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In the present paper, we study the problem of existence of honest and adaptive confidence sets for matrix
completion. We consider two statistical models: the trace regression model and the Bernoulli model. In the
trace regression model, we show that honest confidence sets that adapt to the unknown rank of the matrix
exist even when the error variance is unknown. Contrary to this, we prove that in the Bernoulli model,
honest and adaptive confidence sets exist only when the error variance is known a priori. In the course of
our proofs, we obtain bounds for the minimax rates of certain composite hypothesis testing problems arising
in low rank inference.
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1. Introduction

In matrix completion, we observe n noisy entries of a data matrix M = (Mij ) ∈ R
m1×m2 , and

we aim at doing inference on M . In a typical situation of interest, n is much smaller than m1m2,
the total number of entries. This problem arises in many applications such as recommender sys-
tems and collaborative filtering [3,21], genomics [18] or sensor localization [37]. Two statistical
models have been proposed in the matrix completion literature: the trace-regression model (e.g.,
[9,27,29,31,36]) and the ‘Bernoulli model’ (e.g., [12,17,28]).

In the trace-regression model, we observe n pairs (Xi, Y
tr
i ) satisfying

Y tr
i = 〈Xi,M〉 + εi = tr

(
XT

i M
) + εi, i = 1, . . . , n, (1.1)

where (εi) is a noise vector. The random matrices Xi ∈ R
m1×m2 are independent of the εi ’s,

chosen uniformly at random from the set

B = {
ej (m1)e

T
k (m2),1 ≤ j ≤ m1,1 ≤ k ≤ m2

}
, (1.2)

were the ej (s) are the canonical basis vectors of Rs . In this model, Y tr
i returns the noisy value of

the entry of M corresponding to the random position Xi .
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In the Bernoulli model, each entry of M +E, where E = (εij ) ∈ R
m1×m2 is a matrix of random

errors, is observed independently of the other entries with probability p = n/(m1m2). More
precisely, if n ≤ m1m2 is given and Bij are i.i.d. Bernoulli random variables of parameter p

independent of the εij ’s, we observe

Y Ber
ij = Bij (Mij + εij ), 1 ≤ i ≤ m1,1 ≤ j ≤ m2. (1.3)

The major difference between these models is that in the trace-regression model multiple sam-
pling of a particular entry is possible whereas in the Bernoulli model each entry can be sampled at
most once. A further difference is that in the trace regression model the number of observations,
n, is fixed whereas in the Bernoulli model the number of observations n̂ := ∑

ij Bij is random
with expectation En̂ = n. Despite these differences, the results on minimax optimal recovery
using computationally efficient algorithms for these two models in the literature are very similar
and from a ‘parameter estimation’ point of view the models appear to be effectively equivalent
(see, e.g., [9–11,13,17,22,26,27,29,31,34]). A key insight of the present paper is that for the con-
struction of optimal confidence sets, these models are in fact fundamentally different, at least
when the noise variance σ 2 is unknown.

When investigating questions that go beyond mere ‘adaptive estimation’ of a high-dimensional
parameter, such as about the existence of adaptive confidence sets, one can expect to encounter
surprising phenomena – and various recent results (see, e.g., [2,6,8,19,23,25,30,32,33,35,38] and
Chapter 8.3 in [20]) show that the answers depend on a rather subtle interaction of certain ‘in-
formation geometric’ properties of the model – the material relevant for the present paper is re-
viewed in Section 2. Many of these results reveal limitations by showing that confidence regions
that adapt to the whole parameter space do not exist unless one makes specific ‘signal strength’
assumptions. For example, Low [30] and Giné and Nickl [19] investigated this question in non-
parametric density estimation and Nickl and van de Geer [33] in the sparse high-dimensional
regression model.

