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The subject of this paper is the M/G/∞ estimation problem: the goal is to estimate the service time distri-
bution G of the M/G/∞ queue from the arrival–departure observations without identification of customers.
We develop estimators of G and derive exact non-asymptotic expressions for their mean squared errors. The
problem of estimating the service time expectation is addressed as well. We present some numerical results
on comparison of different estimators of the service time distribution.
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1. Introduction

Background and motivation

The M/G/∞ queueing model postulates that customers come to a system at time instances of
a homogeneous Poisson process, obtain service immediately upon arrival, and leave the system
after the service completion. The service times are assumed to be independent identically dis-
tributed random variables, independent of the arrival process, with common distribution G. The
M/G/∞ queue is one of the basic models in queueing theory; it is well understood from the
probabilistic point of view and widely used in different applications.

Some problems of statistical inference for the M/G/∞ queues were also considered in the
literature. Motivated by a study of low density Poisson traffic streams, [9] studied the problem
of estimating the service time distribution G in the M/G/∞ queue from the arrival–departure
data when observations of the arrival and departure epochs are available without identification of
customers. In this setting, [9] developed a sequence of estimators {Gn,n ≥ 1} with Gn depending
on the data up to the nth departure, and proved the consistency, supx |Gn(x) − G(x)| a.s.→ 0 as
n → ∞.

It is well known that the departure (output) process of the M/G/∞ queue is Poisson of the
same intensity λ as the arrival (input) process [see, e.g., [12], Chapter VIII, Section 5]; therefore
G cannot be inferred from the output process alone. In addition, even under parametric assump-
tions on G, the likelihood function for such incomplete observations is unavailable in a usable
form. Thus, estimation of G is not a trivial task.

The construction of estimators {Gn,n ≥ 1} in [9] is remarkable. Let (τj )j∈Z and (tj )j∈Z de-
note the arrival and departure epochs, respectively. Suppose that the output stream is observed
starting from some departure, say t0, and until the nth departure tn. Associate every departure
point tj , j = 1, . . . , n to the closest arrival point to the left, and consider the corresponding
distances zj , j = 1, . . . , n. It is shown that (zj ) is a stationary ergodic process with marginal
distribution D which is related to the service time distribution by the simple formula:

D(x) = 1 − (1 − G(x)
)
e−λx, (1.1)
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where λ is the intensity of the arrival Poisson process. Then one can estimate D empirically from
the data and invert (1.1) for G.

The idea of pairing departure points with arrivals to the left was also exploited in the subse-
quent work by [4]. The authors use distances from departure points to the r th nearest arrival to
the left, and show consistency of the proposed estimators. On the basis of extensive simulations
it is argued that for some service time distributions the estimators with properly chosen r can be
advantageous. The recent paper, [25] considers a discrete-time GI/G/∞ queue and derives a
functional central limit theorem for a Brown-like estimator of the service time distribution.

A closely related problem is that of estimating G in the M/G/∞ queue from observation of
the queue-length (number-of-busy-servers) process {X(t), t ∈ R} over a finite time interval. If
(τj )j∈Z, (tj )j∈Z are arrival and departure epochs, and (σj )j∈Z is the sequence of service times
then in the stationary regime

X(t) =
∑
j∈Z

1{τj ≤ t, σj > t − τj }, t ∈R.

The observation of the queue-length process X(t) over a finite time interval is equivalent to
observing arrival and departure epochs up to initial state of the queue: arrivals and departures
are easily extracted from observations of X(t), and the process X(t) can be reconstructed from
arrival and departure epochs, provided that the initial state is known. Thus the queue-length
observations contain a bit more information than the arrival–departure data: the initial state of
the system.

It is well known that if the service time expectation α is finite, α := 1
μ

:= ∫∞
0 [1 − G(u)]du <

∞, then X(t) has Poisson distribution with parameter ρ := λ/μ = λα for every t , where ρ is the
traffic intensity. In addition, the correlation function of {X(t), t ≥ 0} is given by

H(t) = corrG
{
X(s + t),X(s)

}= μ

∫ ∞

t

[
1 − G(u)

]
du; (1.2)

see, e.g., [1]. This fact suggests that G can be reconstructed from correlation structure of the
queue-length process. The work of [3] discusses this approach and provides standard results
from the time series literature for estimation of H . The idea of reconstructing the service time
distribution from correlation structure of the queue-length process was also exploited by [23] for
a discrete-time queue model. Recently [13] constructed a local polynomial estimator of G based
on (1.2) and investigated its worst-case accuracy over a suitable class of target distributions.

It is worth mentioning that problems of statistical inference on the service time distribution of
the M/G/∞ queue from incomplete data are ubiquitous in practice. They appear in such diverse
areas as in studies of cell mobility [16,24], low density traffic [22] and in communication systems
[1] and [17]. Additional references can be found in [2] and [4].

Although some estimators of the service time distribution in the M/G/∞ queue were pro-
posed in the literature, very little is known about their accuracy. In the original M/G/∞ esti-
mation problem with the arrival–departure data only consistency results [4,9] were established,
and it is not clear what is the achievable accuracy in this problem. As for the setting with the
queue-length data, the recent work of [13] derives non-asymptotic bounds on the risk and shows
that under a local smoothness assumptions on G the pointwise risk of the proposed estimator of
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G converges to zero at the nonparametric rate T −β/(2β+2), where T is the observation horizon,
and β is the smoothness index of G.

Main results

In this paper, we revisit the M/G/∞ estimation problem of [9] and concentrate on construction
of estimators with provable theoretical accuracy guarantees. The main contributions of this paper
are as follows.

(a) We study properties of a service time distribution estimator which is based on the formulas
for covariance measures of the bivariate arrival–departure point process. This approach
was briefly discussed by [20] who considered the problem of identifiability of random
translations of stationary point processes. We show that the proposed estimator is unbiased
and derive exact non-asymptotic expressions for its variance.

(b) We consider the problem of estimating G from the superposed arrival–departure data,
when the arrival and departure epochs are registered without knowledge of the epoch type.
This setting is particularly relevant in studies of particle mobility when crossings of the
observation region can be recorded without knowledge of the crossing direction. The fact
that estimation of service time distribution from such data is possible seems surprising.
However, in a study of identifiability of random translations of Poisson processes [18]
points at this possibility. In this setting, we develop unbiased estimator and derive exact
non-asymptotic expressions for its variance.

(c) We present some numerical results in order to compare accuracy of the developed estima-
tor with that of estimators in [9] and [13]. In particular, we study numerically the influence
of the arrival rate λ and of tail behavior of G on the accuracy of estimators.

(d) The problem of estimating the service time expectation from arrival–departure data is also
addressed. We propose an estimator and derive non-asymptotic bounds on its accuracy.

Our development relies upon tools from the theory of stationary point processes [11], and we
use the statistical framework as expounded in [10] and [6]. We study the underlying bivariate
arrival–departure and superposed arrival–departure point processes, derive their Laplace func-
tionals and corresponding covariance measures up to the fourth order. The obtained expressions
are used in order to construct estimating equations and to analyze properties of the corresponding
estimators. Some of these technical results are new and interesting in their own right.

Further related literature

The M/G/∞ estimation setting can be viewed as a particular case of the general point pro-
cess system identification problem [7]. Here the unknown system translates every time instance
of the input process by a random amount, and we would like to recover characteristics of the
system from the input–output data. Some related results appear in [5] and [8]. In particular, [5]
uses a spectral approach in order to construct an estimator of the service time distribution in
the G/G/∞ model, and shows asymptotic normality under suitable conditions. Brillinger [8]
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discusses the problem of estimating the second-order intensities of a bivariate stationary point
process.

The problem of estimating the service time distribution G in the M/G/∞ queue was also
considered under other observation schemes. For instance, [14] discusses the setting where ob-
servations of durations of busy periods are available. Using a relationship between busy period
distribution and the service time distribution, the authors construct an estimator of G and study
its accuracy. This setting was also considered in [3].

Organization of the paper

The rest of the paper is structured as follows. In Section 2, we present the formulation of the
problem. Section 3 collects some preliminary results which are instrumental for constructing es-
timators of the service time distribution G. In Section 4, we define the estimators of G based on
the arrival–departure and superposed arrival–departure data, and present the results on their ac-
curacy. Numerical experiments on comparison of different estimators are described in Section 5.
In Section 6, we discuss the problem of estimating the expected service time from the arrival–
departure data; some concluding remarks are brought in Section 7. Proofs of all results are given
in Appendices.

2. Problem formulation

Let M be a homogeneous Poisson point process on R of intensity λ with representation

M :=
∑
j∈Z

ετj
, εx(A) =

{
1, x ∈ A,

0, x /∈ A,
∀A ∈ B,

where B is the Borel σ -algebra of R. Suppose that every point of the process M is displaced by
a random amount giving rise to the point process

N =
∑
j∈Z

εtj , tj := τj + σj , j ∈ Z.

Here (σj )j∈Z is the sequence of independent identically distributed random variables, indepen-
dent of M , with common distribution G. It is well known that N is also a homogeneous Poisson
process of intensity λ.

We regard M and N as the arrival (input) and departure (output) processes, respectively. We
also define the superposed point process S with the representation

S := M + N =
∑
j∈Z

ετj
+
∑
j∈Z

εtj =:
∑
j∈Z

εsj .

The following two different observation schemes will be considered.
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(i) Assume that we observe the bivariate point process (M,N) restricted to a window T 2 =
T × T ⊂R×R, (M,N)|T 2 ; thus the available data is

DT := (M,N)|T 2 = {(τj : τj ∈ T ), (tk : tk ∈ T )
}
.

(ii) Assume that the superposed process S restricted to a set T ⊂ R is observed, so that the
available data is

DT := S|T = {sj : sj ∈ T }.
Using the data DT our goal is to estimate the displacement distribution G or a functional

thereof. In particular, we will be primarily interested in estimating the service time distribution
G at a fixed point x0, and the expectation of displacements α := EG[σ ]. Here and in all what
follows EG denotes the expectation with respect to the probability measure PG generated by the
observations DT when the displacement distribution is G.

