∈F |x(f )| < ∞} equipped with the norm
‖x‖F := supf ∈F |x(f )|. Then, the summands in the right-hand side of (6.1) are equal to
‖X̃k‖F , leading to

Z −E[Z] �
H2+

1√
n

n∑
k=1

εk‖X̃k‖F .

Remark 6.4. The uniform case also treats the general one. Precisely, let X1, . . . ,Xn be n inde-
pendent copies of a real-valued random variable X with a continuous distribution function FX .
Then

Z := 1√
n

sup
t∈R

∑n
k=1(1Xi≤t − FX(t))

q(FX(t))
= sup

t∈R
en(FX(t))

q(FX(t))
.

Proceeding in the same way as in the proof of Proposition 5.1, we obtain the following moment
inequality.

Corollary 6.5. Let α ∈ (0,1), q(t) = (
√

t (1 − t))α , and r ≥ 2 such that rα < 2. Then

E
[(

Z −E[Z])r+]≤ ‖g‖r
r

∫ 1/2

0
(1 − u)(2−α)(r/2)u−αr/2 du, (6.2)

where g is a standard Gaussian random variable.

Example 6.6. With r = 2 and α = 1/2,

E
[(

Z −E[Z])2+]≤ 1

2
+ 3

16
π ≈ 1.089.

Proof of Proposition 6.2. For any function f in F and for all x ∈ [0,1],

− x

q(x)
≤ f (x) ≤ 1 − x

q(x)
.
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Since q(t) = q(1 − t), W := (1 − U)/q(1 − U) and T := U/q(U) have the same distribution.
Moreover, QT (Uk/2) = (1 − Uk/2)/q(Uk/2). Then Theorem 2.1 implies (6.1), and the proof is
completed. �

7. Suprema of randomized empirical processes

Let X1, . . . ,Xn be a sequence of independent random variables with values in some Polish space
X and Y1, . . . , Yn be a sequence of independent real-valued symmetric random variables such
that the two sequences are independent. Let F be a countable class of measurable real-valued
functions and define the function F by

Z := F(X̃1, . . . , X̃n) := sup
f ∈F

n∑
k=1

Ykf (Xk), (7.1)

where X̃k := (Ykf (Xk))f ∈F . Assume that there exist nonnegative functions G and H such that
for any function f in F , −G ≤ f ≤ H . It thus follows that −Tk ≤ Z − Zk ≤ Wk , where

Wk := (Yk)+H(Xk) + (Yk)−G(Xk), Tk := (Yk)−H(Xk) + (Yk)+G(Xk).

Throughout, we assume that E[G2(Xk)] < ∞ and E[H 2(Xk)] < ∞ for any k = 1, . . . , n. Since
Y is symmetric, Wk and Tk have the same distribution. Then Theorem 2.1 yields

Z −E[Z] �
H2+

n∑
k=1

εkQWk
(Uk/2). (7.2)

Throughout this section, we will use the following notation:

s2 :=
n∑

k=1

s2
k :=

n∑
k=1

E
[
Y 2

k

]
,

σ 2 :=
n∑

k=1

σ 2
k :=

n∑
k=1

E
[
Q2

Wk
(Uk/2)

]
.

In the rest of this section, we present how (7.2) may be used to derive concentration inequalities
through several examples. However, in some cases, this bound can prove difficult to manipulate.
Now, we show that, due to the symmetry of the Yk , we can derive a more tractable comparison
moment inequality, which is, however, less efficient. Precisely, set ξk := (Yk)+(G(Xk)+H(Xk)).
For any nonnegative t , the superadditivity of the function x �→ (x − t)+ on [0,∞) yields

E
[
(Wk − t)+

]≤ E
[
(ξk − t)+

]
.
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This inequality remains trivially true for negative t . Moreover, since Yk is symmetric and inde-
pendent of Xk , εkQξk

(Uk/2) and Yk(G(Xk)+H(Xk)) have the same distribution. Consequently,

Z −E[Z] �
H2+

n∑
k=1

Yk

(
G(Xk) + H(Xk)

)
. (7.3)

Example 7.1. Let F0 : R → [0,1] be a nondecreasing function. Let X1, . . . ,Xn be independent
real-valued random variables and let q : [0,1] →R be a weight function such that

q(t) > 0 on (0,1),

∫ 1/2

0

dt

q2(t)
< ∞,

t �→ q(t)

t
is nonincreasing, and t �→ q(t)

1 − t
is nondecreasing.

Define now

Z := sup
t∈R

n∑
k=1

Yk

1Xk≤t − F0(t)

q(F0(t))
.

