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We develop a Gaussian approximation result for the maximum of a sum of weakly dependent vectors,
where the data dimension is allowed to be exponentially larger than sample size. Our result is established
under the physical/functional dependence framework. This work can be viewed as a substantive extension
of Chernozhukov et al. (Ann. Statist. 41 (2013) 2786–2819) to time series based on a variant of Stein’s
method developed therein.
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1. Introduction

Let {εi}i∈Z be independent and identically distributed (i.i.d.) random elements. Consider a p-
dimensional random vector with the following causal representation:

xi := (xi1, . . . , xip)′ = Gi (. . . , εi−1, εi), (1)

where Gi = (Gi1, . . . ,Gip)′ is a measurable function such that xi is well defined. Let yi =
(yi1, . . . , yip)′ be a Gaussian sequence which is independent of xi and preserves the autoco-
variance structure of xi .1 Suppose Exi = Eyi = 0. The major goal of this paper is to quantify the
Kolmogorov distance between TX and TY :

ρn := sup
t∈R

∣∣P(TX ≤ t) − P(TY ≤ t)
∣∣, (2)

where TX = max1≤j≤p Xj , TY = max1≤j≤p Yj , and

X = (X1, . . . ,Xp)′ = 1√
n

n∑
i=1

xi, Y = (Y1, . . . , Yp)′ = 1√
n

n∑
i=1

yi.

Here, n is the sample size and p is allowed to be exponentially larger than n. Throughout this
paper, {xi} is not necessarily assumed to be stationary (as Gi is allowed to change with i).

1This assumption can be relaxed, see more details in Remark 2.1.
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The distribution of TX is of great interest in high dimensional statistical inference such as
model selection, simultaneous inference, and multiple testing [6–8,25,32]. When p increases
slowly with n, the convergence of ρn to zero follows from the multivariate central limit theorem
with growing dimension, see, for example, [5,16,23]. When p = O(exp(nc)) for some c > 0,
Chernozhukov et al. [12] recently showed that ρn decays to zero at a polynomial rate if {xi}
is an independent sequence. This result provides an astounding improvement over the previous
results in [5] by allowing the data dimension to diverge exponentially fast. In this paper, we shall
establish a similar high dimensional Gaussian approximation result in the more general setup
where xi admits the causal representation (1). It is worth pointing out that our results require non-
trivial modifications of the technical tools developed in [12] in order to overcome the difficulties
arising from the dependence across data vectors. In particular, we develop some new techniques
in dealing with high dimensional dependent data such as the use of dependency graph, leave
one-block-out argument, self-normalization and M-dependent approximation, which are also of
interest in their own right.

To quantify the strength of dependence for time series, we adapt the physical dependence
measure in [27,30] for low dimensional time series to the high dimensional setting. Specifically,
we allow the structure of the physical system or filter Gi = Gi,n to change with sample size,
that is, we are dealing with triangular array. Compared to the classical mixing type conditions
which involve complicated manipulation of taking the supremum over two sigma algebras, the
framework of physical dependence (or its variants) is known to be very general and easy to ver-
ify for both linear and nonlinear data-generating mechanisms. One example given in [27] is a
simple AR(1) process Xi = (Xi−1 + εi)/2, where εi are i.i.d. Bernoulli random variables with
success probability 1/2. The process Xi is not strong mixing [1], while it can be conveniently
studied under the framework of physical dependence [27] as it admits the causal representation
Xi =∑+∞

j=0 2−(j+1)εi−j . We also remark that the physical dependence measure and mixing type
conditions do not nest each other. Our results thus complement [11] which established a Gaus-
sian approximation result for β-mixing time series around the same time when this manuscript
was under preparation. While our work is being carried out, we note an arXiv work [31] which
establishes the Gaussian approximation theory for stationary high-dimensional time series under
different physical dependence assumptions.

Finally, we point out that although high dimensional statistics has witnessed unprecedented
development, statistical inference for high dimensional time series remains largely untouched so
far. The Gaussian approximation theory developed in this paper represents an initial step along
this direction. In particular, it provides a theoretical framework in studying high dimensional
bootstrap that works even when the autocovariance structure of {xi} is unknown. Also see [10,
14,17,18] for some other recent studies on high dimensional time series.

The rest of the article is organized as follows. Section 2.1 establishes a general result in the
framework of dependency graph, which leads to delicate bounds in Section 2.2 on the Kol-
mogorov distance for weakly dependent time series under physical dependence. Some concrete
examples such as non-stationary linear models and GARCH models are studied in Section 2.3,
while Section 3 presents some numerical results. All the proofs are gathered in the Appendix.

Let | ·| := |·|q be the Euclidean norm of Rq . Denote by Ck(R) the class of k times continuously
differentiable functions from R to itself, and denote by Ck

b(R) a sub-class of Ck(R) such that
supz∈R |∂jf (z)/∂zj | < ∞ for j = 0,1, . . . , k. For a sequence of random variables {zi}ni=1, define
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Ē[zi] =∑n
i=1 Ezi/n. For a random variable z, let ‖z‖q = (E|z|q)1/q . Write a � b if a is smaller

than or equal to b up to a universal positive constant. For two sequences an and bn, denote by
an � bn, if an � bn and bn � an. For a, b ∈ R, let a ∨ b = max{a, b} and a ∧ b = min{a, b}. For
two matrices A and B, denote by A ⊗ B their Kronecker product.

2. Gaussian approximation theory

2.1. Dependency graph

In this subsection, we introduce a generic framework in modeling the dependence among a se-
quence of p-dimensional (not necessarily identically distributed) random vectors {xi}ni=1. We
call it as dependency graph Gn = (Vn,En), where Vn = {1,2, . . . , n} is a set of vertices and En

is the corresponding set of undirected edges. For any two disjoint subsets of vertices S,T ⊆ Vn,
if there is no edge from any vertex in S to any vertex in T , the collections {xi}i∈S and {xi}i∈T are
independent. Let Dmax,n = max1≤i≤n

∑n
j=1 I{{i, j} ∈ En} be the maximum degree of Gn and

denote Dn = 1 + Dmax,n. Throughout the paper, we allow Dn to grow with the sample size n.
For example, if an array {xi,n}ni=1 is a M := Mn dependent sequence (i.e., xi,n and xj,n are in-
dependent if |i − j | > M), then we have Dn = 2M + 1. Within this framework, the dependence
structure of the underlying sequence is directly associated with the graph Gn, which allows a
more general characterization for various forms of dependence such as temporal dependence,
spatial dependence and dependence driven by other variables. In the low-dimensional setting,
the dependency graph has been used for studying central limit theorem of dependent data when
Dn is not too large; see [2–4,21]. To further illustrate this concept, we provide the following
example.

Example 2.1 (U -statistics). Let {εi}ni=1 be n i.i.d. random variables. Given a symmetric func-

tion h(·, . . . , ·) on R
m0 , the degenerate U -statistic is defined as

(
n

m0

)−1∑
h(εi1 , . . . , εim0

), where

the sum extends over all
(

n
m0

)
subsets of indices from {1,2, . . . , n}. Let xi = h(εi1 , . . . , εim0

) with
i = {i1, . . . , im0}. The dependence of xi can be characterized through the corresponding depen-
dence graph. Specifically, {i,j} ∈ E with i = {i1, . . . , im0} and j = {j1, . . . , jm0} if and only if
i ∩ j �=∅.

Recall that TX = max1≤j≤p Xj and TY = max1≤j≤p Yj . The problem of comparing distri-
butions of maxima is nontrivial since the maximum function z = (z1, . . . , zp)′ → max1≤j≤p zj

is non-differentiable. To overcome this difficulty, we consider a smooth approximation of the
maximum function,

Fβ(z) := β−1 log

(
p∑

j=1

exp(βzj )

)
, z = (z1, . . . , zp)′,

where β > 0 is the smoothing parameter that controls the level of approximation. Simple algebra
yields that (see [9]),

0 ≤ Fβ(z) − max
1≤j≤p

zj ≤ β−1 logp. (3)
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To handle unbounded random variables, we employ the truncation argument which is slightly
different from the one used in [12]. Denote the truncated variables x̃ij = (xij ∧ Mx) ∨ (−Mx) −
E[(xij ∧Mx)∨ (−Mx)] and ỹij = (yij ∧My)∨ (−My) for some Mx,My > 0. Note that the map
x → (x ∧ Mx) ∨ (−Mx) is Lipschitz continuous which facilitates our derivations in Section 2.2.
Let x̃i = (x̃i1, . . . , x̃ip)′ and ỹi = (ỹi1, . . . , ỹip)′. For 1 ≤ i ≤ n, let Ni = {j : {i, j} ∈ En} be the
set of neighbors of i, and Ñi = {i} ∪ Ni . Let φ(Mx) be a constant depending on the threshold
parameter Mx such that

max
1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∑
l∈Ñi

(Exij xlk −Ex̃ij x̃lk)

∣∣∣∣≤ φ(Mx).

Analogous quantity φ(My) can be defined for {yi}. Set φ(Mx,My) = φ(Mx) + φ(My). Define

mx,k =
(
Ē max

1≤j≤p
|xij |k

)1/k

, my,k =
(
Ē max

1≤j≤p
|yij |k

)1/k

,

m̄x,k = max
1≤j≤p

(
Ē|xij |k

)1/k
, m̄y,k = max

1≤j≤p

(
Ē|yij |k

)1/k
.

Note that m̄x,k ≤ mx,k and m̄y,k ≤ my,k . Further define an indicator function,

I := I� = 1
{

max
1≤j≤p

|Xj − X̃j | ≤ �, max
1≤j≤p

|Yj − Ỹj | ≤ �
}
,

where X̃ = (X̃1, . . . , X̃p)′ = 1√
n

∑n
i=1 x̃i and Ỹ = (Ỹ1, . . . , Ỹp)′ = 1√

n

∑n
i=1 ỹi .

We next approximate the indicator function I {· ≤ t} by a suitable smooth function g(·) ∈
C3

b(R), and thus set m(·) = g ◦ Fβ(·). In particular, g can be chosen as the convolution between
I {· ≤ t} and a Gaussian density. As an intermediate step, we derive in Proposition 2.1 a non-
asymptotic upper bound for the quantity |E[m(X)−m(Y)]| using the Slepian interpolation [24].
The proof of Proposition 2.1 generalizes that of Theorem 2.1 in [12] by modifying Stein’s leave-
one-out argument [26] to the leave-one-block-out argument that captures the local dependence
of the data.