Another interpretation of the observed data can be given in terms of marked point processes
[11], Section 6.4. Specifically, consider the marked point process {(sj ,κj )}j∈Z, where (sj )j∈Z
are the locations of the superposed process S, and the marks κj ∈ {1,2} are defined as κj = 1 if
the corresponding location sj belongs to the input process M , and κj = 2 if the corresponding
location sj belongs to the output process N . Then in the scenario (i) DT = {(sj ,κj ) : sj ∈ T },
while in the scenario (ii) DT = {sj : sj ∈ T }, and the corresponding marks {κj : sj ∈ T } are not
available.

By an estimator of G(x0) or α = EG[σ ], we mean any measurable function of the available
observations DT . We measure accuracy of estimators by the mean squared error:

Rx0 [Ĝ,G] = EG

∣∣Ĝ(x0) − G(x0)
∣∣2, R[α̂, α] = EG|α̂ − α|2.

In what follows, with slight abuse of notation, for any interval I = (a, b] we denote G(I) the
probability mass assigned by the distribution G to I , G(I) := G(b) − G(a).

3. Preliminaries

For the ease of reference, in this section we collect supporting preliminary results on the point
processes involved; some of these results can be found, for example, in [11].

We start with a statement about the Laplace functional of bivariate process point (M,N).

Proposition 1. Let {Ai}i=1,...,m and {Bl}l=1,...,n be two families of disjoint intervals of the real
line; then for any (η1, . . . , ηm) ∈ R

m and (ξ1, . . . , ξn) ∈R
n one has

log EG exp

{
m∑

i=1

ηiM(Ai) +
n∑

l=1

ξlN(Bl)

}
(3.1)

= λ

m∑
i=1

(
eηi − 1

)|Ai | + λ

n∑
l=1

(
eξl − 1

)|Bl | + λ

m∑
i=1

n∑
l=1

(
eηi − 1

)(
eξl − 1

)
Q(Ai,Bl),
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where | · | is the Lebesgue measure on R, and

Q(A,B) :=
∫

A

G(B − x)dx. (3.2)

The next result for the superposed process S is an immediate consequence of Proposition 1.

Proposition 2. Let {Ai}i=1,...,m be disjoint intervals of R; then for any η = (η1, . . . , ηm) ∈R
m

log EG exp

{
m∑

i=1

ηiS(Ai)

}
= 2λ

m∑
i=1

(
eηi − 1

)|Ai | + λ

m∑
i=1

m∑
l=1

(
eηi − 1

)(
eηl − 1

)
Q(Ai,Al),

where Q(·, ·) is defined in (3.2).

Remark 1. (a) In the specific case m = 1, n = 1 the formula (3.1) was obtained by [18] by
queueing theoretical considerations. For general case, we refer to a related result given in Exam-
ple 6.3(e) in [11].

(b) The bivariate point process (M,N) is closely related to the Gauss–Poisson processes in-
troduced in [21] and further studied in [19]. In particular, the bivariate probability generating
functional of (M,N) is given by

G(M,N)(η, ξ)

:= EG exp

{∫
logη(τ)dM(τ) +

∫
log ξ(t)dN(t)

}

= EG

[∏
i

η(τi)
∏

l

ξ(tl)

]

= exp

{
λ

∫ [
η(τ) − 1

]
dτ + λ

∫ [
ξ(t) − 1

]
dt + λ

∫∫ [
η(τ) − 1

][
ξ(t) − 1

]
Q(dτ,dt)

}
,

where functions 0 ≤ η ≤ 1 and 0 ≤ ξ ≤ 1 are such that 1 − η and 1 − ξ vanish outside a common
compact set, and Q(dτ,dt) = dG(t − τ)dτ . This is an immediate consequence of Proposition 1.

(c) It is well known that the superposed process S = M + N is the Gauss–Poisson process,
and its probability generating functional is

GS(η) = exp

{
2λ

∫ [
η(τ) − 1

]
dτ + λ

∫∫ [
η(τ) − 1

][
η(t) − 1

]
Q(dτ,dt)

}
.

This fact follows immediately from (3.1); see also [19] and [11].

Using Propositions 1 and 2, we can calculate covariance measures of the bivariate process
(M,N) and of the superposed process S. The next two statements follow from Propositions 1
and 2, respectively. They are proved in Appendix A along with other results on covariance mea-
sures of higher orders.
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Corollary 1. For any two intervals A,B one has

EG

[
M(A)N(B)

]= λ2|A||B| + λQ(A,B).

In particular, for the differential increments dM(τ) = M((τ, τ +dτ ]) and dN(t) = N((t, t +dt])
we have

EG

[
dM(τ)dN(t)

]= λ2 dτ dt + λdG(t − τ)dτ.

Corollary 2. Let A1 and A2 be disjoint intervals; then

EG

[
S(A1)S(A2)

]= 4λ2|A1||A2| + λ
[
Q(A1,A2) + Q(A2,A1)

]
.

In particular, for A1 = (τ, τ + dτ ] and A2 = (t, t + dt] with τ 	= t one has

EG

[
dS(τ)dS(t)

]= 4λ2 dτ dt + λ
[
dG(t − τ)dτ + dG(τ − t)dt

]
.

Corollaries 1 and 2 provide the basis for constructing estimators of the service time distribution
from the arrival–departure and superposed arrival–departure data. The estimators are presented
in Section 4.

4. Estimation of service time distribution

Now we turn to the problem of estimating the service time distribution. First, we consider the
setting with arrival–departure data.

4.1. Arrival–departure data

Corollary 1 implies that for any function ϕ satisfying∫∫ ∣∣ϕ(τ, t)
∣∣dτ dt < ∞,

∫∫ ∣∣ϕ(τ, t)
∣∣dG(t − τ)dτ < ∞

one has

EG

[∫∫
ϕ(τ, t)M(dτ)N(dt)

]
= λ2

∫∫
ϕ(τ, t)dτ dt + λ

∫∫
ϕ(τ, t)dG(t − τ)dτ. (4.1)

The relationship (4.1) can serve as the estimating equation for constructing estimators of G(x0).
Suppose that for an interval I = (a, b] we are interested in estimating θI := G(I) = G(b) −

G(a), and the available data is DT = (M,N)|T where

T = TM × TN := [τmin, τmax] × [τmin + a, τmax + b]
for some fixed τmin < τmax. Thus,

DT := {(τj : τmin ≤ τj ≤ τmax), (tk : τmin + a ≤ tk ≤ τmax + b)
}
.
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Let T := τmax − τmin, ϕ∗(τ, t) := 1[τmin,τmax](τ )1I (t − τ), and define

θ̂I = 1

λT

∫∫
ϕ∗(τ, t)dM(τ)dN(t) − λ|I | = 1

λT

∑
j∈Z

∑
k∈Z

1TM
(τj )1I (tk − τj ) − λ|I |. (4.2)

We are interested in accuracy of the estimator θ̂I .
The formulas (4.1) and (4.2) appeared in [20], who studied identifiability of the random trans-

lations of stationary point processes. Mori [20] attributes the estimator (4.2) to [10]; Section 6
of this survey paper contains a discussion of statistical analysis for bivariate point processes.
Following [20], we call θ̂I the Cox–Lewis estimator.

Theorem 1. For any G, θ̂I is an unbiased estimator of θI , and

varG{θ̂I } = 2λ|I |
T

{
|I | +

∫ T

−T

G(I + u)

(
1 − |u|

T

)
du − |I |2

6T

}

+ |I |
T

+ 2

T
|I |G(I) + 1

T

∫ T

−T

G(I + u)G(I − u)

(
1 − |u|

T

)
du (4.3)

+ 2

T

∫ |I |

0

[
G(I) + G(b − u) − G(a + u)

](
1 − u

T

)
du + G(I)

λT
.

In the context of the M/G/∞ estimation problem, we set τmin = 0, τmax = T , I = [0, x0] and
assume G(0) = 0. Then the Cox–Lewis estimator Ĝ(x0) of G(x0) is given by

Ĝ(x0) = θ̂I = 1

λT

∑
j∈Z

∑
k∈Z

1[0,T ](τj )1[0,x0](tk − τj ) − λx0. (4.4)

Note that Ĝ(x0) is based on the data DT = {(τj : 0 ≤ τj ≤ T ), (tk : 0 ≤ tk ≤ T + x0)}.
The next statement is an immediate consequence of Theorem 1 for the M/G/∞ setting.

Theorem 2. If G(0) = 0 and x0 ∈ (0, T ), then Ĝ(x0) is an unbiased estimator of G(x0), and

varG
{
Ĝ(x0)

} = 2λx0

T

{
x0 +

∫ T

−T

[
G(x0 + u) − G(u)

](
1 − |u|

T

)
du − x2

0

6T

}
+ x0

T

+ 2

T
x0G(x0)

(4.5)

+ 1

T

∫ T

−T

[
G(x0 + u) − G(u)

][
G(x0 − u) − G(−u)

](
1 − |u|

T

)
du

+ 2

T

∫ x0

0

[
G(x0) + G(x0 − u) − G(u)

](
1 − u

T

)
du + G(x0)

λT
.
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Remark 2. (a) Theorem 2 shows that the service time distribution in the M/G/∞ problem is
estimated with the root mean squared error tending to zero at the parametric rate T −1/2, T → ∞.
The result shows, however, that the Cox–Lewis estimator is less accurate in the heavy-traffic
regime when the arrival rate λ is large. The last term on the right-hand side of (4.3) [and (4.5)]
also indicates that the accuracy is poor when λ is very small. In addition, the farther point x0 is
from the origin, the worse accuracy of Ĝ(x0) is.

(b) The results of Theorems 1 and 2 do not require any conditions on the service time distri-
bution G; for instance, G can have infinite expectation. However, accuracy of the Cox–Lewis
estimator depends on tails of G, and this dependence is quantified by (4.3) and (4.5).

(c) In practice the Cox–Lewis estimator Ĝ(x0), when considered to be a function of x0, should
be monotonized and confined to the interval [0,1].

