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1. Introduction

We shall prove via the weak convergence approach developed in [5,8,16] the Freidlin—Wentzell
type large deviation principle (LDP) for a family of locally monotone stochastic partial differ-
entia equations (SPDEs) driven by Lévy processes, these SPDEs include stochastic reaction-
diffusion equations, stochastic Burgers type equations, stochastic 2D Navier—Stokes equations
and stochastic equations of non-Newtonian fluids.

Let V be a reflexive and separable Banach space, which is densely and continuously injected
in a separable Hilbert space (H, (-, -) g). Identifying H with its dual, we get

VCHZH*CV*,

where the star ‘*’ denotes the dual spaces. Denote (-, -)y+ y the duality between V* and V, then
we have

(u, v)yxy = (u,v)y, YueH,veV.

Fix T > 0 and let (2, F, (F1)¢ef0,7]. P) be a complete separable filtration probability space.
Let P be the predictable o -field, that is the o-field on [0, T] x 2 generated by all left continuous
and F;-adapted real-valued processes. Further denote by BF the o-field of the progressively
measurable sets on [0, T] x €, i.e.

BF={0C[0,T]1xQ:V¥1€[0,T],0N([0,1] x Q) € B([0,1]) ® F},
where B([0, ¢]) denotes the Borel o -field on [0, ¢].
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Now we consider the following type of SPDEs driven by Lévy processes:

dX; = A(r, X7)dt —i—s/ £t X5, )N (dt, dz),
X (1.1)
Xo=x€H,

where A:[0,T] x V — V*isa B([0, T]) ® B(V)-measurable function. X is a locally compact
Polish space. N ¢”' is a Poisson random measure on [0, T] x X with a o-finite mean measure
e a7 @ v, Ar is the Lebesgue measure on [0, T'] and v is a o -finite measure on X.

-1

Ne' (10,1 x B)=N¢' (0,61 x B) —e'tv(B), VB e B(X) with v(B) < 0o,

is the compensated Poisson random measure. f :[0, 7] x V xX— Hisa B([0,T]) ® B(V) ®
B(X)-measurable function.

The following assumptions are from [4], which guarantee that Eq. (1.1) admits a unique so-
lution. Suppose that there exist constants @ > 1, 8 > 0,6 > 0, C > 0, positive functions K and
F and a function p : V — [0, +00) which is measurable and bounded on the balls, such that the
following conditions hold for all v, v, v, € V and t € [0, T]:

(H1) (Hemicontinuity) The map s — {A(¢, vi + sv2), v)y+ v is continuous on R.
(H2) (Local monotonicity)

2<A(tv U]) - A(tv UZ), v — Uz)v*’v + \/};Hf(t’ V1, Z) - f(tv v2, Z) ||§_IV(dZ)
< (Ki + p2) o1 — w21}
(H3) (Coercivity)

2A(1, v),v)ys y, + IV < Fr (14 [0115,).-
(H4) (Growth)

|AG, o) |57 < (Fr+Cllolle) (1 + lIvlf).

Definition 1.1. An H-valued cddldg F;-adapted process {X7};c[0,77] is called a solution of Eq.
(1.1), if for its dt x P-equivalent class X¢ we have

(1) X¢ e LY([0,T]; V)N LX([0, T]; H), P-as.;
(2) the following equality holds P-a.s.:

t t
Xf:x—i—/ A(S,Yj)ds+s/ /f(sjﬁ,z)zve”(ds,dz), tel0,T1,
0 0 JX

where X is any V-valued progressively measurable df x PP version of Xe.



2844 J. Xiong and J. Zhai

Remark 1.1. It is a well-known and typical conclusion in probability theory that dr x P-
equivalent processes/versions are regarded as the same stochastic process, and it is always impos-
sible to find one version to satisfy all required properties. In the above definition, three dr x P-
equivalent versions “X¢, Xe, X are implicitly required to ensure that each version satisfies
some required properties.

With a minor modification of [4], Theorem 1.2, we have the following existence and unique-
ness theorem for the solution of Eq. (1.1).

Theorem 1.1. Suppose that conditions (H1)—(H4) hold for F, K € L'([0, T1; RT), and there
exists a constant y < % and G € LY ([0, T1; R™T) such that forallt € [0, T] and v € V we have

/XHf(t, v, 2|5V < F(1+ 0ly) + v vl (1.2)
/XHf(t,v,z)HZHV(dZ) <Gi(1+ I8 (1.3)
p(v) < C(1+IvIIE) (1 + lvlf). (1.4)

Then

(1) Forany x € LAT2(Q, Fo,P: H), (1.1) has a unique solution {X? };e[0,11-
(2) If y is small enough, then

T
B sup |x;157) +E [ 115 1% ar
te[0,T] 0

T T
§C8<E||x||/131+2+/ thr+/ Ftdt>.
0 0

Remark 1.2. The assumptions in Theorem 1.1 are satisfied by a very large class of SPDEs driven
by a multiplicative pure jump Lévy noise, including the stochastic porous medium equation,
stochastic p-Laplace equation, stochastic Burgers type equations, stochastic 2D Navier—Stokes
equations and many other stochastic hydrodynamical systems. Section 2 in [4] presents many
concrete examples to illustrate the applications of this theorem. It is omitted in this paper.

Our aim in the present paper is to establish a LDP for the solution of (1.1) as ¢ — 0 on
D([0, T], H), the space of H-valued cadlag functions on [0, T'].

In the past three decades, there are numerous literatures about the LDP for stochastic evolution
equations (SEEs) and SPDEs driven by Gaussian processes (cf. [3,6,7,9-12,15,19,20,22,23,25,
26,31,32], etc.). Many of these results were obtained by using the weak convergence approach for
the case of Gaussian noise, introduced in [6,7], see, for example, [3,6,7,15,20,22,23,25,32]. This
approach has been proved to be very effective for various finite/infinite-dimensional stochastic
dynamical systems. One of the main advantages of this approach is that one only needs to make
some necessary moment estimates.
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The situations for SEEs and SPDEs driven by Lévy noise are drastically different because of
the appearance of the jumps. There are only a few results on this topic so far. The first paper on
LDP for SEEs of jump type is [24] where the additive noise is considered. The study of LDP for
multiplicative Lévy noise has been carried out as well, for example, [27] and [5] for SEEs where
the LDP was established on a space larger (hence, with a weaker topology) than the actual state
space of the solution, [29] for SEEs on the actual state space, [30] for the 2-D stochastic Navier—
Stokes equations (SNSEs). Before [30], [28] dealt with the 2-D SNSEs driven by additive Lévy
noise. We also refer to [2,13,14,17] for related results.

To obtain our result, we will use the weak convergence approach introduced in [5,8] for the
case of Poisson random measures. This approach is a powerful tool to prove the LDP for SEEs
and SPDEs driven by Lévy noise, which has been applied for several dynamical systems. The
weak convergence method was first used in [5] to obtain LDP for SPDEs on co-nuclear spaces
driven by Lévy noises, and then in [29] for SPDEs on Hilbert spaces with regular coefficients.
Paper [30] deals with the 2-D SNSEs driven by multiplicative Lévy noise. Bao and Yuan [2]
established a LDP for a class of stochastic functional differential equations of neutral type driven
by a finite-dimensional Wiener process and a stationary Poisson random measure.