In this case

H(x) = 1 − F0(x)

q(F0(x))
, and G(x) = F0(x−)

q(F0(x−))
,

whence

Z −E[Z] �
H2+

n∑
k=1

Yk

(
1 − F0(Xk)

q(F0(Xk))
+ F0(Xk−)

q(F0(Xk−))

)

�
H2+

n∑
k=1

Yk

q(F0(Xk))
.

(7.4)

Let us now give a relevant example. We assume that X1, . . . ,Xn are n independent copies of a
random variable U distributed uniformly on [0,1]. Let F0 = FU be the distribution function of
U and let q(t) = √

max(t, δ) for some 0 < δ < 1. Then (7.4) gives

E
[(

Z −E[Z])2+]≤ 1

2

n∑
k=1

E

[
Y 2

k

max(Xk, δ)

]
= 1

2
s2 log

(
e

δ

)
.

7.1. Case G = 0

Here Wk = (Yk)+H(Xk). Since Yk is symmetric and independent of Xk , εkQWk
(Uk/2) and

YkH(Xk) have the same distribution. Then

Z −E[Z] �
H2+

n∑
k=1

YkH(Xk), and σ 2 =
n∑

k=1

E
[
Y 2

k

]
E
[
H 2(Xk)

]
. (7.5)
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7.1.1. Chebyshev type inequality

Proposition 7.2. For any positive x,

P
(
Z −E[Z] ≥ σx

)≤ min

(
1

1 + x2
,

1

2x2

)
. (7.6)

Proof. From (7.5) and (3.1), we derive

P
(
Z −E[Z] ≥ x

)≤ P2(ξ ;x) = inf
t<x

E[(ξ − t)2+]
(x − t)2

, (7.7)

where ξ := ∑n
k=1 YkH(Xk). Since z2+ ≤ z2 for all real z, we obtain the Cantelli inequality

P2(ξ ;x) ≤ σ 2/(σ 2 + x2). Moreover, taking t = 0 in (7.7) gives the other bound P2(ξ ;x) ≤
σ 2/(2x2). �

7.1.2. H = 1 and Gaussian case

Proceeding as in the proof of Proposition 7.2 and adding the bound provided by (3.2), we obtain
the following inequality.

Proposition 7.3. Let g be a standard Gaussian random variable and suppose that Y1, . . . , Yn

is a sequence of independent centered Gaussian random variables. Let σ denote the standard
deviation of

∑n
k=1 Yk . Then for any positive x,

P
(
Z −E[Z] ≥ σx

)≤ min

{
1

1 + x2
,

1

2x2
,
e2

2
P(g ≥ x)

}
:= h(x). (7.8)

Remark 7.4. Note that h(x) = 1/(1 + x2) for any 0 < x ≤ 1, h(x) = 1/2x2 for any 1 < x ≤
x0 and h(x) = (e2/2)P(g ≥ x) for any x > x0, where x0 is the unique root of the equation
(e2/2)P(g ≥ x) = 1/2x2. A numerical calculation gives x0 ≈ 1.6443. Furthermore the function
h is always better than the usual exponential bound (i.e., h(x) ≤ exp(−x2/2)).

7.1.3. 0 ≤ H ≤ 1 and Gaussian case

Here we suppose that X1, . . . ,Xn are identically distributed according to some distribution P .
Let g1, . . . , gn be an independent sequence of standard Gaussian random variables and σ1, . . . , σn

be a sequence of positive deterministic reals and set Yk = σkgk .

Proposition 7.5. Let v := E[H 2(X1)] and let γ be the function defined on (0,∞) by

γ (x) := x
√

2/

√
log
(
1 + v−1

(
ex − 1

))
.

Then for any positive x,

P

(
Z −E[Z] >

‖σ‖2
2

‖σ‖∞
γ

(‖σ‖2∞x

‖σ‖2
2

))
≤ exp(−x). (7.9)
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Remark 7.6. As x goes to zero, the function γ has the asymptotic expansion

γ (x) = √
2vx
(
1 + O(x)

)
,

and as x goes to infinity, γ (x) ∼ √
2x.

Proof of Proposition 7.5. Starting as in the proof of Proposition 5.4 and conditioning by Xk ,
one has

logE
[
exp
(
t
(
Z −E[Z]))]≤ n∑

k=1

logE

[
exp

(
σ 2

k t2

2
H 2(Xk)

)]
.

Define next the function �v by

�v(t) := log
(
1 + v

(
et2/2 − 1

))
. (7.10)

Now by the convexity of the function λ �→ eαλ,

log

(
E

[
exp

(
σ 2

k t2

2
H 2(Xk)

)])
≤ �v(σkt). (7.11)

In order to bound up the right-hand side term, we will use the property below concerning �v .