4.2. Superposed arrival–departure data

Now, we turn to the problem of estimating the service time distribution G from the observations
of the superposed process S =∑j∈Z εsj on the time interval T = [0, T ]. In particular, assume
that the available data is

DT = S|T = {sj : 0 ≤ sj ≤ T }.
Similarly to (4.1), Corollary 2 implies that

EG

[∫∫
ϕ(τ, t)dS(τ)dS(t)

]
= 4λ2

∫∫
ϕ(τ, t)dτ dt + λ

∫∫
ϕ(τ, t)dG(t − τ)dτ

(4.6)

+ λ

∫∫
ϕ(τ, t)dG(τ − t)dt

for any function ϕ for which the right-hand side is well defined.
Suppose that G(0) = 0, and let

ϕ∗(τ, t) = 1[0,T ](τ )1[0,x0](t − τ)χ(τ, t), χ(τ, t) :=
{

1, τ 	= t,

0, otherwise.

Consider the following estimator of G(x0):

G̃(x0) = 1

λT

∫∫
ϕ∗(τ, t)dS(τ)dS(t) − 4λx0

= 1

λT

∑
j∈Z

∑
k∈Z

j 	=k

1[0,T ](sj )1[0,x0](sk − sj ) − 4λx0.

Theorem 3. If G(0) = 0 and x0 ∈ (0, T ), then G̃(x0) is an unbiased estimator of G(x0), and

varG
{
G̃(x0)

}= 1

T
R

(1)
T (λ, x0;G) + 1

T 2
R

(2)
T (λ, x0;G),
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where R
(1)
T and R

(2)
T are positive functions satisfying

R
(1)
T (λ, x0;G) ≤ 76λx2

0 + 36x0 + 1

λ
G(x0), R

(2)
T (λ, x0;G) ≤ 36λx3

0 , ∀T ,∀G.

Remark 3. (a) Exact expressions for functions R
(1)
T (λ, x0;G) and R

(2)
T (λ, x0;G) are given in

the proof of the theorem. As it could be expected, accuracy of the estimator G̃(x0) is worse than
the accuracy of the Cox–Lewis estimator Ĝ(x0) based on the whole arrival–departure data. It
should be noticed, however, that qualitatively the behavior is similar: the rate of convergence is
parametric, the variance grows linearly with λ as λ increases, and quadratically with x0 as x0

grows.
(b) Similarly to Theorem 2, the statement does not require any conditions on the service time

distribution G.

5. Numerical experiments

We conducted a small simulation study in order to compare performance of three different esti-
mators of the service time distribution. The following estimators were considered.

The Cox–Lewis estimator

The estimator is given by

ĜCL(x0) = 1

λT

∑
k∈Z

∑
j∈Z

1[0,T ](tk)1[0,x0](tk − τj ) − λx0.

In our computations, we considered monotonized and truncated version of ĜCL(x0),

Ĝ∗
CL(x0) :=

{
max
u≤x0

ĜCL(u)
}

[0,1], {x}[0,1] :=

⎧⎪⎨
⎪⎩

1, x > 1,

x, 0 ≤ x ≤ 1,

0, x < 0.

Note that ĜCL(x0) is a slight modification of (4.4) as it is based on the data

DT = {(tj : 0 ≤ tj ≤ T ), (τj : −x0 ≤ τj ≤ T )
}
. (5.1)

We use this modification in order to compare our estimator with Brown’s estimator (see the
description below). The theoretical properties of ĜCL(x0) coincide with those of Ĝ(x0) defined
in (4.4).
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Brown’s estimator

The estimator Ĝ∗
B(x0) is defined as follows. For each output point 0 ≤ tk ≤ T let zk denote the

distance from tk to the closest input point τj to the left. Then

ĜB(x0) = 1 − eλx0

∑
k∈Z 1(x0,∞)(zk)1[0,T ](tk)∑

k∈Z 1[0,T ](tk)
,

Ĝ∗
B(x0) =

{
max
u≤x0

ĜB(u)
}

[0,1].

Local polynomial estimator

This estimator was proposed in [13], and it is based on observations of the queue-length process
{X(t), t ∈ [0, T ]}:

X(t) =
∑
j∈Z

1{τj ≤ t, σj > t − τj }. (5.2)

Assume that {X(t), t ∈ [0, T ]} is observed at the points of the regular grid on [0, T ]: iδ, i =
0, . . . , n, nδ = T . We implemented the local polynomial estimator ĜLP(x0) of the second order
[for general definition see [13]].

The definition of ĜLP(x0) is the following. Let R̂(kδ), k = 1,2, . . . be empirical covariances
of the process {X(t)},

R̂(kδ) = 1

n

n−k∑
i=1

[
X(iδ) − ρ̂

][
X
(
(i + k)δ

)− ρ̂
]
, ρ̂ = 1

n

n∑
i=1

X(iδ). (5.3)

Fix h > 2δ and define Dx = [x − h,x + h] if h ≤ x ≤ T − h, Dx = [x, x + 2h] if 0 < x < h, and
Dx = [T − 2h,T ] if T −h ≤ x ≤ T . Let MDx = {k : kδ ∈ Dx}, and {ak(x)}k∈MDx

be the weights
solving the following optimization problem

min
∑

k∈MDx

a2
k (x)

subject to
∑

k∈MDx

ak(x) = 0,

∑
k∈MDx

ak(x)(kδ)j = jxj−1, j = 1,2.

Then

ĜLP(x0) := 1 + 1

λ

∑
k∈MDx0

ak(x0)R̂(kδ). (5.4)
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The final estimator Ĝ∗
LP(x0) is a monotonized and truncated version of ĜLP(x0):

Ĝ∗
LP(x0) =

{
max
u≤x0

ĜLP(u)
}

[0,1].

This estimator requires selection of the window width h; it will be specified later.
The goal of the experiments is to study influence of the arrival rate λ and the service time

distribution tail on accuracy of the estimators. Thus we consider two different scenarios.

(a) For different values of the arrival rate λ ∈ {0.5,1,5,15}, fixed exponential service time
distribution G(x) = 1 − e−x and the observation horizon T = 1000 we estimate G by
the three estimators at 100 equidistant points {xi, i = 1, . . . ,100} on the interval [0,4]. At
every simulation run, we compute the maximal error

Err(Ĝ) = max
x∈{xi }

∣∣Ĝ(x) − G(x)
∣∣, Ĝ ∈ {Ĝ∗

CL, Ĝ∗
LP, Ĝ∗

B

}
. (5.5)

(b) The arrival rate is fixed λ = 1, and we consider exponential service time distribution
G(x) = 1 − e−μx with μ ∈ { 1

2 , 1
5 , 1

10 , 1
15 }. The observation horizon is T = 1000 and the

distribution G is estimated at 100 equidistant points {xi} on the interval [0,10]. Similarly
to (a), the accuracy is measured by the maximal error (5.5).

In all our experiments the local polynomial estimator Ĝ∗
LP is computed on the basis of the queue-

length process observations at equidistant points on [0, T ] with step size δ = 0.01. It also requires
specification of the bandwidth parameter h which was put to h = 3δ. In fact, we do not tackle the
question of “optimal” bandwidth selection, only little smoothing is applied. All the estimators
are computed at the points of a regular grid on the corresponding intervals. The estimators are
monotonized and truncated straightforwardly according to the definitions.

The results for scenario (a) are presented in Figures 1 and 2. Figure 1 shows typical realizations
of the three estimators Ĝ∗

CL, Ĝ∗
B and Ĝ∗

LP for different values of λ. In Figure 2, we present box-

plots of the maximal errors Err(Ĝ), Ĝ ∈ {Ĝ∗
CL, Ĝ∗

LP, Ĝ∗
B} of the estimators over 100 independent

simulation runs for λ ∈ {0.5,1,5,15}.
The numerical results show that both Ĝ∗

CL and Ĝ∗
B behave poorly for large values of λ and x0.

This behavior of Ĝ∗
CL is in full agreement with Theorem 2: the variance grows linearly in λ and

quadratically in x0. Figures 1 and 2 show that Brown’s estimator performs well for λ = 0.5 and
λ = 1, but its accuracy deteriorates very rapidly as λ increases. In our experiments for λ = 5, the
median errors of Ĝ∗

CL and Ĝ∗
B are close to each other, while in the case λ = 15 Brown’s estimator

is upset completely. In the light traffic regime (small λ), the matching of output points with the
closest input points to the left are often reconstruct the “true” pair; perhaps this fact explains
good performance of Ĝ∗

B in the light traffic regime. The local polynomial estimator Ĝ∗
LP exhibits

very stable behavior, and its accuracy is not affected by changes in the arrival rate.
Figures 3 and 4 show the corresponding results for the scenario (b). As it is seen, accuracy of

all estimators is badly affected by heavy tails of the service time distribution. Brown’s estimator
is most sensitive in comparison with the other two, and the LP estimator is most stable.

In sum, although the local polynomial estimator requires specification of bandwidth, our ex-
periments show that under considered scenarios the local polynomial estimator Ĝ∗

LP with small
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Figure 1. Typical realizations of Ĝ∗
CL, Ĝ∗

B
and Ĝ∗

LP for G(x) = 1 − e−x and different values of the arrival
rate λ.

bandwidth parameter compares favorably with Brown’s and the Cox–Lewis estimators. In gen-
eral, the Cox–Lewis estimator exhibits larger variability than Brown’s, although for large values
of arrival rate λ its median behavior is better than that of Brown’s.

6. Estimation of the expected service time

In this section, we discuss the problem of estimating the expected service time, α = EG[σ ] = 1/μ

from the arrival–departure data.
It seems straightforward to base an estimator for α on the relationship (4.1). In particular, if

we put ϕ(τ, t) = 1[0,T ](τ )1[0,T ](t) in (4.1) then

EG

∫∫
1[0,T ](τ )1[0,T ](t)dM(τ)dN(t) = λ2T 2 + λ

∫ T

0
G(u)du,

and ∫ T

0

[
1 − G(u)

]
du = λT 2 + T − EG

∫∫
1[0,T ](τ )1[0,T ](t)dM(τ)dN(t).
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Figure 2. Boxplots of the maximal errors over [0,4] computed on the basis of 100 simulation runs for the
estimators Ĝ∗

CL, Ĝ∗
B

and Ĝ∗
LP and different values of the arrival rate λ.

This shows that α can be estimated by

α̃ = λT 2 + T −
∑
j∈Z

∑
k∈Z

1[0,T ](τj )1[0,T ](tk).

However, even though under a moment condition the bias of α̃,
∫∞
T

[1 − G(u)]du, is small, the
estimator variance does not tend to zero as T → ∞.