Monotone method is a main tool to prove the existence and uniqueness of SPDEs, and it can
tackle a large class of SPDEs, for more details, see [4,21] and references therein. Working in the
framework of [4], the purpose of this paper is to establish a LDP for a family of locally monotone
SPDE:s (1.1) driven by pure jumps. In addition to the difficulties caused by the jumps, much of
our problem is to deal with the monotone operator A.

This paper is organized as follows. In Section 2, we will recall the abstract criteria for LDP
obtained in [8]. In Section 3, we will show the main result of this paper. Section 4 and Section 5
is devoted to prove prior results on the controlled SPDEs (4.4), which play a key role in this
paper. The entire Section 6 is to establish the LDP for (1.1).

2. Preliminaries

2.1. Poisson random measure

For convenience of the reader, we shall adopt the notation in [5] and [8]. Recall that X is a locally
compact Polish space. Denote by Mpc(X) the collection of all measures on (X, B(X)) such that
v(K) < oo for any compact K € B(X). Denote by C.(X) the space of continuous functions with
compact supports, endow Mpc(X) with the weakest topology such that for every f € C.(X),
the function

v—(f, V)Z/Xf(u)dV(u),

is continuous for v € Mgc(X). This topology can be metrized such that Mgc(X) is a Polish
space (see e.g. [8]).

Fixing T € (0, 00), we denote X7 = [0, T] x X and vy = A7 ® v with A7 being Lebesgue
measure on [0, 7] and v € Mpc(X). Let n be a Poisson random measure on X7 with intensity
measure vr, it is well-known [18] that n is an Mgc(X7) valued random variable such that
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(i) for each B € B(X7) with vy (B) < 0o, n(B) is Poisson distributed with mean vy (B);
(ii) for disjoint By, ..., By € B(Xr), n(By}),...,n(B;) are mutually independent random
variables.

For notational simplicity, we write from now on
M = Mrpc(X7), 2.1)

and denote by P the probability measure induced by n on (M, B(M))). Under P, the canonical
map, N : M — M, N(m) = m, is a Poisson random measure with intensity measure vy. With
applications to large deviations in mind, we also consider, for 8 > 0, probability measures Py on
(M, B(M)) under which N is a Poisson random measure with intensity Ovr. The corresponding
expectation operators will be denoted by E and Ey, respectively.

For further use, simply denote

Y =X x [0, 00), Y7 =1[0,T] x Y, M = Mpc(Y7). (2.2)

Let P be the unique probability measure on (M, B(M)) under which the canonical map, N
M — M, N (m) = m, is a Poisson random measure with intensity measure V7 = A1 @ V ® Aoo,
with Ao being Lebesgue measure on [0, 00). The corresponding expectation operator will be
denoted by E. Let F; = a{N((O s]xA):0=<s <t, A €B(Y)}, and let F; denote the completion
under P. We denote by P the predictable o -field on [0, T'] x M with the filtration {F; : 0 <t < T}
on (M, B(M)). Let A be the class of all (P ® B(X))/B([0, co))-measurable maps ¢ : X1 x M —
[0, 00). For ¢ € A, we shall suppress the argument 7 in ¢(s, x, i) and simply write ¢ (s, x) =
¢(s, x,m). Define a counting process N¥ on X7 by

N?((0,1] x U) = f / 10,0601 (IN(dsdxdr),  t€[0,T],U €BX). (23)
0,¢1]xU J(0,00)

The above N? is called a controlled random measure, with ¢ selecting the intensity for
the points at location x and time s, in a possibly random but non-anticipating way. When
(s, x,m) =0 € (0,00), we write N¥ = N?. Note that N? has the same distribution with re-
spect to P as N has with respect to P. The following is a representation formula proved in [8].

Theorem 2.1. Let F € My(M). Then, for 0 > 0,

—logEy (e F™) = —log B (e * ™) = inf E[6L1(p) + F(N?)].
peA

2.2. A general criterion for large deviation principle ([S], Theorem 2.4)

We first state the large deviation principle we are concerned with. Let {X*, & > 0} = {X?} be
a family of random variables defined on a probability space (€2, F,P) and taking values in a
Polish space £. Denote the expectation with respect to P by E. The theory of large deviations is
concerned with events A for which probability P(X? € A) converges to zero exponentially fast
as ¢ — 0. The exponential decay rate of such probabilities is typically expressed in terms of a
‘rate function’ / defined as below.
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Definition 2.1 (Rate function). A function / : £ — [0, oc] is called a rate function on &, if for
each M < oo the level set {y € £: I(y) < M} is a compact subset of £. For A € B(£), we define
1(A) = infyes I().

Definition 2.2 (Large deviation principle). Let / be a rate function on £. The sequence {X¢}
is said to satisty a large deviation principle (LDP) on £ with rate function / if the following two
conditions hold.

(a) LDP upper bound. For each closed subset F of £,

limsupelogP(X® € F) < —I(F).

e—0

(b) LDP lower bound. For each open subset G of £,

limi(r)lfslogIP’(XE € G) > —1(G).
e—>

Next, we recall the general criterion for large deviation principles established in [5]. Let
{G®}e~0 be a family of measurable maps from M to U, where M is introduced in (2.1) and U is

a Polish space. We present below a sufficient condition for LDP of the family Z% = G®(e N ! ),
ase — 0.
Define

SV ={g:X7 — [0,00): L7(g) < N}, 2.4)

afunction g € § N can be identified with a measure v§ € M, defined by
v?(A) = / g(s, x)vr(dsdx), A e B(X7).
A

This identification induces a topology on SV under which SV is a compact space, see the Ap-
pendix of [5]. Throughout this paper, we use this topology on SV . Denote § = UN=: S N and

AN :={p € A and p(w) € SV, P-as.}.
Let{K, C X,n=1,2,...} bean increasing sequence of compact sets such that U;.,ozl K, =X.
For each n, let

Apn={peA: forall (t,w) € [0, T1 x M,n > ¢(t,x,®) > 1/nif x € K,
and ¢(t,x,w)=11ifx € K;'},

and let Ay = |, Ay . Define AN = AN N {¢: ¢ € Ay).

Condition 2.1. There exists a measurable map G° : M — U such that the following hold.

(a) Forall N e N, let g,, g € SV be such that g, — g as n — 0o. Then

@) > @0%)  inU.
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(b) Forall N e N, let ¢, ¢ € A" be such that @ converges in distribution to ¢ as ¢ — 0.
Then

G*(eN® %) = GO(v9).