Lemma 7.7. Let hv be the function defined by hv(t) := �′
v(t)/t for any positive t . Then hv is

nondecreasing.

Proof of Lemma 7.7. A straightforward calculation leads to

�′′
v(t) = �′

v(t)

(
1

t
+ t (1 − v)

1 + v(et2/2 − 1)

)
.

Then

h′
v(t) = t�′′

v(t) − �′
v(t)

t2
= �′

v(t)

(
1 − v

1 + v(et2/2 − 1)

)
.

Since v ≤ 1, we get h′
v(t) ≥ 0 and the lemma follows. �

Next, from (7.11) and Lemma 7.7, proceeding exactly as in Bercu, Delyon and Rio [8] (see
Inequality (2.97)), one has

logE
[
exp
(
t
(
Z −E[Z]))]≤ ‖σ‖2

2

‖σ‖2∞
�v

(‖σ‖∞t
)
.

From the inversion formula for �∗
v given in [8] (see Exercise 1, page 57)

�∗−1
v (x) = inf

{
t−1(�v(t) + x

) : t > 0
}
, (7.12)
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it is easy to see that for any positive x,

inf
t>0

1

t

( ‖σ‖2
2

‖σ‖2∞
�v

(‖σ‖∞t
)+ x

)
= ‖σ‖2

2

‖σ‖∞
�∗−1
v

(‖σ‖2∞x

‖σ‖2
2

)
. (7.13)

Then (see Lemma 2.7 of [8]),

P

(
Z −E[Z] >

‖σ‖2
2

‖σ‖∞
�∗−1
v

(‖σ‖2∞x

‖σ‖2
2

))
≤ exp(−x). (7.14)

However, it seems difficult to calculate the inverse function of �∗
v . Then to obtain a “ready-to-use”

inequality, we will bound up �∗−1
v (x).

Let tx := √2 log(1 + v−1(ex − 1)). Hence, putting tx in (7.12), we get �∗−1
v (x) ≤ γ (x) and

the proposition follows. �

7.1.4. Unbounded function H

In the following result, we suppose that Yk and H(Xk) are L
r -integrable random variables with

2 < r ≤ 4.

Proposition 7.8. Let 2 < r ≤ 4. Then

∥∥(Z −E[Z])+∥∥r

r
≤ 1

2

n∑
k=1

‖Yk‖r
r

∥∥H(Xk)
∥∥r

r
+ 1

2
σ r‖g‖r

r ,

where g is a standard Gaussian random variable.

Proof. We already noticed in the proof of Proposition 5.1 that the symmetry of YkH(Xk) allows
us to write

E

[(
n∑

k=1

YkH(Xk)

)r

+

]
= 1

2

n∑
k=1

E
[∣∣YkH(Xk)

∣∣r].
Then the result follows directly from Corollary 6.2 of Figiel et al. [13] (see also Theorem 6.1 and
Theorem 7.1). �

7.2. Case G �= 0

First, we present a duality formula for the r th moments of εkQWk
(Uk/2) for r ≥ 2. It will allow

us to derive a simpler bound of these moments which we will use thereafter to obtain concentra-
tion inequalities.
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7.2.1. Duality formula

Lemma 7.9. Let r ≥ 2. One has

E
[∣∣εkQWk

(Uk/2)
∣∣r]

= sup
{
E
[|Yk|r

(
Hr(Xk)1A + Gr(Xk)1B

)] : A,B ∈ F,P(A) + P(B) = 1
}
.

(7.15)

Remark 7.10. The duality formula gives us directly a more tractable bound

E
[∣∣εkQWk

(Uk/2)
∣∣r]≤ E

[|Yk|r
]
E
[
Hr(Xk) + Gr(Xk)

]
. (7.16)

Proof of Lemma 7.9. Let us recall the general following fact. Let α ∈ (0,1) and let θα be a
Bernoulli random variable with parameter α. Let X be an integrable random variable. Then∫ α

0
Qr

X(u)du =
∫ 1

0
Qr

X(u)Qθα (u)du = sup
θ

E[Xθ ],

where the supremum is taken over the set of all Bernoulli random variable with parameter α.
Consequently,

E
[∣∣εkQWk

(Uk/2)
∣∣r]= 2 sup

C

{
E
[
Wr

k 1C

]}
= 2 sup

C

{
E
[|Yk|r

(
Hr(Xk)1C∩{Y>0} + Gr(Xk)1C∩{Y<0}

)]}
,

where the suprema are taken over the set of all measurable set C such that P(C) = 1/2, and
(7.15) follows. �

7.2.2. Chebyshev type inequality

Proposition 7.11. Define

V =
n∑

k=1

E
[
Y 2

k (G ∨ H)2(Xk)
]
, and V1 =

n∑
k=1

E
[
Y 2

k

(
G2(Xk) + H 2(Xk)

)]
.