Next to the challenge of adaptation, the construction of confidence sets in the matrix comple-
tion setting is difficult mainly due to two reasons. First, the Restricted Isometry Property (RIP)
does not hold, requiring a more involved analysis than in a standard trace regression setting
such as in [15]. Moreover, in most practical applications of matrix completion such as movie
recommender systems [3,21] the variance of the errors is not known. Typical constructions of
confidence sets in high-dimensions such as χ2-confidence sets (e.g., [15,33]) require explicit
knowledge of the variance and are thus not feasible. Particularly in the ‘Bernoulli model’, the
problem of unknown variance can be expected to be potentially severe: for the related standard
normal means model (without low rank structure and without missing observations) Baraud [2]
has shown that in the unknown variance case honest confidence sets of shrinking diameter do
not exist, even if the true model is low dimensional. Similarly, in high-dimensional regression
Cai and Guo [7] prove the impossibility of constructing adaptive confidence sets for the lq -loss,
1 ≤ q ≤ 2, of adaptive estimators if the variance is unknown.

Our main contributions are as follows: in the trace regression model, even if only an upper
bound for the variance of the noise is known, it is shown that practical honest confidence sets exist
that have Frobenius-norm diameter that adapts to the unknown rank of M . Contrary to this we
prove that such confidence regions cannot exist in the Bernoulli model when the noise variance
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is unknown, and to complement our findings we also prove that in the Bernoulli model with
known variance, adaptive confidence regions do exist. So while recovery algorithms for matrix
completion are not sensitive to the choice of model, the task of uncertainty quantification for these
algorithms is, and crucially depends on the statistician’s ability to estimate the noise variance. For
the Bernoulli ‘normal means’ model, our results imply that the lack of availability of ‘repeated
samples’ induces an information-theoretic ‘barrier’ for inference even in the presence of low rank
structure.

This paper is organized as follows: in Section 1.1, we formulate the assumptions and collect
notation which we use throughout the paper. Then, in Section 2, we review and present general
results about the existence of honest and adaptive confidence sets in terms of some information-
theoretic quantities that determine the complexity of the adaptation problem at hand. Afterwards
we review the literature on minimax estimation in matrix completion problems. In Section 4,
we give an explicit construction of honest and adaptive confidence sets in the trace-regression
case, adapting a U-statistic approach inspired by Robins and van der Vaart [35] (see also [20],
Section 6.4, and [15]). Finally, we present our results for the Bernoulli model in Section 5. First,
we derive an upper bound for the minimax rate of testing a low rank hypothesis and deduce
from it the existence of honest and adaptive confidence regions in the known variance case. We
then derive a lower bound for this testing rate in the unknown variance case, from which we can
deduce that honest and adaptive confidence sets over the whole parameter space cannot exist in
general. Sections 7–8 contain the proofs of our results.

1.1. Notation and assumptions

By construction, in the Bernoulli model (1.3) the expected number of observations, n, is smaller
than the total number of matrix entries, that is, n ≤ m1m2. To provide a meaningful comparison,
we will assume throughout that n ≤ m1m2 also holds in the trace regression model (1.1). In
many applications of matrix completion, such as recommender systems (e.g., [3,21]) or sensor
localization (e.g., [4,37]) the noise is bounded but not necessarily identically distributed. This is
the assumption which we adopt in the present paper. More precisely, we assume that the ει are
independent random variables that are homoscedastic, have zero mean and are bounded:

Assumption 1.1. In the models (1.1) and (1.3) with index ι = i and ι = (i, j), respectively, we
assume E(ει) = 0, E(ε2

ι ) = σ 2, ει ⊥⊥ εη for ι �= η and that there exists a positive constant U > 0
such that almost surely

max
ι

|ει| ≤ U.

We denote by M = (Mij ) ∈R
m1×m2 the unknown matrix of interest and define

m = min(m1,m2),

d = m1 + m2.

For any l ∈N we set [l] = {1, . . . , l}. Let A, B be matrices in R
m1×m2 . We define the matrix scalar

product as 〈A,B〉 := tr(AT B). The trace norm of the matrix A is defined as ‖A‖∗ := ∑
σj (A),



2432 Carpentier, Klopp, Löffler and Nickl

the operator norm as ‖A‖ := σ1(A) and the Frobenius norm as ‖A‖2
F := ∑

i σ
2
i = ∑

i,j A2
ij

where (σj (A)) are the singular values of A arranged in decreasing order. Finally, ‖A‖∞ =
maxi,j |Aij | denotes the largest absolute value of any entry of A. Given a semi-metric D we
define the diameter of a set S by

|S|D := sup
{
D(x, y) : x, y ∈ S

}
.