In this paper, we use the symbol “=-"" to denote convergence in distribution.
For ¢ e U, define Sy ={geS:¢ = Qo(vi)}. Let 7 : U — [0, oco] be defined by

I(¢)= inf L7(g), ¢eU. (2.5)
g€S¢

By convention, /(¢) =0 if Sy = @.
The following criterion for LDP was established in Theorem 2.4 of [5], which is a strengthened
form of Theorem 4.2 of [8], and for applications, it is more useful.

Theorem 2.2. For e > 0, let Z* be defined by Z* = G* (st_l ), and suppose that Condition 2.1
holds. Then the family {Z*}.~0 satisfies a large deviation principle with the rate function I
defined by (2.5).

3. LDP for Eq. (1.1)

Assume that Xog = x € H is deterministic. Let X° be the H-valued solution to Eq. (1.1) with
initial value x. In this section, we state the LDP on D([0, T'], H) for {X¢} under suitable as-
sumptions.

Take U = D([0, T], H) in Condition 2.1 with the Skorokhod topology Us. We know that
(U, Ug) is a Polish space. For p > 0, define

H, = {h 0. T] x X — RT 136> 0, s.t. VI € B([0. T]) ® B(X)
with v7(I) < co, we have / exp(8h? (¢, y))v(dy) dt < oo}.
r

Remark 3.1. It is easy to check that , C H, for any p’ € (0, p) and

{h:[O,T]xX—>R+, sup h(t,y)<oo}C'H,,, Vp > 0.
(t,y)€l0,TTxX

To study LDP of Eq. (1.1), besides the assumptions (H1)-(H4), we further need

(HS) There exist o > 0, p > T with T := 22Dt \, e=Dletn) \, 4 (8 +2), and
LyeLr(vr)NLa(vy) N Lgia(vr) N Ly (vy) N L% (vr) N'H ), such that

|f @ v. 2|, <Ly 21+ vlla). Y(t,v,2) €[0,T] x V x X.
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(H6) There exists G y € La(vr) N H; such that
|f@ v = ftv. 2], <GrE. Dllvi —wlla,  Y(.2)€[0,TIx X, v, 1€ V.
Remark 3.2. It is easy to check that

Lo(wp) N{h:[0,T] x X—> R, [|hloe < 00}
C Lo(vr) N La(vr) N Lgya(vr) N Ly (vr) N L%(VT) NHp,

where [|h]|co = Sup(t,y)e[o,r]xxh(t, y).

It follows from Theorem 1.1 that, for every & > 0, there exists a measurable map G°: M —
D([0, T]; H) such that, for any Poisson random measure n® - on [0, T'] x X with mean measure
e~ 'A7 ® v given on some probability space, g*’"(snfl) is the unique solution X? of (1.1) with
N¢™' replaced by fi* ', here i is the compensated Poisson random measure of n® .

To state our main result, we need to introduce the map GO. Recall S given in Section 2.2. For
g € S, consider the following deterministic PDE (the skeleton equation):

t t
x?’g=x+f A(s,X?’g)ds+/ £(s, X0%,2)(g(s,2) — 1)v(d2)ds,  in V™.
0 0

By Proposition 5.1 below, this equation has a unique solution X%¢ e C([0,T], H) N
LY([0, T, V). Define

G°(vi):=x",  vges. 3.1)

Let I : U= D([0,T], H) — [0, oo] be defined as in (2.5). The following is the main result of
this paper.

Theorem 3.1. Assume that (H1)-(H6) and (1.4) hold. Then the family {X®}.~¢ satisfies an LDP
on D([0, T, H) with the rate function I under the topology of uniform convergence.

Proof. According to Theorem 2.2, we only need to verify Condition 2.1, which will be done in
the last section. O

4. Tightness of G€(e N~ %)

The main result of this section is Proposition 4.1 in which we prove the tightness of the solutions
X¢ of the controlled SPDEs (4.4). To this end, X¢ is written as the summation of three terms
Y®+ Z°® + M?, and their tightness are proved separately. In fact, the martingale part M? is proved
to converge to 0 by an estimate of the H-norm of X¢ which is given in Lemma 4.4. The other
two parts Z¢ and Y? are of finite variations, and their tightness follows from Ascoli—Arzeld’s
theorem and from Kolmogorov’s criterion respectively. The keys in applying these theorems are
again in obtaining good estimates of the norms of X¢. For Z¢, the H-norm is again needed.



2850 J. Xiong and J. Zhai

However, for Y?, the V-norm is needed which is derived in Lemma 4.5. As auxiliary results
before deriving estimates of Lemmas 4.4 and 4.5, we will state three lemmas whose proofs can
be adopted from those in [5], [29] and [8].

Using similar arguments as those in proving [5], Lemma 3.4, we can establish the following
lemma.

Lemma 4.1. Forany h € H, N L, (vr), p' € (0, pl, there exists a constant Cy, p, ;v y such that

Ch,p,p/,N = Sup / hp/(s, v)(g(s, v) + l)v(dv) ds < 00. 4.1)
geSN JXr

For any h € Ha N La(vr), there exists a constant Cp y such that

Ch.n = sup / h(s, v)|g(s, v) — l|v(dv)ds < 00. 4.2)
geSN JXr

Using the argument used for proving [5], Lemmas 3.4 and 3.11, and [29], (3.19), we further
get

Lemma 4.2. Let h : X7 — R be a measurable function such that
/ (s, v)|*v(dv) ds < oo,
Xr

and for all § € (0, 00)
/ exp(8|h(s, v)|)v(dv) ds < oo,
E

for all E € B(Xr) satisfying vy (E) < 00.

(@) Fix N eN, and let g,, g € SN be such that g, — g as n — 0o. Then

lim h(s, v)(gn(s, v) — l)v(dv) ds :/ h(s, v)(g(s, v) — 1)v(dv) ds.

n—>oo Jx Xr

(b) Fix N € N. Given ¢ > 0, there exists a compact set K, C X, such that

S“P/ /|h(s,v)||g(s,v)—1|v(dv)ds§g.
[0,71JK¢

gesSN

(c) For every n > 0, there exists § > 0, we have such that for any A € B([0, T]) satisfying
AT(A) <§

sup//h(s,v)}g(s,v)—1|v(dv)ds§n. 4.3)
AJX

gesSN
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Fix N € N. For any ¢, € AN consider the following controlled SPDEs

dX¢ =A(t,)?f)dt+/ F(t, X8, 2) (pelt, 2) — 1)v(d2) dr
X
“4.4)
+e/ F1 Xe_ )N ¥ @z dn),
X

with initial condition X§ = x.
Recall AV in Theorem 2.2. Let ¢, = LF The following lemma follows from Lemma 2.3 and
Section 5.2 in [8]. Recall the notations in Section 2.1, we have the following lemma.

Lemma 4.3.
EE(We) = exp{/ log(9 (s, x))N (ds dx dr)
(0,11xXx[0,e Lo, ]
+/ (—19,3(s,x)+1)1_)r(dsdxdr)}.
(0,11xXx[0,e Lo, ]
Consequently,

Q(G) = / EEWe)dP,  for G e B(M)
G
defines a probability measure on M.