Then for any positive x,

P
(
Z −E[Z] ≥ x

)≤ min

(
V

V + x2
,

σ 2

2x2

)
(7.17)

≤ min

(
V

V + x2
,

V1

2x2

)
. (7.18)

Remark 7.12. Note that V1/2x2 ≤ V/(V + x2) for all x such that

x2 ≥
n∑

k=1

E
[
Y 2

k (G ∨ H)(Xk)
]∑n

k=1 E[Y 2
k (G2(Xk) + H 2(Xk))]∑n

k=1 E[Y 2
k |G2(Xk) − H 2(Xk)|]

.
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Example 7.13. Let S be a countable class of sets such that for any S ∈ S , P(S) ≤ p. We consider
the class of function F = {1S − P(S) : S ∈ S}. Here H = 1 and G = p. Proposition 7.11 yields
for any positive x,

P
(
Z −E[Z] ≥ sx

)≤
⎧⎪⎨⎪⎩

1

1 + x2
if x < x0,

1 + p2

2x2
if x ≥ x0,

where x2
0 = (1 + p2)/(1 − p2).

Proof of Proposition 7.11. Since σ 2 ≤ V1 by Remark 7.12, (7.18) follows from (7.17). Let us
prove now (7.17). Theorem 4 in Pinelis and Sakhanenko [24] (or Theorem 11.1 of Boucheron,
Lugosi and Massart [10]) implies that Var(Z) ≤ V and the bound V/(V + x2) follows then from
the Cantelli inequality. Proceeding as in the proof of Proposition 7.2, we get the bound σ 2/2x2

which ends the proof. �

7.2.3. Moment inequality

The following moment inequality is similar to Proposition 7.8. We assume that the random vari-
ables Yk , G(Xk) and H(Xk) are L

r -integrable with 2 < r ≤ 4.

Proposition 7.14. Let 2 < r ≤ 4. Then

∥∥(Z −E[Z])+∥∥r

r
≤ 1

2

n∑
k=1

E
[∣∣εkQWk

(Uk/2)
∣∣r]+ 1

2
σ r‖g‖r

r , (7.19)

where g is a standard Gaussian random variable. Consequently, using Remark 7.10, we get

∥∥(Z −E[Z])+∥∥r

r
≤ 1

2

n∑
k=1

E
[|Yk|r

(
Hr(Xk) + Gr(Xk)

)]+ 1

2
σ r‖g‖r

r . (7.20)

Example 7.13 (continued). We derive immediately by Markov’s inequality, for any 2 < r ≤ 4,

P
(
Z −E[Z] ≥ sx

)≤ 1

2

(
‖g‖r

r

(√
1 + p2

x

)r

+ 1 + pr

srxr

n∑
k=1

E
[
Y r

k

])
.

7.2.4. Exponential inequality

Proposition 7.15. For any positive t ,

logE
[
exp
(
t
(
Z −E[Z]))]≤ n∑

k=1

log
(
E
[
cosh

(
tYkH(Xk)

)+ cosh
(
tYkG(Xk)

)− 1
])

.
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Example 7.13 (continued). Here, we make the additional assumptions that the Yk are standard
Gaussian random variables. In this situation, the inequality above implies that

L(t) ≤ n log
(
et2/2 + ep2t2/2 − 1

)≤ n�1+p2(t),

where �v(t) := log(1 + v(et2/2 − 1)). Hence, for any positive x,

P

(
Z −E[Z] ≥ n�1+p2(t) + x

t

)
≤ exp(−x). (7.21)

Let tx :=√2 log(1 + (1 + p2)−1(ex/n − 1)). Then putting tx in (7.21), we obtain for any positive
x,

P

(
Z −E[Z] ≥ x

√
2√

log(1 + (1 + p2)−1(ex/n − 1))

)
≤ exp(−x). (7.22)

Proof of Proposition 7.15. Let L denote the logarithm of the Laplace transform of Z − E[Z].
Next, applying (7.2) with ϕ(x) = etx , t > 0, we get

L(t) ≤
n∑

k=1

log
(
E
[
exp
(
tεkQWk

(Uk/2)
)])

. (7.23)

Now, using Remark 7.10,

E
[
exp
(
tεkQWk

(Uk/2)
)]= ∞∑

j=0

t2j

(2j)!E
[(

QWk
(Uk/2)

)2j ]
≤ E
[
cosh

(
tYkH(Xk)

)+ cosh
(
tYkG(Xk)

)− 1
]
.