A natural estimator of α can be obtained by integration of the corresponding estimator of the
service time distribution. In particular, for a real number b > 0 we set

α̂ =
∫ b

0

[
1 − Ĝ(x)

]
dx, (6.1)

where Ĝ(·) is defined in (4.4).
Let Mp(A) be the set of all distribution on R+ with pth moment bounded by A < ∞,

Mp(A) :=
{
G : p

∫ ∞

0
xp−1[1 − G(x)

]
dx ≤ A < ∞

}
, p > 1.
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Figure 3. Typical realizations of Ĝ∗
CL, Ĝ∗

B
and Ĝ∗

LP for G(x) = 1 − e−μx with different values of the
service rate μ.

We have the following theorem.

Theorem 4. Let α̂∗ denote the estimator (6.1) associated with b = b∗ :=
(A/p)1/(p+1)(T /λ)1/(2p+2). Then for all T ≥ λ(1 ∨ λ−2)2p+2(A/p)2 one has

sup
G∈Mp(A)

EG|α̂∗ − α|2 ≤ C

(
A

p

)4/(p+1)(
λ

T

)(p−1)/(p+1)

,

where C is an absolute constant.

Remark 4. (a) As discussed above, for a fixed x the estimator Ĝ(x) uses the data {(τj : 0 ≤ τj ≤
T ), (tk : 0 ≤ tk ≤ T + x)}. Therefore α̂ is based on the observations {(τj : 0 ≤ τj ≤ T ), (tk : 0 ≤
tk ≤ T + b∗)}. Because b∗ = o(T ), the departure process is basically observed over an interval
of the length T (1 + o(1)) as T → ∞.

(b) The theorem demonstrates that the service time expectation is estimated with a nonpara-
metric rate that depends on the tail behavior of G. This dependence stems from expression for
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Figure 4. Boxplots of the maximal errors over [0,10] computed on the basis of 100 simulation runs for the
estimators Ĝ∗

CL, Ĝ∗
B

and Ĝ∗
LP and different values of the service rate μ.

the variance of the Cox–Lewis estimator for large values of x0. Existence of the pth moment
with p > 1 is sufficient for consistency of the estimator.

7. Concluding remarks

1. It is worth noting that the local polynomial estimator ĜLP(x0) defined in (5.4) and based on the
observations of the queue-length process (5.2) can be also computed on the basis of the arrival–
departure data (5.1). Indeed, using the arrival–departure data we can define the following random
process {V (t), t ≥ 0}: let V (0) = 0 and

V (t) =
∑
j∈Z

[
1(0 ≤ tj ≤ t) − 1(0 ≤ τj ≤ t)

]
, t > 0.

It is evident that V (t) = X(t) − X(0); therefore setting ρ̃ = 1
n

∑n
i=1 V (iδ) we obtain

1

n

n−k∑
i=1

[
V (iδ) − ρ̃

][
V
(
(i + k)δ

)− ρ̃
]= R̂(kδ),
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where R̂(kδ) is defined in (5.3). This shows that the local polynomial estimator ĜLP(x0) is ap-
plicable when the arrival–departure data is available.

On the other hand, there are striking differences in the problem of estimating the expected
service time in the settings of arrival–departure and queue-length data. Although relative to the
arrival–departure data, the only additional information in the queue-length data is the initial state
of the system, it seems that this information is essential for improving accuracy of estimators
of α. Specifically, suppose that the queue-length observations {X(kδ), k = 1, . . . , n}, nδ = T are
given. Since the marginal distribution of X(t) is Poisson with parameter ρ = αλ, the natural
estimator of α is α̌ = 1

λn

∑n
k=1 X(kδ). This estimator is unbiased, and if the second moment

of G is finite then it can be shown that the variance of α̌ converges to zero at the parametric
rate T −1. Thus, the information about initial state of the system leads to significant improvements
in accuracy.

2. We considered the pointwise mean squared error as an estimation accuracy measure. In
particular, Theorem 2 implies that the Cox–Lewis estimator (4.4) is pointwise consistent, that
is, Ĝ(x) converges in PG-probability to G(x) as T → ∞ for every x. We note however that
for a properly modified version of the Cox–Lewis estimator the uniform convergence can be
claimed. Indeed, let Ĝ(x) be the original Cox–Lewis estimator given in (8) and based on the data
{(τj : 0 ≤ τj ≤ T ), (tk : 0 ≤ tk ≤ T + x)}. Define

ĜT (x) =
⎧⎨
⎩
{

max
u≤x

Ĝ(u)
}

[0,1], x < T 1/4,

1, x ≥ T 1/4,

where {·}[0,1] is the truncation operation defined in Section 5. Note that {ĜT } is a sequence
of probability distribution functions, and it follows from Theorem 2 that ĜT (x) converges to
G(x) as T → ∞ in PG-probability for every x. Then invoking the proof of the Glivenko–
Cantelli theorem we can prove that ĜT converges to G uniformly in PG-probability, i.e.
limT →∞ PG{supx |ĜT (x) − G(x)| > ε} = 0 for any ε > 0.

Appendix A: Proofs for Section 3

A.1. Proof of Proposition 1

Conditioning on (τj )j∈Z and using independence of (σj )j∈Z on (τj )j∈Z and disjointness of {Bj },
we have

EG

[
e
∑m

i=1 ηiM(Ai)+∑n
l=1 ξlN(Bl)|(τj )j∈Z

]
= e

∑m
i=1 ηiM(Ai)EG

[
exp

{
n∑

l=1

ξl

∑
j∈Z

1Bl
(τj + σj )

}∣∣∣(τj )j∈Z

]

= e
∑m

i=1 ηiM(Ai)
∏
j∈Z

EG

[
exp

{
n∑

l=1

ξl1Bl−τj
(σj )

}∣∣∣(τj )j∈Z

]
(A.1)
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= e
∑m

i=1 ηiM(Ai)
∏
j∈Z

[
n∑

l=1

(
eξl − 1

)
PG(σj ∈ Bl − τj ) + 1

]

= e
∑m

i=1 ηiM(Ai) exp

{∑
j∈Z

log

[
n∑

l=1

(
eξl − 1

)
PG(σj ∈ Bl − τj ) + 1

]}
.

Now, if we put

f (x) :=
m∑

i=1

ηi1Ai
(x) + log

[
n∑

l=1

(
eξl − 1

)
G(Bl − x) + 1

]

then the right-hand side of (A.1) is exp{∑j∈Z f (τj )}, and applying Campbell’s formula [see,
e.g., [15]] we obtain

log EG

[
e
∑m

i=1 ηiM(Ai)+∑n
l=1 ξlN(Bl)

]= λ

∫ ∞

−∞
[
ef (x) − 1

]
dx.

It remains to compute the last integral. We have∫ ∞

−∞
[
ef (x) − 1

]
dx

=
∫ ∞

−∞

[
e
∑m

i=1 ηi1Ai
(x)

(
n∑

l=1

(
eξl − 1

)
G(Bl − x) + 1

)
− 1

]
dx

=
m∑

i=1

∫
Ai

[
eηi

(
n∑

l=1

(
eξl − 1

)
G(Bl − x) + 1

)
− 1

]
dx

+
∫
R\⋃m

i=1 Ai

n∑
l=1

(
eξl − 1

)
G(Bl − x)dx

=
m∑

i=1

(
eηi − 1

)|Ai | +
n∑

l=1

(
eξl − 1

)|Bl | +
m∑

i=1

n∑
l=1

(
eηi − 1

)(
eξl − 1

)∫
Ai

G(Bl − x)dx,

where we have used that
∫∞
−∞ G(Bl − x)dx = |Bl |. This completes the proof.

A.2. Covariance measures of (M,N)

In the next lemma, we present expressions for the covariance measures of the process (M,N).
Corollary 1 is restated as the part (i) of Lemma 1.

Lemma 1. Let Q(·, ·) be given by (3.2); then the following statements hold.
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(i) For any two intervals A and B , one has

EG

[
M(A)N(B)

]= λ2|A||B| + λQ(A,B). (A.2)

In particular, for dM(τ) = M((τ, τ + dτ ]) and dN(t) = N((t, t + dt]) we have

EG

[
dM(τ)dN(t)

]= λ2 dτ dt + λdG(t − τ)dτ.

(ii) If A1, A2 and B are intervals such that A1 ∩ A2 =∅, then

EG

[
M(A1)M(A2)N(B)

]= λ3|A1||A2||B| + λ2Q(A1,B)|A2| + λ2Q(A2,B)|A1|, (A.3)

and for τ1 	= τ2

EG

[
dM(τ1)dM(τ2)dN(t)

]
(A.4)

= λ3 dτ1 dτ2 dt + λ2 dG(t − τ1)dτ1 dτ2 + λ2 dG(t − τ2)dτ2 dτ1.

Similarly, for intervals B1, B2 and A such that B1 ∩ B2 =∅

EG

[
M(A)N(B1)N(B2)

]= λ3|A||B1||B2| + λ2Q(A,B1)|B2| + λ2Q(A,B2)|B1|, (A.5)

and for t1 	= t2

EG

[
dM(τ)dN(t1)dN(t2)

]
(A.6)

= λ3 dτ dt1 dt2 + λ2 dG(t1 − τ)dτ dt2 + λ2 dG(t2 − τ)dτ dt1.

(iii) If A1 ∩ A2 =∅ and B1 ∩ B2 =∅, then

EG

[
M(A1)M(A2)N(B1)N(B2)

]− EG

[
M(A1)N(B1)

]
EG

[
M(A2)N(B2)

]
= λ3[Q(A1,B2)|A2||B1| + Q(A2,B1)|A1||B2|

]+ λ2Q(A1,B2)Q(A2,B1).

In particular, for τ1 	= τ2 and t1 	= t2

EG

[
dM(τ1)dM(τ2)dN(t1)dN(t2)

]− EG

[
dM(τ1)dN(t1)

]
EG

[
dM(τ2)dN(t2)

]
= λ3[dG(t2 − τ1)dτ1 dτ2 dt1 + dG(t1 − τ2)dτ2 dτ1 dt2

]
(A.7)

+ λ2 dG(t2 − τ1)dτ1 dG(t1 − τ2)dτ2.