By the fact that eN¢ '¢ under Q% has the same law as that of e N* " under P. From Theo-
rem 1.1, we see that there exists a unique solution X¢ to the controlled SPDE (4.4) which satisfies
(2) in Theorem 1.1.

By the definition of G*, we have

X° = Ge (NS ). 4.5)
The following estimates (Lemmas 4.4 and 4.5) will be useful.

Lemma 4.4. For p=2,2+ B or Y in (H5), there exists €, Cp > 0 such that

a5 s [%015) +2( [ 151518 ar) <

e€(0,ep] te[0,T]
Proof. By It6’s formula, we have

IXEN5 = 1x15 + 1) + Ia(6) + 3(0) + 1a(0), (4.6)
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where
P [izeqr-2 >
no =5 IR0 A %), ), ) s
12(t)_/ /P“X—”p 25f S Xg ) )’iﬁ—)H,Hﬁgil%(dstS),
o= [ [1% +er %ol - 1% 1
- p|Xi ||Ziz<8f(sf X;_.2), i?—)ﬂ,H]Ngil%(dZ,dS),
and
t
I4(t)=p/ ||Xf|}22</ f(s,Xﬁ,z)(gog(s,z)—l),X§> v(dz)ds.
0 X H,H
Note that by (H3),
P e 3 %
nw =g IR 6+ RIR -0 % ) ds
9p . o~
<= IR s
t ~
+ 4 [ LR +0F+ AR Jas @)
Op ("1 seup—21
<=2 IR 1% s
p [ t -
+5f0 Fsds+/0 PF|X¢|5 ds,
and by (H5),

t v - ~
14(t)5p/0 1515 1/X||f(s,X§,z)||H|(<pg(s,z)_1)|,,(dz)ds
t o _ ~
Sp/ HXfHI;I 1(1+ HX?”H)/ Lf(s’z)’(%(S,z)— 1)|U(d2)ds
0 X
l (4.8)
SP/O /XLf(S,Z)K%(s,z)_1)|v(dz)ds

t ~
+2p/0 HX§||§1/XLf(S9Z)|(%(&Z)—1)|v(dz)ds.
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By Gronwall’s inequality, combining (4.6) (4.7), (4.8) and Lemma 4.1,
~ Op (! ~ o~
I%0+ 2 [ IR IR s
T
§exp<p/ Fsds+2pCLf,N>
0 J

T
x (IIXIIZJrE/ Fyds + sup |L(s)| 4+ pCL,.N (4.9)
2 Jo s€[0,1] ‘

t

[ [ el ler 6. %91,
0 /X

e (s K2 | )N ds>),

we have used (4.9) in [4] to I3, that is,
-2 -2
Il + A1 — x5 = plxlf > hymm| < cp(Ixll  Nal, + 1A1%).  Vx heH.

By Lemma 4.1, we have

E( sup |12(s)|>

s€(0,T]
T
SE</0 fxng’2||xe<s—>||2’”“<f(s,xg_,z),

N B 1/2
O l%wz,ds))

! ~ - - - 12
5E</0 /X82p2||xf(s—)|\i,” L2, (| K|, +1)°N¢ '%(dz,ds)>

51@( sup || XZ|7 (4.10)
s€[0,T]

T - - B 1/2
e [ IR L (R |y 1Nz a)

1 ~
< 3E( s 1%07)

s€l0, T
- T
+168p2E[( sup Hx§||’;,+1)/ /L?(s,z)q)g(s,z)v(dz)dsil
s€[0,T] 0 X

1 ~
< (§ 10, 2 )5 s 105) 16607 a0
4 5€[0,T]



2854 J. Xiong and J. Zhai

On the other hand, by Lemma 4.1 again, we have

r —1
([ [ el %l 2erts, v v azan)
T
5scpu<:(/0 /XHX§||Z_2L§C(S,z)(||X§||H+1)2<p8(s,z)v(dz)ds)
. 4.11)
§8cpIE[< sup HXSHP +1 / /L?(s,z)fpg(s,z)v(dz)ds]
0 X

€[0,T]

< stCLf'p’p’NE(ses[%pT] ||§f ||pH) +ecpCrL, 20N,

and

T
B[ [Lelerc. X2 lne " @z av)
0
= <f /”f o XE H¢8(S,Z)v(dz)ds>

T
< EP_ICP]ERS:[EPT] X7+ 1) /(; /XL?(S, 2)@e (s, 2)v(dz) ds}

-1 Fe|p -1
<egP c[,CLf’p,p,N]E< sup ||X§||H)+8p cpCL;p.p.N-
' 5€[0,T]

(4.12)

Combining (4.9)—(4.12), we obtain that there exists &, > 0 such that

0 T seir=21s
s [i( s 1%615) + ([ 15605 1% as) |

e€(0,ep s€[0,

<C T .
- N,P,T»HXHH‘fO deS»Lj

The proof is complete. (]

Lemma 4.5. For p = %, there exist Cp, such that

T p
sup u«:(/ ||x;?||‘;ds) <c,.
e€(0,e2p] 0

Here &5, comes from Lemma 4.4.
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Proof. Consider p =2 in (4.9), we have

o [ 15[

T
<Cyr T Fast, (nxn%, + /0 Fuds++ sup [1)]+2CL.n + J(r)>,

(4.13)

where

In the following calculations, we take p = --. Note that

I = / / (e (s. R 2) % )NE "% iz, dis).
X
2

T ~ ~_ 1
B0l < o8(| [ [ ere X )F s

)
re(| [ el T et ovaa )

By Kunita’s first inequality (refer to Theorem 4.4.23 in [1]), we can continue with

E(l70)]") < cp g2P~ 1E</ /“f 5, X%,z ||H<pg(s z)v(dz)ds)
r/2
+c 83”/2E(/ /”f S Xg ||H§03(s z)v(dz)ds)

P
—i—cpspE(/ /”f 5, X%,z HH%(S z)v(dz)ds) )

Thus, by Lemma 4.1, we have

E(V0|")

Sc,,]E(l—l— sup ||)?§||H>2p<gzp 1 supf /L (s,2)9(s, 2)v(dz)ds

s€[0,T]

T /2
+83p/2(sup/ /L‘}(s,z)w(s,z)v(dz)ds)
pesN JO JX

T p
+sl’<sup/ /-L?(s,z)go(s,z)v(dz)ds) )
(/JESN 0 X

~ 2
<cpB(1+ o 1% 1) Ly apapn

(4.14)

+&P2(CLyaan)? + 6P (CrLy22.8)7).
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By Kunita’s first inequality again,

IE( sup |12(s)|P>

s€[0,T]

T
scpepllE(f /|(f(s,X§,Z),X§)HH|p<pg(S,z)v(dz)ds)
0 X ’

T N - 5 p/2
+cp8p/zE< / / (s, %e,2), %)y 4l <pg(s,z)v(dz)ds)
<cpel” 1]E(/ /HX'SHPLP(S D1+ XE ) 0e s, z)v(dz)ds)
5 o2 o - 5 r/2
+cpe?! E(/ /y|x§HHLf(s,z)(1+Hx;“HH) <pe(s,z)v(dz)ds) (4.15)
0 JX ’

<cpel~ IE(1+ €s[lépT]”X ”H sup/ / f(s 2)e(s, 2)v(dz) ds

T p/2
+c e”/ZJE<1 + sup HX HH) < sup / / sz(s, 2)¢(s, 2)v(dz) ds)
s€l0, pesNJO JX 7
~ 2p B
< CPE(I + sup ”Xss H) (8” 1CLf,p,p,N + SP/Z(CLJ.J)Q,N),)/Z).
s€[0,T]
Lemma 4.4 and (4.13)—(4.15) imply this lemma. O

Finally, we prove the tightness of {Xe).