Putting then this inequality in (7.23) ends the proof. �

8. Chaos of order two

Let X be a Polish space and F be a countable class of measurable functions from X into R

and let � be a subset of F × F . Let A = (ai,j )1≤i,j≤n be a symmetric real matrix with zero
diagonal entries (i.e., ai,i = 0 for all i) and let ‖ · ‖ denote the Hilbert–Schmidt norm which is
‖A‖HS =√Tr(ATA). Let X be a random variable with values in X such that for any function f

of F , f (X) is a centered random variable. Let X1, . . . ,Xn be n independent copies of X. Define
now the function F by

Z := F(X̃1, . . . , X̃n) := sup
(f,g)∈�

{ ∑
1≤i<j≤n

aij f (Xi)g(Xj )

}
, (8.1)
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where X̃k := (f (Xk))f ∈F . We say that F is a Vapnik–Čhervonenkis (VC for short) subgraph
class if the collection of all subgraph of the functions in F (i.e., the collection of sets {(x, s) ∈
X × R : s < f (x)} for f ∈ F ) forms a VC-class of sets in X × R (see, for instance, van der
Vaart and Wellner [28]).

Proposition 8.1. Let Z be defined by (8.1) and p > 2. Assume that F is a VC-subgraph class
of functions with square integrable envelope function �. Then there exists a constant K(F )

depending only on F such that∥∥(Z −E[Z])+∥∥p

≤ (p − 1)
‖A‖HS√

2

∥∥Q�(X)(U/2)
∥∥2

p

(√
1 + K(F )

(p − 1)

‖�(X)‖2
2

‖Q�(X)(U/2)‖2
p

)
,

(8.2)

where U is a random variable distributed uniformly on [0,1].

Remark 8.2. See that ∥∥�(X)
∥∥

p
≤ ∥∥Q�(X)(U/2)

∥∥
p

≤ 21/p
∥∥�(X)

∥∥
p
. (8.3)

Suppose now that �(X) is in L
p for all p > 2 and ‖�(X)‖p tends to infinity as p tends to

infinity. Then as p tends to infinity, we obtain the following behavior of the right-hand side of
(8.2)

(p − 1)
‖A‖HS√

2

∥∥Q�(X)(U/2)
∥∥2

p

(√
1 + K(F )

(p − 1)

‖�(X)‖2
2

‖Q�(X)(U/2)‖2
p

)

= (p − 1)
‖A‖HS√

2

∥∥�(X)
∥∥2

p

(
1 + O

(
1

p

))
.

(8.4)

Example 8.3. Here we assume that � ≤ 1 and we show how (8.2) can be used to obtain an
exponential bound for the tail probability.

Let p > 2, x ≥ 0, and define the function fx on (2,∞) by

fx(q) :=
(

(q − 1)Cx

∥∥Q�(X)(U/2)
∥∥2

q

(√
1 + K(F )

(q − 1)

‖�(X)‖2
2

‖Q�(X)(U/2)‖2
q

))q

,

where Cx := ‖A‖HS/x
√

2. Using (8.3) and � ≤ 1, one has

fx(q) ≤
(

(q − 1)Cx22/q‖�‖2
q

(√
1 + K(F )

(p − 1)

‖�‖2
2

‖�‖2
q

))q

≤ 4
(
Cxq

√
1 + K(F )

)q := 4 exp
(
hx(q)

)
.
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Clearly, infq>0 hx(q) = hx(1/(eCx

√
1 + K(F ))). Now, by Markov’s inequality, for any x ≥ 0

such that 2eCx

√
1 + K(F ) ≤ 1,

P
(
Z −E[Z] ≥ x

)≤ inf
p>2

E[(Z −E[Z])p+]
xp

≤ 4 exp

(
− 1

eCx

√
1 + K(F )

)
.

Proof of Proposition 8.1. For any m and l belonging to {1, . . . , n}, we set Sk(l,m) :=
supf ∈F |∑m

i=l aikf (Xi)|. Noting that

∣∣Z − Z(k)
∣∣≤ �(Xk)

(
Sk(1, k − 1) + Sk(k + 1, n)

)
,

it follows from Theorem 2.3 that

∥∥(Z −E[Z])+∥∥2
p

≤ (p − 1)
∥∥Q�(X)(U/2)

∥∥2
p

n∑
k=1

(∥∥Sk(1, k − 1) +E
[
Sk(k + 1, n)

]∥∥2
p

)
. (8.5)

Define the function F̃ such that Z̃ := F̃ (X̃1, . . . , X̃k−1) := S(1, k − 1). Define also for each
l ∈ {1, . . . , k − 1},

Z̃(l) := F̃ (X̃1, . . . , X̃l−1,0, X̃l+1, . . . , X̃k−1).

