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We prove that for a so-called sticky process S there exists an equivalent probability Q and a Q-martingale
S̃ that is arbitrarily close to S in Lp(Q) norm. For continuous S, S̃ can be chosen arbitrarily close to S

in supremum norm. In the case where S is a local martingale we may choose Q arbitrarily close to the
original probability in the total variation norm. We provide examples to illustrate the power of our results
and present an application in mathematical finance.
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1. Introduction

By their very definition, local martingales are “almost” martingales. Moreover, in discrete time
every local martingale is a martingale under an equivalent change of measure and the new mea-
sure can be chosen to be arbitrarily close to the original one in the total variation norm, even on
an infinite horizon, see, for example, Theorem 2.2.2 in Kabanov and Safarian [17].

In continuous time, such a strong result does not hold. For example, the inverse of the three
dimensional Bessel process is a local martingale and it is not a martingale under any equivalent
change of probability measure. We may ask, however, whether there is a process “near” the given
local martingale which becomes a martingale under an equivalent probability.

It turns out that such a result holds provided that the given local martingale satisfies the natural
condition of stickiness: for sticky local martingales a martingale (modulo a change of measure to
some Q ∼ P ) that stays in any small neighborhood of it under the Lp(Q) norm can be found, and
Q can even be chosen to be as close as one wants to P in total variation norm, see Corollary 5.2
below for this result.

A process is sticky if, starting from any stopping time on, it is never certain to exit a small ball
in a given time horizon no matter how small the ball is. This condition was first used in the paper
Guasoni [10] in the context of finance and according to the Proposition 3.1 of Guasoni [10] all
regular strong Markov processes are sticky. This includes, for example, most Lévy processes,
see Section 3 for further details. Other than this, stochastic processes with the conditional full
support (henceforth, CFS) property are also sticky. The CFS property (see Remark 2.3 below
for its definition) was introduced in the paper Guasoni et al. [13] and a large class of stochastic
processes, including fractional Brownian motion (fBm), enjoys this property, see [3,9,15,21] for
example.

In Guasoni et al. [13], it was shown that processes with CFS can be approximated arbitrarily
closely under the supremum norm by semi-martingales that admit equivalent martingale mea-
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sures. In the subsequent paper Bender et al. [2], the same result was obtained for continuous path
processes that are merely sticky. In these papers, such approximation was possible because the
stochastic processes were assumed to be continuous.

For the case of jump processes, approximation under the supremum norm, however, seems
difficult if not impossible. In this note we show, along with our result on local martingales, that
càdlàg sticky processes can be approximated by martingales (modulo a change of measure to
some Q ∼ P ) arbitrarily closely under the Lp(Q) norm.

The paper is organized as follows. In Section 2, we recall the stickiness condition. In Section 3,
we provide examples of sticky processes. In Section 4, we prove that sticky processes can be
approximated “arbitrarily closely” by martingales in the sense explained above, see Theorem 4.1
and Corollary 4.3. In Section 5, we show that, in the case of local martingales, one can choose
the new probability measure arbitrarily close to the original one in the total variation norm,
see Theorem 5.1 and Corollary 5.2. In Section 6, we explain the relevance of our results to
mathematical finance. Finally, some technical details are relegated to Section 7.

2. Sticky processes

Let (�,F,P) be a probability space. Let S = (St )t∈[0,T ] be a càdlàg Rd -valued process adapted
to a filtration F= (Ft )t∈[0,T ] satisfying the usual assumptions (i.e., F is right continuous and F0
contains all of the P null sets of F ). In this paper, for generality’s sake, we do not assume that
F0 is a trivial σ -algebra. It can contain sets other than just the null and full measure sets.

We say that the process S is sticky with respect to the filtration F if, for any stopping time τ of
F and any Fτ -measurable strictly positive random variable κ , the following condition is satisfied

P

(
sup

u∈[τ,T ]
|Su − Sτ | < κ

∣∣Fτ

)
> 0 a.s. (1)

Here | · | is the Euclidean norm of Rd . This definition is clearly equivalent to Definition 2.2 of
Guasoni [10] where κ is assumed to be any deterministic number. In Lemma 3.1 of Bender et al.
[2] it was shown that, for processes with continuous paths, stickiness is equivalent to

P

(
sup

u∈[t,T ]
|Su − St | < κ

∣∣Ft

)
> 0 a.s., (2)

for any deterministic time point 0 ≤ t ≤ T and any strictly positive and Ft -measurable random
variable κ . Lemma 3.1 of Bender et al. [2] is also true for càdlàg processes, this is the content of
Lemma 2.1 below.

Lemma 2.1. A càdlàg process S is sticky iff it satisfies (2) for any deterministic t ∈ [0, T ].
Proof. One direction is trivial. To show the other one, let 0 ≤ τ ≤ T be any stopping time of F.
Let κ be any strictly positive Fτ -measurable random variable. Take any A ∈ Fτ with P(A) > 0.
We would like to show that

P
(
A ∩

{
sup

t∈[τ,T ]
|St − Sτ | < κ

})
> 0.
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Without loss of generality assume that τ < T on A. There exists a (deterministic) rational number
r > 0 such that

Ar := A ∩
{

sup
t∈[τ,r]

|St − Sτ | < κ

2

}
∩ {τ ≤ r}

has positive probability. This can be seen from the following, obvious relation:

A =
⋃

r∈[0,T ]∩Q

(
{τ ≤ r} ∩

{
sup

t∈[τ,r]
|St − Sτ | < κ

2

}
∩ A

)
,

which holds since S is right-continuous. Observe that Ar ∈ Fr so (2) implies that

P

(
Ar ∩

{
sup

t∈[r,T ]
|St − Sr | < κ

2

})
> 0.

Now the claim follows from

Ar ∩
{

sup
t∈[r,T ]

|St − Sr | < κ

2

}
⊂ A ∩

{
sup

t∈[τ,T ]
|St − Sτ | < κ

}
. �

Remark 2.2. For Markov processes S stickiness reduces to checking

P
(

sup
u∈[t,T ]

|Su − St | < κ
∣∣St

)
> 0

for almost all ω and all κ > 0, 0 ≤ t < T . For processes with independent increments, it boils
down to P(supu∈[t,T ] |Su − St | < κ) being positive for all κ > 0, 0 ≤ t < T . It follows thus from
Simon [25] that most Lévy processes have the stickiness property, see Example 3.3 below. See
also Aurzada and Dereich [1] for more results on the related theory of “small deviations”.

Remark 2.3. Processes with the CFS property in any open domain are sticky. We recall the CFS
property here. Let O be a non-empty open subset of Rd and let C[a, b](O) denote the metric
space of O-valued continuous functions on the interval [a, b] equipped with the metric coming
from the supremum norm. For x ∈ O , set Cx[a, b](O) := {f ∈ C[a, b](O) : f (a) = x}. We say
that S has conditional full support in O (CFS-O) if S has continuous trajectories in O and for
all 0 ≤ t < T ,

suppP
(
S|[t,T ] ∈ ·|Ft

) = CSt [t, T ](O).

Here P(S|[t,T ] ∈ ·|Ft ) denotes the Ft -conditional distribution of the C[t, T ](O)-valued random
variable S|[t,T ]. When O =Rd we simply write CFS instead of CFS-O .

Remark 2.4. Stickiness is invariant under composition with continuous functions and, in the
case of S with continuous trajectories, under bounded time changes, as shown in Sayit and Viens

[24]. This helps to generate a large class of sticky processes. For example, the process |Bt | 1
3 ,

where Bt is a one dimensional Brownian motion, is not a semimaringale according to Theorem 72
on page 221 of Protter [23] though it is sticky. See Section 3 for further examples.
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In the recent paper Bender et al. [2], it was shown that if a continuous path process is sticky
then for any ε > 0 there exists a semi-martingale S̃ that admits an equivalent martingale measure
such that

sup
t∈[0,T ]

|St − S̃t | < ε (3)

holds almost surely. To prove their main result, they constructed a discrete time stochastic se-
quence that is sufficiently close to the stochastic sequence obtained by stopping the process at
each ε-increments and that, in the meantime, satisfies the conditions of Theorem 2.1 in Kabanov
and Stricker [19]. They were able to show that the sets Ci

n,n ∈ N, i = 1,2, . . . ,2d + 1 defined
in their paper have positive conditional probabilities, see Lemma 3.3 of that paper. A closer look
reveals that the continuous path property of the stochastic processes plays a key role in the proof
of this Lemma 3.3. In the presence of jumps, we can not obtain the same property for the sets Ci

n

as in their Lemma 3.3. However, we are able to prove a similar result for sticky jump processes
under an additional assumption which will be stated below. Also, in the presence of jumps, we
can only control the moments of the supremum in (3). The following is the assumption that we
will need in the proof of our main results.