Proposition 4.1. For some gy > 0, {?8}86(0,80] is tight in D([0, T, V*) with the Skorohod topol-
ogy. Moreover, set

t
= [ [ert R R vz,
0 JX
t
=/ /f(&X?,Z)(%(s,z)—1)v(dz)ds,
0 JX
t
Yf:/ Als, XE) ds,
0

then

(@) limg—o E(sup,po.7) 1M [13) =0,
(b) (Z8)o<i<r is tight in C([0,T1, V*),
(©) (Y)o<i<r is tight in C([0, T1, V*).
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Proof. (a) By Lemma 4.1, we have

E( sup HMEHH)
1€[0,T]

<C5E(/ /Hf 5, X%,z ||Hg05(s z)v(dz)ds)

(/ fL (s,2)(1+ ||X8||H) 05 (s, z)v(dz)ds)
4.16)
E(1+ sup ||X ||H <sup/ / 7 (5,29, z)v(dz)ds)

peSN

| /\

| /\

(1+ sup. ||x ||H) Cry2oN
— 0, as ¢ — 0.

(b) It is sufficient to prove that for any § > 0, there exists a compact subset Ks C C([0, T'], V*)
such that

P(zf € K5) > 1-3.

Denote

DM,N:{(rhgf):r'eD([OaT]vH)nLa([OvT]sV)s Sup ”rl”HSMngSN}s
t€[0,T]

R(Dm.n) = {y-=/0./xf(s,rs,1)(g(s,1)—I)V(dZ)ds, (r, g)GDM,N}-

For any y € R(Dy_x), we have
||yt—ys||HsfstL!lf(l,r<l>,z)||H|g(z,z>—1|v<dz>d1
< s (14 0] [ [rraaleto-1paoa i)
<(M+1) sup /thLf(l,z)hp(l,z)—1|v(dz)dz.

peSN Js

Applying Lemma 4.1(c) in Lemma 4.2 and (4.17), we obtain the following:
(1) for any 5 > 0, there exists @ > 0 (independent on y) such that for any s, € [0, T] and
t—s| <@

ly: — yslla <, Vy e R(Dm,n),
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2

sup  sup |ly/lp= sup  sup [ly;—yollg =M+ DCr;nN.
YeER(Dum,n) tl0,T] yeR(Dy n) t€l0,T]

Since V < H is compact, we also have H <— V* compactly. By Ascoli—Arzeld’s theorem,
the complement of R(Dys.n) in C([0, T], V*), denoted by R(Dys.n), is a compact subset in
C([0,T],V*).

On the other hand,

P(Z* e R(Du.n)) = ]P’( S[ISPT] IX5 0, < M)
tel0,

=1 —IP’( sup ||)~(f||H > M)
1€[0.T]

>1— E(tesgpﬂ”)(s HH)/Mz

> 1-Co/M?,
we have applied Lemma 4.4 in the last inequality and this establishes that {Z*} is tight in

C(0,T], V™).
(c) By Lemmas 4.4 and 4.5, recall ng in (HS), let p = o + 19, we have

E|Yf — Y|y <]E'/ | AL X5) Hv*dl‘

(a=Dp

t a
<i—spes( [ e Xl )
N
t @-Dp
< s [+ IR 0+ 1R 1))
N

< |t—s|”/“|:E( sup (1—|— HXI Hﬂ) g Up)
le
P 2(u;l)p
+E</ Fl+c||x,e||‘;dz> }
N
fca,p,F|t_s|p/a-

Hence, a direct application of Kolmogorov’s criterion, for every @ € (0 = — —) there exists
constant C, independent on ¢ such that

YE —Y¢ P*
E( sup M)gcw. (4.18)

t£sel0, 7] |t —sP?
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On the other hand, by (4.4), we have

Xe=x+Y'+Z +M.

Then
E( sup [¥7]3)
1€[0,T]
O ) ) 4.19)
<clieid +E( sup |]5) +E( sup |27 ]5) +E( sup [a5]5,)].
tel0,T] t€l0,T] tel0,T]
Notice that
E z|? )
(tes[gg] e
T ~ 2
< E(/O /X”f(s, X5, 2) || | pe(s.2) — 1\v(dz)ds>
o, . , (420
< CE(I + sup | X} ||H> ( sup / / Ly(s,2)|e(s,2) — 1|v(dz)ds>
t€[0,T] peSN JO X
=cct, vE(1+ sup | % |}H)2.
" 1€[0.T]
By Lemma 4.4, (4.19), (4.20) and (4.16), we have
E( sup [[¥/]},) =€ <00 (4.21)
]

t€l0, T

where C is independent of ¢.
For w € (0,1) and R > 0. Set

. . lje — Jsllv=
KR.w :={JeC([0, TLV*): sup [ljillg+ sup ————— <R{.
1€[0,T] s#ref0,7]  1f— S|

Since V — H is compact, we also have H — V* compactly. By Ascoli-Arzeld’s theorem,
KR .z is a compact subset of C([0, T], V*). By (4.18), (4.21) and Chebyshev’s inequality, for
some @ € (0, 1) and any R > 0, we have

CT,zzr

]I_D(YS ¢KR,w') = R

This implies the tightness of {Y¢}in C([0, T], V*).
The tightness of {X¢} in D([0, T], V*) then follows from (4.4) and the conclusions proved
above. [l
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5. Convergence of the processes

With the tightness result obtained in the last section, the main result of this section is to identify
the limit of X* as the solution of the non-random equation (5.27). We use the three parts of Xe
we utilized in last section. As the limit of M¢ is 0, we only need to characterize the limits of
the other two. Taking X as a limit point of X¢, we first prove that Y has a limit in Lemma 5.1,
and then identify this limit with the desired form in Lemma 5.4 while Lemma 5.3 is a necessary
preparation for Lemma 5.4. The limit of Z¢ with the desired form is identified in Lemma 5.2.

Throughout this section, we assume that for almost all w, as ¢ — 0, ¢ (-, -)(w) converges to
o(,)(w)in SN weakly, and X¢(w) converges to X (w) in D([0, T'], V*) strongly with supremum
norm.