Furthermore, for k ∈ N0 we define the parameter space of rank k matrices with entries bounded
by a in absolute value as

A(a, k) := {
A ∈R

m1×m2 : ‖A‖∞ ≤ a and rank(A) ≤ k
}
. (1.4)

Finally, for a subset � ⊂ (0,U ] we define

A(a, k) ⊗ � := {
(A,σ ) : A ∈ A(a, k), σ ∈ �

}
.

As usual, for sequences an and bn we say an � bn if there exists a constant C independent of n

such that an ≤ C · bn for all n. We write PM,σ (and EM,σ for the corresponding expectation) for
the distribution of the observations in the models (1.1) or (1.3), respectively.

2. Minimax theory for adaptive confidence sets

In this section, we present results about existence of honest and adaptive confidence sets in a
general minimax framework. To this end, let Y = Yn ∼ P

n
f on some measure space (�n,B),

n ∈ N, where f is contained in some parameter space A, endowed with a semi-metric D. Let rn
denote the minimax rate of estimation over A, that is,

inf
f̃n:�n→A

sup
f ∈A

EfD(f̃ , f ) � rn(A).

We consider an ‘adaptation hypothesis’ A0 ⊂ A characterised by the fact that the minimax rate
of estimation in A0 is of asymptotically smaller order than in A: rn(A0) = o(rn(A)) as n → ∞.
In our matrix inference setting, we will choose for D the distance induced by ‖ · ‖F , for A0,A
the parameter spaces A(a, k0)⊗�, A(a, k)⊗� from above, k0 = o(k) as min(n,m) → ∞, and
data (Yi,Xi) or (Yij ,Bij ) arising from equation (1.1) or (1.3), respectively.

Definition 2.1 (Honest and adaptive confidence sets). Let α,α′ > 0 be given. A set Cn =
Cn(Y,α) ⊂A is a honest confidence set at level α for the model A if

lim inf
n

inf
f ∈A

P
n
f (f ∈ Cn) ≥ 1 − α. (2.1)

Furthermore, we say that Cn is adaptive for the sub-model A0 at level α′ if there exists a constant
K = K(α,α′) > 0 such that

sup
f ∈A0

P
n
f

(|Cn|D > Krn(A0)
) ≤ α′ (2.2)



Confidence sets for matrix completion 2433

while still retaining

sup
f ∈A

P
n
f

(|Cn|D > Krn(A)
) ≤ α′. (2.3)

We next introduce certain composite testing problems.

Definition 2.2 (Minimax rate of testing and uniformly consistent tests). Consider the testing
problem

H0: f ∈A0 against H1: f ∈A,D(f,A0) ≥ ρn, (2.4)

where (ρn : n ∈ N) is a sequence of non-negative numbers. We say that ρn is the minimax rate of
testing for (2.4) if

(i) ∀β > 0 ∃ a constant L = L(β) > 0 and a test �n = �n(β), �n : �n → {0,1} such that

sup
f ∈A0

Ef [�n] + sup
f ∈A,D(f,A0)≥Lρn

Ef [1 − �n] ≤ β. (2.5)

We say that such a test �n is β-uniformly consistent.
(ii) For some β0 > 0 and any sequence ρ∗

n = o(ρn), we have

lim inf
n→∞ inf

�n:�n→{0,1}

[
sup

f ∈A0

Ef [�n] + sup
f ∈A,D(f,A0)≥ρ∗

n

Ef [1 − �n]
]

≥ β0 > 0. (2.6)

Theorem 2.1. Let ρn be the minimax rate of testing for the testing problem (2.4) and suppose
that β0 > 0 is as in (2.6). Suppose that

rn(A0) = o(ρn).