Assumption 2.5. The probability space supports a d-dimensional Brownian motion Bt , t ∈
[0, T ] with its augmented natural filtration G = (Gt )t∈[0,T ] such that GT is independent of FT .

Remark 2.6. Such an assumption often appears in stochastic analysis, e.g. recall the theorem
asserting that a continuous martingale is a time-changed Brownian motion. In the present setting,
we use this extra Brownian motion to construct a new sticky process which is as close as we want
to the original process and has a sufficiently rich collection of paths. We then use this new sticky
process to construct the Q ∼ P and S̃ we want, see Theorem 4.1 below.

3. Examples

In this section, we give some examples of sticky processes. As stickiness is invariant under vari-
ous transformations with continuous functions, identifying the stickiness property for stochastic
processes, even when they admit martingale measures, is useful. Most Lévy processes are known
to admit equivalent martingale measures, see Proposition 9.9 on page 315 of [4], for example.
However, their transformations under continuous functions may lose even the semi-martingale
property as discussed in Remark 2.4.

Example 3.1. Let W denote a d-dimensional Brownian motion. Let b : Rd → Rd be locally
bounded and v : Rd → Rd×d be continuous with v(x) non-singular for all x ∈ Rd . If the stochas-
tic differential equation

dXt = b(Xt ) dt + v(Xt ) dWt , X0 = x,

has a weak solution, unique in law, for all x ∈ Rd , then any solution satisfies CFS, a fortiori,
stickiness, as shown in Guasoni and Rásonyi [11].
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CFS also holds for many non-semimartingales: fractional Brownian motion and other Gaus-
sian processes, see [3,9,13].

Example 3.2. Let’s look at the case of a skew Brownian motion Xt which is defined to be the
solution of the following equation

Xt = Wt + βL0
t ,

where Wt is a one-dimensional Brownian motion, L0
t is local time of the unknown process Xt at

time 0, and β is a constant with |β| < 1, see Harrison and Shepp [14] for further details. Since
the local time L0

t generates a measure singular to the Lebesque measure, Xt does not admit
any local martingale measure. Let α = (β + 1)/2 and define the strictly monotone continuous
function sα as sα = (1 − α)x for x ≥ 0, αx for x < 0. Let Yt = sα(Xt ). It was shown in Harrison
and Shepp [14] that Yt satisfies dYt = f (Yt ) dWt , where f (x) = 1 − α for x > 0, 1

2 for x = 0,
and α for x < 0. Since f is non-singular and bounded, from the results of Stroock and Varadhan
[26] we can conclude that Yt has full support on the space of continuous functions for any initial
value. Consequently, as Yt is Markovian, it has CFS and hence it is sticky. It is clear that Yt is a
martingale as f is bounded. The process Xt inherits the stickiness property from Yt as it can be
written as a composition of Yt with a strictly monotone continuous function (the inverse function
of sα).

Example 3.3. Let us turn to processes with jumps now. For simplicity, we assume d = 1. Let L

be a Lévy process. Then it has the following decomposition

Lt = ct + σBt +
∫

|θ |<1
θÑ(t, dθ) +

∫
|θ |≥1

θN(t, dθ), (4)

for some constants c, σ ∈ R. Here ν is the Lévy measure of L, N the Poisson random measure
of L, and Ñ(dt, dθ) = N(dt, dθ) − ν(dθ) dt is its compensated version. B is an independent
Brownian motion from N . It is shown in Simon [25] that L satisfies the stickiness property
provided that σ 2 	= 0 or

∫ 1
−1 |x|ν(dx) = ∞. If σ 2 = 0 and

∫ 1
−1 |x|ν(dx) < ∞, then L satisfies

stickiness if h := c − ∫ 1
−1 |x|ν(dx) = 0 or h > 0 (resp. h < 0) and, for all ε > 0, ν((−ε,0)) > 0

(resp. ν((0, ε)) > 0).

Example 3.4. Let X satisfy CFS and let L be a sticky Lévy process such that they are inde-
pendent. Then St := f (Xt ,Lt ) is also sticky for any continuous function f : Rd+1 → R, by
Proposition 1 of Sayit and Viens [24]. For example, one can replace the Brownian motion Bt in
(4) by a fractional Brownian motion BH

t that is independent from Nt , and obtain a sticky process
which is not a semi-martingale.

Remark 3.5. We expect that solutions of Lévy process-driven stochastic differential equations
are also sticky under mild conditions. It is outside the scope of the present paper to pursue related
investigations.
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4. Main result

As explained in the above section, a large class of stochastic processes enjoy the stickiness prop-
erty. Our main goal in this section is to show that martingales (under an equivalent change of
measure) live “near” to them e.g. in the Lp norm. In the following theorem, we state this result
and present its proof after some preparations.

Theorem 4.1. Let g : R+ → R+ be a convex function with g(0) = 0 and let χ > 0 be any
fixed number. Let S be a càdlàg process which is sticky with respect to F. Let Assumption 2.5
be in force. Let Ht = Ft ∨ Gt for each t ∈ [0, T ]. Then the process S is sticky with respect to
H = (Ht )t∈[0,T ] and there exists Q ∼ P and a d-dimensional Q-martingale S̃ (with respect to
H) such that S̃0 = S0 and

EQg
(

sup
t∈[0,T ]

|St − S̃t |
)

< χ. (5)

If S has continuous trajectories, then even

sup
t∈[0,T ]

|St − S̃t | < χ (6)

holds a.s.

Example 4.2. In general, it is not possible to replace Q by the physical measure P in (5) above.
This is shown by a simple example: let T := 1, St := 0, t < 1, and let S1 be uniform on [0,1].
We take F to be the natural filtration of S. Set g(x) := |x| and choose χ := 1/4.

The process S is trivially sticky. Arguing by contradiction, suppose that there is S̃1 such that
χ > E supt∈[0,1] |E[S̃1|Ht ] − St |. Then also E|E[S̃1|H0] − 0| = |ES̃1| < χ , as S0 = 0 and H0 is

trivial. On the other hand, χ > E supt∈[0,1] |E[S̃1|Ft ]−St | ≥ E|S̃1 −S1|. Noting that ES1 = 1/2,

this would mean ES̃1 > 1/4 while we have just seen that ES̃1 < 1/4, a contradiction.

Corollary 4.3. Let χ > 0 be any fixed number. Let S be a càdlàg process which is sticky with
respect to F. Let Assumption 2.5 be in force. Let Ht =Ft ∨Gt for each t ∈ [0, T ]. For each p ≥ 1
there exists Q ∼ P and a d-dimensional Q-martingale S̃ (with respect to H) such that

EQ sup
t∈[0,T ]

|St − S̃t |p < χ. (7)

Proof. Indeed, let g(x) := xp , x ≥ 0, and apply Theorem 4.1. �

Remark 4.4. In the case where S is a continuous process, Theorem 4.1 was proved in Bender
et al. [2] in a slightly different form. In that paper, S is assumed to be positive and S̃ is shown to
satisfy

sup
t∈[0,T ]

|St/S̃t − 1| < χ a.s. (8)
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Minor modifications of that argument would work for not necessarily positive, continuous S

and they would lead to (6) instead of (8), without using Assumption 2.5. Thus, the novelty of
Theorem 4.1 lies in treating the case of discontinuous processes, at the price of requiring As-
sumption 2.5. We do not know whether this assumption could be dropped.

The following lemma will be a key ingredient for the proof of Theorem 4.1. We now consider
a discrete-time filtration (Kn)n∈N. We introduce some notation that will be used in the sequel.
For an Rd -valued random variable X, let D(X) be the smallest affine subspace containing the
support of Law(X). Let S(X) be the relative interior of the convex hull of the support of Law(X).
The meanings of D(μ), S(μ) are analogous for a probability μ on Rd . We denote by B(x, r) the
closed ball of radius r ≥ 0 around x ∈Rd .