Set

K=L%(10,TIx Q- V;dt xPB),  K*=L&1([0,T] x Q — V*;dr x P).

Lemma 5.1. There exists a subsequence (g), X € KN L®([0, T, LAT2(Q, H)) and Y € K*
such that

() X% — X in K weakly and in L> ([0, T1, LF+2(Q, H)) in weak-star topology,
(i) A(-, X%) — Y in K* weakly,
(iii)
limE( sup || X% —X *>=O,
e—0 ze[O,T]” ! t”V

o

and form = =T

T 2m
lim E Xt —X dr=0.
lim fo |x7 =Xl
Proof. (i) following from Lemma 4.4. For (ii), by Lemma 4.4 again,

a=1 T o
A x e =[x 17 ar)

flE(f()T(F,+C||foOC)(1+”thwfl)dt> 5.1)
<C <oo.

Lemma 4.4 implies
E(f:{gg}”}(f ”i’) =GN 52)

and

T
E([ I x5 ||‘;dr> <C. (5.3)
0
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Hence, by the strong convergence of X*(w) to X(w) in D([0, T], V*) with sup norm, Fatou’s
lemma, (5.2) and (5.3), we have

E( sup ||X,||H) <hm1anE< sup ||X8||H) <CoN.x (5.4)
1€[0,T] 1€[0,T]

T
E(f X019 dt> 51imi(r)1fIE</ | x¢ ||$/dt) <C (5.5)
0 &> 0

and
lim IE( sup ||Xe *) =0. (5.6)
e=>0 Nefo,7)
Equation (5.6) can be seen as following. Set
Q5= {a): sup || X5 — X/ ,. > 5}.

1€[0,T]
The strong convergence of X¢(w) to X (w) in D([0, T], V*) with sup norm implies

lim P(Q§) =0,  V8>0. (5.7)

e—>0

Applying (5.7), (5.2) and (5.4) to (5.6), we have

gg%]E(t:[lolpT [x: = xi]y.)

— | & _ . P £ _ . AV
_3%[1}3(,:[3%”)(’ Xiy- 195)+E<zes[g,pr]uxt Xillye -ty )]

§8+lim<]E( sup ||X — X;
e—0 €[0,7]

2 )" B

<.

The arbitrary of 8 implies (5.6).

Taking m = a+1 , we get

T T
E/O ||Xf—X,||§Imdt=E/0 (X; = X, X = X,y di
T e m e m
<B [ X =Xl X

T en T =
< (& [ 1% -xidyear) © (5 [ 1xc-xifpar)”
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Combining (5.3), (5.5) and (5.6), we have

hmIEf | X8 = x| dr =0 (5.8)

Lemma 5.2. Forany h € H, we have

t
lim <f / F(s, X5, 2) (9o (s, 2) — 1)v(d2) ds,h>
0 JX

er—0

t
:</ /f(S,Xs,Z)(w(S,Z)—1)v(dz)ds,h>
0 JX

HH
(5.9

H,H

Proof. Denote ¢(s,z) = (f(s, X5, 2), h)H u. Since SUP;ef0,7] 1 Xsllg < oo,]f”-a.s., and Ly €
H,, it follows from Remark 3.1 and Lemma 4.2 that

t
lim </ / f (s, Xy, 2) (9 (5, 2) — 1)v(d2) ds,h>
0 Jx

er—0

t
=<f /f(s,Xs,z)(qo(s,z)— 1)v(dz)ds,h>
0 JX

For any § > 0, denote As ¢ (@) :={s € [0, T]: | X{ — Xsllm > &}. By (5.8)

H,H
(5.10)

H,H

l1m E(AT(A(S ¢)) < hm IE/ | x:— X, ||

Therefore, there exists a subsequence &; (for simplicity, we still denote it by the same notation
&x) such that

lim A7(Asg) =0,  P-as. (5.11)
er—0

Applying Lemma 4.1, we have
f /Hf 5, X5, 2) = £(5, Xs, D) |06t (5, 2) = 1| v(d2) ds
5/0 /XGf(&Z)”Xik — X | @ec (5. 2) — 1|v(dz)ds

55/ / G (5, 2)|@e, (5, 2) — 1|v(dz) ds
ag, Jx

+ sup Hka-xS”H/ /Gf(s,z)‘(pgk(s,z)—1|v(dz)ds (5.12)
5€[0,71] Asg /X
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T
<3 sup/ /Gf(s,z)|¢(s,z)—1|v(dz)ds
X

pesN JO

+ sup [ XP =X, Sup/ /Gf(s Do 2) — 1|v(dz) ds
s€[0,T] peSN
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<8Cg,; N+ sup |XF—X,|, sup/ /Gf(S,Z)‘(O(S,Z)—1|l)(dZ)dS.
o JIx

s€[0,7] oesN JAsq,

Notice that

]E< sup ||X - Xy sup/ /Gf(s 2)|e(s, z)—1|v(dz)ds)

peSN

1
<|E X5 — X
< (=( s x5 -x13))
%
x< <sup/ /Gf(s z)\go(s z)—l|v(dz)ds> > .
peSN J Az e,

By the dominated convergence theorem, Lemma 4.2(c) and Lemma 4.1, we have

2
lim E( sup/ /Gf(s z)|<p(s z)—l!v(dz)ds) =0.
Aésk

Sk—> (ﬂESN

Hence, (5.2), (5.4), (5.12)—(5.14) imply

er—0

lim E(/ /”f X5k, z) — f(s,Xs,z)||H|<pgk(s,z)—1|v(dz)ds>:0

(5.13)

(5.14)

(5.15)

So, there exists a subsequence ¢, (for simplicity, we still denote it by the same notation &) such

that

lim/ /||f XK. 2) = f(5. Xg. )| | 0er (5.2) — 1|v(dz) ds =0,

er—0

Combining this with (5.10), we arrive at (5.9).
Define
~ t t
X, :=x+/ sts+/ f(s,XS,z)(go(s,z)—l)v(dz)ds.
0 0 JX
By taking weak limit of (4.4), it is not difficulty to see that

X (0) = X/ (0) = X, (o), for dt x P-almost all (¢, ).

]f"-a.s.