Proposition 2.1. Assume that 2
√

5βD2
nMxy/

√
n ≤ 1 with Mxy = max{Mx,My}. Then we have

for any � > 0,∣∣E[m(X) − m(Y)
]∣∣

� (G2 + G1β)φ(Mx,My) + (
G3 + G2β + G1β

2)D2
n√
n

(
m̄3

x,3 + m̄3
y,3

)
+ (

G3 + G2β + G1β
2)D3

n√
n

(
m3

x,3 + m3
y,3

)+ G1� + G0E[1 − I],

(4)

where Gk = supz∈R |∂kg(z)/∂zk | for k ≥ 0. In addition, if 2
√

5βD3
nMxy/

√
n ≤ 1, we can replace

m3
x,3 + m3

y,3 by m̄3
x,3 + m̄3

y,3 in (4).
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When specializing to a M-dependent sequence, we obtain the following result.

Corollary 2.1. When {xi} is a M-dependent sequence, under the assumption that 2
√

5β(6M +
1)Mxy/

√
n ≤ 1, we have

∣∣E[m(X) − m(Y)
]∣∣� (

G3 + G2β + G1β
2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ (G2 + G1β)φ(Mx,My) + G1� + G0E[1 − I].

(5)

We remark that the upper bound in (5) can be further simplified using the self-normalization
technique (see Lemma A.1) and certain arguments under weak dependence assumption.

Considering the approximation properties of Fβ and g, Proposition 2.1 leads to an upper bound
on the Kolmogorov distance ρn defined in (2). In particular, we obtain an explicit upper bound
of ρn for the M-dependence sequence based on Corollary 2.1. Such a result is viewed as an
intermediate one, and thus deferred to Section A.2.

Remark 2.1. In view of the proof of Proposition 2.1 (see, e.g., (31)), the assumption that {yi}
preserves the autocovariance structure of {xi} can be weakened by assuming that for all i,∑

k∈Ñi

Exix
′
k =

∑
k∈Ñi

Eyiy
′
k.

Thus {yi} is allowed to be a sequence of independent (mean-zero) p-dimensional Gaussian ran-
dom variables such that cov(yi) =∑

k∈Ñi
Exix

′
k provided that

∑
k∈Ñi

Exix
′
k is positive-definite.

In fact, when {xi} is M-dependent and stationary, we can construct {yi} as i.i.d. Gaussian se-
quence with the covariance

∑i+M
j=i−M Exix

′
j . In this case, we need to replace φ(Mx,My) in (5)

by φ(Mx,My) + max1≤j,k≤p

∑M
l=1 l|Exij xi+l,k|/n due to the edge effect.

2.2. Weakly dependent time series under physical dependence

In this subsection, we shall develop Gaussian approximation theory for weakly dependent time
series, which is the major interest of this paper. To this end, we need to introduce suitable de-
pendence measure for high dimensional vector. We adapt the concept of physical dependence
measure for non-stationary causal process in [30] to the high-dimensional setting for its broad
applicability to linear and nonlinear processes as well as its theoretical convenience and elegance.

Recall that xi = Gi (Fi ), where Fi = (. . . , εi−1, εi) and Gi = (Gi1, . . . ,Gip)′. To measure the
strength of dependence, we let {ε′

i} be an i.i.d. copy of {εi}. For ‖xij‖q < ∞, define

θk,j,q = sup
i

∥∥Gij (Fi ) − Gij (Fi,i−k)
∥∥

q
, 
k,j,q =

+∞∑
l=k

θl,j,q , (6)

where Fi,k = (. . . , εk−1, ε
′
k, εk+1, . . . , εi−1, εi) is a coupled version of Fi . In the subsequent

discussions, we assume that the dependence measure sup1≤j≤p 
k,j,q < ∞ for some q > 0. We
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point out that the dimension of Gi (i.e., p) is allowed to grow with n, which makes our setting
different from the one in [30].

Before presenting our main result, we introduce the following assumptions which will be
verified under specific models in Section 2.3. Let h : [0,+∞) → [0,+∞) be a strictly in-
creasing convex function with h(0) = 0. Denote by h−1(·) the inverse function of h(·). Let
ln := ln(p, γ ) = log(pn/γ ) ∨ 1. Define σj,k = cov(Xj ,Xk) =∑n

i,l=1 cov(xij , xlk)/n.

Assumption 2.1. Assume that max1≤i≤n max1≤j≤p Ex4
ij < c1 for c1 > 0 and there exists Dn > 0

such that one of the following two conditions holds

max
1≤i≤n

Eh
(

max
1≤j≤p

|xij |/Dn

)
≤ C1, (7)

max
1≤i≤n

max
1≤j≤p

E exp
(|xij |/Dn

)≤ C2, (8)

for C1,C2 > 0.

Assumption 2.2. Assume there exist M = M(n) > 0 and γ = γ (n) ∈ (0,1) such that

n3/8M−1/2l
−5/8
n ≥ C3 max

{
Dnh

−1(n/γ ), l
1/2
n

}
under Condition (7),

n3/8M−1/2l
−5/8
n ≥ C4 max

{
Dnln, l

1/2
n

}
under Condition (8),

for C3,C4 > 0, where Dn is given in Assumption 2.1.

Assumption 2.2 imposes constraints on the intermediate quantities M , ln and γ so that the
upper bound in (11) holds. These quantities are later on chosen to optimize the upper bound. We
remark that the quantity M in Assumption 2.2 corresponds to an M-dependent sequence used in
the proof of Theorem 2.1 for approximating the weakly dependent sequence {xi}; see the end of
this section. A larger value of M leads to a better approximation to the original data sequence,
but also to an increasing upper bound given in Corollary 2.1. Hence, a proper choice of M is
needed.

Assumption 2.3. Assume that

c1 < min
1≤j≤p

σj,j ≤ max
1≤j≤p

σj,j < c2, (9)

+∞∑
j=1

max
1≤k≤p

jθj,k,3 < c3, (10)

for some constants 0 < c1 < c2 and c3 > 0.

Note (10) and the condition that max1≤j≤p
1
n

∑n
i=1 ‖xij‖2

2 < c for some c > 0 imply the sec-
ond part of (9), that is, max1≤j≤p σj,j < c2.

We are now in position to present the main result of this paper.
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Theorem 2.1. Under Assumptions 2.1–2.3, we have for q ≥ 2,

ρn � n−1/8M1/2l
7/8
n + γ + (

n1/8M−1/2l
−3/8
n

)q/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

+ 

1/3
M

(
1 ∨ log(p/
M)

)2/3
,

(11)

where 
M = max1≤k≤p

∑+∞
j=M jθj,k,2(x), and M and γ satisfy Assumption 2.2.

The key strategy in the proof of Theorem 2.1 is M-dependent approximation, which will be
sketched in the end of this section.

Note that the conditions in Theorem 2.1 can be categorized into two types: tail restrictions
and weak dependence assumptions. Assumptions 2.1 and 2.2 impose restrictions on the tail of
{xij } uniformly across j , which are needed even in the independence case [12]. Note that As-
sumption 2.1 is satisfied if xij =Dnζij with maxi,j E exp(|ζij |) ≤ C2. Assumption 2.3 essentially
requires weak dependence uniformly across all the components of {xi}. We verify (10) for both
linear and nonlinear time series models in the next section.

Under the assumption that p � exp(nb) for 0 ≤ b < 1/11, we obtain that ρn � n−(1−11b)/8 in
Corollary 2.2 by optimizing the upper bound in (11) w.r.t. M and γ . In fact, the optimization is
achieved when γ � n−(1−11b)/8 and M = Cnb for some large enough C.

Corollary 2.2. Assume that max1≤j≤p 
u,j,q � �u for some � < 1 and q ≥ 2, and p � exp(nb)

for some 0 ≤ b < 1/11. Suppose one of the following two conditions holds

max
1≤i≤n

E

(
max

1≤j≤p
|xij |/Dn

)4 ≤ C1, Dn � n(3−25b)/32, (12)

max
1≤i≤n

max
1≤j≤p

E exp
(|xij |/Dn

)≤ C2, Dn � n(3−17b)/8, (13)

for C1,C2 > 0. Under (9), we have ρn � n−(1−11b)/8.

Remark 2.2. In general, we can ssume that

max
1≤i≤n

E

(
max

1≤j≤p
|xij |/Dn

)k ≤ C1, Dn � n
(3−9b)k−(9−11b)

8k . (14)

In this case, one can again choose γ � n−(1−11b)/8 and M = cnb to obtain the polynomial decay
rate n−(1−11b)/8.

In the end of this section, we discuss the M-approximation technique used in the proof of
Theorem 2.1. Let x

(M)
i = (x

(M)
i1 , . . . , x

(M)
ip )′ = E[xi |εi−M, . . . , εi] be a M-dependent approxima-

tion sequence for {xi}. Define X(M) in the same way as X by replacing xi with x
(M)
i . Because
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|m(x) − m(y)| ≤ 2G0 and |m(x) − m(y)| ≤ G1 max1≤j≤p |xj − yj | by the Lipschitz property of
Fβ (see e.g. [12]), we have∣∣E[m(X) − m

(
X(M)

)]∣∣≤ ∣∣E[(m(X) − m
(
X(M)

))
IM

]∣∣
+ ∣∣E[(m(X) − m

(
X(M)

))
(1 − IM)

]∣∣
� G1�M + G0E[1 − IM ],

(15)

where IM := I�M,M = 1{max1≤j≤p |Xj − X
(M)
j | ≤ �M} for some �M > 0 depending on M .

Suppose max1≤j≤p E‖xij‖q < ∞ for all i and some q > 0. By Lemma A.1 of [19], we have

(
E
∣∣Xj − X

(M)
j

∣∣q)q ′/q ≤ Cqn1−q ′/2

q ′
M,j,q,

where q ′ = min(2, q) and Cq is a positive constant depending on q (note that the results in
Lemma A.1 of [19] are still valid for nonstationary process in view of their arguments). For any
q ≥ 2, we obtain

E[1 − IM ] ≤
p∑

j=1

P
(∣∣Xj − X

(M)
j

∣∣≥ �M

)≤
p∑

j=1

1

�
q
M

E
∣∣Xj − X

(M)
j

∣∣q

≤
p∑

j=1

C
q/2
q 


q
M,j,q

�
q
M

=
p∑

j=1

C
q/2
q

�
q
M

(+∞∑
l=M

θl,j,q

)q

.

Optimizing the bound with respect to �M in (15), we deduce that

∣∣E[m(X) − m
(
X(M)

)]∣∣� (
G0G

q

1

)1/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

, (16)

which along with (3) implies that

∣∣E[g(TX) − g(TX(M))
]∣∣� (

G0G
q

1

)1/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

+ β−1G1 logp,

with TX(M) = max1≤j≤p

∑n
i=1 x

(M)
ij /

√
n.