Lemma 4.5. Fix any ε > 0 and assume that w : Rd → R+ is a continuous function with w(0) =
0 and w(x) ≥ |x|. Let (Mn)n∈N be a discrete-time process adapted to (Kn)n∈N. Assume that
0 ∈ S(Qn(·,ω)) a.s. and, for all ε > 0, Qn(B(0, ε),ω) > 0 a.s., where Qn(·, ·) is the conditional
law of Mn − Mn−1 with respect to Kn−1, n ≥ 1. Assume that there exists a random variable M∞
and An ∈Kn such that 1An increases to 1 a.s. when n → ∞ and

{Mk = M∞, k ≥ n} ⊃ An ⊃ {|Mn − Mn−1| < ε
}

(9)

for all n. Then there is a Q ∼ P such that Mn, n ∈ N ∪ {∞}, is a uniformly integrable Q-
martingale and

EQ

[ ∞∑
n=1

w(Mn − Mn−1)

]
< ε. (10)

Proof. By applying Lemma 7.2 with the choices

X := Mn − Mn−1, K := Kn−1, η := ε/2n,

we obtain jn(y,ω) for each n ≥ 1. Define

Zn(ω) := jn

(
Mn(ω) − Mn−1(ω),ω

)
.

Set dQ/dP := ∏∞
n=1 Zn. Note that, by the last statement of Lemma 7.2 and by (9), we have that

Zk = 1 for all k ≥ n + 1 on An. Hence, for almost all ω, only finitely many Zn(ω) differ from 1.
So the infinite product converges almost surely. We claim that Q(�) = 1. Indeed, by monotone
convergence, we have

E
dQ

dP
= lim

n→∞E

[
1An

dQ

dP

]
= lim

n→∞E[1AnZn · · ·Z1]

≥ 1 − lim sup
n→∞

E[1AC
n
Zn · · ·Z1].

By (9), AC
n ⊂ {|Mn − Mn−1| ≥ ε}, and by Lemma 7.2, we have

E[Zn1{|Mn−Mn−1|≥ε}|Kn−1] < ε/2n.
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It follows that

E[1AC
n
Zn · · ·Z1] = E

[
E[1AC

n
Zn|Kn−1]Zn−1 · · ·Z1

]
≤ (

ε/2n
)
E[Zn−1 · · ·Z1] = ε/2n → 0,

as n → ∞, showing that Q(�) ≥ 1. Fatou’s lemma ensures Q(�) ≤ 1.
Now it remains to show that Mn is a uniformly integrable martingale under Q. The martingale

property of Mn, n ∈ N under Q is clear from the construction of Q. Since w(x) ≥ |x|, (10)
implies that Mn converges to M∞ in L1(Q) hence Mn, n ∈ N ∪ {∞} is a uniformly integrable
martingale under Q. �

Remark 4.6. Assume that w(x) ≥ |x|κ , x ∈ Rd with some κ ≥ 1. Then a trivial modification of
the proof of Lemma 4.5 yields not only (10) but also

∞∑
n=1

E
1/κ
Q |Mn − Mn−1|κ < ε,

which implies

E
1/κ
Q

[
sup
n

|Mn|κ
]

< ∞,

whenever E|M0|κ < ∞, in particular, when M0 is constant.

Proposition 4.7. Assume that S is sticky with respect to F. Let g : R+ → R+ be any convex
function with g(0) = 0. Assume that for the sequence (Sτn)n≥0 we have 0 ∈ S(P (Sτn+1 − Sτn ∈
·|Fτn)) almost surely, where the stopping times τn are recursively defined by

τ0 = 0, τn+1 := inf
{
t > τn : |St − Sτn | ≥ ε

} ∧ T ,

for some ε > 0. Then there exists Q ∼ P and a d-dimensional Q-martingale S̃ with respect to
the filtration F such that S̃0 = S0, S̃T = ST , and

EQg
(

sup
t∈[0,T ]

|St − S̃t |
)

< g(2ε) + 2
√

ε,

where the latter expression can be made arbitrarily small when ε → 0. If S has continuous
trajectories, then even

sup
t∈[0,T ]

|St − S̃t | < 2ε (11)

holds almost surely. If S is (strictly) positive, then so is S̃.

Remark 4.8. Comparing Proposition 4.7 to Theorem 4.1, the former does not require Assump-
tion 2.5 and it provides S̃ satisfying ST = S̃T but this comes at the price of a hypothesis involving



2760 M. Rásonyi and H. Sayit

the τn. Still, Proposition 4.7 improves on previous results even in the case of continuous S. In-
deed, if S has the CFS property then the conditions of Proposition 4.7 are easily seen to hold, by
an argument similar to Lemma A.2 of Guasoni et al. [13]. Therefore Proposition 4.7 strengthens
the conclusion of Theorem 2.11 of Guasoni et al. [13] (see also Theorem 2.1 of the same paper):
we get S̃ as in (11) but satisfying S0 = S̃0 and ST = S̃T a.s. as well.

Proof of Proposition 4.7. The idea here is to apply Lemma 4.5 to S sampled at the stopping
times τn. The Q constructed is such that all the increments Sτn − Sτn−1 will be “small” but
Sτn = Mn, n ∈ N is a Q-martingale. Then S̃ will be just the continuous-time Q-martingale with
terminal value ST = M∞ and, by the choice of Q, supt∈[0,T ] |St − S̃t | will also be “small”.

Note that g is necessarily continuous (even at 0). Set Mn := Sτn and Kn := Fτn for all n ∈ N.
Using the notations of Lemma 4.5, the conditions of the present proposition imply that 0 ∈
S(Qn(·,ω)) almost surely. The stickiness property guarantees that, for any small real number
ζ > 0 and all n ≥ 1, Qn(B(0, ζ ),ω) > 0 almost surely. Define An := {τn = T } ∈ Kn. As S has
càdlàg paths, for almost all ω, the increasing sequence τn(ω) can not have a limit strictly less than
T . This shows that τn(ω) = T for all n ≥ m(ω) for some m(ω) ∈N almost surely. Therefore, 1An

increases to 1 almost surely.
Set M∞ := ST . From the definition of τn we have {|Mn − Mn−1| < ε} ⊂ An and therefore

(9) holds. Using Lemma 4.5 with the choice w(x) := g2(2|x|) + |x| we obtain Q. Now define
S̃t := EQ[ST |Ft ], t ∈ [0, T ] (we take a càdlàg version of this Q-martingale). This definition
makes sense since ST is Q-integrable by |x| ≤ w(x) and (10). We clearly have S̃0 = S0 and
S̃T = ST . It remains to estimate

sup
t∈[0,T ]

|St − S̃t |.

Fix t , n for a moment and let us work on the event Bn := {τn ≤ t < τn+1} till further notice. We
have

|St − S̃t | = |St∧τn+1 − S̃t∧τn+1 | =
∣∣St∧τn+1 − EQ[S̃τn+1 |Ft∧τn+1 ]

∣∣,
by the Q-martingale property of S̃. We further have∣∣EQ[St∧τn+1 − S̃τn+1 |Ft∧τn+1 ]

∣∣ ≤ EQ

[|St∧τn+1 − S̃τn | + |Sτn − S̃τn+1 ||Ft∧τn+1

]
(12)

≤ EQ

[
ε + |Mn+1 − Mn||Ft∧τn+1

]
,

which follows from the definitions of Bn, τn, and

S̃τk
= EQ[ST |Fτk

] = Mk = Sτk

for both k = n and k = n + 1. Hence, we get

g
(|St − S̃t |

) ≤ g
(
ε + EQ

[|Mn+1 − Mn||Ft∧τn+1

])
≤ 1

2

(
g(2ε) + g

(
EQ

[
2|Mn+1 − Mn||Ft∧τn+1

]))
≤ g(2ε) + EQ

[
g
(
2|Mn+1 − Mn|

)|Ft∧τn+1

]
,
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by the convexity of g. Noting that g is necessarily non-decreasing, we get

g
(|St − S̃t |

) ≤ g(2ε) + EQ

[
g
(

2 sup
n

|Mn+1 − Mn|
)∣∣Ft∧τn+1

]
≤ g(2ε) + EQ[LT |Ft∧τn+1 ]
≤ g(2ε) + sup

s∈[0,T ]
Ls,

for the positive Q-martingale Ls := EQ[g(2 supn |Mn+1 − Mn|)|Fs], s ∈ [0, T ]. The right-hand
side here, however, does not depend either on t or on n so this estimate, in fact, holds a.s. on
� = ⋃

n Bn. Hence,

EQg
(

sup
t∈[0,T ]

|St − S̃t |
)

≤ g(2ε) + EQ

[
sup

s∈[0,T ]
Ls

]

≤ g(2ε) + E
1/2
Q

[
sup

s∈[0,T ]
L2

s

]

≤ g(2ε) + 2E
1/2
Q L2

T

≤ g(2ε) + 2E
1/2
Q

[ ∞∑
n=0

w(Mn+1 − Mn)

]

≤ g(2ε) + 2
√

ε,

using Doob’s inequality and Lemma 4.5. Positivity of S̃ is clear since S̃t = EQ[ST |Ft ] and ST is
positive. If S is continuous, then |Sτn − Sτn−1 | ≤ ε for all n, so we can deduce (11) directly from
(12). �

Lemma 4.9. Let X and Y be two independent càdlàg processes. Let F = (Ft )t∈[0,T ] and G =
(Gt )t∈[0,T ] be independent, complete, right-continuous filtrations to which X and Y are adapted,
respectively. Let Ht =Ft ∨Gt for all t ∈ [0, T ]. Then (Ht )t∈[0,T ] is a complete, right-continuous
filtration. If X is sticky with respect to F and Y is sticky with respect to G, then all of X, Y , X±Y

and (X,Y ) are sticky with respect to the filtration H = (Ht )t∈[0,T ].