Hence, it follows that ∣∣Z̃ − Z̃(l)
∣∣≤ |alk|�(Xl).

Since Sk(1, k −1)+E[Sk(k +1, n)] is a nonnegative random variable, we can replace its p-norm
in (8.5) by ‖(Sk(1, k − 1) +E[Sk(k + 1, n)])+‖p . Then an application of Theorem 2.1 leads to

∥∥(Sk(1, k − 1) +E
[
Sk(k + 1, n)

])
+
∥∥2

p

≤
∥∥∥∥∥
(

k−1∑
i=1

aikεiQ�(X)(U/2) +E
[
Sk(1, k − 1) + Sk(k + 1, n)

])
+

∥∥∥∥∥
2

p

.

(8.6)

Now by Corollary 4.9, Inequality (8.6) becomes∥∥Sk(1, k − 1) +E
[
Sk(k + 1, n)

]∥∥2
p

≤ (p − 1)

(
k−1∑
i=1

a2
ik

)∥∥Q�(X)(U/2)
∥∥2

p
+ (E[Sk(1, k − 1) + Sk(k + 1, n)

])2
.

(8.7)
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Combining (8.5) and (8.7), we get∥∥(Z −E[Z])+∥∥2
p

≤ (p − 1)2
( ∑

1≤i<k≤n

a2
ik

)∥∥Q�(X)(U/2)
∥∥4

p

+ (p − 1)
∥∥Q�(X)(U/2)

∥∥2
p

n∑
k=1

(
E
[
Sk(1, k − 1) + Sk(k + 1, n)

])2
.

(8.8)

Let us now bound up E[Sk(1, k − 1)]. Define the probability measure

Pk−1 =
k−1∑
i=1

a2
i,kδXi

.

Exactly as in the proof of Theorem 2.5.2 in van der Vaart and Wellner [28], it can be shown that
for some universal constant K ,

E
[
Sk(1, k − 1)

]≤ KE

[∫ 1

0

√
logN

(
η
(
Pk−1�2

) 1
2 ,F ,L2(Pk−1)

)
dη × (Pk−1�

2) 1
2

]
, (8.9)

where for any semimetric space (T , d), the covering number N(η,T , d) is the minimal number
of balls of radius η needed to cover T . Then, recalling that a VC-subgraph class satisfies the
uniform entropy condition (see for instance [28], Theorem 2.6.7), there exists a constant C(F )

which depends only on F such that

E
[
Sk(1, k − 1)

]≤ C(F )E

[(
k−1∑
i=1

a2
i,k�

2(Xi)

) 1
2
]
. (8.10)

Proceeding in the same way for E[S(k + 1, n)], we finally obtain that(
E
[
Sk(1, k − 1) + Sk(k + 1, n)

])2
≤ 4C2(F )

(
E

[(
k−1∑
i=1

a2
i,k�

2(Xi)

) 1
2

+
(

n∑
i=k+1

a2
i,k�

2(Xi)

) 1
2
])2

.

(8.11)

Since (
√

x + √
y)2 ≤ 2(x + y) for any nonnegative x and y, and

∑n
k=1
∑

i �=k aik = 2 ×∑
1≤i<k≤n aik , we then get by Jensen’s inequality

(
E
[
Sk(1, k − 1) + Sk(k + 1, n)

])2 ≤ 8C2(F )

(
n∑

i=1
i �=k

a2
ik

)
E
[
�2(X)

]
. (8.12)

Combining this inequality with (8.8), one has (8.2) which ends the proof. �
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Remark 8.4. If we are concerned with

Z := sup
f ∈F

{ ∑
1≤i<j≤n

aij f (Xi)f (Xj )

}
,

the same proof applies and we obtain exactly the same inequality (8.2).

9. Proofs of the results of Sections 2 and 4

9.1. Proofs of Section 4

Proof of Lemma 4.3. The case q0 ∈ {0,1} is straightforward. We now turn to the case q0 ∈
(0,1). By the definition of q0, it is clear that E[X] = E[ζq0 ]. We set in the following a := aq0 and
b := bq0 . To prove (4.4), we consider the following cases separately:

(i) t ≤ a, (ii) a < t < b, (iii) t ≥ b.

Case (i). Let t ≤ a. Noting that (y − t)+ = (y − t) + (t − y)+, one has

E
[
(ζq0 − t)+

]= E[X − t] +E
[
(t − η)+

]
.