Proof. The proof follows by straightforward though tedious differentiation of (3.1).
(i) Write for brevity ψ := EG exp{ηM(A) + ξN(B)}, Q := Q(A,B), and

U = U(η, ξ) := |A|(eη − 1
)+ |B|(eξ − 1

)+ (eη − 1
)(

eξ − 1
)
Q(A,B),

�A(ξ) := |A| + (eξ − 1
)
Q, �B(η) := |B| + (eη − 1

)
Q.
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It follows from (3.1) that ψ = eλU . Note that U(0,0) = 0, �A(0) = |A| and �B(0) = |B|.
With the introduced notation

∂U

∂η
= eη�A(ξ),

∂U

∂ξ
= eξ�B(η),

∂�A(ξ)

∂ξ
= eξQ,

∂�B(η)

∂η
= eηQ.

Using these relations we obtain

∂ψ

∂η
= λeλUeη�A(ξ),

∂2ψ

∂η2
= λ2eλUe2η�2

A(ξ) + λeλUeη�A(ξ),

∂ψ

∂ξ
= λeλUeξ�B(η),

∂2ψ

∂ξ2
= λ2eλUe2ξ�2

B(η) + λeλUeξ�B(η), (A.8)

∂2ψ

∂η∂ξ
= λ2eλUeη+ξ�A(ξ)�B(η) + λQeλUeη+ξ .

Then (A.2) follows immediately from (A.8) by substituting η = ξ = 0.
(ii) From (3.1), we have

1

λ
logψ(η1, η2, ξ1, ξ2)

:= 1

λ
log EG exp

{
η1M(A1) + η2M(A2) + ξ1N(B1) + ξ2N(B2)

}
(A.9)

= |A1|
(
eη1 − 1

)+ |A2|
(
eη2 − 1

)+ |B1|
(
eξ1 − 1

)+ |B2|
(
eξ2 − 1

)
+

2∑
i=1

2∑
j=1

(
eηi − 1

)(
eξj − 1

)
Q(Ai,Bj ).

Let U = U(η1, η2, ξ1, ξ2) stand for the right-hand side of (A.9) and put for brevity

�(Ai) :=
2∑

j=1

(
eξj − 1

)
Q(Ai,Bj ), S(Bj ) :=

2∑
i=1

(
eηi − 1

)
Q(Ai,Bj ).

Then

∂ψ

∂η1
= eλUλeη1

[|A1| + �(A1)
]
,

∂ψ

∂ξ1
= eλUλeξ1

[|B1| + �(B1)
]
,

∂2ψ

∂η1∂η2
= eλUλ2eη1+η2

[|A1| + �(A1)
][|A2| + �(A2)

]
,

∂2ψ

∂ξ1∂ξ2
= eλUλ2eξ1+ξ2

[|B1| + �(B1)
][|B2| + �(B2)

]
,
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∂3ψ

∂η1∂η2∂ξ1
= eλUλ3eη1+η2+ξ1

[|A1| + �(A1)
][|A2| + �(A2)

][|B1| + S(B1)
]

+ eλUλ2eη1+η2+ξ1Q(A1,B1)
[|A2| + �(A2)

]
(A.10)

+ eλUλ2eη1+η2+ξ1Q(A2,B1)
[|A1| + �(A1)

]
,

∂3ψ

∂η1∂ξ1∂ξ2
= eλUλ3eξ1+ξ2+η1

[|B1| + �(B1)
][|B2| + �(B2)

][|A1| + S(A1)
]

+ eλUλ2eξ1+ξ2+η1Q(A1,B1)
[|B2| + �(B2)

]
(A.11)

+ eλUλ2eξ1+ξ2+η1Q(A1,B2)
[|B1| + �(B1)

]
.

Now substituting η1 = η2 = ξ1 = ξ2 = 0 in (A.10) and (A.11) we come to (A.3) and (A.5).
(iii) Further differentiation yields

∂4ψ

∂η1∂η2∂ξ1∂ξ2

= eλUλ4eη1+η2+ξ1+ξ2
[|A1| + �(A1)

][|A2| + �(A2)
][|B1| + S(B1)

][|B2| + S(B2)
]

+ eλUλ3eη1+η2+ξ1+ξ2Q(A1,B2)
[|A2| + �(A2)

][|B1| + S(B1)
]

+ eλUλ3eη1+η2+ξ1+ξ2
[|A1| + �(A1)

]
Q(A2,B2)

[|B1| + S(B1)
]

+ eλUλ3eη1+η2+ξ1+ξ2Q(A1,B1)
[|A2| + �(A2)

][|B2| + S(B2)
]

+ eλUλ3eη1+η2+ξ1+ξ2Q(A2,B1)
[|A1| + �(A1)

][|A2| + S(B2)
]

+ eλUλ2eη1+η2+ξ1+ξ2Q(A1,B1)Q(A2,B2)

+ eλUλ2eη1+η2+ξ1+ξ2Q(A2,B1)Q(A1,B2).

Computing the fourth derivative at η1 = η2 = ξ1 = ξ2 = 0 we obtain

EG

[
M(A1)M(A2)N(B1)N(B2)

]
= λ4|A1||A2||B1||B2|

+ λ3[Q(A1,B2)|A2||B1| + Q(A2,B2)|A1||B1|
+ Q(A1,B1)|A2||B2| + Q(A2,B1)|A1||B2|

]
+ λ2[Q(A1,B1)Q(A2,B2) + Q(A1,B2)Q(A2,B1)

]
.

By (A.2)

EG

[
M(A1)N(B1)

]
EG

[
M(A2)N(B2)

]
= λ4|A1||B1||A2||B2| + λ2Q(A1,B1)Q(A2,B2)

+ λ3[|A1||B1|Q(A2,B2) + |A2||B2|Q(A1,B1)
];
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therefore

EG

[
M(A1)M(A2)N(B1)N(B2)

]− EG

[
M(A1)N(B1)

]
EG

[
M(A2)N(B2)

]
= λ3(Q(A1,B2)|A2||B1| + Q(A2,B1)|A1||B2|

)+ λ2Q(A1,B2)Q(A2,B1),

as claimed. �

A.3. Covariance measures of S

The next result establishes expression for the covariance measures of the superposed process S.
Note that the part (i) of the lemma is the restatement of Corollary 2.

Let Q(·, ·) be given by (3.2), and for any pair of disjoint intervals Ai and Aj define

Q̃i,j = Q̃j,i := 1

2

[
Q(Ai,Aj ) + Q(Aj ,Ai)

]
.

Lemma 2. The following statements hold.

(i) Let A1 and A2 be disjoint intervals; then

EG

[
S(A1)S(A2)

]= 4λ2|A1||A2| + λ
[
Q(A1,A2) + Q(A2,A1)

]
. (A.12)

In particular, for A1 = (τ, τ + dτ ] and A2 = (t, t + dt] with τ 	= t one has

EG

[
dS(τ)dS(t)

]= 4λ2 dτ dt + λ
[
dG(t − τ)dτ + dG(τ − t)dt

]
.

(ii) If A1, A2 and A3 are disjoint intervals, then

EG

[
S(A1)S(A2)S(A3)

]= 8λ3|A1||A2||A3| + 4λ2[Q̃1,2|A3| + Q̃1,3|A2| + Q̃2,3|A1|
]
,

and for all distinct x, y and z

EG

[
dS(x)dS(y)dS(z)

] = 8λ3 dx dy dz + 2λ2 dy
[
dG(x − z)dz + dG(z − x)dx

]
+ 2λ2 dx

[
dG(z − y)dy + dG(y − z)dz

]
(A.13)

+ 2λ2 dz
[
dG(x − y)dy + dG(y − x)dx

]
.

(iii) If A1,A2,A3,A4 are disjoint intervals, then

EG

[
S(A1)S(A2)S(A3)S(A4)

]− EG

[
S(A1)S(A2)

]
EG

[
S(A3)S(A4)

]
= 8λ3[Q̃1,4|A2||A3| + Q̃2,4|A1||A3| + Q̃1,3|A2||A4| + Q̃2,3|A1||A4|

]
+ 4λ2[Q̃1,3Q̃2,4 + Q̃2,3Q̃1,4].
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In particular, if A1 = (τ1, τ1 + dτ1], A2 = (t1, t1 + dt1], A3 = (τ2, τ2 + dτ2] and A4 = (t2, t2 +
dt2] with all distinct τ1, t1, τ2 and t2 then

EG

[
dS(τ1)dS(t1)dS(τ2)dS(t2)

]− EG

[
dS(τ1)dS(t1)

]
EG

[
dS(τ2)dS(t2)

]
= 8λ3[Q̃(dτ1,dt2)dt1 dτ2 + Q̃(dτ1,dτ2)dt1 dt2

+ Q̃(dt1,dτ2)dτ1 dt2 + Q̃(dt1,dt2)dτ1 dτ2
]

+ 4λ2[Q̃(dτ1,dτ2)Q̃(dt1,dt2) + Q̃(dt1,dτ2)Q̃(dτ1,dt2)
]
,

where Q̃(dx,dy) := 1
2 [dG(x − y)dy + dG(y − x)dx].

Proof. (i) It follows from Proposition 2 that

ψ = ψ(η1, η2) := EG exp
{
η1S(A1) + η2S(A2)

}=: exp{λU},
U = U(η1, η2)

= 2
(
eη1 − 1

)|A1| + 2
(
eη2 − 1

)|A2| +
(
eη1 − 1

)2
Q1,1 + (eη2 − 1

)2
Q2,2

+ (eη1 − 1
)(

eη2 − 1
)[Q1,2 + Q2,1],

where, for the sake of brevity, Qi,j stands for Q(Ai,Aj ). Denote also

�1(η1, η2) := (eη1 − 1
)
Q1,1 + (eη2 − 1

)1
2
(Q1,2 + Q2,1),

�2(η1, η2) := (eη2 − 1
)
Q2,2 + (eη1 − 1

)1
2
(Q1,2 + Q2,1).

With this notation, we have

∂ψ

∂η1
= λeλU ∂U

∂η1
= λeλU 2eη1

[|A1| + �1(η1, η2)
]
,

∂2ψ

∂η1∂η2
= λ2eλU ∂U

∂η1

∂U

∂η2
+ λeλU ∂2U

∂η1∂η2

= λ2eλU 4eη1+η2
[|A1| + �1(η1, η2)

][|A2| + �2(η1, η2)
]+ λeλUeη1+η2(Q1,2 + Q2,1).