Proof. First, observe that H is a complete filtration as both F and G are complete. Therefore, it
is enough to prove that H is right-continuous and, to this end, it is enough to prove E[Z|Ht ] =
E[Z|Ht+] for any HT -measurable nonnegative random variable Z and for all 0 ≤ t < T . By
the monotone class theorem, it is enough to prove this equality for Z = UV where U ≥ 0 is
FT -measurable and V ≥ 0 is GT -measurable. However, Lemma 7.4 implies that

lim
h→0

E[UV |Ht+h] = lim
h→0

E[U |Ft+h]E[V |Gt+h]
= E[U |Ft ]E[V |Gt ] = E[UV |Ht ],

by the right-continuity of Ft , Gt , t ∈ [0, T ]. This shows right-continuity of Ht , t ∈ [0, T ].
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To show the second claim in the lemma it is sufficient to show that Xt , Yt are sticky for H.
The stickiness of Xt ± Yt with respect to H then follows from Proposition 1 of Sayit and Viens
[24] (continuous functions of sticky processes are sticky). We only show that X is sticky for H,
the argument for Y being identical. Since Xt is a right-continuous process we need to check

P
(

sup
t∈[s,T ]

|Xt − Xs | < κ
∣∣Hs

)
> 0 a.s.,

for any κ > 0 and any deterministic s ∈ [0, T ] (see Lemma 2.1 above). This follows by
Lemma 7.4 from

P
(

sup
t∈[s,T ]

|Xt − Xs | < ε
∣∣Fs ∨ Gs

)
= P

(
sup

t∈[s,T ]
|Xt − Xs | < ε

∣∣Fs

)
> 0 a.s.,

as Fs ∨ σ(X) is independent from Gs and X is sticky for F.
To see the last statement, apply Lemma 7.4 to obtain

P
(

sup
t∈[s,T ]

|Xt − Xs | < κ, sup
t∈[s,T ]

|Yt − Ys | < κ
∣∣Hs

)

= P
(

sup
t∈[s,T ]

|Xt − Xs | < κ
∣∣Fs

)
P

(
sup

t∈[s,T ]
|Yt − Ys | < κ

∣∣Gs

)
> 0,

by the stickiness of X, Y with their respective filtrations. �

Now, using the previous arguments, it is possible to establish Theorem 4.1, too. Before pre-
senting the proof, we make some important observations.

Remark 4.10. Let Bt be a Brownian motion with respect to a filtration Lt and let 0 ≤ θ < T be
an arbitrary deterministic time. Then, by Theorem 6.1 in Chapter 2 of Karatzas and Shreve [20],
Bs+θ − Bθ , s ≥ 0, is a Brownian motion independent of Lθ . Let C0[θ,T ] denote the space of
Rd -valued continuous functions on [θ,T ] which are 0 at θ .

Let us first note that the mapping f → sups∈[θ,T ] |Bs(ω) − Bθ(ω) − fs |, f ∈ C0[θ,T ],
is continuous for a.e. ω ∈ � and hence it is jointly measurable in (ω,f ). It follows that
{sups∈[θ,T ] |Bs(ω) − Bθ(ω) − Gs | < ε} and {sups∈[θ,T ] |Bs(ω) − Bθ(ω) − Gs | ≤ ε} are events
for each ε > 0, where G is a random element of C0[θ,T ].

Now define q(ε, f ) := P(sups∈[θ,T ] |Bs − Bθ − fs | < ε) and notice that q(ε, f ) > 0 for all
f ∈ C0[θ,T ] as Bt −Bθ , t ∈ [θ,T ], has full support on C0[θ,T ]. Fatou’s lemma for events shows
that f → q(ε, f ) is lower semicontinuous. Notice that, if Gn are Lθ -measurable C0[θ,T ]-valued
random variables taking only countable many values, then

P
(

sup
s∈[θ,T ]

∣∣Bs − Bθ − Gn
s

∣∣ < ε
∣∣Lθ

)
= q

(
ε,Gn

)
.

Now let G be an arbitrary Lθ -measurable random element in C0[θ,T ]. Choose a sequence Gn,
n ∈ N, of discrete Lθ -measurable random elements in C0[θ,T ] such that Gn tend to G almost
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surely. Lower semicontinuity of q(ε, ·) and Fatou’s lemma for events imply that

0 < q(ε,G)

≤ lim inf
n

q
(
ε,Gn

)
= lim inf

n
P

(
sup

s∈[θ,T ]
∣∣Bs − Bθ − Gn

s

∣∣ < ε|Lθ

)

≤ lim inf
n

P
(

sup
s∈[θ,T ]

∣∣Bs − Bθ − Gn
s

∣∣ ≤ ε|Lθ

)

≤ lim sup
n

P
(

sup
s∈[θ,T ]

∣∣Bs − Bθ − Gn
s

∣∣ ≤ ε|Lθ

)

≤ P
(

sup
s∈[θ,T ]

|Bs − Bθ − Gs | ≤ ε|Lθ

)
. (13)

Proof of Theorem 4.1. We wish to apply Proposition 4.7 but S does not necessarily satisfy
0 ∈ S(P (Sτn+1 − Sτn ∈ ·|Fτn)). To fix this, we perturb S by an independent “small noise” W

such that, for Yt := St + Wt , 0 ∈ S(P (Yτn+1 − Yτn ∈ ·|Fτn)) holds. As Y is close to S, the S̃

constructed for Y by Proposition 4.7 will also be close to S.
Fix any ε > 0. Let Bt = (B1

t ,B2
t , . . . ,Bd

t ) be the Brownian motion of Assumption 2.5.
We remark that B clearly has the CFS property. Let π : (−∞,+∞) → (−ε,+ε) be a bijec-
tive and Lipschitz-continuous (deterministic) function. Let F : Rd → (−ε,+ε)d be defined by
F(x1, . . . , xd) := (π(x1), . . . , π(xd)). Denote by L a Lipschitz constant for the mapping F . Now
set

Wt := (
W 1

t ,W 2
t , . . . ,Wd

t

) := F
(
B1

t ,B2
t , . . . ,Bd

t

)
.

Define Yt = St + Wt . From Lemma 4.9 above, Y is sticky for the filtration H.
For each positive integer n ≥ 1, define

τn = inf
{
t ≥ τn−1 : |Yt − Yτn−1 | ≥ ε

}
, τ0 = 0.

These are stopping times with respect to the filtration H. We would like to show that �n :=
Yτn − Yτn−1 satisfies

0 ∈ S
(
P(�n ∈ ·|Hτn−1)

)
(14)

almost surely, for each n. Fixing n, from now on we are working on the set {τn−1 < T } (since
(14) is trivial on {τn−1 = T }). We will write τ := τn−1 henceforth.

Let 0 < η < ε/2 be an Hτ -measurable random variable such that B(Wτ ,η) ⊂ (−ε, ε)d . Work-
ing separately on events of the form {η ≥ 1/j}, j ∈ N we may and will assume that η is a
constant.