Then a honest and adaptive confidence set Cn that satisfies (2.1)–(2.3) for any α,α′ > 0 such
that 0 < 2α + α′ < β0 does not exist. In fact if 3α < β0, then for any honest confidence set Cn

that satisfies (2.1) we have that

sup
f ∈A0

Ef |Cn|D ≥ cρn. (2.7)

for a constant c = c(α) > 0.

The first claim of this theorem is Proposition 8.3.6 in [20]. The lower bound (2.7) also follows
from that proof, arguing as in the proof of Theorem 4 in [16].

A converse of Theorem 2.1 also exists, as can be extracted from Proposition 8.3.7 in [20] and
an observation in Carpentier (see [14], proof of Theorem 3.5 in Section 6). For this, we need the
notion of an oracle-estimator.

Definition 2.3 (Oracle estimator). Let β > 0 be given. We say that an estimator f̂ satisfies an
oracle inequality at level β if there exists a constant C such that for all f ∈ A we have with
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P
n
f -probability at least 1 − β ,

D(f̂ , f ) ≤ C inf
Ã∈{A,A0}

(
D(f, Ã) + rn(Ã)

)
. (2.8)

This is a typical property of adaptive estimators, and is for example, in the trace-regression
setting fulfilled by the soft-thresholding estimator proposed by Koltchinskii et al. [29]. The fol-
lowing theorem proves that if the minimax rate of testing is no larger than the minimax rate of
estimation in the adaptation hypothesis, then honest adaptive confidence sets do exist. The proof
is constructive and yields a confidence set of non-asymptotic coverage at least 1 − α.

Theorem 2.2. Let α,α′ > 0 be given. Let ρn be the minimax rate of testing for the problem (2.4)
such that a min(α/2, α′)-uniformly consistent test exists. Assume that ρn ≤ C′rn(A0) for some
constant C′ = C(α,α′) > 0. Moreover, assume that an oracle estimator f̂ at level α/2 fulfilling
(2.8) exists. Then there exists a confidence set Cn that adapts to the sub-model A0 at level α′
satisfying (2.2), (2.3) and that is honest at level α, that is,

sup
f ∈A

P
n
f (f /∈ Cn) ≤ α.

3. Minimax matrix completion

Noisy matrix completion has been extensively studied in several papers starting from Candès and
Plan [10], see, for example, [9,11,17,24,26–29,31,34]. Optimal rates have been achieved under
various sets of assumptions. For instance, the construction of the estimator (and the resulting
upper bound) in [31] requires knowledge of the ‘spikiness’ ratio of the unknown matrix and leads
to sub-optimal rates in the case of sparse matrices. The bounds due to Keshavan et al. [26] are also
only optimal for certain classes of matrices, namely almost square matrices that have a condition
number bounded by a constant and fulfill the incoherence condition introduced by [12]. Optimal
convergence rates for the classes A(a, k) of matrices under consideration in the present paper
have been obtained by Koltchinskii et al. [29] and Klopp [27] for the trace-regression model and
by Klopp [28] for the Bernoulli model. For example, in the trace-regression setting, Klopp [27]
shows that a constrained Matrix Lasso estimator M̂ := M̂(a,σ ) satisfies with PM0,σ -probability
at least 1 − 2/d

‖M̂ − M0‖2
F

m1m2
≤ C

kd log(d)

n
and ‖M0 − M̂‖∞ ≤ 2a (3.1)

as long as m log(d) ≤ n ≤ d2 log(d) and where C = C(σ,a) > 0. Similarly, in the Bernoulli
model with noise bounded by U it has been shown in Klopp [28] that an iterative soft thresholding
estimator M̂ := M̂(a,σ ) satisfies with PM0,σ -probability at least 1 − 8/d

‖M̂ − M0‖2
F

m1m2
≤ C

kd

n
and ‖M0 − M̂‖∞ ≤ 2a (3.2)
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for n ≥ m log(d) and for a constant C = C(σ,a,U) > 0. Matching lower bounds have also been
shown by Koltchinskii et al. [29] and Klopp [28]. In the trace-regression model with Gaussian
noise, we have for constants β ∈ (0,1) and c = c(σ, a) > 0 that

inf
M̂

sup
M0∈A(a,k)

PM0,σ

(‖M̂ − M0‖2
F

m1m2
> c

kd

n

)
≥ β.