Hence, using the second inequality of (4.2), E[(X − t)+] ≤ E[(ζq0 − t)+].
Case (ii). Let a < t < b. A direct calculation leads to

E
[
(ζq0 − t)+

]= q(b − t) +E
[
(ψ − b)+

]
.

Let c = (b − t)/(b − a), f and g be the functions defined by

f (x) := max
{
c(x − a)+, (x − t)+

}
,

g(x) := ((x − t) − c(x − a)
)
1x≥b = (1 − c)(x − b)+,

for all x ∈R. Clearly f (x) = c(x − a)+ + g(x), whence

E
[
(X − t)+

]≤ cE
[
(X − a)+

]+E
[
g(X)

]
. (9.1)

Now by the Case (i),

E
[
(X − a)+

]≤ q(b − a) +E
[
(ψ − b)+

]
, (9.2)

and by the first inequality of (4.2),

E
[
g(X)

]≤ E
[
g(ψ)

]= (1 − c)E
[
(ψ − b)+

]
. (9.3)

Case (ii) follows then from combining (9.1)–(9.3).
Case (iii). Let t ≥ b. Clearly, E[(ζq0 − t)+] = E[(ψ − t)+] and the first inequality of (4.2)

gives the desired inequality.
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The proof of (4.4) is completed. The extension (4.5) to convex functions is classical (see, for
example, Proposition 3 in Bentkus [4] or the proof of Theorem 3.3 in Klein, Ma and Privault
[14]). �

Proof of Lemma 4.6. For every real t , define the function gt on (0,1) by gt (q) := E[(ζq −
E[ζq ] − t)2+]. Let (Cq) denote the condition

(Cq): 2E[ζq ] − aq − bq ≥ 0.

Remark that the left-hand side of (Cq) is nondecreasing in q and tends to a positive value as q

tends to 1. Hence q̃ := inf{q ≥ 1/2 : bq + aq ≤ 2E[ζq ]} exists, (Cq̃) is true and for any q ≥ q̃ ,
(Cq) is also verified.

In the following, we link the sign of g′
t (q) with the verification of the condition (Cq). Now,

g′
t (q) = − (aq −E[ζq ] − t

)2
+ − 2(bq − aq)

∫ 1−q

0

(
F−1

η (u) −E[ζq ] − t
)
+ du

+ (bq −E[ζq ] − t
)2
+ − 2(bq − aq)

∫ 1

1−q

(
F−1

ψ (u) −E[ζq ] − t
)
+ du.

(9.4)

We consider the following cases separately:

(i) t +E[ζq ] ≥ F−1
ψ (u) for all u ∈ (0,1),

(ii) t +E[ζq ] ≤ F−1
η (u) for all u ∈ (0,1),

(iii) aq ≤ t +E[ζq ] ≤ bq ,
(iv) bq < t +E[ζq ] < F−1

ψ (1−),

(v) F−1
η (0+) < t +E[ζq ] < aq .

Case (i). All the terms in the right-hand side of (9.4) are equal to zero.
Case (ii). In this case, ζq has a finite second moment and g′

t (q) = d/dq Var(ζq). Then, it is
elementary to see that g′

t (q) ≤ 0 if and only if (Cq) is true.
Case (iii). One has

g′
t (q) ≤ (bq −E[ζq ] − t

)(
bq −E[ζq ] − t − 2q(bq − aq)

)
. (9.5)

The first factor of the right-hand side of (9.5) is nonnegative. Hence the right-hand side of (9.5)
is negative if and only if, for all t in [aq −E[ζq ], bq −E[ζq ]],

−2q(bq − aq) ≤ −bq +E[ζq ] + t. (9.6)

See now that the right-hand side of (9.6) is nondecreasing in t . It thus follows that −2q(bq −
aq) ≤ −(bq − aq), or equivalently q ≥ 1/2, implies that g′

t (q) ≤ 0.
Case (iv). One has directly in this case

g′
t (q) = −2(bq − aq)

∫ 1

1−q

(
F−1

ψ (u) −E[ζq ] − t
)
+ du ≤ 0.



2930 A. Marchina

Case (v). Define

εt := sup
{
θ ∈ (0,1) : F−1

η (θ) ≤ t +E[ζq ]}.
Then

g′
t (q) = (bq − aq)Aq,t ,

where

Aq,t = bq + aq − 2E[ζq ] − 2t

− 2
∫ 1

1−q

(
F−1

ψ (u) −E[ζq ] − t
)
du − 2

∫ 1−q

εt

(
F−1

η (u) −E[ζq ] − t
)
du

= bq + aq − 2E[ζq ] + 2
∫ εt

0

(
F−1

η (u) −E[ζq ] − t
)
du

≤ bq + aq − 2E[ζq ].