Fix x ∈ B(0, η/2) ∩Qd . It suffices to show that

x ∈ suppP(�n ∈ ·|Hτ ) a.s. (15)
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on {τ < T } since this implies that, outside a null set of ω’s, suppP(�n ∈ ·|Hτ )(ω) contains
B(0, η/2) ∩ Qd hence, being a closed set, also the whole of B(0, η/2). The statement (15) will
follow if, for each l ∈ N,

P
(�n ∈ B

(
x, (1 + η)/l

)|Hτ

)
(16)

≥ P
(
τn = T ,�n ∈ B

(
x, (1 + η)/l

)|Hτ

)
> 0

almost surely on {τ < T }.
Fix l ∈N. We will now prove (16). To this end, define

Jt = Bτ (ω) − F−1
(

t − τ

T − τ
x + F

(
Bτ (ω)

))
, for t ∈ [

τ(ω),T
]
,

and Jt = 0, t < τ(ω). This definition makes sense since | t−τ
T −τ

x| ≤ η/2 and, by the choice of η,
t−τ
T −τ

x + F(Bτ ) ∈ (−ε, ε)d . Furthermore, define the events

D(l) :=
{

sup
t∈[τ,T ]

|St − Sτ | < η/l
}
,

K(l) :=
{

sup
t∈[τ,T ]

|Wt − Wτ | < η, |WT − Wτ − x| ∈ B(0,1/l)
}
,

H(l) :=
{

sup
t∈[τ,T ]

|Bt − Bτ + Jt | < 1

L
min{1/l, η/2}

}
.

We first show that

P
(
D(l) ∩ H(l)|Hτ

)
> 0 a.s. (17)

on {τ < T }. For this, it is sufficient to show that for any A ∈ Hτ A ⊂ {τ < T } and P(A) > 0,
the relation P(A ∩ D(l) ∩ H(l)) > 0 holds. Fix such an A and a deterministic number 0 < ε0 <

min{η/l, 1
L

min{1/l, η/2}}.
As Jt is an Hτ -measurable continuous process with Jτ = 0, there exists a deterministic number

θ ≤ T such that the event A1 = A∩ {supt∈[τ,θ] |Jt | ≤ ε0
6 } ∩ {τ < θ} has positive probability. Note

that A1 ∈ Hθ ∩ Hτ . The joint stickiness of the process (St ,Bt ), see Lemma 4.9, shows that the
event

A2 = A1 ∩
{

sup
t∈[τ,θ]

|St − Sτ | ≤ ε0

2

}
∩

{
sup

t∈[τ,θ ]
|Bt − Bτ | ≤ ε0

6

}

has positive probability. Now observe that A2 ∩ d(l) ⊂ D(l) where

d(l) =:
{

sup
t∈[θ,T ]

|St − Sθ | ≤ ε0

2

}
.

We also claim A2 ∩ h(l) ⊂ H(l), where

h(l) =:
{

sup
t∈[θ,T ]

|Bt − Bθ + Jt − Jθ | ≤ ε0

3

}
.
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Indeed,

sup
t∈[τ,T ]

|Bt − Bτ + Jt | ≤ sup
t∈[τ,θ]

|Bt − Bτ + Jt | + sup
t∈[θ,T ]

|Bt − Bτ + Jt |

≤ sup
t∈[τ,θ]

|Bt − Bτ | + sup
t∈[τ,θ]

|Jt | + sup
t∈[θ,T ]

|Bt − Bθ + Jt − Jθ |

+ |Bθ + Jθ − Bτ |
< ε0/6 + ε0/6 + ε0/3 + |Bθ − Bτ | +

∣∣J (θ)
∣∣

≤ ε0

on A2 ∩ h(l) so A2 ∩ h(l) ⊂ H(l).
We conclude that

A2 ∩ d(l) ∩ h(l) ⊂ A ∩ D(l) ∩ H(l). (18)

Therefore it is sufficient to show that the left-hand side of (18) has positive probability. Since
A2 ∈ Hθ , it is sufficient to show that

P
(
d(l) ∩ h(l)|Hθ

)
> 0 a.s. (19)

Define Lt := Gt ∨FT . We can write (19) as follows:

P
(
d(l) ∩ h(l)|Hθ

) = E
[
E[1d(l)∩h(l)|Lθ ]|Hθ

]
= E

[
1d(l)E[1h(l)|Lθ ]|Hθ

]
.

Notice that Gs := Js − Jθ , s ∈ [θ,T ], is a Hθ ⊂ Lθ -measurable random element in C0[θ,T ] so
E[1h(l)|Lθ ] ≥ q(ε0/3,G) > 0 a.s. by (13) in Remark 4.10 above. It follows that

P
(
d(l) ∩ h(l)|Hθ

) ≥ q(ε0/3,G)P
(
d(l)|Hθ

)
> 0,

by the stickiness of S with respect to F and by Lemma 4.9. We conclude that (17) holds.
We will now show that

H(l) ∩ D(l) ⊂ K(l) ∩ D(l) ⊂ {
τn = T ,�n ∈ B

(
x, (1 + η)/l

)}
,

which will entail (16), in view of (17).
The second containment is trivial since supt∈[τ,T ] |Wt −Wτ | < η and supt∈[τ,T ] |St −Sτ | < η/l

entail supt∈[τ,T ] |Yt − Yτ | < ε by η < ε/2 which implies τn = T . Obviously, |WT − Wτ − x| ∈
B(0,1/l) together with supt∈[τ,T ] |St − Sτ | < η/l imply �n ∈ B(x, (1 + η)/l).

For the first containment, the Lipschitz property of F and W = F(B) clearly imply that∣∣∣∣Wt − t − τ

T − τ
x − Wτ

∣∣∣∣ ≤ L

∣∣∣∣Bt − F−1
(

t − τ

T − τ
x + F(Bτ )

)∣∣∣∣ < min

{
1

l
,
η

2

}
,
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on H(l). For t = T this gives |WT − Wτ − x| < 1/l whereas

sup
t∈[τ,T ]

|Wt − Wτ | ≤ sup
t∈[τ,T ]

∣∣∣∣Wt − Wτ − t − τ

T − τ
x

∣∣∣∣ + sup
t∈[τ,T ]

∣∣∣∣ t − τ

T − τ
x

∣∣∣∣ < η/2 + η/2 = η,

showing H(l) ⊂ K(l).
Now apply Proposition 4.7 to the process Y with the convex function x → g(2x) to obtain S̃.

We get

EQg
(

sup
t∈[0,T ]

|St − S̃t |
)

≤ 1

2
EQg

(
2 sup

t∈[0,T ]
|Yt − S̃t |

)
+ 1

2
EQg

(
2 sup

t∈[0,T ]
|Yt − St |

)

≤ g(4ε) + 2
√

ε

2
+ 1

2
g(2ε),

which can be made smaller than χ when ε → 0. This completes the proof. �

Remark 4.11. By Remark 4.8, Proposition 4.7 applies to Example 3.1. If b = 0 in Example 3.1,
then even Theorem 5.1 below applies and one can approximate many local martingales with true
ones.

Let us now recall Example 3.2. Since Yt is a martingale and the inverse function of sα is strictly
monotone, the process Xt satisfies 0 ∈ S(P (Xτ −Xθ ∈ ·|Fθ )) almost surely even for all stopping
times τ ≥ θ . So Proposition 4.7 applies to the case of skew Brownian motion.

Theorem 4.1 applies to the large class of processes presented in Example 3.4.

Remark 4.12. At first sight, the argument for Proposition 4.7 looks just a variant of that of The-
orem 1.2 in Guasoni et al. [13], see also Kabanov and Stricker [19] and Section 3.6.8 in Kabanov
and Safarian [17]. Fine details, however, do differ significantly. Not only does Proposition 4.7
cover the case of processes with jumps, too, but it is sharper even in the case of continuous
processes, as we have already pointed out in Remark 4.8.

5. Local martingales

We denote by ‖ · ‖tv the total variation norm for finite signed measures on (�,F).