A similar lower bound can be obtained in the Bernoulli setting (see Klopp [28]). These lower and
upper bounds imply that for the Frobenius loss and the parameter space A(a, k) the minimax rate
rn,m(A(a, k)) is (at most up to a log-factor) of order√

m1m2kd/n. (3.3)

4. Trace regression model

We first consider the trace regression model. For the sake of precision, we sometimes write M0
for the ‘true parameter’ M that has generated equation (1.1).

For notational simplicity, we assume that n is even. Then we can split our observations in
two independent sub-samples of equal size n/2. In what follows, all probabilistic statements
are under the distribution P (with corresponding expectation written E) of the first sub-sample
(Y tr

i ,Xi)i≤n/2 of size n/2 ∈ N, conditional on the second sub-sample (Y tr
i ,Xi)i>n/2, i.e. we have

P(·) = PM0,σ (·|(Y tr
i ,Xi)i>n/2).

4.1. A non-asymptotic confidence set in the trace regression model with
known variance of the errors

In this case, we can adapt the construction of [15]: we first unbiasedly estimate the risk
‖M̂ −M0‖2

F /(m1m2) of a minimax optimal estimator M̂ computed from an independent sample
(e.g., via sample splitting) by a natural χ2-statistic (see (4.1)). The construction of an unbiased
estimate requires knowledge of σ 2, but when available this estimate, enlarged by natural quantile
constants, serves as a good proxy for the diameter of the confidence set Cn centred at M̂ .

More precisely, using only the second sub-sample (Y tr
i ,Xi)i>n/2 we compute the matrix lasso

estimator from Klopp [27] which achieves the bound (3.1) with probability at least 1 − 2/d .
Then, we freeze M̂ and the second sub-sample. We define the following residual sum of squares
statistic:

R̂n = 2

n

∑
i≤n/2

(
Y tr

i − 〈Xi, M̂〉)2 − σ 2. (4.1)

Given α > 0, let ξα,σ,U = 2U2
√

log(α−1) + 4U2 log(α−1)

3
√

n
, zα = log(3/α) and, for a z > 0, a fixed

constant to be chosen, define the confidence set

Cn =
{
A ∈ R

m1×m2 : ‖A − M̂‖2
F

m1m2
≤ 2

(
R̂n + z

d

n
+ z̄ + ξα,σ,U√

n

)}
, (4.2)
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where

z̄2 = z̄2(α, d,n,σ, z) = zασ 2 max

(
3‖A − M̂‖2

F

m1m2
,4zd/n

)
.

It is not difficult to see (using that x2 � y + x/
√

n implies x2 � y + 1/n) that

EM0,σ

[ |Cn|2F
m1m2

∣∣∣∣M̂
]

�
‖M̂ − M0‖2

F

m1m2
+ zd + σ 2zα/3

n
+ ξα,σ,U√

n
. (4.3)

Markov’s inequality, (4.3) and that M̂ is minimax optimal (up to a log-factor) with PM0,σ -
probability of at least 1 − 2/d as long as m log(d) ≤ n ≤ d2 log(d) imply that Cn has an adap-
tive and up to a log-factor minimax optimal squared diameter with probability 1 − α′ for any
α′ > 2/d . The following theorem shows that Cn is also a honest confidence set.

Theorem 4.1. Let α > 0, α′ > 2/d and suppose that m log(d) ≤ n ≤ d2 log(d), that Assump-
tion 1.1 is satisfied and that σ > 0 is known. Let Cn = Cn(Y,X,α,σ,U) be given by (4.2) with
z > 0. Then, for every n ∈N and every M0 ∈ A(a,m),

PM0,σ (M0 ∈ Cn) ≥ 1 − 2α

3
− 2e−zd/(11a2).