The last formula yields

EG

[
S(A1)S(A2)

]= ∂2ψ

∂η1∂η2

∣∣∣∣
η1=η2=0

= 4λ2|A1||A2| + λ(Q1,2 + Q2,1),

as claimed in (A.12).
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(ii) Now we set ψ := EG exp{∑4
i=1 ηiS(Ai)},

U :=
4∑

i=1

(
eηi − 1

)|Ai | + 1

2

4∑
i=1

4∑
j=1

i 	=j

(
eηi − 1

)(
eηj − 1

)
Qi,j + 1

2

4∑
i=1

(
eηi − 1

)
Qi,i,

Q̃i,j := Q̃j,i = 1

2
(Qi,j + Qj,i), i, j = 1,2,3,4,

�k := |Ak| +
4∑

j=1

(
eηj − 1

)
Q̃j,k, k = 1,2,3,4.

According to Proposition 2, with this notation ψ = e2λU , ∂U
∂ηk

= eηk�k , k = 1, . . . ,4, and there-
fore

∂ψ

∂η1
= 2λe2λUeη1�1,

∂2ψ

∂η1∂η2
= e2λUeη1+η2

[
4λ2�1�2 + 2λQ̃1,2

]
, (A.14)

∂3ψ

∂η1∂η2∂η3
= e2λUeη1+η2+η3

[
8λ3�1�2�3 + 4λ2Q̃1,3�2 + 4λ2Q̃2,3�1 + 4λ2Q̃1,2�3

]
.

Then

EG

[
S(A1)S(A2)S(A3)

] = ∂3ψ

∂η1∂η2∂η3

∣∣∣∣
η1=η2=η3=0

= 8λ3|A1||A2||A3| + 4λ2[Q̃1,2|A3| + Q̃1,3|A2| + Q̃2,3|A1|
]
,

as claimed.
(iii) Finally, differentiating (A.14) we obtain

∂4ψ

∂η1∂η2∂η3∂η4

= e2λUeη1+η2+η3+η4
[
16λ4�1�2�3�4 + 8λ3Q̃1,4�2�3 + 8λ3Q̃2,4�1�3 + 8λ3Q̃3,4�1�2

+ 8λ3Q̃1,3�2�4 + 8λ3Q̃2,3�1�4 + 8λ3Q̃1,2�3�4 + 4λ2Q̃1,3Q̃2,4

+ 4λ2Q̃2,3Q̃1,4 + 4λ2Q̃1,2Q̃2,4
]
.

The last formula yields

EG

[
S(A1)S(A2)S(A3)S(A4)

]
= ∂4φ

∂η1∂η2∂η3∂η4

∣∣∣∣
η1=η2=η3=η4=0
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= 16λ4
4∏

i=1

|Ai | + 4λ2[Q̃1,3Q̃2,4 + Q̃2,3Q̃1,4 + Q̃1,2Q̃3,4]

+ 8λ3[Q̃1,4|A2||A3| + Q̃2,4|A1||A3| + Q̃3,4|A1||A2|
+ Q̃1,3|A2||A4| + Q̃2,3|A1||A4| + Q̃1,2|A3||A4|

]
.

Taking into account (A.12) we obtain

EG

[
S(A1)S(A2)S(A3)S(A4)

]− EG

[
S(A1)S(A2)

]
EG

[
S(A3)S(A4)

]
= 8λ3[Q̃1,4|A2||A3| + Q̃2,4|A1||A3| + Q̃1,3|A2||A4| + Q̃2,3|A1||A4|

]
+ 4λ2[Q̃1,3Q̃2,4 + Q̃2,3Q̃1,4],

as claimed. �

Appendix B: Proofs for Sections 4 and 6

B.1. Proof of Theorem 1

The fact that θ̂I is unbiased follows immediately from (4.1). We compute the variance of θ̂I :

varG{θ̂I } = 1

λ2T 2

[
EG

{∑
j∈Z

∑
k∈Z

ϕ∗(τj , tk)

}2

−
(∫∫

ϕ∗(τ, t)EG

[
dM(τ)dN(t)

])2]
. (B.1)

The expression in the square brackets on the right-hand side of (B.1) is decomposed as

EG

∑
j∈Z

∑
k∈Z

ϕ2∗(τj , tk) + EG

∑
j1∈Z

∑
j2∈Z

j1 	=j2

∑
k∈Z

ϕ∗(τj1 , tk)ϕ∗(τj2, tk)

+ EG

∑
j∈Z

∑
k1∈Z

∑
k2∈Z

k1 	=k2

ϕ∗(τj , tk1)ϕ∗(τj , tk2)

(B.2)

+
{

EG

∑
j1∈Z

∑
k1∈Z

∑
j2∈Z

∑
k2∈Z

j1 	=j2,k1 	=k2

ϕ∗(τj1 , tk1)ϕ∗(τj2 , tk2) −
(∫∫

ϕ∗(τ, t)EG

[
dM(τ)dN(t)

])2}

=: J1 + J2 + J3 + J4.

Now we compute the terms Ji , i = 1, . . . ,4 separately.
Let

χ(τ, t) :=
{

1, τ 	= t,

0, otherwise,
τ, t ∈ R.
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By (4.1) we have

J1 = EG

∫∫
1TM

(τ)1I (t − τ)dM(τ)dN(t) = λ2|I |T + λG(I)T . (B.3)

Next, using (A.4) we obtain

J2 = EG

∫∫∫
1TM

(τ1)1TM
(τ2)1I (t − τ1)1I (t − τ2)χ(τ1, τ2)dM(τ1)dM(τ2)dN(t)

= λ3
∫∫∫

1TM
(τ1)1TM

(τ2)1I (t − τ1)1I (t − τ2)dτ1 dτ2 dt

+ λ2
∫∫∫

1TM
(τ1)1TM

(τ2)1I (t − τ1)1I (t − τ2)dG(t − τ1)dτ1 dτ2

+ λ2
∫∫∫

1TM
(τ1)1TM

(τ2)1I (t − τ1)1I (t − τ2)dG(t − τ2)dτ1 dτ2

=: J
(1)
2 + 2J

(2)
2 ,

where

J
(2)
2 = λ2

∫∫∫
1TM

(τ1)1TM
(τ2)1I (u)1I (u + τ1 − τ2)dG(u)dτ1 dτ2.

Here we have taken into account that the last two integrals in the expression for J2 coincide. The
integrals J

(1)
2 and J

(2)
2 are evaluated as follows. We have

∫
1I (t − τ1)1I (t − τ2)dt

=
∫

1I (u)1I (u + τ1 − τ2)du

= [|I | − (τ1 − τ2)
]
1
(
0 ≤ τ1 − τ2 ≤ |I |)+ [|I | + (τ1 − τ2)

]
1
(−|I | ≤ τ1 − τ2 ≤ 0

)
.

Substituting this expression we obtain

J
(1)
2 = λ3

∫ |I |

0

(|I | − u
)
(T − u)du + λ3

∫ 0

−|I |
(|I | + u

)
(T + u)du = λ3|I |2

(
T − 1

3
|I |
)

.

Similarly, for I = (a, b]
∫

1I (u)1I (u + τ2 − τ1)dG(u) = [G(b) − G(a + τ2 − τ1)
]
1
{
0 ≤ τ2 − τ1 ≤ |I |}

+ [G(b + τ2 − τ1) − G(a)
]
1
{−|I | ≤ τ2 − τ1 < 0

}
.
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Hence the integral J
(2)
2 takes the form

λ2
∫∫∫

1TM
(τ1)1TM

(τ2)1I (u)1I (u + τ1 − τ2)dG(u)dτ1 dτ2

= λ2
∫ |I |

0
(T − u)

[
G(b) − G(a + u)

]
du + λ2

∫ 0

−|I |
(T + u)

[
G(b + u) − G(a)

]
du

= λ2T

∫ |I |

0

(
1 − u

T

)[
G(I) + G(b − u) − G(a + u)

]
du,

so that

J2 = λ3|I |2
(

T − 1

3
|I |
)

+ 2λ2T

∫ |I |

0

(
1 − u

T

)[
G(I) + G(b − u) − G(a + u)

]
du. (B.4)

The similar calculation that uses (A.6) yields

J3 = EG

∫∫∫
1TM

(τ)1I (t1 − τ)1I (t2 − τ)χ(t1, t2)dM(τ)dN(t1)dN(t2)

= λ3
∫∫∫

1TM
(τ)1I (t1 − τ)1I (t2 − τ)dτ dt1 dt2

+ λ2
∫∫∫

1TM
(τ)1I (t1 − τ)1I (t2 − τ)dG(t1 − τ)dτ dt2 (B.5)

+ λ2
∫∫∫

1TM
(τ)1I (t1 − τ)1I (t2 − τ)dG(t2 − τ)dτ dt1

= λ3|I |2T + 2λ2|I |G(I)T .

Finally, letting � = {(τ1, τ2, t1, t2) ∈R
4 : τ1 	= τ2, t1 	= t2}, and using (A.7) we have

J4 :=
∫∫∫∫

�

ϕ∗(τ1, t1)ϕ∗(τ2, t2)

× {EG

[
dM(τ1)dM(τ2)dN(t1)dN(t2)

]− EG

[
dM(τ1)dN(t1)

]
EG

[
dM(τ2)dN(t2)

]}
= λ3

∫∫∫∫
�

ϕ∗(τ1, t1)ϕ∗(τ2, t2)dG(t2 − τ1)dτ1 dτ2 dt1

+ λ3
∫∫∫∫

�

ϕ∗(τ1, t1)ϕ∗(τ2, t2)dG(t1 − τ2)dτ2 dτ1 dt2

+ λ2
∫∫∫∫

�

ϕ∗(τ1, t1)ϕ∗(τ2, t2)dG(t2 − τ1)dτ1 dG(t1 − τ2)dτ2

=: J
(1)
4 + J

(2)
4 + J

(3)
4 .
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Furthermore,

J
(1)
4 = λ3

∫∫∫∫
�

1TM
(τ1)1TM

(τ2)1I (t1 − τ1)1I (t2 − τ2)dG(t2 − τ1)dτ1 dτ2 dt1

= λ3|I |
∫∫∫

1TM
(τ1)1TM

(τ2)1I (u + τ1 − τ2)dG(u)dτ1 dτ2

(B.6)

= λ3|I |
∫ T

0

∫ T

0
G(I + τ2 − τ1)dτ1 dτ2

= λ3|I |T
∫ T

−T

G(I + u)

(
1 − |u|

T

)
du.