Theorem 5.1. Let g : R+ → R+ be convex with g(0) = 0 and let χ > 0. Let Assumption 2.5
be in force. Assume that S is a sticky local martingale. Then there exists Q ∼ P with ‖Q −
P‖tv < χ and a d-dimensional Q-martingale S̃ with respect to the enlarged filtration H such that
EQg(supt∈[0,T ] |St − S̃t |) < χ . If S has continuous trajectories, then even supt∈[0,T ] |St − S̃t | < χ

holds a.s. Finally, S remains a local martingale with respect to H, too.
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Proof. Let σn, n ∈ N be the stopping times increasing to ∞ such that St∧σn , t ∈ [0, T ] is a
martingale for each n. Fix k for the moment. We will apply the proof of Theorem 4.1 (which
relies on Proposition 4.7), starting from σk ∧ T , that is, using the sequence

τ0(k) := σk ∧ T , τn+1(k) := inf
{
t > τn(k) : |Yt − Yτn | ≥ ε

} ∧ T ,

where Yt := St + Wt and Wt is as in the proof of Theorem 4.1.
Apply the argument of Proposition 4.7 starting from σk ∧T instead of 0, using Lemma 4.5 for

Mn := Yτn(k). Choosing ε small enough, we get that there is Q(k) ∼ P such that

EQ(k)g
(

sup
σk≤t≤T

|St − S̃t |
)

< χ and dQ(k)/dP =
∞∏

j=1

Z
(k)
j ,

where we define S̃t = EQ[ST |Ht ], for all t ∈ [0, T ]. Here Z
(k)
j is Hτj (k)-measurable for each

j ∈N, corresponding to the Zj appearing in the proof of Lemma 4.5. We now check that St = S̃t

a.s. on {t ≤ σk ∧ T }. Indeed, on this set

St − S̃t = EQ(k)[St∧σk
− S̃t∧σk

|Ht∧σk
]

= EQ(k)[St∧σk
− ST ∧σk

|Ht∧σk
]

= E[(dQ(k)/dP )[St∧σk
− ST ∧σk

]|Ht∧σk
]

E[dQ(k)/dP |Ht∧σk
]

= E[E[(dQ(k)/dP )[St∧σk
− ST ∧σk

]|HT ∧σk
]|Ht∧σk

]
E[E[dQ(k)/dP |HT ∧σk

]|Ht∧σk
]

= E[E[dQ(k)/dP |HT ∧σk
](St∧σk

− ST ∧σk
)|Ht∧σk

]
E[E[dQ(k)/dP |HT ∧σk

]|Ht∧σk
]

= 0,

which follows from S̃T ∧σk
= ST ∧σk

, E[dQ(k)/dP |HT ∧σk
] = 1, and the martingale property of

S up to σk under P . Now note that P(dQ(k)/dP = 1) ≥ P(σk ∧ T = T ) → 1, k → ∞, which
implies that dQ(k)/dP tends to 1 in probability, hence almost surely along a subsequence. Using
Scheffé’s theorem, we can find k with ‖Q(k) − P‖tv < χ . The last statement is clear since GT is
independent of FT . �

Corollary 5.2. Let Assumption 2.5 be in force. Let p ≥ 1 be arbitrary and let S be a sticky local
martingale. Then for all χ > 0 there exists Q ∼ P with ‖Q − P‖tv < χ and a Q-martingale S̃

with respect to the enlarged filtration H such that

EQ sup
t∈[0,T ]

|St − S̃t |p < χ

is satisfied. �
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Remark 5.3. A strict local martingale is a local martingale which is not a martingale. It is not
difficult to construct sticky strict local martingales by using Proposition 3.8 (also Corollary 3.9)
of Elworthy et al. [8]. We can choose any continuous and nonincreasing m : R+ → (0,1] with
m(0) = 1 and let Mt = 1/Rr−1(m(t)), where Rt is a 3-dimensional Bessel process starting from
1 and r(t) = E(1/Rt ). Then from Proposition 3.8 of Elworthy et al. [8], Mt is a strict local
martingale with m(t) = EMt . (Mt is strict local martingale as long as m(t) is not a constant). Mt

is sticky as it is obtained from a sticky process R by transformation under continuous function
1
x
, x > 0 and by bounded time change.

Remark 5.4. Strict local martingales (which are not martingales) have been suggested as models
for financial bubbles, see Protter [22]. In this context, P is the pricing measure, S is the price
process of risky assets. Theorem 5.1 and Corollary 5.2 reiterate the word of caution already
pronounced in Guasoni and Rásonyi [11]: an arbitrarily small misspecification of option and
asset prices (that is, mistaking Q for P and S̃ for S) may destroy the “bubble phenomenon”
generated by S under P since S̃ is a martingale under Q, admitting no bubbles.

6. Application to mathematical finance

A central concept of mathematical finance is arbitrage, that is, riskless profit. Such opportunities
should not exist in an efficient market. Arbitrage theory is well-understood in idealized mod-
els of financial markets where the presence of frictions (transaction fees, liquidity effects) is
disregarded, see, for example, [6]. There is also a fairly clear picture in the case of proportional
transaction costs, where, roughly speaking, trading costs are linear functions of the trading speed,
see [17]. Illiquid markets, however, show new phenomena due to a superlinear dependence of
trading costs on the trading speed. In such market models, a characterization for the absence of
arbitrage in terms of dual variables has been provided in the paper [12], see Theorem 6.2 below.

We will apply the results of the present paper to show that a very large class of candidate
price processes (namely the sticky ones) enjoy an absence of arbitrage property in markets with
superlinear liquidity effects. We now briefly sketch (a slightly simplified version of) the model
in Guasoni and Rásonyi [12], see [12] for further details.

Staying on the stochastic basis (�,F,P ,F), let S describe the price of d risky assets in a
financial market when trading is (infinitely) slow. Liquidity effects will be described by a cost
function G : � × [0, T ] × Rd → R+ which is assumed O ⊗ B(Rd)-measurable where O is
the optional sigma-field. We furthermore assume that G(ω, t, ·) is convex with G(ω, t, x) ≥
G(ω, t,0) := 0 for all ω, t , x. Henceforth, set Gt(x) := G(ω, t, x), i.e. the dependence on ω

is omitted, and t is used as a subscript. There is also a riskless asset S0
t of price constant 1,

t ∈ [0, T ].
A feasible strategy is a process φ in the class

A :=
{
φ : φ is a Rd -valued, optional process,

∫ T

0
|φu|du < ∞ a.s.

}
, (20)

that is, the speed of trading φt at t is assumed to be finite and the traded quantity of stocks over
[0, T ] as well.
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With this definition, for a given strategy φ ∈ A and an initial asset position z = (z0, . . . , zd) ∈
Rd+1, the resulting positions at time t ∈ [0, T ] in the risky and safe assets are defined as:

Xi
t (z,φ) := zi +

∫ t

0
φi

u du, 1 ≤ i ≤ d, (21)

X0
t (z, φ) := z0 −

∫ t

0
φuSu du −

∫ t

0
Gu(φu)du. (22)

The main item in the following assumption is the superlinearity condition (23): it expresses
that fast trading has an effect which is stronger than linear as a function of the trading speed.

Assumption 6.1. There is α > 1 and H > 0 such that

Gt(x) ≥ H |x|α, for all ω, t, x, (23)∫ T

0

(
sup

|x|≤N

Gt(x)
)

dt < ∞ a.s. for all N > 0. (24)

Define also

G∗
t (y) := sup

x∈Rd

(
xy − Gt(x)

) ≥ 0, y ∈ Rd, t ∈ [0, T ].

We will apply results of Section 4 to investigate under which conditions such market models
are free of arbitrage. An arbitrage of the second kind is a strategy φ ∈A, such that Xi

T (z,φ) ≥ 0,
i = 0,1, . . . , d with z = (c,0, . . . ,0) for some c < 0. Absence of arbitrage of the second kind
(NA2) holds if no such opportunity exists.

We reproduce Theorem 4.2 of Guasoni and Rásonyi [12] below1 which characterizes (NA2).
The notation Lp(Q) for p ≥ 1 refers to the usual Banach space of d-dimensional random vari-
ables with finite pth (absolute) moment under the probability Q ∼ P .

Theorem 6.2. Let F0 be trivial, let Assumption 6.1 hold, fix 1 < β < α and let 1/β + 1/γ = 1.
(NA2) holds if and only if, for all χ > 0, there exists Q ∼ P with

EQ

∫ T

0

(
1 + |St |

)βα/(α−β)
dt < ∞

and an Rd+1+ -valued Q-martingale Z with ZT ∈ Lγ (Q) such that {Zi
t = 0, i = 1, . . . , T } ⊂

{Z0
t = 0} a.s. for all t , Z0

0 = 1 and EQ

∫ T

0 Z0
t G

∗
t (Z̄t − St ) dt < χ where Z̄i

t = (Zi
t /Z

0
t )1{Z0

t 	=0},
i = 1, . . . , d . �

Theorem 4.1 ensures that a plethora of models satisfy (NA2).