Hence, for any 1 ≤ k0 < k ≤ m, Cn is a honest and (up to a log-factor) adaptive confidence set at
the level α for the model A(a, k) ⊗ {σ } and adapts to the sub-model A(a, k0) ⊗ {σ } at level α′.

The proof of Theorem 4.1 follows the lines of the proof of Theorem 2 in [15] and we omit it
here as the unknown variance results considered in the next section straightforwardly imply the
known variance results.

4.2. A non-asymptotic confidence set in the trace regression model with
unknown error variance

In this subsection we assume, that the precise knowledge of the noise variance σ is not available,
although the quantities a, U are available to the statistician (i.e., upper bounds on the matrix
entries and on the noise). More precisely, we assume that σ belongs to a known set � ⊂ (0,U ].
In applications of matrix completion this is usually a realistic assumption since the entries of
M0 are bounded: For example, in a movie recommender system (e.g., [3,21]) the entries of the
observations Y and consequently M0 and εi are bounded from above by the best possible rating
and below from the worst possible rating.

As the variance is now assumed to be unknown the construction from (4.2) is not feasible any-
more since we can not compute the test statistic (4.1). Instead we use a U-statistic approach: As
in the previous section, we use the second half of the sample, (Y tr

i ,Xi)n/2<i≤n, for constructing
a minimax optimal estimator M̂ of M that fulfills ‖M̂‖∞ ≤ a. We use again the matrix lasso
estimator from Klopp [27] (with σ replaced by its upper bound U ) which achieves (3.1) with
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probability at least 1 − 2/d . In order to construct the confidence set, we will be interested in
all pairs of observations (Y tr

l ,Xl) and (Y tr
s ,Xs) in the first sub-sample with 1 ≤ l < s ≤ n/2

such that Xl = Xs (that is, independent measurements of the same matrix entry). For each
(i, j) ∈ [m1] × [m2], let S(i,j) = {k ∈ {1, . . . , n/2} : Xk = ei(m1)e

T
j (m2)} =: {a1 < · · · < ap(i,j)

}
where p(i,j) is the number of times that we observe the entry (i, j). For all indices (i, j) such that
S(i,j) �= ∅, we form the �p(i,j)/2� couples (Xa1 ,Xa2), (Xa3 ,Xa4), . . . etc. We denote by N the
set of all these pairs and let |N | = N be their number. Re-ordering, we can write (X̃k,Zk,Z

′
k)k≤N

where X̃k = Xl = Xs for some couple (Xl,Xs) ∈ N and Zk = Y tr
l and Z′

k = Y tr
s . That is, us-

ing two different samples of the same entry X̃k = Xl = Xs we form the observation triples
(X̃k,Zk,Z

′
k). We use (X̃k,Zk,Z

′
k)k≤N to construct a U-Statistic to estimate the squared Frobe-

nius loss. Contrary to the construction in (4.1) this does not require knowledge of the variance of
the errors. We define:

R̂N := 1

N

N∑
k=1

(
Zk − 〈M̂, X̃k〉

)(
Z′

k − 〈M̂, X̃k〉
)
, (4.4)

and we set R̂N = 0 if N = 0. Note that

EM0,σ [R̂N |M̂,N ≥ 1] = ‖M̂ − M0‖2
F

m1m2
. (4.5)

We define the confidence set

Cn :=
{
A ∈A(a,m) : ‖A − M̂‖2

F

m1m2
≤ R̂N + zα,N

}
, (4.6)

where the random quantile constant zα,N is defined as

zα,N := U2 + 4a2

√
Nα

if N �= 0 and zα,N = 4a2 if N = 0.

The quantity N is random but we can bound it from below with high probability by n2/(64m1m2)

as proven in the following lemma.

Lemma 4.1. For n ≤ m1m2, we have with probability at least 1 − exp(−n2/(372m1m2)) that:

N ≥ n2

64m1m2
.