The same expression holds for J
(2)
4 . As for J

(3)
4 , we have

J
(3)
4 = λ2

∫∫∫∫
1TM

(τ1)1TM
(τ2)1I (t1 − τ1)1I (t2 − τ2)dG(t2 − τ1)dτ1 dG(t1 − τ2)dτ2

= λ2
∫∫∫∫

1TM
(u1)1TM

(u2)1I (w1 + u2 − u1)

× 1I (w2 + u1 − u2)dG(w2)du1 dG(w1)du2 (B.7)

= λ2
∫ T

0

∫ T

0
G(I + u1 − u2)G(I + u2 − u1)du1 du2

= λ2T

∫ T

−T

G(I + u)G(I − u)

(
1 − |u|

T

)
du.

Combining (B.1)–(B.7) we complete the proof.

B.2. Proof of Theorem 3

10. By definition,

G̃(x0) = 1

λT

∫∫
1[0,T ](τ )1[0,x0](t − τ)χ(τ, t)dS(τ)dS(t) − 4λx0,

and it easily follows from (4.6) that G̃(x0) is an unbiased estimator of G(x0)

The variance of G̃(x0) is

varG
{
G̃(x0)

}= 1

λ2T 2

{[∑
j∈Z

∑
k∈Z

ϕ∗(sj , sk)
]2

−
[

EG

∫∫
ϕ∗(τ, t)dS(τ)dS(t)

]2}
.
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The expression in the curly brackets on the right-hand side of the previous display formula is
decomposed as

EG

∑
j∈Z

∑
k∈Z

ϕ2∗(sj , sk) + EG

∑
j∈Z

∑
k∈Z

ϕ∗(sj , sk)ϕ∗(sk, sj )

+ EG

∑
j∈Z

∑
k1∈Z

∑
k2∈Z

k1 	=k2

ϕ∗(sj , sk1)ϕ∗(sj , sk2) + EG

∑
j∈Z

∑
k1∈Z

∑
k2∈Z

j 	=k2

ϕ∗(sj , sk1)ϕ∗(sk1 , sk2)

+ EG

∑
j1∈Z

∑
k∈Z

∑
j2∈Z

k 	=j2

ϕ∗(sj1 , sk)ϕ∗(sj2 , sj1) + EG

∑
j1∈Z

∑
k∈Z

∑
j2∈Z

j1 	=j2

ϕ∗(sj1 , sk)ϕ∗(sj2 , sk)

+ EG

∑
j1∈Z

∑
k1∈Z

∑
j2∈Z

∑
k2∈Z

j1 	=j2,j1 	=k2
k1 	=j2,k1 	=k2

ϕ∗(sj1 , sk1)ϕ∗(sj2 , sk2) −
[

EG

∫∫
ϕ∗(τ, t)dS(τ)dS(t)

]2

=:
7∑

k=1

Jk,

where

J1 = EG

∫∫
1[0,T ]1[0,x0](t − τ)χ(τ, t)dS(τ)dS(t),

J2 = EG

∫∫
1[0,T ](τ )1[0,x0](t − τ)1[0,T ](t)1[0,x0](τ − t)χ(τ, t)dS(τ)dS(t),

J3 = EG

∫∫∫
1[0,T ](τ )1[0,x0](t1 − τ)1[0,x0](t2 − τ)χ(τ, t1)χ(τ, t2)dS(τ)dS(t1)dS(t2),

J4 = EG

∫∫∫
1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)

× 1[0,x0](t2 − t1)χ(τ, t1)χ(t1, t2)dS(τ)dS(t1)dS(t2),

J5 = EG

∫∫∫
1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)

× 1[0,x0](τ2 − τ1)χ(τ1, t)χ(τ1, τ2)dS(τ1)dS(τ2)dS(t),

J6 = EG

∫∫∫
1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)

× 1[0,x0](t − τ2)χ(τ1, t)χ(τ2, t)dS(τ1)dS(t)dS(τ2),

J7 = EG

∫∫∫∫
�

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)dS(τ1)dS(t1)dS(τ2)dS(t2)

−
[

EG

∫∫
1[0,T ](τ )1[0,x0](t − τ)χ(τ, t)dS(τ)dS(t)

]2

,

and � is the set of all vectors (τ1, t1, τ2, t2) with all distinct elements.
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We compute all integrals Jk , k = 1, . . . ,7 separately. Although the computations are routine
and straightforward, they are often tedious.

20. In view of (4.6), we have

J1 = EG

∫∫
1[0,T ]1[0,x0](t − τ)χ(τ, t)dS(τ)dS(t) = 4λ2T x0 + λT G(x0).

Note that 1[0,x0](t − τ)1[0,x0](τ − t)χ(τ, t) = 0; hence J2 = 0.
Using (A.13) after straightforward calculation, we obtain

J3 = 8λ3T x2
0 + 4λ2x0G(x0)T + 4λ2T

∫ x0

0
G(x0 − u)du.

In order to compute J4 we again use (A.13). In particular,

8λ3
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dτ dt1 dt2

= 8λ3x0

∫∫
1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)dτ dt1 = 8λ3x2

0

[
T − 1

2
x0

]
,

and

2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dt1 dG(τ − t2)dt2

= 2λ2
∫∫ [

G(t1 − t2) − G(t1 − t2 − x0)
]
1[x0,T ](t1)1[0,x0](t2 − t1)dt1 dt2

+ 2λ2
∫∫ [

G(t1 − t2) − G(−t2)
]
1[0,x0](t1)1[0,x0](t2 − t1)dt1 dt2 = 0

because G(0) = 0 and x0 > 0. Furthermore,

2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dt1 dG(t2 − τ)dτ

= 2λ2
∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)
[
G(t1 − τ + x0) − G(t1 − τ)

]
dt1 dτ

= 2λ2T

∫ x0

0

[
G(u + x0) − G(u)

](
1 − u

T

)
du,

2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dτ dG(t2 − t1)dt1

= 2λ2G(x0)x0

[
T − 1

2
x0

]
,

2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dτ dG(t1 − t2)dt2 = 0,
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2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dt2 dG(τ − t1)dt1 = 0,

2λ2
∫∫∫

1[0,T ](τ )1[0,x0](t1 − τ)1[0,T ](t1)1[0,x0](t2 − t1)dt2 dG(t1 − τ)dτ

= 2λ2x0T

∫ x0

0

(
1 − u

T

)
dG(u).

Combining these expressions we obtain

J4 = 8λ3x2
0

[
T − 1

2
x0

]
+ 2λ2G(x0)x0

[
T − 1

2
x0

]

+ 2λ2x0T

∫ x0

0

(
1 − u

T

)
dG(u) + 2λ2T

∫ x0

0

[
G(u + x0) − G(u)

](
1 − u

T

)
du.

Now we note that the expression for J5 up to a change in notation of integration variables coin-
cides with that for J4; hence J5 = J4.

We proceed with computation of J6:

8λ3
∫∫∫

1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)1[0,x0](t − τ2)dτ1 dt dτ2

= 8λ3
∫∫∫

1[0,T ](τ1)1[τ1,τ1+x0](t)1[τ2,τ2+x0](t)1[0,T ](τ2)1[0,x0](τ2 − τ1)dτ1 dt dτ2

+ 8λ3
∫∫∫

1[0,T ](τ1)1[τ1,τ1+x0](t)1[τ2,τ2+x0](t)1[0,T ](τ2)1[0,x0](τ1 − τ2)dτ1 dt dτ2

= 8λ3
∫∫

1[0,T ](τ1)[x0 + τ1 − τ2]1[0,T ](τ2)1[0,x0](τ2 − τ1)dτ1 dτ2

+ 8λ3
∫∫

1[0,T ](τ1)[x0 + τ2 − τ1]1[0,T ](τ2)1[0,x0](τ1 − τ2)dτ1 dτ2

= 16λ3
∫∫

[x0 − u]1[0,T ](τ )1[−u,T −u](τ )1[0,x0](u)dτ du = 8λ3x2
0

[
T − 1

3
x0

]
.

Furthermore,

2λ2
∫∫∫

1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)1[0,x0](t − τ2)dτ1
[
dG(t − τ2)dτ2 + dG(τ2 − t)dt

]

= 2λ2T

∫ x0

0

[
G(x0 − u) + G(x0) − G(u)

](
1 − u

T

)
du,

2λ2
∫∫∫

1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)1[0,x0](t − τ2)dτ2
[
dG(t − τ1)dτ1 + dG(τ1 − t)dt

]

= 2λ2T

∫ x0

0

[
G(x0 − u) + G(x0) − G(u)

](
1 − u

T

)
du,
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and

2λ2
∫∫∫

1[0,T ](τ1)1[0,x0](t − τ1)1[0,T ](τ2)

× 1[0,x0](t − τ2)dt
[
dG(τ2 − τ1)dτ1 + dG(τ1 − τ2)dτ2

]
= 2λ2

∫∫
[x0 + τ1 − τ2]1[0,T ](τ1)1[0,T ](τ2)

× 1[0,x0](τ2 − τ1)
[
dG(τ2 − τ1)dτ1 + dG(τ1 − τ2)dτ2

]
+ 2λ2

∫∫
[x0 + τ2 − τ1]1[0,T ](τ1)1[0,T ](τ2)

× 1[0,x0](τ1 − τ2)
[
dG(τ2 − τ1)dτ1 + dG(τ1 − τ2)dτ2

]
= 4λ2T

∫ x0

0

(
1 − u

T

)
(x0 − u)dG(u).

Therefore,

J6 = 8λ3x2
0

[
T − 1

3
x0

]
+ 4λ2T

∫ x0

0

[
G(x0 − u) + G(x0) − G(u)

](
1 − u

T

)
du

+ 4λ2T

∫ x0

0

(
1 − u

T

)
(x0 − u)dG(u).