(5.16)
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Set
_ T
N = {d) : ¢ is a V-valued F;-adapted process such that E(/ ,o(qbs)ds) < oo}.
0
Fix ¢ e NN NL®([0, T], LAT2(Q, H)) and ¢ € L>([0, T, R). Denote

T t .
G(X,p,Y) = E|:/ wt/ e*f(j(Kler((Pz))dl
0 0

X 2<f f(s. X5, 2)(9(s,2) — 1)v(da), YS> ds dt].
X H.H
The following limiting result will be needed later.
Lemma 5.3.
lim G(X%, g, X*)=G(X, 9, X). (5.17)

ex—0
Proof. For any fixed (¢, w) € [0, T] x 2. Set
$(s,2) = wze_fg(K’”("”))dl(f(s, Xs.2), Xs)y -

By Lemma 4.2 and SUPse[0.7] | Xsllg < oo P-a.s., we have V(t,w)e[0,T] x 2,

! S
lim wt/ e‘fd(’(’“(‘f’l))dlzv f(s,Xs,z)(gng(s,z)—1)v(dz),Xs> ds
0 X

er—0 H.H

t "
=1/ft/ €f0<m+p(¢z>>d12</ f(s,Xs,z)((p(s,z)—1)v(dz),Xs> ds.
0 X

H,H

On the other hand, by Lemma 4.1

t .
%/ ef6<K1+p(¢z))dl(2</ f(s,XS,z)(gz)(s,Z)—1)V(dz),Xs> )ds
0 X H.H

sup
pesN

T
=Cy supf f”f(S»Xx,Z)”H||Xs||H|<P(S,Z)—1|V(dz)ds
pesSNJO JX

2 T
SCw(lJr sup ||Xs||H> Sup/ /Lf(s,z)}fﬂ(s,z)—1|v(dz)ds
5€0,7] pesvJo Jx

2
=y, (14 sup 1Xlln)
s€[0,7T]
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By the dominated convergence theorem, we have

lim G(X. g5, X) = G(X. 9. X). (5.18)

8k—>
Let § > 0. Recall
Ase ={s €10, T]: | X3 — X,|| ; > 8.

and (5.11) that is there exists a subsequence &, such that

lim Ar(Ase,) =0, P-as.
ex—0

Then we have

[G(X% gy, X) = (X, gy, X)|
T
<cB( [ [ 17Xy loas. 2 = 11X = X iz s
T
5CE</0 /XLf(s,z)(1+||X§"||H)|<p8k(s,z)—1H|X§"—XS||Hv(dz)ds>

< CSIE(/ f Ly(s,2)(1+ | X ;) @ (5. 2) — 1|v(dz)ds>
A5, IX

+ CE(/A /XLf(S’ D1+ [ X ) e (5. 2) = 1| X3 — X || v(d2) ds)
3,6k

T 5.19
< CSIE( sup (1 + ||ka ||H)) sup / / Lf(s,z)|<p(s,z) — 1|v(dz)ds ( )
5€[0,T] pesNJo JX

n CE[S:[gPT]((l X (X5 = X))

X SHP/ /Lf(s,z)|g0(s,z)—1|v(dz)ds]
ABsk X

peSN

4y 1/4 4 1/4
<6 v+ C(B(1+ sup [x],) ) " (B(1+ swp [x—x,],))
s€[0,T] s€[0,T]

1/2
( (sup/ /Lf(s z)|g0(s z)—l|v(dz)ds)) .
(ﬂESN A&Ek

Similar as (5.14) and (5.15), we have

lim |G( K Qe XH) = G (X, ¢g, X)|=0. (5.20)

€k~>
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On the other hand,

|G (X, 0er, X) = G(X, pey,, X))

SCIE<f /Hf LX) — f(s,xs,z>!|H|<psk(s,z)—1|||Xs||Hv<dz>ds)

5@:([0 /XG,»(s,z>||X§k = X, | e 502 — 1|||Xs||Hv<dz>ds).

Using the similar arguments as proving (5.20), we have

lim |G (X%, ¢g, X) — G(X, ¢g,. X)| = 0. (5.21)
er—0
Combining (5.20), (5.21), and (5.18), we have (5.17). O

Lemma 5.4.
Y:(w) = .A(t, X; (a))) for dt x P-almost all (t, w).
Proof. For ¢ € KNN NL®([0, T], LAT2(Q2, H)), applying the It6’s formula,

e~ o Kstp@ds | o ||Z — 1%

! s
= fo e~ o Ko m [—(Ks +p(90)) [ X5, +2(A(s, X), X320,
+2</ f(s,Xf",z)((p,gk(s,z)—l)v(dz),X§k> ]ds
X H,H
! s ~ —
+/ e‘fd(K1+p(¢l))dl/[2£k(f(s Xk z), X5k, N Yo (ds, dz)
0 X H,

r -
+/ e*fo<1<1+p<¢z>>‘”/[8k2||f(s XE, ) | N e (ds, d).
0 X

Notice that

t s U
Mg, () ::/0 e 0(1(1+/>(¢1))d1/;§[28k(f(s Xvk ,Z) Xc"k) ’H]Né‘k I%k(ds,dz)
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is a square integrable martingale, we have

E(e B Kstp@ds | x5 2 ) x

0

& ( / Lo RO (K 1 o) (X5 — 04
+2(XE, )y — lsl) ds)
N E( /0 e R (3 A(s, XEF) — Als, 600, X5 — By
+ 2<A(S7 (/J)S)’ Xik - ¢S)V*,V + 2<A(S, X‘fk)’ ¢X>V*’V) ds)

1
n E(/ o= Jo Kito@n) i

0

x(2<f f(s,ka,z)(wgk(s,z)—l)v(dz),ka> )ds)
X HH

r ) (5.22)
J,-E(gk/ e*fo (K1+/J(¢1))dlf Hf(& X;?k’z) ||H(p5k (s, 2)v(dz) ds)
0 X
t )
< —E( / e Kt @Al (K y () (2XE, bs)y 1y — N5 13) ds)
0 :
1 s
_|_E(f e‘fd (Kl+p(¢[))dl(2(./4(s,¢5), XSSk _¢S)V* v
0 ,
(s X))y ) ds)
+E</t o Jo Ko@)
0
X <2</ F (s, X5, 2) (96, (s, 2) — 1)v(d2), X§k> )ds>
X H,H
t \
+E<8kf e—f()(K[-i-ﬂ(f/Jl))dl/ I £ (s, X2, 2) ”%{%k(s,z)v(dz)ds).
0 X
By (i) of Lemma 5.1, we get
T t
]EU i (e JoKstP@ds x |12 Ilelé)dt]
0 (5.23)

T t
< llmlnfE[/ Wt (e_fo(K_gv-l—P(‘ps))dS ||X[5k ”i] _ ”x”%{) dti|
0

ex—0
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By Lemma 4.1,

t ,
]E(Sk/ e b (K1+,0(¢l))d1/ ||f(s, Xssk,Z) ||§{¢Sk(s,z)v(dz) ds)

<]E<skf / 1+||X8k||H L 7 (s, 2)@e, (s, z)v(dz)ds)

(5.24)
§£kE<( + sup ||X "||H sup / / (s 2)(s, 2)v(dz)ds
<&xCr;22,N-

Combining from (5.22) to (5.24), and Lemma 5.3, we infer

T 13
E[ / i (e o Kstp@ds x 12 _ ||x||%1)dr]
0
T t §
< —E[ [ [ Bk p90) X b 101y s dt]

T t §
+ IE|:/ wl‘ / e_fO (Ki+0(@1)) di (2<A(Sa ¢S)a XS - ¢S)V* \%

00 (5.25)
+ 2(Ys, ¢S)V*,V) ds dt]

T t _
L EU %/ o o Ki+p@n)dl

0 0
x (2</ F5. Xs. (05, 2) — l)v(dz),XS> )dsdt].