1Unfortunately, the conditions “{Zi
t = 0, i = 1, . . . , T } ⊂ {Z0

t = 0} a.s. for all t , Z0
0 = 1” are missing from the statement

of that theorem in Guasoni and Rásonyi [12] (but they are apparently needed in view of the preceding results there). Here
in Theorem 6.2 we state the corrected version.



2770 M. Rásonyi and H. Sayit

Proposition 6.3. Let F0 be trivial, let Assumption 6.1 hold. If S is sticky, then it satisfies (NA2).

Proof. We enlarge the probability space so that Assumption 2.5 holds. Lemma 3.2 of Guasoni
and Rásonyi [12] shows that there is a constant C such that, for all t , G∗

t (y) ≤ C|y|α/(α−1).
Set δ := max{γ,βα/(α − β)}, g(x) := xδ , x ≥ 0 and notice that α/(α − 1) ≤ γ hence, for any
random variable X,

EQG∗
t (X) ≤ CEQ|X|α/(α−1) ≤ CE

α/[(α−1)δ]
Q

[|X|δ]. (25)

Fix χ > 0. Theorem 4.1 provides Q ∼ P and a Q-martingale S̃ with respect to H such that

EQg
(

sup
t∈[0,T ]

|St − S̃t |
)

< χ. (26)

A closer look at the details of those arguments shows that Lemma 4.5 is used with the choice
w(x) = 42δ|x|2δ + 2|x|. Remark 4.6 then yields

EQ sup
k∈N

|Mk|2δ < ∞

hence also

EQg
(

sup
k∈N

|Mk|
)

< ∞.

We thus get

EQg
(

sup
t∈[0,T ]

|Yt |
)

≤ EQg
(

sup
k∈N

|Yτk
| + ε

)

= EQg
(

sup
k∈N

|Mk| + ε
)

< ∞,

(27)

noting convexity of g. Since |Yt − St | < ε, this implies

EQg
(

sup
t∈[0,T ]

|St |
)

< ∞, (28)

and hence also

EQg
(

sup
t∈[0,T ]

|S̃t |
)

< ∞, (29)

by (26). Noting βα/(α − β) ≤ δ and (28),

EQ

∫ T

0

(
1 + |St |

)βα/(α−β)
dt < ∞.
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Define the Q-martingale Z0
t := 1, Zi

t := S̃i
t , i = 1, . . . , d . Clearly, ZT ∈ Lγ (Q) by (29) and

δ ≥ γ . We deduce from (25) and (26) that

EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt =

∫ T

0
EQG∗

t (S̃t − St ) dt

≤ T CE
α/[(α−1)δ]
Q

[
sup

t∈[0,T ]
g
(|S̃t − St |

)]

≤ T Cχα/[(α−1)δ],

which goes to 0 as χ → 0. This implies (NA2) for the class A defined with H-optional processes.
As F is a subfiltration of H, the result follows for A defined with F-optional processes. This
finishes the proof. �

Remark 6.4. Property (NA2) was established in Guasoni and Rásonyi [12] for the class of con-
tinuous processes S satisfying the CFS-O property, see Remark 2.3. Using arguments of Bender
et al. [2], one could establish (NA2) for continuous sticky processes S. The essential novelty of
Proposition 6.3 thus lies in allowing jumps for S.

7. Auxiliary results

For the proof of Theorem 4.1, we need the two Lemmas presented below. We fix some notations
first. Scalar products in Rd will be denoted by 〈·, ·〉. Rd denotes the one-point compactification
of Rd and C(Rd) denotes the set of R-valued continuous functions on Rd . We let C+(Rd) :=
{g ∈ C(Rd) : g(x) > 0, x ∈ Rd}. We denote by C0(R

d) the family of continuous functions with
compact support on Rd . As Rd is compact, C(Rd) (equipped with the supremum norm) is a
separable Banach space, a fortiori a Polish space. As C+(Rd) is clearly a Borel subspace of
C(Rd), the measurable selection theorem (see, e.g., III. 44–45. in [7]) applies to multifunctions
with values in C+(Rd). Fix a continuous function w : Rd → R+ with w(0) = 0.

The next lemma will provide a positive function f that is used for a measure change with
density f (Y ) in the arguments of Lemma 4.5. The idea here is that, due to (30) below (which
will be a consequence of stickiness in our applications of Lemma 7.1), one can guarantee that
the “mean” EYf (Y ) is 0 while the “norm” Ef (Y )w(Y ) stays small, together with the “mass”
Ef (Y )1{|Y |≥η} allocated outside a small ball.

Lemma 7.1. Let Y be an Rd -valued random variable with 0 ∈ S(Y ). Assume that

P
(
Y ∈ B(0, ε)

)
> 0 (30)

for all ε > 0. Then for each η > 0 there exists f ∈ C+(Rd) such that Ef (Y ) = 1, Ef (Y )w(Y ) <

η, Ef (Y )1{|Y |≥η} < η, and Ef (Y )Y = 0.
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Proof. Define w̃(x) := w(x) + |x| and note that it suffices to show the result for w̃ instead of
w. Since S(Y ) ⊂ D(Y ), D(Y ) is a nonempty linear subspace of Rd . If D(Y ) = {0} then we set
f (y) := 1 for all y ∈ Rd . From now on, we assume that D(Y ) has dimension at least 1. Define

A := {
r ∈ C+

(
Rd

) : Er(Y )w̃(Y ) < η/2,Er(Y ) < η
}
.

Now set A := {Er(Y )Y : r ∈ A}. Clearly, A ⊂ D(Y ) is a convex and nonempty set. To see this,
observe that for any h ∈ C0(R

d), h ≥ 0,

r(y) = κ1h(y) + κ2e
−w̃(y) (31)

lies in A for κ1, κ2 > 0 small enough.
Denoting by riD(A) the interior of A in the relative topology of D(Y ) we claim that 0 ∈

riD(A). If this were not true, then there would exist a non-zero l ∈ D(Y ) such that 〈l, a〉 ≥ 0 for
all a ∈ A. This implies

E〈l, Y 〉r(Y ) ≥ 0 (32)

for all r of the form (31) (with κ1, κ2 small enough). We can let κ2 → 0 and obtain that (32)
also holds for all r(y) = κ1h(y) with h ∈ C0(R

d), h ≥ 0. This clearly implies that 〈l, Y 〉 ≥ 0 a.s.
Therefore from 0 ∈ S(Y ), we obtain that 〈l, Y 〉 = 0 a.s., by Theorem 3 in [16] so 〈l, z〉 = 0 for
all z ∈D(Y ). But 〈l, l〉 > 0 and we arrive at a contradiction.

It follows that B(0, δ) ∩ D(Y ) ⊂ A for some 0 < δ < η. We choose δ > 0 small enough such
that sup|y|≤δ w̃(y) ≤ η/2. Let us now take m ∈ C0(R

d) that is positive in the interior of B(0, δ),
vanishes elsewhere, and satisfies Em(Y) = 1. Such a function exists since P(Y ∈ B(0, δ/2)) > 0.

Set c := Em(Y)Y ∈ B(0, δ) ∩ D(Y ). There exists r ∈ A with Er(Y )Y = −c, so setting
f (y) := (r(y) + m(y))/E[r(Y ) + m(Y)] we have Ef (Y )Y = 0. Obviously, Em(Y)w̃(Y ) < η/2
and E[r(Y ) + m(Y)] > 1 hence Ef (Y )w̃(Y ) < η, using the definition of A. It remains to check
that

Ef (Y )1{|Y |≥η} = Er(Y )1{|Y |≥η}/E
[
r(Y ) + m(Y)

] ≤ Er(Y )1{|Y |≥η} < η,

which follows from δ < η and the definition of A. �

Now consider a sigma-algebra K ⊂F and an Rd -valued random variable X. Let Q : B(Rd)×
� → [0,1] be the conditional law of X with respect to K. We denote by δ0 the Dirac measure at
the origin. The following lemma is a “kernel version” of Lemma 7.1 above.

Lemma 7.2. Let 0 ∈ S(Q(·,ω)) for a.s. ω and let Q(B(0, ε),ω) > 0 hold a.s. for each ε > 0.
Then for each η > 0, there is a B(Rd)⊗K-measurable j : Rd ×� → (0,∞) such that for almost
all ω the following holds: ∫

Rd

j (z,ω)Q(dz,ω) = 1,

∫
Rd

j (z,ω)zQ(dz,ω) = 0,
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Rd

j (z,ω)w(z)Q(dz,ω) < η,

∫
Rd

j (z,ω)1{|z|≥η}Q(dz,ω) < η.