Then, combining the above expressions for Ji , i = 1, . . . ,6, after straightforward bounding we
obtain

1

λ2T

6∑
i=1

Ji ≤ 32λx2
0 + 36x0 + 1

λ
G(x0). (B.8)

30. It remains to compute J7. If Q̃(dx,dy) := 1
2 [dG(x − y)dy + dG(y − x)dx] then by

Lemma 2(iii)

J7 =
∫∫∫∫

ϕ∗(τ1, t1)ϕ∗(τ2, t2)
{
EG

[
dS(τ1)dS(τ2)dS(t1)dS(t2)

]

− EG

[
dS(τ1)dS(t1)

]
EG

[
dS(τ2)dS(t2)

]}=:
6∑

i=1

Ki,

where

K1 := 8λ3
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dτ1,dt2)dτ2 dt1,

K2 := 8λ3
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dτ1,dτ2)dt2 dt1,
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K3 := 8λ3
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dτ2,dt1)dτ1 dt2,

K4 := 8λ3
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dt1,dt2)dτ1 dτ2,

K5 := 4λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dτ1,dτ2)Q̃(dt1,dt2),

K6 := 4λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)Q̃(dτ1,dt2)Q̃(dτ2,dt1).

First, we note that K1 = K3; then standard calculations yield

K1 = K3 = 4λ3x0T

∫ T

−T

[
G(x0 + u) − G(u)

](
1 − |u|

T

)
du + 4λ3x0

∫ T

0

∫ x0

0
G(v − u)dudv

≤ 12λ3x2
0T ,

K2 = 8λ3x2
0T

∫ T

0

(
1 − u

T

)
dG(u) ≤ 8λ3x2

0T .

The computation of K4 is more involved. Although exact expression for K4 can be derived,
we will compute exactly only the main term which grows with T ; for other terms we provide
upper bounds. The computation is based on the following formula∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)1[0,x0](t2 − τ2)dτ1 dτ2

= [t11[0,x0](t1) + x01[x0,T ](t1) + (T − t1 + x0)1[T ,T +x0](t1)
]

× [t21[0,x0](t2) + x01[x0,T ](t2) + (T − t2 + x0)1[T ,T +x0](t2)
]

=: [L1(t1) + L2(t1) + L3(t1)
][

L4(t2) + L5(t2) + L6(t2)
]
.

Then

8λ3
∫∫

L1(t1)L4(t2)Q̃(dt1,dt2)

= 4λ3
∫ x0

0

∫ x0

0
t1t2
[
dG(t1 − t2)dt2 + dG(t2 − t1)dt1

]

= 8λ3
∫ x0

0

1

3
(x0 − u)2

(
x0 + 1

2
u

)
dG(u) ≤ 4λ3x3

0G(x0),

8λ3
∫∫

L1(t1)L5(t2)Q̃(dt1,dt2)

= 4λ3x0

∫ x0

0

∫ T

x0

t1 dG(t2 − t1)dt1
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= 4λ3x0

{∫ x0

0

(
x0 − 1

2
u

)
udG(u) + 1

2
x2

0

[
G(T − x0) − G(x0)

]+ 1

2

∫ T

T −x0

(T − u)2 dG(u)

}

≤ 8λ3x3
0G(T ),

8λ3
∫∫

L1(t1)L6(t2)Q̃(dt1,dt2)

= −4λ3
∫ x0

0

∫ x0

0
t1udG(T + x0 − u − t1)dt1 ≤ 4λ3x3

0G(T + x0).

The following integrals are evaluated similarly:

8λ3
∫∫

L3(t1)L4(t2)Q̃(dt1,dt2) = 8λ3
∫∫

L1(t1)L6(t2)Q̃(dt1,dt2) ≤ 4λ3x3
0G(T + x0),

8λ3
∫∫

L3(t1)L6(t2)Q̃(dt1,dt2) = 8λ3
∫∫

L1(t1)L4(t2)Q̃(dt1,dt2) ≤ 4λ3x3
0G(x0),

8λ3
∫∫

L2(t1)L4(t2)Q̃(dt1,dt2) = 8λ3
∫∫

L1(t1)L5(t2)Q̃(dt1,dt2) ≤ 8λ3x3
0G(T ),

8λ3
∫∫

L2(t1)L6(t2)Q̃(dt1,dt2) = 8λ3
∫∫

L3(t1)L5(t2)Q̃(dt1,dt2)

= −4λ3x0

∫ T

x0

∫ x0

0
udG(T + x0 − u − t1)dt1

≤ 2λ3x3
0G(T ),

and finally,

8λ3
∫∫

L2(t2)L5(t2)Q̃(dt1,dt2) = 4λ3x2
0

∫ T

x0

∫ T

x0

[
dG(t1 − t2)dt2 + dG(t2 − t1)dt2

]

= 8λ3x2
0

∫ T −x0

0
G(u)du.

Combining these expressions, we see that

K4 ≤ 8λ3x2
0

∫ T −x0

0
G(u)du + 36λ3x3

0 ≤ 8λ3x2
0T + 36λ3x3

0 .

Next, we proceed with computation of K5.

K5 = λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ1 − τ2)dτ2 dG(t1 − t2)dt2

+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)
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× 1[0,x0](t2 − τ2)dG(τ1 − τ2)dτ2 dG(t2 − t1)dt1

+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ2 − τ1)dτ1 dG(t1 − t2)dt2

+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ2 − τ1)dτ1 dG(t2 − t1)dt1

=: λ2(K(1)
5 + K

(2)
5 + K

(3)
5 + K

(4)
5

)
.

Integrating first with respect to t1, we have

K
(1)
5 =

∫∫∫
1[0,T ](τ1)

[
G(x0 + τ1 − t2) − G(τ1 − t2)

]
× 1[0,T ](τ2)1[0,x0](t2 − τ2)dG(τ1 − τ2)dτ2 dt2.

Define F(t) := ∫ x0
0 [G(x0 + t − u) − G(t − u)]du; then

K
(1)
5 =

∫∫
1[0,T ](τ1)1[0,T ](τ2)F (τ1 − τ2)dG(τ1 − τ2)dτ2 =

∫ T

0
(T − v)F (v)dG(v).

The same argument yields

K
(2)
5 =

∫∫
1[0,T ](τ1)1[0,T ](τ2)F (τ2 − τ1)dG(τ1 − τ2)dτ2 =

∫ T

0
(T − v)F (−v)dG(v).

Moreover, by symmetry K
(3)
5 = K

(2)
5 and K

(4)
5 = K

(1)
5 . Therefore,

K5 = 2λ2T

∫ T

0

(
1 − v

T

)[
F(v) + F(−v)

]
dG(v) ≤ 4λ2x0T .

It remains to compute K6:

K6 = λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ1 − t2)dt2 dG(τ2 − t1)dt1

+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ1 − t2)dt2 dG(t1 − τ2)dτ2

+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(t2 − τ1)dτ1 dG(τ2 − t1)dt1
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+ λ2
∫∫∫∫

1[0,T ](τ1)1[0,x0](t1 − τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(t2 − τ1)dτ1 dG(t1 − τ2)dτ2

=: λ2(K(1)
6 + K

(2)
6 + K

(3)
6 + K

(4)
6

)
.

First, we note that K
(1)
6 = 0. Indeed, the integrand does not vanish only if the following inequal-

ities hold simultaneously 0 ≤ t1 − τ1 ≤ x0, τ1 ≥ t2, 0 ≤ t2 − τ2 ≤ x0, τ2 ≥ t1, which is possible
only if all four variables coincide. Furthermore,

K
(2)
6 =

∫∫∫ [
G(x0 + τ1 − τ2) − G(τ1 − τ2)

]
1[0,T ](τ1)1[0,T ](τ2)

× 1[0,x0](t2 − τ2)dG(τ1 − t2)dt2 dτ2

= T

∫ x0

0

[∫ T

0

(
1 − u

T

)[
G(x0 + u) − G(u)

]
dG(u − v)

+
∫ T +x0

T

[
G(x0 + u) − G(u)

]
dG(u − v)

]
dv.

By symmetry K
(3)
6 = K

(2)
6 , and

K
(4)
6 =

∫∫
1[0,T ](τ1)

[
G(τ1 + x0 − τ2) − G(τ1 − τ2)

]
× 1[0,T ](τ2)

[
G(τ2 + x0 − τ1) − G(τ2 − τ1)

]
dτ1 dτ2

= T

∫ T

−T

(
1 − |u|

T

)[
G(x0 + u) − G(u)

][
G(x0 − u) − G(−u)

]
du.

Thus, we obtain

K6 ≤ λ2T

∫ T

−T

(
1 − |u|

T

)[
G(x0 + u) − G(u)

][
G(x0 − u) − G(−u)

]
du

+ 2λ2T

∫ T +x0

0

{∫ x0

0

[
G(x0 + u + v) − G(u + v)

]
dv

}
dG(u) ≤ 4λ2x0T .

Combining expressions for Ki , i = 1, . . . ,6 we come to

J7

λ2T
= 1

λ2T

6∑
i=1

Ki ≤ 40λx2
0 + 8x0.

This relationship together with (B.8) lead to the announced result.
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B.3. Proof of Theorem 4

We have

EG|α̂ − α|2 ≤ 2EG

∫ b

0

∫ b

0

[
Ĝ(x) − G(x)

][
Ĝ(y) − G(y)

]
dx dy + 2

{∫ ∞

b

[
1 − G(x)

]
dx

}2

.

By the Cauchy–Schwarz inequality and Theorem 2

EG

[
Ĝ(x) − G(x)

][
Ĝ(y) − G(y)

]≤ c1

T

[
λxy + (

√
x + √

y)

(√
xy + 1√

λ

)
+ 1

λ

]
,

where c1 is an absolute constant. Therefore,

sup
G∈Mp

EG|α̂ − α|2 ≤ c2

T

[
λb4 + b7/2 + λ−1/2b3/2 + λ−1b2]+ c3(A/p)2b−2p+2.

The lower bound on T in the premise of the theorem implies that with b = b∗ the first term on
the right-hand side of the previous display formula is dominating. The announced result follows
by substitution of b = b∗.
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