Remark 2.3. Our results can also be combined with the notion of dependence adjusted norm
recently proposed in Zhang and Wu [31]. We merely illustrate the idea here but do not intend to
obtain the sharpest possible result. Define

ωj,q = max
i

∥∥∣∣Gi (Fi ) − Gi (Fi,j )
∣∣∞∥∥q

, (17)
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and �M,q = ∑+∞
j=M ωj,q . Using the Burkholder type inequality in Theorem 4.1 of Pinelis [22]

[also see Lemma C.5 of Zhang and Wu [31]], we have for any x > 0,

E[1 − IM ] = P
(∣∣X − X(M)

∣∣∞ ≥ x
)
�

(log(p))q/2�
q

M+1,q

xq
.

Choosing �M to optimize the bound, we obtain∣∣E[m(X) − m
(
X(M)

)]∣∣ � G1�M + G0P
(∣∣X − X(M)

∣∣∞ ≥ �M

)
� G1�M + G0

(log(p))q/2�
q

M+1,q

�
q
M

�
(
G0G

q

1

)1/(q+1)((log(p)
)1/2

�M+1,q

)q/(1+q)
.

Combining with the arguments in the proof of Theorem 2.1, we have

ρn � n−1/8M1/2l
7/8
n + γ + (

n1/8M−1/2l
−3/8
n

)q/(1+q)((log(p)
)1/2

�M+1,q

)q/(1+q)

+ 

1/3
M

(
1 ∨ log(p/
M)

)2/3
.

When p � exp(nb), suppose �M+1,q � M−α with α > (1 + b)/(1 − 7b). Then by picking
M � nc for some max{(1 + b)/(8α + 4),2b/(α − 1)} < c < (1 − 7b)/4, we can still obtain
the polynomial decay rate.

2.3. Example

To illustrate the applicability of our general theory, we verify assumptions in several commonly
used time series models.

Example 2.2 (Nonstationary linear model). Consider a nonstationary linear model

xi =
+∞∑
l=0

Ai,lεi−l , (18)

where {Ai,l} is a sequence of p × p matrices with Ai,l = (ai,l,jk)
p

j,k=1, and εi = (εi1, . . . , εip)

is a sequence of i.i.d. p-dimensional random vectors with Eεi = 0. In this case, Gi is a linear
function on the inputs (. . . , εi−1, εi). It is easy to see that Gi (Fi )−Gi (Fi,i−l ) = Ai,l(εi−l − ε′

i−l)

which implies θl,j,2q = supi ‖
∑p

k=1 ai,l,jk(εi−l,k − ε′
i−l,k)‖2q . Suppose max1≤j≤p ‖ε0j‖2q < ∞

for some q > 1, and

max
1≤j≤p

sup
i

(
p∑

k=1

a2
i,l,jk

)1/2

� �l for some � < 1.
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By Rosenthal’s inequality, we further have

θ
2q

l,j,2q � sup
i

{
p∑

k=1

a2
i,l,jkE

(
εi−l,k − ε′

i−l,k

)2

}q

� sup
i

(
p∑

k=1

a2
i,l,jk

)q

,

which induces that max1≤j≤p 
u,j,2q � �u. Further assume

max
1≤i≤n

max
1≤j≤p

E exp

(
1

c

∣∣∣∣∣
∞∑
l=0

p∑
k=1

ai,l,jkεi−l,k

∣∣∣∣∣
)

≤ C1, (19)

and min1≤j≤p
1
n

∑n
i,k=1 cov(xij , xkj ) > c′ for c, c′,C1 > 0. By Jensen’s inequality, (19) holds

provided that max1≤i≤n max1≤j≤p

∑∞
l=0

∑p

k=1 |ai,l,jk| < ∞ and max1≤j≤p E exp(|ε0j |/c′′) ≤
C2 for some c′′,C2 > 0. Then by Corollary 2.2, we have ρn � n−(1−11b)/8 for p � exp(nb) with
b < 1/11.

Example 2.3 (Random coefficient autoregressive process). Let Ai be a p × p random matrix
and Bi be a p × 1 random vector. Define a random coefficient autoregressive process as

xi = Aixi−1 + Bi, (20)

where (Ai ,Bi) are i.i.d. which ensures that {xi} is stationary. It can be shown that xi has a causal
representation xi = G(. . . , εi−1, εi) for εi = (Ai ,Bi). Note that Bilinear and GARCH models fall
within the framework of (20). We assume that Ai is block diagonal,2 that is,

Ai =

⎛⎜⎜⎜⎝
Ai1

Ai2
. . .

AiB

⎞⎟⎟⎟⎠ , (21)

where Ai1, . . . ,AiB are D × D random matrices with D × B = p. For a p × p matrix A, denote
by λ2(A) the eigenvalue of A′A. Let x∗

i = G(Fi,i−l ) such that x∗
i = Aix

∗
i−1 + Bi . Suppose xi =

(z′
i1, . . . , z

′
iB)′ and x∗

i = (z∗′
i1, . . . , z

∗′
iB)′ according to the partition in (21), where zik, z

∗
ik ∈ R

D .
Then we have ∣∣zik − z∗

ik

∣∣= ∣∣AikAi−1,k · · ·Ai−l+1,k

(
zi−l,k − z∗

i−l,k

)∣∣
≤

l−1∏
j=0

λ(Ai−j )
∣∣zi−l,k − z∗

i−l,k

∣∣.
2The block structure only needs to hold up to an unknown permutation of the components of xi .
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For any j belonging to the kth block,

θl,j,q = ∥∥xij − x∗
ij

∥∥
q

≤ ∥∥zik − z∗
ik

∥∥
q

≤
l−1∏
j=0

∥∥λ(Ai−j )
∥∥

q

∥∥zi−l,k − z∗
i−l,k

∥∥
q

≤ 2
∥∥λ(A0)

∥∥l

q
‖z0k‖q .

(22)

Suppose that ∥∥λ(A0)
∥∥l

q
max

1≤k≤B
‖z0k‖q � �l, � < 1. (23)

Using the representation xi = ∑∞
k=0 AiAi−1 · · ·Ai−k+1Bi−k , it can be verified that (23) holds

if ‖λ(A0)‖q ≤ � and max1≤k≤B ‖B0k‖q < c for some c > 0, where B0 = (B ′
01, . . . ,B

′
0B)′ with

B0j ∈ R
D . By (22) and (23), we have max1≤j≤p 
u,j,q � �u.

Remark 2.4. Motivated by Example 2.3, let xi = (z′
i1, . . . , z

′
iB)′ with zij ∈ R

D for 1 ≤ j ≤ B .
Consider the blockwise model

zij = G̃ij (. . . , εi−1,j , εij ), 1 ≤ j ≤ B, (24)

where εi = (ε′
i1, . . . , ε

′
iB)′ is a sequence of i.i.d. random vectors. In particular, when D = 1, we

have the following model,

xij = G̃ij (. . . , εi−1,j , εij ), 1 ≤ j ≤ p. (25)

Because xij only depends on {εij }, we shall call (25) the componentwise model. Although the
time series model is defined in a componentwise fashion, the components of xi are dependent
through the sequence {εi}. For componentwise model, the analysis in the univariate case (see [28,
30]) can be applied separately for each component, and Conditions (8)–(10) can be translated into
suitable restrictions on G̃ij and the tail behavior of {εij } uniformly across the index j .

Remark 2.5. The block assumption in Example 2.3 can be replaced by (26) below. For a matrix
A = (aij )

p

i,j=1, define ‖A‖∞ = max1≤i≤p

∑p

j=1 |aij |. Using the fact that |Aa|∞ ≤ ‖A‖∞|a|∞,
we have ∣∣xi − x∗

i

∣∣∞ ≤ ∣∣AiAi−1 · · ·Ai−l+1
(
xi−l − x∗

i−l

)∣∣∞
≤

i∏
k=i−l+1

‖Ak‖∞
∣∣xi−l − x∗

i−l

∣∣∞.
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Hence, we obtain for any 1 ≤ j ≤ p

θl,j,q = ∥∥xij − x∗
ij

∥∥
q

≤ ∥∥∣∣xi − x∗
i

∣∣∞∥∥q

≤
i∏

k=i−l+1

∥∥‖Ak‖∞
∥∥

q

∥∥∣∣xi−l − x∗
i−l

∣∣∞∥∥q

≤ 2
∥∥‖A0‖∞

∥∥l

q

∥∥|xi−1|∞
∥∥

q
.

An alternative assumption is given by∥∥‖A0‖∞
∥∥l

q

∥∥|x0|∞
∥∥

q
� �l, � < 1. (26)

Here we impose constraint on the coefficient matrix A0 in terms of the ‖ ·‖∞ norm. This assump-
tion is weaker than those in Example 2.3 as we drop the block assumption but it can be stronger
when λ(A) ≤ ‖A‖∞.

Example 2.4 (Nonlinear Markov chain). Consider a nonlinear Markov chain defined by an
iterated random function Hi(·, εi),

xi = Hi(xi−1, εi).

Here εi ’s are i.i.d. innovations, and Hi(·, ·) is an R
p-valued and jointly measurable func-

tion, which satisfies the following two conditions: (i) there exists some x0 such that ϑ :=
supi ‖Hi(x0, ε0)‖q < ∞ for q > 2, and (ii)

ϑ sup
i

‖Li‖l
q ≤ �l < 1, Li = sup

x �=x′

|Hi(x, ε0) − Hi(x
′, ε0)|

|x − x′| . (27)

Then it can be shown that max1≤j≤p 
l,j,q(x) = O(�l) (see the derivations in [29]). In fact,
(27) is a relatively strong assumption as ϑ generally grows with p, and the Lipschitz constant
supi ‖Li‖q can also be large when p is large. Assume a block structure on Hi (as in Remark 2.4):
Hi = (H ′

i1, . . . ,H
′
iB)′ with Hij ∈R

D . Then, we have

x̃ij = Hij (x̃i−1,j , ε̃ij ), 1 ≤ j ≤ B,

where xi = (x̃′
i1, . . . , x̃

′
iB)′ and εi = (ε̃′

i1, . . . , ε̃
′
iB)′ with x̃ij , ε̃ij ∈ R

D . Under the above block
structure, (27) can be weakened by replacing ϑ with max1≤j≤B supi ‖Hij (x0, ε0)‖q . Under tail
conditions (12) or (13), and that min1≤j≤p

1
n

∑n
i,k=1 cov(xij , xkj ) > c for c > 0, Corollary 2.2

can be applied, which suggests that the Kolmogorov distance decreases to zero at some polyno-
mial rate.