Furthermore, we may choose j (z,ω) := 1, z ∈ Rd on {ω : Q(ω, ·) = δ0(·)}.

Proof. For a.e. ω, one can apply Lemma 7.1 to a random variable Y that has law Q(·,ω) to get
a function fω ∈ C+(Rd). We may apply the measurable selection theorem on (�,K,P ) to get a
mapping ω → fω that is K/B(C(Rd))-measurable. Let j (z,ω) := fω(z) which is B(Rd) ⊗ K-
measurable (since each fω is continuous). This clearly satisfies the conclusions of the present
lemma. The last statement is clear from the proof of Lemma 7.1. �

Remark 7.3. The technology used in Lemmas 7.1 and 7.2 was initiated in Dalang et al. [5].
It has been further developed by Y. Kabanov in a continuous-time context and found several
applications in mathematical finance. Here we only refer to Kabanov and Stricker [18] as a
representative example.

Finally, we present a simple Lemma that was useful for the proof of Lemma 4.9 above.

Lemma 7.4. Let A, B be sigma-fields and let U , V be nonnegative random variables such that
A∨ σ(U) is independent of B ∨ σ(V ). Then

E[UV |A∨B] = E[U |A]E[V |B].

Proof. Let A (resp. B , C, D) be σ(U) (resp. σ(V ), A, B) measurable sets. By the monotone
class theorem and by the definition of conditional expectations, it suffices to prove that

E[1A1B1C1D] = E
[
E

[
1A|A]

E
[
1B |B]

1C1D

]
. (33)

By independence and by the A (resp. B) measurability of C (resp. D), the right-hand side of (33)
is

E
[
E[1A1C |A]]E[

E[1B1D|B]] = E[1A1C]E[1B1D],
which equals the left-hand side of (33) by independence of 1A1C from 1B1D . �

Acknowledgements

The first author was supported by the “Lendület” Grant LP2015-6 of the Hungarian Academy
of Sciences. Discussions with Martin Keller-Ressel led to formulating the main results of the
present paper, we sincerely thank him. We also thank Eberhard Mayerhofer for spotting an error
in a previous version of this paper.



2774 M. Rásonyi and H. Sayit

References

[1] Aurzada, F. and Dereich, S. (2009). Small deviations of general Lévy processes. Ann. Probab. 37
2066–2092. MR2561441

[2] Bender, C., Pakkanen, M.S. and Sayit, H. (2015). Sticky continuous processes have consistent price
systems. J. Appl. Probab. 52 586–594. MR3372094

[3] Cherny, A. (2008). Brownian moving averages have conditional full support. Ann. Appl. Probab. 18
1825–1830. MR2432181

[4] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC
Financial Mathematics Series. Boca Raton, FL: Chapman & Hall/CRC. MR2042661

[5] Dalang, R.C., Morton, A. and Willinger, W. (1990). Equivalent martingale measures and no-arbitrage
in stochastic securities market models. Stoch. Stoch. Rep. 29 185–201. MR1041035

[6] Delbaen, F. and Schachermayer, W. (2006). The Mathematics of Arbitrage. Springer Finance. Berlin:
Springer. MR2200584

[7] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics
Studies 29. Amsterdam-New York: North-Holland. MR0521810

[8] Elworthy, K.D., Li, X.-M. and Yor, M. (1999). The importance of strictly local martingales; ap-
plications to radial Ornstein–Uhlenbeck processes. Probab. Theory Related Fields 115 325–355.
MR1725406

[9] Gasbarra, D., Sottinen, T. and van Zanten, H. (2011). Conditional full support of Gaussian processes
with stationary increments. J. Appl. Probab. 48 561–568. MR2840316

[10] Guasoni, P. (2006). No arbitrage under transaction costs, with fractional Brownian motion and beyond.
Math. Finance 16 569–582. MR2239592

[11] Guasoni, P. and Rásonyi, M. (2015). Fragility of arbitrage and bubbles in local martingale diffusion
models. Finance Stoch. 19 215–231. MR3320320

[12] Guasoni, P. and Rásonyi, M. (2015). Hedging, arbitrage and optimality with superlinear frictions. Ann.
Appl. Probab. 25 2066–2095. MR3349002

[13] Guasoni, P., Rásonyi, M. and Schachermayer, W. (2008). Consistent price systems and face-lifting
pricing under transaction costs. Ann. Appl. Probab. 18 491–520. MR2398764

[14] Harrison, J.M. and Shepp, L.A. (1981). On skew Brownian motion. Ann. Probab. 9 309–313.
MR0606993

[15] Herczegh, A., Prokaj, V. and Rásonyi, M. (2014). Diversity and no arbitrage. Stoch. Anal. Appl. 32
876–888. MR3254711

[16] Jacod, J. and Shiryaev, A.N. (1998). Local martingales and the fundamental asset pricing theorems in
the discrete-time case. Finance Stoch. 2 259–273. MR1809522

[17] Kabanov, Y. and Safarian, M. (2009). Markets with Transaction Costs. Springer Finance. Berlin:
Springer. MR2589621

[18] Kabanov, Y. and Stricker, C. (2001). On equivalent martingale measures with bounded densi-
ties. In Séminaire de Probabilités, XXXV. Lecture Notes in Math. 1755 139–148. Springer, Berlin.
MR1837281

[19] Kabanov, Y. and Stricker, C. (2008). On martingale selectors of cone-valued processes. In Séminaire
de Probabilités XLI. Lecture Notes in Math. 1934 439–442. Springer, Berlin. MR2488906

[20] Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate
Texts in Mathematics 113. New York: Springer. MR1121940

[21] Pakkanen, M.S. (2010). Stochastic integrals and conditional full support. J. Appl. Probab. 47 650–667.
MR2731340

[22] Protter, P. (2013). A mathematical theory of financial bubbles. In Paris–Princeton Lectures on Math-
ematical Finance 2013. Lecture Notes in Math. 2081 1–108. Springer, Cham. MR3183922

http://www.ams.org/mathscinet-getitem?mr=2561441
http://www.ams.org/mathscinet-getitem?mr=3372094
http://www.ams.org/mathscinet-getitem?mr=2432181
http://www.ams.org/mathscinet-getitem?mr=2042661
http://www.ams.org/mathscinet-getitem?mr=1041035
http://www.ams.org/mathscinet-getitem?mr=2200584
http://www.ams.org/mathscinet-getitem?mr=0521810
http://www.ams.org/mathscinet-getitem?mr=1725406
http://www.ams.org/mathscinet-getitem?mr=2840316
http://www.ams.org/mathscinet-getitem?mr=2239592
http://www.ams.org/mathscinet-getitem?mr=3320320
http://www.ams.org/mathscinet-getitem?mr=3349002
http://www.ams.org/mathscinet-getitem?mr=2398764
http://www.ams.org/mathscinet-getitem?mr=0606993
http://www.ams.org/mathscinet-getitem?mr=3254711
http://www.ams.org/mathscinet-getitem?mr=1809522
http://www.ams.org/mathscinet-getitem?mr=2589621
http://www.ams.org/mathscinet-getitem?mr=1837281
http://www.ams.org/mathscinet-getitem?mr=2488906
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=2731340
http://www.ams.org/mathscinet-getitem?mr=3183922


Sticky processes, local and true martingales 2775

[23] Protter, P.E. (2005). Stochastic Integration and Differential Equations. Stochastic Modelling and Ap-
plied Probability 21. Berlin: Springer. MR2273672

[24] Sayit, H. and Viens, F. (2011). Arbitrage-free models in markets with transaction costs. Electron.
Commun. Probab. 16 614–622. MR2846654

[25] Simon, T. (2001). Sur les petites déviations d’un processus de Lévy. Potential Anal. 14 155–173.
MR1812440

[26] Stroock, D.W. and Varadhan, S.R.S. (1972). On the support of diffusion processes with applications
to the strong maximum principle. 333–359. MR0400425

Received September 2015 and revised March 2017

http://www.ams.org/mathscinet-getitem?mr=2273672
http://www.ams.org/mathscinet-getitem?mr=2846654
http://www.ams.org/mathscinet-getitem?mr=1812440
http://www.ams.org/mathscinet-getitem?mr=0400425

	Introduction
	Sticky processes
	Examples
	Main result
	Local martingales
	Application to mathematical ﬁnance
	Auxiliary results
	Acknowledgements
	References