X H.H

On the other hand, by (5.16), we have
i
E(e—fo(Kﬁ-P(lﬁs))dS ||Xt||%-1 _ ”x”%-l)
t
— _E(/O e_fo (Kl+P(¢1))dl(Kx + p(¢s))||Xs”%—1 dS)
' . (5.26)
+E< / e~ hoKitp@m)dipy, Xs)v*,vds)
0

t
+E</ e~ Jo (Kitp@)al <2</ f(s, X, z)((p(s, z7) — l)v(dz), Xs> )ds).
0 X H H
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By (5.25) and (5.26), we have

T t N
E[ f vy / e o Kikp@D Al (_(K 1 p(h))I1Xy — 5%
0 0
+ 2(./4(5‘, ¢s) — Y5, X5 — ¢S)V*,V) ds dti| <0

Put ¢ = X — npv for ¢ € L([0, T] x Q; dt x P; R) and v € V, divide both sides by 5 and let
n — 0, then we have

T t . ~
E|:f wt/ e_fd (KI+P(¢I))dZ(2¢S<A(S’ b)) — Y, U>V* V)ds dl‘:| <0.
0 0 ’
Hence, Y = A(-, X). 0

Proposition 5.1. X (w) solves the following equation:

t t
Xi(@)=x+ / A(s, Xy(w))ds + / / fs. Xs(@),2)(¢(s,2) (@) — 1)v(dz)ds,  (5.27)
0 0 JX
which has an unique solution in C([0, T], H) N L*([0, T], V).

Proof. The equation (5.27) follows from Lemmas 5.1-5.4. The proof of the uniqueness is stan-
dard, and it is omitted. O

Lemma 5.5. There exists a subsequence wy, such that

lim sup X7 — X}, =0, Pas (5.28)

wk_>ot€[0

Proof.
Set Li* = X;* — X,. Then

el Kkp (X ds | e 2

ro
=/ effo(l(,ﬁo(xr))dr(—(Ks —i—,O(Xs))HLik ”?1
0

+ 2{A(s, X54) — Als, X5), L§H) ) ds
t s

+2/ e—./o(Kr+p<xr>>dr</ f(s. X5, 2) (@e (5. 2) — 1) v(d2)
0 X

—/ fs, Xs,2)(0(s,2) — 1)v(dz),L§"> ds (5.29)
X

H,H
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[ s ~ —_
+25k/ e—fd<Kr+P<Xr>>d’</ f(s,Xﬁk,z),L§k> N (dz, ds)
0 X

H,H

t s _
+8k2/ e—f(') (Kr+,0(Xr))dr/ Hf(& X;Jl\r’z) ||i1N8k 'e, (dz,ds)
0 X
=L+ L)+ L)+ L(@).

(H2) implies

By (5.19) and (5.20), we have

Ii(t) <0. (5.30)
t S
E( sup / e—fo(Kr+p(Xr))dr</ f(S,Xik,Z)(wsk(S,Z)—l)p(dz)7L§k> ds)
refo,711J0 . .

T
<[ 176Xl o, = 1] i as) (531)

T
< ]E(/ / ”X?k ”HLf(S, Z)|(p8k(s, 7) — 1| ||L§k HHv(dz) ds> — 0, as g — 0.
0 JX
Then it is not difficulty to obtain

s1k1r301a(tes[gpn|Iz(z)|) (5.32)

! 2 2 2 1/2
fE( fo fX48k2||L§k 15,11 £ (s, X5, 2) || 7, N o (ds,dz))
<25(V& o |12,

s€lo,

12
([ [edrtoxe afne tonsan) )
0 X

<2/a(E (Sup e ))1/2 (5.33)

1/2
( </ / |G X5z HHsosk(s,z)v(dz)ds))

<2ye(( sup |Lt3))"

1e[0,T]
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172
(]E(l + sup | X/* || p sup / / f(s 2)¢(s, 2)v(dz) ds)
tel0,T]

— 0, as g — 0.
For 14,
]E( sup |I4(t)|)

t€[0,T]

fekE</ /“f s, X%, z ||H¢)8k(s,z)v(dz)ds>

(5.34)
) T
< 8kE(1 + sup || X/ ||H) sup / / L?-(s, (s, 2)v(dz)ds
t€[0,7T] peSN 0 X
— 0, as g — 0.
Combining (5.29)-(5.34), we have
lim IE( sup (e_fo[(KA"_p(XA)) ds HLfk ||i])> =0.
=0 \refo,7]
Then
T
lim ]E(e_fo (K-V""’(XS))dX( sup | Lf* ”H)) 0.
8](*)0 te [0 T
This implies that there exists a subsequence @y such that X@* converges to X P-a.s. (I

6. Verification of Condition 2.1
Recall (4.5) and (3.1), we have

Theorem 6.1. Fixed N € N, and let ¢, ¢ € AN be such that @e converges in distribution to ¢
as & — 0. Then

G (N ) = G°(05).
Proof. Recall M in Section 2 and notations in Proposition 4.1. Denote
= (sV, D([0,T1, V*), C([0, T1, V*),C([0, T1, V*), M).

Proposition _4.1 implies that the laws of {(¢., M¢, Z*,Y?, ]\7), e > 0} is tight in TI. Let
(,0,Z,Y, N) be any limit point of the tight family. By the Skorohod’s embedding theorem,
taking a version on a new probability space if necessary, we may and will assume that

(¢es M®, Z°,Y*,N) —> (9,0,Z,Y,N)  inIl, P-as.
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Set X* =x 4+ M® + Z® + Y® and X = x + Z + Y. From the equation satisfied by the original
processes, we may and will assume that X still satisfy equation (4.4).

Using the fact that if f,, € D([0, T'],R) and lim,_, » f, = 0 with the Skorokhod topology of
D([0, T], R), then lim,, _, oo SUP;¢(0,7] | fn(@®)] = 0. We have

lim sup |M° 0, P-as.
e—0; +€[0,T]
Notice that
lim sup [Z°(t) — P-a.s
5_>0te[()
and
lim sup ||Y8(t)— P-as.,
£=0/¢[0,T]
we have
lim sup HXs(t)— P-a.s.

e=>04¢[0,7]

Finally, following the proof of Proposition 5.1 and Lemma 5.5, we can obtain X is the unique
solution of (5.27), and there exists a subsequence y that

lim sup | XP*(t) — X(¢) P-a.s.
5430010 p ” ”H
which implies this theorem. O

We have finished to verify the second part of Condition 2.1. To obtain the first part of Condi-
tion 2.1, we just need to replace ¢ [y f(t, Xe | )N "% (dz, dt) by 0 in (4.4) and replacing @,
by deterministic elements g, in in the proof of Lemma 4.4-Lemma 5.1, then we can similarly
prove the following result.

Theorem 6.2. Recall G° in (3.1). Forall N €N, let gn — g asn — 00. Then

lim  sup HQO( N0 -G EH O, =

n—=00 (0. T
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