In the high-dimensional setting, certain characteristics of time series models (such as the struc-
tures of the coefficient matrices) are allowed to vary with the dimension p. Regularity conditions
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are thus required to account for such high dimensionality. These conditions are usually case-by-
case and their suitability depends on the problem of interest. One set of assumptions may be
replaced by others which concern a different aspect of the time series models. Here we focus
on three concrete examples and discuss some sufficient conditions for our theory to hold. It is
of interest to consider a broader class of time series models. Again we expect certain regularity
conditions to hold besides those commonly assumed in the low dimensional setting.

3. Numerical studies

In this section, some numerical experiments are conducted to verify the Gaussian approximation
phenomenon predicted by our general theory. We consider the following three linear models and
one nonlinear model, where the designs are mainly motivated by the examples in [20].

1. VAR(2): xi = A1xi−1 +A2xi−2 + εi , where Ai = Ip/3 ⊗ Ãi with Ip/3 being the p/3×p/3
identity matrix and

Ã1 =
⎛⎝0.7 0.1 0.0

0.0 0.4 0.1
0.9 0.0 0.8

⎞⎠ , Ã2 =
⎛⎝−0.2 0.0 0.0

0.0 0.1 0.1
0.0 0.0 0.0

⎞⎠ .

2. VARMA(2,1): xi = A1xi−1 + A2xi−2 + εi + B1εi−1, where Ai = Ip/2 ⊗ Ãi and B1 =
Ip/2 ⊗ B̃1 with

Ã1 =
(

0.5 0.1
0.4 0.5

)
, Ã2 =

(
0 0

0.25 0

)
, B̃1 =

(
0.6 0.2
0.0 0.3

)
.

3. Time-varying VAR(1): xi = Aixi−1 + εi , where Ai = sin(2πi/n)Ã. Here Ã is symmetric
and its entries are i.i.d. realizations from the Bernoulli distribution with success probability
0.25. We rescale Ã such that its largest eigenvalue is equal to 0.5.

4. BEKK-ARCH(1): xi = �
1/2
i|i−1εi , where εi

i.i.d.∼ N(0, Ip) or εi = (εi1, . . . , εip)′ with

εij /
√

3 + 1 being i.i.d. uniform random variables on [0,2], and �i|i−1 = B + Axix
′
iA

′.
Here B = Ip/2 ⊗ B̃ and A = Ip/2 ⊗ Ã with

Ã =
(

0.4 0
0 0.3

)
, B̃ =

(
0.8 0.5
0.5 0.7

)
.

For models (1)–(3), we consider the following data generating processes for the errors. In
cases (a)–(d) below, εi = �̃

1/2
εi where εi = (εi1, . . . , εip)′ with εij /

√
3 + 1 being i.i.d. uni-

form random variables on [0,2]. We consider four covariance structures (a) AR(1): �̃ = (γ̃ij )

for γ̃ij = 0.25|i−j |; (b) Block diagonal: �̃ = Ip/2 ⊗ C for C = (cij )
2
i,j=1, where c11 = c22 = 1

and c12 = c21 = 0.8; (c) Banded: �̃ = (γ̃ij ),where γ̃ij = 1 for i = j , γ̃ij = 0.4 for |i − j | = 1,
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γ̃ij = 0.2 for |i − j | = 2,3, γ̃ij = 0.1 for |i − j | = 4, and γ̃ij = 0 otherwise; (d) Exchange-
able: �̃ = (γ̃ij ), where γ̃ij = 1 for i = j and γ̃ij = 0.25 for i �= j . In cases (e) and (f) below,
εi = rij ei , where rij ’s are fixed i.i.d. realizations generated from the uniform distribution on
[0,1] and and {ei} is a sequence of i.i.d. univariate random variables. For the distribution of ei ,
we consider (e) ei = (vi − 5)/

√
5 with vi being a Gamma distribution with shape parameter

5 and scale parameter 1; (f) ei = v′
i/

√
2 with v′

i being a t distribution with degrees of free-
dom 4.

In all cases, we generate a Gaussian sequence {yi} which preserves the autocovariance struc-
ture of the non-Gaussian sequence {xi}. We consider n = 100 and p = 120,240,480,960.
The results are obtained based on 10 000 Monte Carlo replications. Figures 1–3 show the P-
P plots comparing the distributions of TX and TY in linear models (1)–(3). Moreover, we
present in Table 1 the probability P(TX ≤ QTY

(α)) with α = 90%,95%,97.5% and 99%,
where QTY

(α) denotes the αth quantile of TY . The results suggest that the Gaussian approx-
imation is quite accurate in all the linear cases considered here. Figure 4 and Table 2 present
the results for BEKK-ARCH(1) model. The approximation is again accurate in the nonlin-
ear case. It is also worth pointing out that the Gaussian approximation is in general very
precise for the tail of TX , which is most relevant in statistical inference. Overall, the nu-
merical results clearly demonstrate the practical relevance of the Gaussian approximation the-
ory.

Appendix

Define the generic constants C and C′ that are independent of n and p. For a set A, denote by
|A| its cardinality.

A.1. Proofs of the main results in Section 2.1

Proof of Proposition 2.1. We first prove (4). Define Z(t) = ∑n
i=1 Zi(t) with the Slepian

interpolation Zi(t) = (
√

t x̃i + √
1 − t ỹi )/

√
n and 0 ≤ t ≤ 1. Let �(t) = Em(Z(t)). Define

V (i)(t) = ∑
j∈Ñi

Zj (t) and Z(i)(t) = Z(t) − V (i)(t). Write ∂jm(x) = ∂m(x)/∂xj , ∂jkm(x) =
∂2m(x)/∂xj ∂xk and ∂jklm(x) = ∂3m(x)/∂xj ∂xk∂xl for j, k, l = 1,2, . . . , p, where x =
(x1, x2, . . . , xp)′. Note that

Em(X̃) −Em(Ỹ ) = �(1) − �(0) =
∫ 1

0
� ′(t) dt

= 1

2

n∑
i=1

p∑
j=1

∫ 1

0
E
[
∂jm

(
Z(t)

)
Żij (t)

]
dt

= 1

2
(I1 + I2 + I3),

(28)
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Figure 1. P-P plots comparing the distributions of TX and TY , where the data are generated from the
VAR(2) model.
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Figure 2. P-P plots comparing the distributions of TX and TY , where the data are generated from the
VARMA(2,1) model.
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Figure 3. P-P plots comparing the distributions of TX and TY , where the data are generated from the
time-varying VAR(1) model.
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Table 1. The simulated probability P(TX ≤ QTY
(α)), where α = 90%,95%,97.5%,99%, and n = 100.

The results are obtained based on 10 000 Monte Carlo replications

VAR(2) VARMA(2,1) Time-varying VAR(1)

p 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

AR(1) 120 89.6 95.1 97.3 98.8 90.2 95.2 97.5 98.8 90.4 95.4 97.6 99.1
240 90.2 95.1 97.7 99.1 90.1 95.0 97.5 98.9 89.9 95.3 97.8 99.1
480 89.9 94.6 97.3 98.8 90.6 95.4 97.5 99.1 90.7 95.5 98.0 99.1
960 90.4 95.2 97.7 99.1 89.9 95.3 97.9 99.2 90.9 95.8 98.1 99.5

Block diagonal 120 89.9 95.3 97.6 99.1 90.5 95.2 97.5 98.9 90.1 95.5 97.9 99.1
240 90.4 94.8 97.3 99.0 89.8 94.8 97.3 99.0 90.5 95.4 97.9 99.2
480 90.5 95.5 97.9 99.2 90.2 95.0 97.5 99.1 90.4 95.3 97.8 99.2
960 90.0 94.9 97.6 99.3 90.7 96.0 98.2 99.3 90.6 95.3 97.9 99.2

Banded 120 90.6 95.5 97.6 99.1 89.3 94.7 97.4 98.9 89.7 95.3 97.9 99.3
240 89.7 95.0 97.6 99.2 89.9 94.8 97.8 99.0 89.8 95.0 97.8 99.0
480 90.1 95.3 97.6 99.2 90.3 95.1 97.5 99.1 90.2 95.3 97.9 99.2
960 90.7 95.3 97.5 99.1 90.2 95.1 97.5 99.1 90.8 95.6 97.8 99.3

Exchangeable 120 90.2 95.3 97.6 99.0 90.5 95.3 97.7 99.2 90.0 94.9 97.5 99.0
240 90.7 95.7 98.0 99.2 90.4 95.3 97.7 99.0 90.1 94.9 97.8 99.0
480 90.1 95.0 97.6 99.0 89.9 95.0 97.3 99.0 90.9 95.3 97.8 99.2
960 90.2 95.4 97.4 99.0 90.1 95.0 97.9 99.2 90.8 95.5 98.0 99.3

Gamma(5,1) 120 89.0 94.1 96.8 98.7 89.0 93.9 96.7 98.4 88.9 94.0 96.4 98.2
240 88.6 94.2 97.0 98.7 88.9 94.1 96.4 98.3 88.5 93.7 96.5 98.4
480 88.9 93.8 96.7 98.6 88.9 94.0 96.5 98.5 88.8 93.9 96.7 98.3
960 88.7 93.9 96.7 98.4 88.9 94.0 96.4 98.3 88.9 93.8 96.5 98.2

t(4) 120 90.0 94.7 97.1 98.6 90.2 95.1 97.5 98.8 90.7 95.3 97.3 98.6
240 90.2 94.8 97.3 98.9 90.1 95.5 97.7 98.7 90.8 95.0 97.4 98.6
480 90.9 95.1 97.3 98.8 90.3 95.0 97.5 98.9 90.0 94.7 97.3 98.8
960 90.9 95.2 97.4 98.8 90.3 95.3 97.4 98.8 90.8 95.4 97.6 98.8

where Żij (t) = {x̃ij /
√

t − ỹij /
√

1 − t}/√n, and

I1 =
n∑

i=1

p∑
j=1

∫ 1

0
E
[
∂jm

(
Z(i)(t)

)
Żij (t)

]
dt,

I2 =
n∑

i=1

p∑
k,j=1

∫ 1

0
E
[
∂k∂jm

(
Z(i)(t)

)
Żij (t)V

(i)
k (t)

]
dt, (29)

I3 =
n∑

i=1

p∑
k,l,j=1

∫ 1

0

∫ 1

0
(1 − τ)E

[
∂l∂k∂jm

(
Z(i)(t) + τV (i)(t)

)
Żij (t)V

(i)
k (t)V

(i)
l (t)

]
dt dτ.
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Figure 4. P-P plots comparing the distributions of TX and TY , where the data are generated from the
BEKK-ARCH(1) model.