We note that if (Cq) is true, then Aq,t ≤ 0, whence g′
t (q) ≤ 0.

Finally, if q ≥ 1/2 and (Cq) is verified, then g′
t (q) ≤ 0 and the proof of (i) is completed. Let

us prove now (ii) starting with Lemma 4.3, we get

E
[(

X −E[X] − t
)2
+
]≤ E

[(
ζq0 −E[ζq0 ] − t

)2
+
]
,

where q0 is given by (4.3). In particular, E[ζq0 ] = E[X] ≥ 0. Moreover, since η = −ψ ,
E[ζ1/2] = 0. Recalling that E[ζq ] is nondecreasing with respect to q , it implies that q0 ≥ 1/2.
Now, see that a1/2 + b1/2 ≤ 0 = E[ζ1/2]. Indeed, for any u ∈ (0,1),

F−1
ψ (u) ≤ − sup

{
t ∈R : F−ψ(−t) ≤ 1 − u

}
= −F−1

−ψ

(
(1 − u)+)

≤ −F−1
−ψ(1 − u).

Thus, a1/2 + b1/2 = F−1
−ψ( 1

2 ) + F−1
ψ ( 1

2 ) ≤ 0. By the point (i), we obtain (4.6), which concludes
the proof. �

Proof of Proposition 4.8. Since X ≤ X+,∥∥(X + Y)+
∥∥2

p
≤ ∥∥(X+ + Y)+

∥∥2
p

≤ ‖X+ + Y‖2
p. (9.7)

Moreover, under the same hypotheses of Proposition 4.8, one has the inequality ‖X + Y‖2
p ≤

‖X‖2
p + (p − 1)‖Y‖2

p as a corollary of Proposition 2.1 of Pinelis [19] (see also Lemma 2.4 of
[12] and Proposition 2.1 of [26]). Combining this with (9.7) completes the proof. �
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9.2. Proofs of Section 2

Proof of Theorem 2.1. Starting from (2.1) and projecting on Fk , we obtain −Tk ≤ Zk −
Ek[Z(k)] ≤ Wk almost surely. Moreover, recalling that the random variables Xk are cen-
tered and since F is separately convex, an application of Jensen’s inequality ensures that
Ek−1[Zk − Z(k)] ≥ 0. Thus, conditionally to Fk−1, we can apply the second part of Lemma 4.6
with X = Zk − Ek[Z(k)] and ψ = ξk . Recalling (1.4) and Remark 4.7, it yields that for any
function ϕ in H2+,

Ek−1
[
ϕ(�k)

]≤ E
[
ϕ
(
εkQξk

(Uk/2)
)]

. (9.8)

We now prove (2.1) by induction on n. The case n = 1 is given by (9.8) with k = 1. Let n > 1
and assume that (2.3) holds for n − 1. We then have

E
[
ϕ
(
Z −E[Z])]= E

[
En−1

[
ϕ(Zn−1 + �n)

]]
≤ E
[
ϕ
(
Zn−1 + εnQξn(Un/2)

)]
≤ E

[
ϕ

(
n∑

k=1

εkQξk
(Uk/2)

)]
,

where we use (9.8) in the first inequality and the induction assumption in the second inequality.
�

Proof of Theorem 2.3. As in the proof of Theorem 2.1, we obtain for any function ϕ in H2+,

Ek−1
[
ϕ(�k)

]≤ E
[
ϕ
(
εkEk−1[ψk]Qξk

(Uk/2)
)]

. (9.9)

We now prove (2.6) by induction on n. For n = 1, it follows from (9.9) for k = 1 and (4.8). Let
n > 1 and assume that (2.6) holds for n − 1. Then∥∥(Z −E[Z])+∥∥2

p
≤ ∥∥(Zn−1 + εnEn−1[ψn]Qξn(Un/2)

)
+
∥∥2

p

≤ ∥∥(Zn−1)+
∥∥2

p
+ (p − 1)

∥∥En−1[ψn]Qξn(Un/2)
∥∥2

p

≤ (p − 1)

n∑
k=1

∥∥Ek−1[ψk]
∥∥2

p

∥∥Qξk
(Uk/2)

∥∥2
p
,

where we use (9.9) in the first inequality, Proposition 4.8 in the second inequality and the induc-
tion assumption in the third inequality. �

Remark 9.1. See that, contrary to (9.8), there is a Fk−1-measurable term in the expectation in
the right-hand side of (9.9), which prevents us to proceed as in the proof of Theorem 2.1.
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