Using the fact that Z(i)(t) and Żij (t) are independent, and EŻij (t) = 0, we have I1 = 0. To
bound the second term, define the expanded neighborhood around Ni ,

Ni = {
j : {j, k} ∈ En for some k ∈ Ni

}
,

and Z(i)(t) = Z(t) −∑
l∈Ni∪Ñi

Zl(t) = Z(i)(t) − V(i)(t), where V(i)(t) =∑
l∈Ni\Ñi

Zl(t) with

Ni \ Ñi = {k ∈Ni : k /∈ Ñi}. By Taylor expansion, we have

I2 =
n∑

i=1

p∑
k,j=1

∫ 1

0
E
[
∂k∂jm

(
Z(i)(t)

)
Żij (t)V

(i)
k (t)

]
dt

+
n∑

i=1

p∑
k,j,l=1

∫ 1

0

∫ 1

0
E
[
∂k∂j ∂lm

(
Z(i)(t) + τV(i)(t)

)
Żij (t)V

(i)
k (t)V(i)

l (t)
]
dt dτ

Table 2. The simulated probability P(TX ≤ QTY
(α)), where α = 90%,95%,97.5%,99%, and n = 100.

The results are obtained based on 10 000 Monte Carlo replications

BEKK-ARCH(1), Uniform(0,2) BEKK-ARCH(1), N(0,1)

p 90% 95% 97.5% 99% 90% 95% 97.5% 99%

120 90.7 95.2 97.5 99.0 89.6 94.6 97.3 98.9
240 89.5 94.8 97.3 99.0 89.2 94.2 97.0 98.7
480 90.0 94.9 97.5 99.1 89.1 94.4 96.8 98.8
960 89.4 94.6 97.2 99.0 89.3 94.4 97.2 98.6
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=
n∑

i=1

p∑
k,j=1

∫ 1

0
E
[
∂k∂jm

(
Z(i)(t)

)]
E
[
Żij (t)V

(i)
k (t)

]
dt

+
n∑

i=1

p∑
k,j,l=1

∫ 1

0

∫ 1

0
E
[
∂k∂j ∂lm

(
Z(i)(t) + τV(i)(t)

)
Żij (t)V

(i)
k (t)V(i)

l (t)
]
dt dτ

= I21 + I22,

where we have used the fact that Żij (t)V
(i)
k (t) and Z(i)(t) are independent.

Let Mxy = max{Mx,My}. By the assumption that 2
√

5βD2
nMxy/

√
n ≤ 1,

max
1≤j≤p

∣∣∣∣ ∑
l∈Ni∪Ñi

Zlj (t)

∣∣∣∣≤ max
1≤j≤p

∑
l∈Ni∪Ñi

∣∣Zlj (t)
∣∣≤ D2

n sup
t∈[0,1]

(2
√

t + √
1 − t)Mxy/

√
n

≤ √
5D2

nMxy/
√

n ≤ β−1/2 ≤ β−1,

where the second inequality comes from the facts that |x̃ij | ≤ 2Mxy , |ỹij | ≤ Mxy and |Ni ∪ Ñi | ≤
D2

n. By Lemma A.5 in [12], we have for every 1 ≤ j, k, l ≤ p,∣∣∂j ∂km(z)
∣∣≤ Ujk(z),

∣∣∂j ∂k∂lm(z)
∣∣≤ Ujkl(z),

where Ujk(z) and Ujkl(z) satisfy that

p∑
j,k=1

Ujk(z) ≤ (G2 + 2G1β),

p∑
j,k,l=1

Ujkl(z) ≤ (
G3 + 6G2β + 6G1β

2),
with Gk = supz∈R |∂kg(z)/∂zk | for k ≥ 0. Along with Lemma A.6 in [12], we obtain

|I21| ≤
n∑

i=1

p∑
k,j=1

∫ 1

0
E
[
Ujk

(
Z(i)(t)

)]∣∣E[Żij (t)V
(i)
k (t)

]∣∣dt

�
n∑

i=1

p∑
k,j=1

∫ 1

0
E
[
Ujk

(
Z(t)

)]∣∣E[Żij (t)V
(i)
k (t)

]∣∣dt

� (G2 + G1β)

∫ 1

0
max

1≤j,k≤p

n∑
i=1

∣∣E[Żij (t)V
(i)
k (t)

]∣∣dt.

Since 2
√

5βD2
nMxy/

√
n ≤ 1, we have

|I22| ≤
n∑

i=1

p∑
k,j,l=1

∫ 1

0

∫ 1

0
E
[∣∣∂k∂j ∂lm

(
Z(i)(t) + τV(i)(t)

)∣∣ · ∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣]dt dτ

≤
n∑

i=1

p∑
k,j,l=1

∫ 1

0

∫ 1

0
E
[
Ukjl

(
Z(i)(t) + τV(i)(t)

)∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣]dt dτ
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�
n∑

i=1

p∑
k,j,l=1

∫ 1

0
E
[
Ukjl

(
Z(t)

)∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣]dt dτ (30)

≤
∫ 1

0
E

[
p∑

k,j,l=1

Ukjl

(
Z(t)

)
max

1≤k,j,l≤p

n∑
i=1

∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣]dt dτ

�
(
G3 + G2β + G1β

2)∫ 1

0
E max

1≤k,j,l≤p

n∑
i=1

∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣dt dτ.

To bound the integration on (30), we let w(t) = 1/(
√

t ∧ √
1 − t) and note that

∫ 1

0
E max

1≤k,j,l≤p

n∑
i=1

∣∣Żij (t)V
(i)
k (t)V(i)

l (t)
∣∣dt

≤
∫ 1

0
E max

1≤k,j,l≤p

(
n∑

i=1

∣∣Żij (t)
∣∣3)1/3( n∑

i=1

∣∣V (i)
k (t)

∣∣3)1/3( n∑
i=1

∣∣V(i)
l (t)

∣∣3)1/3

dt

≤
∫ 1

0
w(t)

(
E max

1≤j≤p

n∑
i=1

∣∣Żij (t)/w(t)
∣∣3E max

1≤k≤p

n∑
i=1

∣∣V (i)
k (t)

∣∣3E max
1≤l≤p

n∑
i=1

∣∣V(i)
l (t)

∣∣3)1/3

dt.

As for I21, by the assumption that Eyij ylk = Exij xlk (in fact, we only need to require that∑
k∈Ñi

Exix
′
k =∑

k∈Ñi
Eyiy

′
k for all i), we have

max
1≤j,k≤p

n∑
i=1

∣∣E[Żij (t)V
(i)
k (t)

]∣∣
= max

1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∑
l∈Ñi

(Ex̃ij x̃lk −Eỹij ỹlk)

∣∣∣∣
= max

1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∑
l∈Ñi

(Ex̃ij x̃lk −Exij xlk) +
∑
l∈Ñi

(Eyij ylk −Eỹij ỹlk)

∣∣∣∣
≤ max

1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∑
l∈Ñi

{
Eylk(yij − ỹij ) +Eỹij (ylk − ỹlk)

}∣∣∣∣
+ max

1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∑
l∈Ñi

{
Exlk(xij − x̃ij ) +Ex̃ij (xlk − x̃lk)

}∣∣∣∣
≤ φ(Mx,My).

(31)
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Using similar arguments as above, we have |I3| � (G3 + G2β + G1β
2)I31 with

I31 ≤
∫ 1

0
w(t)

(
E max

1≤j≤p

n∑
i=1

∣∣Żij (t)/w(t)
∣∣3E max

1≤k≤p

n∑
i=1

∣∣V (i)
k (t)

∣∣3E max
1≤l≤p

n∑
i=1

∣∣V (i)
l (t)

∣∣3)1/3

dt.

We first consider the term Emax1≤j≤p

∑n
i=1 |Żij (t)/w(t)|3. Using the fact that |Żij (t)/w(t)| ≤

(|x̃ij | + |ỹij |)/√n, we get

E max
1≤j≤p

n∑
i=1

∣∣Żij (t)/w(t)
∣∣3 � 1

n3/2
E max

1≤j≤p

n∑
i=1

(|x̃ij |3 + |ỹij |3
)

� 1√
n

(
m3

x,3 + m3
y,3

)
.

On the other hand, notice that

E max
1≤k≤p

n∑
i=1

∣∣V (i)
k (t)

∣∣3 ≤ D2
nE max

1≤k≤p

n∑
i=1

∑
j∈Ñi

∣∣Zjk(t)
∣∣3

� D2
n

n3/2
E max

1≤k≤p

n∑
i=1

∑
j∈Ñi

(|x̃jk|3 + |ỹjk|3
)

� D3
n√
n

(
m3

x,3 + m3
y,3

)
.

Similarly, we have

E max
1≤l≤p

n∑
i=1

∣∣V(i)
l (t)

∣∣3 ≤ D4
nE max

1≤l≤p

n∑
i=1

∑
j∈Ni

∣∣Zjl(t)
∣∣3

≤ D4
n

n3/2
E max

1≤l≤p

n∑
i=1

∑
j∈Ni

(|x̃j l |3 + |ỹj l |3
)

� D6
n√
n

(
m3

x,3 + m3
y,3

)
.

Note that
∫ 1

0 w(t) dt � 1. Summarizing the above results, we have

I2 � (G2 + G1β)φ(Mx,My) + (
G3 + G2β + G1β

2)D3
n√
n

(
m3

x,3 + m3
y,3

)
,

I3 �
(
G3 + G2β + G1β

2)D2
n√
n

(
m3

x,3 + m3
y,3

)
.
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Alternatively, we can bound I3 in the following way. By Lemmas A.5 and A.6 in [12], we have

|I3| =
n∑

i=1

p∑
k,l,j=1

∫ 1

0

∫ 1

0
(1 − τ)E

[
∂l∂k∂jm

(
Z(i)(t) + τV (i)(t)

)
Żij (t)V

(i)
k (t)V

(i)
l (t)

]
dt dτ

�
n∑

i=1

p∑
k,j,l=1

∫ 1

0
E
[
Ukjl

(
Z(i)(t)

)]
E
∣∣Żij (t)V

(i)
k (t)V

(i)
l (t)

∣∣dt

�
n∑

i=1

p∑
k,j,l=1

∫ 1

0
E
[
Ukjl

(
Z(t)

)]
E
∣∣Żij (t)V

(i)
k (t)V

(i)
l (t)

∣∣dt

≤ n
(
G3 + G2β + G1β

2)
×
∫ 1

0
w(t) max

1≤j,k,l≤p

(
Ē
∣∣Żij (t)/w(t)

∣∣3)1/3(
Ē
∣∣V (i)

k (t)
∣∣3)1/3(

Ē
∣∣V (i)

l (t)
∣∣3)1/3

dt.

Notice that

max
1≤j≤p

Ē
∣∣Żij (t)/w(t)

∣∣3 ≤ 1

n3/2
max

1≤j≤p
Ē
(|x̃ij | + |ỹij |

)3 � 1

n3/2

(
m̄3

x,3 + m̄3
y,3

)
.

It is not hard to see that

max
1≤k≤p

Ē
∣∣V (i)

k (t)
∣∣3 ≤ D2

n max
1≤k≤p

Ē

∑
j∈Ñi

∣∣Zjk(t)
∣∣3 � D3

n

n3/2

(
m̄3

x,3 + m̄3
y,3

)
.

Thus, we derive that

I3 �
(
G3 + G2β + G1β

2)D2
n√
n

(
m̄3

x,3 + m̄3
y,3

)
.

Therefore, we obtain∣∣E[m(X̃) − m(Ỹ )
]∣∣

� (G2 + G1β)φ(Mx,My) + (
G3 + G2β + G1β

2)D3
n√
n

(
m3

x,3 + m3
y,3

)
+ (

G3 + G2β + G1β
2)D2

n√
n

(
m̄3

x,3 + m̄3
y,3

)
.

(32)

Using the above arguments, we can show that

I22 �
(
G3 + G2β + G1β

2)D3
n√
n

(
m̄3

x,3 + m̄3
y,3

)
, (33)

provided that 2
√

5βD3
nMxy/

√
n ≤ 1. This proves the last statement of Proposition 2.1.
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Note that |m(x) − m(y)| ≤ 2G0 and |m(x) − m(y)| ≤ G1 max1≤j≤p |xj − yj | with x =
(x1, . . . , xp)′ and y = (y1, . . . , yp)′. So∣∣E[m(X) − m(X̃)

]∣∣≤ ∣∣E[(m(X) − m(X̃)
)
I
]∣∣+ ∣∣E[(m(X) − m(X̃)

)
(1 − I)

]∣∣
� G1� + G0E[1 − I],∣∣E[m(Y) − m(Ỹ )

]∣∣� G1� + G0E[1 − I].
(34)

Therefore, (4) follows by combining (32), (33) and (34). �

Proof of Corollary 2.1. Notice that Dn = 2M + 1, |Ñi | ≤ 2M + 1 and |Ni ∪ Ñi | ≤ 4M + 1.
Define the Ni = {j : {j, k} ∈ En for some k ∈ Ni}. Then |Ni ∪ Ni ∪ Ñi | ≤ 6M + 1. Following
the arguments in the proof of Proposition 2.1, we can show that

max
1≤l≤p

Ē
∣∣V(i)

l (t)
∣∣3 � D3

n

n3/2

(
m̄3

x,3 + m̄3
y,3

)
,

which implies that

I22 �
(
G3 + G2β + G1β

2)D2
n√
n

(
m̄3

x,3 + m̄3
y,3

)
.

The conclusion follows from the proof of Proposition 2.1. �

A.2. Some results for M-dependent time series

This subsection is devoted to the analysis of M-dependent time series, which fits in the frame-
work of dependency graph. Here, we allow M to grow slowly with the sample size n. Let
n = (N + M)r , where N ≥ M and N,M, r → +∞ as n → +∞. Define the block sums

Aij =
iN+(i−1)M∑

l=iN+(i−1)M−N+1

xlj , Bij =
i(N+M)∑

l=i(N+M)−M+1

xlj . (35)

It is not hard to see that {Aij }ri=1 and {Bij }ri=1 with 1 ≤ j ≤ p are two sequences of independent

random variables. Let Vnj =
√

V 2
1nj + V 2

2nj with V 2
1nj = ∑r

i=1 A2
ij and V 2

2nj = ∑r
i=1 B2

ij . By

generalizing Theorem 2.16 of de la Peña et al. [15], we obtain the following lemma, which is
particularly useful in controlling the last two terms in (5).

Lemma A.1. Suppose {xi} is a p-dimensional M-dependent sequence. Assume that there exist
aj , bj > 0 such that

P

(
n∑

i=1

xij > aj

)
≤ 1/4, P

(
V 2

nj > b2
j

)≤ 1/4.



2664 X. Zhang and G. Cheng

Then we have

P

(∣∣∣∣∣
n∑

i=1

xij

∣∣∣∣∣≥ x(aj + bj + Vnj )

)
≤ 8 exp

(−x2/8
)
, (36)

for any 1 ≤ j ≤ p. In particular, we can choose a2
j = 2b2

j = 8EV 2
nj .

Proof. We only need to prove the result for x > 1 as the inequality holds trivially for x < 1.
Suppose that the distributions of Ai and Bi are both symmetric, then we have

P

(
n∑

i=1

xij > xVnj

)
≤ P

(
r∑

i=1

(Aij + Bij ) > xVnj

)

≤ P

(
r∑

i=1

Aij > xVnj /2

)
+ P

(
r∑

i=1

Bij > xVnj /2

)

≤ P

(
r∑

i=1

Aij > xV1nj /2

)
+ P

(
r∑

i=1

Bij > xV2nj /2

)

≤ 2 exp
(−x2/8

)
,

where we have used Theorem 2.15 in [15].
Let {ξij }ni=1 be an independent copy of {xij }ni=1 in the sense that {ξij }ni=1 have the same joint

distribution as that for {xij }ni=1, and define V ′
nj (A′

ij and B ′
ij ) in the same way as Vnj (Aij and

Bij ) by replacing {xij }ni=1 with {ξij }ni=1. Following the arguments in the proof of Theorem 2.16
in [15], we deduce that for x > 1,{

n∑
i=1

xij > x(aj + bj + Vnj ),

n∑
i=1

ξij ≤ aj ,V
′
nj ≤ bj

}

⊂
{

n∑
i=1

(xij − ξij ) ≥ x(aj + bj + Vnj ) − aj ,V
′
nj ≤ bj

}

⊂
{

n∑
i=1

(xij − ξij ) ≥ x
(
aj + bj + V ∗

nj − V ′
nj

)− aj ,V
′
nj ≤ bj

}

⊂
{

n∑
i=1

(xij − ξij ) ≥ xV ∗
nj

}
,

where we have used the fact that

V ∗
nj ≡

√√√√ r∑
l=1

(
Alj − A′

lj

)2 +
r∑

l=1

(
Blj − B ′

lj

)2 ≤ Vnj + V ′
nj .
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We note that Alj − A′
lj and Blj − B ′

lj are symmetric, and

P

(
n∑

i=1

ξij ≤ aj ,V
′
nj ≤ bj

)
≥ 1/2.

Thus, we obtain

P

(
n∑

i=1

xij ≥ x(aj + bj + Vnj )

)

= P(
∑n

i=1 xij ≥ x(aj + bj + Vnj ),
∑n

i=1 ξij ≤ aj ,V
′
nj ≤ bj )

P (
∑n

i=1 ξij ≤ aj ,V
′
nj ≤ bj )

≤ 2P

(
n∑

i=1

xij ≥ x(aj + bj + Vnj ),

n∑
i=1

ξij ≤ aj ,V
′
nj ≤ bj

)

≤ 2P

(
n∑

i=1

(xij − ξij ) ≥ xV ∗
nj

)

≤ 4 exp
(−x2/8

)
.

Hence, we get

P

(∣∣∣∣∣
n∑

i=1

xij

∣∣∣∣∣≥ x(aj + bj + Vnj )

)
≤ 8 exp

(−x2/8
)
.

In particular, we can choose b2
j = 4EV 2

nj and a2
j = 2b2

j = 8EV 2
nj because

4E

(
n∑

i=1

xij

)2

≤ 8E

(
r∑

j=1

Aj

)2

+ 8E

(
r∑

j=1

Bj

)2

= 8EV 2
nj .

�

Let ϕ(Mx) := ϕN,M(Mx) be the smallest finite constant which satisfies that uniformly for i

and j ,

E(Aij − Ăij )
2 ≤ Nϕ2(Mx), E(Bij − B̆ij )

2 ≤ Mϕ2(Mx), (37)

where Ăij and B̆ij are the truncated versions of Aij and Bij defined as follows:

Ăij =
iN+(i−1)M∑

l=iN+(i−1)M−N+1

(xlj ∧ Mx) ∨ (−Mx),

B̆ij =
i(N+M)∑

l=i(N+M)−M+1

(xlj ∧ Mx) ∨ (−Mx).
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Similarly, we can define the quantity ϕ(My) for the Gaussian sequence {yi}. Set ϕ(Mx,My) =
ϕ(Mx) ∨ ϕ(My). Further let ux(γ ) and uy(γ ) be the smallest quantities such that

P
(

max
1≤i≤n

max
1≤j≤p

|xij | ≤ ux(γ )
)

≥ 1 − γ, P
(

max
1≤i≤n

max
1≤j≤p

|yij | ≤ uy(γ )
)

≥ 1 − γ. (38)

Building on the above results, we are ready to derive an upper bound for ρn. Consider a
“smooth” indicator function g0 ∈ C3

b(R) :R→ [0,1] such that g0(s) = 1 for s ≤ 0 and g0(s) = 0
for s ≥ 1. Fix any t ∈ R and define g(s) = g0(ψ(s − t − eβ)) with eβ = β−1 logp. For this
function g, G0 = 1, G1 � ψ , G2 � ψ2 and G3 � ψ3. Here, ψ is a smoothing parameter we will
choose carefully in the proof. Lemma A.1 and Corollary 2.1 imply the following result.

Proposition A.1. Consider a M-dependent time series {xi} and its Gaussian counterpart {yi}.
Suppose 2

√
5β(6M + 1)Mxy/

√
n ≤ 1 with Mxy = max{Mx,My}, and Mx > ux(γ ) and My >

uy(γ ) for some γ ∈ (0,1). Further suppose that there exists constants 0 < c1 < c2 such that
c1 < min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2 uniformly holds for all large enough M and p, where
σj,k = cov(Xj ,Xk). Then for any ψ > 0,

ρn = sup
t∈R

∣∣P(TX ≤ t) − P(TY ≤ t)
∣∣

�
(
ψ2 + ψβ

)
φ(Mx,My) + (

ψ3 + ψ2β + ψβ2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ ψϕ(Mx,My)

√
log(p/γ ) + γ + (

β−1 log(p) + ψ−1)√1 ∨ log(pψ).

Proof. Note that

E[1 − I] ≤ P
(

max
1≤j≤p

|Xj − X̃j | > �
)

+ P
(

max
1≤j≤p

|Yj − Ỹj | > �
)

≤
p∑

j=1

{
P
(|Xj − X̃j | > �

)+ P
(|Yj − Ỹj | > �

)}
.

Let

�j ≡ (2 + 2
√

2)

√√√√ r∑
i=1

E(Aij − Ãij )2/n +
r∑

j=1

E(Bij − B̃ij )2/n

+
√√√√ r∑

i=1

(Aij − Ãij )2/n +
r∑

i=1

(Bij − B̃ij )2/n = �1j + �2j ,

where

Ãij =
iN+(i−1)M∑

l=(i−1)(N+M)+1

x̃lj , B̃ij =
i(N+M)∑

l=iN+(i−1)M+1

x̃lj .
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Applying Lemma A.1 and using the union bound, we have with probability at least 1 − 8γ ,

|Xj − X̃j | ≤ �j

√
8 log(p/γ ), 1 ≤ j ≤ p.

By the assumption,

P
(

max
1≤i≤n

max
1≤j≤p

|xij | ≤ Mx

)
≥ 1 − γ, P

(
max

1≤i≤n
max

1≤j≤p
|yij | ≤ My

)
≥ 1 − γ.

Therefore with probability at least 1 − γ ,

�j ≤ (2 + 2
√

2)

√√√√ r∑
i=1

E(Aij − Ăij )2/n +
r∑

j=1

E(Bij − B̆ij )2/n

+
√√√√ r∑

i=1

(EĂij )2/n +
r∑

i=1

(EB̆ij )2/n,

≤ (3 + 2
√

2)ϕ(Mx)
√

Nr/n + Mr/n � ϕ(Mx),

where we have used the fact that EAij = EBij = 0 and the Cauchy-Schwarz inequality. The
same argument applies to the Gaussian sequence {yi}.

Summarizing the above results and along with (5), we deduce that∣∣E[m(X) − m(Y)
]∣∣

� (G2 + G1β)φ(Mx,My) + (
G3 + G2β + G1β

2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ G1ϕ(Mx,My)

√
8 log(p/γ ) + G0γ,

(39)

which also implies that∣∣E[g(TX) − g(TY )
]∣∣

� (G2 + G1β)φ(Mx,My) + (
G3 + G2β + G1β

2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ G1ϕ(Mx,My)

√
8 log(p/γ ) + G0γ + β−1G1 logp,

(40)

for M-dependent sequence, provided that 2
√

5β(6M + 1)Mxy/
√

n < 1. Consider a “smooth”
indicator function g0 ∈ C3(R) :R→ [0,1] such that g0(s) = 1 for s ≤ 0 and g0(s) = 0 for s ≥ 1.
Fix any t ∈ R and define g(s) = g0(ψ(s − t − eβ)) with eβ = β−1 logp. The conclusion follows
from the proof of Corollary F.1 in [12] and Lemma 2.1 in [13] regarding the anti-concentration
property for Gaussian distribution. We omit the details to conserve the space. �
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A.3. Proofs of the main results in Section 2.2

Proof of Theorem 2.1. For clarity, we present the proof in the following five steps.
Step 1: Construct the M-dependent sequence as

xi := x
(M)
i = E

[
G(. . . , εi−1, εi)|εi−M,εi−M+1, . . . , εi

]
.

By construction, x1j and x
(l−1)
(1+l)k

are independent for any 1 ≤ j, k ≤ p. The triangle inequality
and (16) imply that

∣∣E[m(X) − m
(
Y (M)

)]∣∣� ∣∣E[m(X(M)
)− m

(
Y (M)

)]∣∣+ (
G0G

q

1

)1/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

,

where X(M) = ∑n
i=1 x

(M)
i /

√
n and Y (M) = ∑n

i=1 y
(M)
i /

√
n with y

(M)
i being the M-dependent

approximation for {yi}. By (39)∣∣E[m(X) − m
(
Y (M)

)]∣∣
� (G2 + G1β)φ(M)(Mx,My) + (

G3 + G2β + G1β
2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ G1ϕ

(M)(Mx,My)
√

8 log(p/γ ) + G0γ + (
G0G

q

1

)1/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

,

where φ(M)(Mx,My) and ϕ(M)(Mx,My) are defined based on {x(M)
i } and {y(M)

i }. Following the
arguments in the proof of Proposition A.1, we have

ρn �
(
ψ2 + ψβ

)
φ(M)(Mx,My) + (

ψ3 + ψ2β + ψβ2) (2M + 1)2

√
n

(
m̄3

x,3 + m̄3
y,3

)
+ ψϕ(M)(Mx,My)

√
log(p/γ ) + γ + (

β−1 log(p) + ψ−1)√1 ∨ log(pψ)

+ ψq/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

,

(41)

where ϕ, M , Mx , My and β will be chosen properly.
Step 2: Next we quantify φ(M)(Mx) and ϕ(M)(Mx). To this end, define the projection operator

Pj xik = E[xik|εi−j , . . . , εi] −E[xik|εi−j+1, . . . , εi].
Note that

Pj xik = E
[
Gik(. . . , εi−1, εi) − Gik

(
. . . , ε′

i−j , εi−j+1, . . . , εi−1, εi

)|εi−j , . . . , εi

]
.
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Jensen’s inequality yields that ‖Pj xik‖q ≤ θj,k,q(x). Let x̆ij = xij − x̃ij and χij = (xij ∧ Mx) ∨
(−Mx). Based on {x(M)

i }, we define the variables A
(M)
ij , Ã

(M)
ij , Ă

(M)
ij , B

(M)
ij , B̃

(M)
ij in a similar

way as before. Similarly, we can define x̆
(l)
ij and χ

(l)
ij based on x

(l)
ij . For M ≥ l, we note that

x
(M)
ik −x

(l)
ik =∑M

j=l+1 Pj xik . Because x
(M)
ij and x

(l−1)
(i+l)k are independent for any 1 ≤ j, k ≤ p and

Exij = Ex̆ij = 0, we obtain for l > 0,∣∣Ex̆
(M)
ij x

(M)
(i+l)k

∣∣= ∣∣Ex̆
(M)
ij

(
x

(M)
(i+l)k − x

(l−1)
(i+l)k

)∣∣≤ ∥∥x̆(M)
ij

∥∥
2

∥∥(x(M)
(i+l)k − x

(l−1)
(i+l)k

)∥∥
2

≤ ‖xij‖2
4

∥∥x(M)
(i+l)k − x

(l−1)
(i+l)k

∥∥
2/Mx �

M∑
j=l

θj,k,2/Mx,

where we have used the fact that ‖x̆(M)
ij ‖2

2 ≤ E(x
(M)
ij −χ

(M)
ij )2I{|x(M)

ij | > Mx} ≤ Ex4
ij /M

2
x . Using

the fact that the map x → (x ∧ Mx) ∨ (−Mx) is Lipschitz continuous, we deduce that∣∣Ex
(M)
ij x̆

(M)
(i+l)k

∣∣ = ∣∣Ex
(M)
ij

{
x

(M)
(i+l)k

− x
(l−1)
(i+l)k

− (
χ

(M)
(i+l)k

− χ
(l−1)
(i+l)k

)}
× I

{∣∣x(M)
(i+l)k

∣∣> Mx or
∣∣x(l−1)

(i+l)k

∣∣> Mx

}∣∣
�
(
E|xij |3

)1/3(
E
∣∣x(M)

(i+l)k − x
(l−1)
(i+l)k

∣∣3 +E
∣∣χ(M)

(i+l)k − χ
(l−1)
(i+l)k

∣∣3)1/3

× {
P
(∣∣x(M)

(i+l)k

∣∣> Mx

)+ P
(∣∣x(l−1)

(i+l)k

∣∣> Mx

)}1/3

� ‖xij‖3
∥∥x(M)

(i+l)k − x
(l−1)
(i+l)k

∥∥
3‖x(i+l)k‖3/Mx �

M∑
j=l

θj,k,3/Mx.

Note |Ex̆
(M)
ij x

(M)
ik | ≤ ‖xij‖2

4‖xik‖2/Mx . It is not hard to show that the above result holds if x
(M)
ij

(or x
(M)
(i+l)k) is replaced by its x̃

(M)
ij (or x̃

(M)
(i+l)k). Therefore, we have

max
1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∣
(i+M)∧n∑

l=(i−M)∨1

(
Ex

(M)
ij x

(M)
lk −Ex̃

(M)
ij x̃

(M)
lk

)∣∣∣∣∣
≤ max

1≤j,k≤p

1

n

n∑
i=1

∣∣∣∣∣
(i+M)∧n∑

l=(i−M)∨1

(
Ex

(M)
ij x̆

(M)
lk +Ex̆

(M)
ij x̃

(M)
lk

)∣∣∣∣∣
� max

1≤k≤p

M∑
l=1

M∑
j=l

θj,k,3/Mx � 1/Mx.

Next, we consider ϕ(M)(Mx). Similar argument implies that for l > 0,∣∣Ex̆
(M)
ik x̆

(M)
(i+l)k

∣∣ = ∣∣Ex̆
(M)
ik

{
x̆

(M)
(i+l)k

− x̆
(l−1)
(i+l)k

−E
(
χ

(M)
(i+l)k

− χ
(l−1)
(i+l)k

)}
× I

{∣∣x(M)
(i+l)k

∣∣> Mx or
∣∣x(l−1)

(i+l)k

∣∣> Mx

}∣∣
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�
(
E
∣∣x̆(M)

ik

∣∣2)1/2(
E
∣∣x(M)

(i+l)k − x
(l−1)
(i+l)k

∣∣3 +E
∣∣χ(M)

(i+l)k − χ
(l−1)
(1+l)k

∣∣3)1/3

× {
P
(∣∣x(M)

(i+l)k

∣∣> Mx

)+ P
(∣∣x(l−1)

(i+l)k

∣∣> Mx

)}1/6 (42)

�
(
E|xik|4/M2

x

)1/2∥∥x(M)
(i+l)k

− x
(l−1)
(i+l)k

∥∥
3

× (
E
∣∣x(M)

(i+l)k

∣∣4/M4
x +E

∣∣x(l−1)
(i+l)k

∣∣4/M4
x

)1/6

� ‖xik‖2
4‖x(i+l)k‖2/3

4

∥∥x(M)
(i+l)k − x

(l−1)
(i+l)k

∥∥
3/M

5/3
x �

M∑
j=l

θj,k,3/M
5/3
x .

Note |Ex̆
(M)
ik x̆

(M)
ik | � 1/M2

x . Thus, we obtain

E
(
A

(M)
ij − Ã

(M)
ij

)2
/N �

N∑
l=1

M∑
j=l

θj,k,3/M
5/3
x + 1/M2

x � 1/M
5/3
x .

Similarly E(B
(M)
ij − B̃

(M)
ij )2/M � 1/M

5/3
x . Notice that

E
(
A

(M)
ij − Ă

(M)
ij

)2
/N

= E
(
A

(M)
ij − Ã

(M)
ij

)2
/N + (

EĂ
(M)
ij

)2
/N

� 1/M
5/3
x +

{
iN+(i−1)M∑

l=iN+(i−1)M−N+1

E
(
χ

(M)
lj − x

(M)
lj

)
I
{∣∣x(M)

lj

∣∣> Mx

}}2/
N

� 1/M
5/3
x + N

(
max

ij
E|xij |4/M3

x

)2

We can choose ϕ(M)(Mx) = C′(1/M
5/6
x + √

N/M3
x ) for some constant C′ > 0.

Step 3: We consider the quantities associated with {y(M)
i }. First, note that

∣∣Ey̆
(M)
ij y

(M)
(i+l)k

∣∣≤ ∣∣E[(y(M)
ij − My

)
y

(M)
(i+l)k

I
{
y

(M)
ij > My

}]∣∣
+ ∣∣E[(y(M)

ij + My

)
y

(M)
(i+l)kI

{
y

(M)
ij < −My

}]∣∣. (43)

Because y
(M)
(i+l)k

is Gaussian conditional on y
(M)
ij (y(M)

(i+l)k
and y

(M)
ij are jointly Gaussian), we

have

E
[
y

(M)
(i+l)k|y(M)

ij

]= E[x(M)
ij x

(M)
(i+l)k]

E[|x(M)
ij |2]

y
(M)
ij ,
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which implies that∣∣E[(y(M)
ij − My

)
y

(M)
(i+l)k

I
{
y

(M)
ij > My

}]∣∣
= ∣∣E[(y(M)

ij − My

)
I
{
y

(M)
ij > My

}
E
[
y

(M)
(i+l)k|y(M)

ij

]]∣∣
= |E[x(M)

ij x
(M)
(i+l)k]|

E[|x(M)
ij |2]

∣∣E[(y(M)
ij − My

)
y

(M)
ij I

{
y

(M)
ij > My

}]∣∣
≤ |E[x(M)

ij x
(M)
(i+l)k]|E[|y(M)

ij |4]
E[|x(M)

ij |2]M2
y

≤ 3|E[x(M)
ij x

(M)
(i+l)k]|E[|x(M)

ij |2]
M2

y

.

Due to the Gaussian tail, the degree of My can be made arbitrarily larger but the current choice
suffices for our analysis. The same argument applies to the second term on the RHS of (43),
which leads to ∣∣Ey̆

(M)
ij y

(M)
(i+l)k

∣∣� ∣∣E[x(M)
ij x

(M)
(i+l)k

]∣∣/M2
y �

M∑
j=l

θj,k,2/M
2
y . (44)

To deal with E[y̆(M)
ij ỹ

(M)
(i+l)k], we first state a result. For x ∼ N(μ,σ 2), it can be shown

that ∣∣E[(x ∧ M) ∨ (−M)
]∣∣ ≤ ∣∣E[(x − μ)I

{|x| ≤ M
}]∣∣+ |μ|

+ ∣∣MP(x > M) − MP(x < −M)
∣∣

� |μ| + M|μ|/σ.

Using this fact and the Gaussian assumption, we have

E
[
y̆

(M)
ij ỹ

(M)
(i+l)k

]= E
[
y̆

(M)
ij E

[
ỹ

(M)
(i+l)k|y(M)

ij

]]
�

|E[x(M)
ij x

(M)
(i+l)k]|E[|y(M)

ij |5]
E[|x(M)

ij |2]M2
y

�
∑M

j=l θj,k,2

M2
y

.
(45)

Therefore, using the same argument as that for xi , we can set φ(M)(My) = C/M2
y . By (44) and

(45), we get

E
[
y̆

(M)
ij y̆

(M)
(i+l)k

]
�
∑M

j=l θj,k,2

M2
y

.

Similar arguments as before show that ϕ(M)(My) = C′/M2
y for some C′ > 0.
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Step 4: By the assumption that maxi,j ‖xij‖4 < ∞ and the fact that ‖y(M)
ij ‖2 = ‖x(M)

ij ‖2, we

have E|x(M)
ij |3 ≤ (E|xij |4)3/4, and E|y(M)

ij |3 � E|xij |3 < ∞, which implies that m̄3
x,3 + m̄3

y,3 <

∞. Thus, we ignore the constants and set

ψ � n1/8M−1/2l
−3/8
n , Mx = My = u � n3/8M−1/2l

−5/8
n .

Let 2
√

5β(6M + 1)Mxy/
√

n = 1, that is β � √
n/(uM). Under the assumption that n7/4 ×

M−1l
−9/4
n ≥ C3M , it is straightforward to check the following:(

ψ2 + ψβ
)
φ(Mx,My) � ψ2/u + ψ

√
n/
(
u2M

)
� n−1/8M1/2l

7/8
n , (46)(

ψ3 + ψ2β + ψβ2) (2M + 1)2

√
n

� ψ3M2

√
n

+ ψ2M

u
+ ψ

√
n

u2
� n−1/8M1/2l

7/8
n , (47)

ψϕ(Mx,My)σj

√
8 log(p/γ ) � ψl

1/2
n

u5/6
+ ψl

1/2
n

√
N

u3
� n−1/8M1/2l

7/8
n , (48)

(
β−1 log(p) + ψ−1)√1 ∨ log(pψ) � l

3/2
n Mu√

n
+ ψ−1l

1/2
n � n−1/8M1/2l

7/8
n . (49)

By Lemma A.2, we have c1/2 < min1≤j≤p σ
(M)
j,j ≤ max1≤j≤p σ

(M)
j,j < 2c2 for large enough M ,

where σ
(M)
j,k = cov(X

(M)
j ,X

(M)
k ). It remains to verify that the selected u satisfying that

P
(

max
1≤i≤n

max
1≤j≤p

|xij | ≤ u
)

≥ 1 − γ, P
(

max
1≤i≤n

max
1≤j≤p

∣∣y(M)
ij

∣∣≤ u
)

≥ 1 − γ. (50)

We first consider Condition (7). Using the convexity of h, we have

Eh
(

max
1≤j≤p

∣∣x(M)
ij

∣∣/Dn

)
≤ Eh

(
E

[
max

1≤j≤p
|xij |/Dn|εi−M, . . . , εi

])
≤ Eh

(
max

1≤j≤p
|xij |/Dn

)
≤ C1.

By the fact that max1≤i≤n Eh(max1≤j≤p |x(M)
ij |/Dn) ≤ C1 and the arguments in the proof of

Lemma 2.2 in [12], we have ux(γ ) � max{Dnh
−1(n/γ ), l

1/2
n } and uy(γ ) � l

1/2
n . Because

n3/8M−1/2l
−5/8
n ≥ C max{Dnh

−1(n/γ ), l
1/2
n }, we can always choose u = O(n3/8M−1/2l

−5/8
n )

such that (50) is fulfilled. We can prove a similar result under Condition (8). Therefore by (41),
(46), (47), (48) and (49), we get

sup
t∈R

∣∣P(TX ≤ t) − P(TY (M) ≤ t)
∣∣

� n−1/8M1/2l
7/8
n + γ + (

n1/8M−1/2l
−3/8
n

)q/(1+q)

(
p∑

j=1



q
M,j,q

)1/(1+q)

.

(51)
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Step 5: Let �̃ = max1≤j,l≤p | cov(Xj ,Xl) − cov(X
(M)
j ,X

(M)
l )|. With similar arguments in the

proof of Lemma A.2, we have �̃ � max1≤j≤p

∑+∞
l=M+1 lθl,j,2(x) = 
M . Thus by Theorem 2 in

[13], we have

sup
t∈R

∣∣P(TY ≤ t) − P(TY (M) ≤ t)
∣∣� 


1/3
M

(
1 ∨ log(p/
M)

)2/3
, (52)

where we have used the fact that f (x) = x1/3(1 ∨ log(p/x))2/3 is monotonic increasing when
log(p/x) > 2. The conclusion follows by combining (51) and (52). �

Lemma A.2. Consider the M-dependent approximation sequence {x(M)
i }. Suppose that c1 <

min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2, maxi,j ‖xij‖4 ≤ c3, and
∑+∞

j=1 max1≤k≤p jθj,k,2(x) <

∞. Then we have c1/2 < min1≤j≤p σ
(M)
j,j ≤ max1≤j≤p σ

(M)
j,j < 2c2 for large enough M , where

σ
(M)
j,k = cov(X

(M)
j ,X

(M)
k ).

Proof. We claim that as M → +∞,

max
1≤j≤p

n−1
n∑

i,k=1

∣∣Ex
(M)
ij x

(M)
kj −Exij xkj

∣∣→ 0, (53)

which implies that max1≤j≤p |σ (M)
j,j − σj,j | → 0. The conclusion thus follows from the assump-

tion that c1 < min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2. To show (53), we note that∣∣Ex
(M)
ij x

(M)
kj −Exij xkj

∣∣≤ ∥∥x(M)
ij − xij

∥∥
2‖xkj‖2 + ∥∥x(M)

kj − xkj

∥∥
2‖xij‖2

�
+∞∑

l=M+1

(‖Plxij‖2 + ‖Plxkj‖2
)
�

+∞∑
l=M+1

θl,j,2,

and for h > M ,

|Exij x(i+h)j | ≤
∣∣Exij

(
x(i+h)j − x

(h−1)
(i+h)j

)∣∣≤ ‖xij‖2
∥∥x(i+h)j − x

(h−1)
(i+h)j

∥∥
2 �

+∞∑
l=h

θl,j,2.

Thus, we have

max
1≤j≤p

n−1
n∑

i,k=1

∣∣Ex
(M)
ij x

(M)
kj −Exij xkj

∣∣
≤ max

1≤j≤p
n−1

∑
|i−k|≤M

∣∣Ex
(M)
ij x

(M)
kj −Exij xkj

∣∣
+ max

1≤j≤p
n−1

∑
|i−k|>M

|Exij xkj |
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� max
1≤j≤p

M

+∞∑
l=M+1

θl,j,2 + max
1≤j≤p

n−1∑
h=M+1

+∞∑
l=h

θl,j,2

� max
1≤j≤p

+∞∑
l=M+1

lθl,j,2 ≤
+∞∑

l=M+1

max
1≤j≤p

lθl,j,2,

which implies that max1≤j≤p n−1∑n
i,k=1 |Ex

(M)
ij x

(M)
kj −Exij xkj | → 0 as M → +∞. �
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