Markov’s inequality, (4.5), Lemma 4.1 and that M̂ achieves the nearly optimal rate (3.1) with
PM0,σ -probability of at least 1 − 2/d imply for any k ≤ m, any M0 ∈ A(a, k), any σ ≤ U , any
α′ > 2/d + exp(−n2/(372m1m2)) and a large enough constant C = C(α,α′, σ, a,U) > 0 that

PM0,σ

( |Cn|2F
m1m2

> C
kd log(d)

n

)
≤ α′. (4.7)
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Since k is arbitrary this implies that Cn is a confidence set whose ‖ · ‖2
F -diameter adapts to the

unknown rank of M0 without requiring the knowledge of σ ∈ �. The following theorem implies
that Cn is also a honest confidence set. Note that our result is non-asymptotic and holds for any
triple (n,m1,m2) ∈ N

3 as long as m logd ≤ n ≤ m1m2.

Theorem 4.2. Let α > 0 be given, assume m log(d) ≤ n ≤ m1m2 and that Assumption 1.1 is
fulfilled. Let Cn = Cn(Y,X,α,U) as in (4.6). Then Cn satisfies for any M0 ∈ A(a,m) and any
σ ∈ �

PM0,σ (M0 ∈ Cn) ≥ 1 − α.

Hence, for any α′ > 2/d + exp(−n2/(372m1m2)) and any 1 ≤ k0 < k ≤ m, Cn is a honest
confidence set at level α for the model A(a, k) ⊗ � that adapts (up to a log-factor) to the rank
k0 of any sub-model A(a, k0) ⊗ � at level α′.

5. Bernoulli model

In this section, we consider the Bernoulli model (1.3). As before, we let PM,σ (and EM,σ for the
corresponding expectation) denote the distribution of the data when the parameters are M and σ ,
and we sometimes write M0 for the ‘true’ parameter M for the sake of precision.

5.1. A non-asymptotic confidence set in the Bernoulli model with known
variance of the errors

Here, we assume again that σ > 0 is known. In case of the Bernoulli model, we are not able to
obtain two independent samples and cannot use the risk estimation approaches from the trace-
regression setting. Instead, we use the duality between testing and honest and adaptive confidence
sets laid out in Section 2. We first determine an upper bound for the minimax rate ρ = ρn,m of
testing the low rank hypothesis

H0: M ∈ A(a, k0) against H1: M ∈ A(a, k),
∥∥M −A(a, k0)

∥∥2
F

≥ ρ2, (5.1)

and then apply Theorem 2.2. As test statistic, we propose an infimum-test which has previously
been used by Bull and Nickl [6] and Nickl and van de Geer [33] in density estimation and high-
dimensional regression, respectively (see also Section 6.2.4. in [20]). Since σ 2 = Eε2

ij is known,
we can define the statistic

Tn := inf
A∈A(a,k0)

∣∣∣∣ 1√
2n

∑
i,j

Bij

(
(Yij − Aij )

2 − σ 2)∣∣∣∣
= inf

A∈A(a,k0)

∣∣∣∣ 1√
2n

∑
i,j

(
(Yij − BijAij )

2 − Bijσ
2)∣∣∣∣

(5.2)
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and choose the quantile constant uα such that

Pσ

(
1√
2n

∣∣∣∣∑
i,j

Bij

(
ε2
ij −Eε2

ij

)∣∣∣∣ > uα

)
≤ α/3. (5.3)

For example, using Markov’s inequality, we obtain

Pσ

(
1√
2n

∣∣∣∣∑
i,j

Bij

(
ε2
ij − σ 2)∣∣∣∣ > uα

)
≤ 1

2nu2
α

∑
i,j

Varσ
(
Bij

(
ε2
ij − σ 2)) ≤ σ 2(U2 − σ 2)

2u2
α

so uα = σ
√

(3(U2 − σ 2))/(2α) is an admissible choice.

Theorem 5.1. Let α ≥ 12 exp(−100d) be given. Consider the Bernoulli model (1.3) and the two
parameter spaces A(a, k) and A(a, k0), 1 ≤ k0 < k ≤ m. Furthermore assume that Assump-
tion 1.1 is fulfilled, that σ > 0 is known, that n ≥ m log(d) and consider the testing problem
(5.1). Suppose

ρ2 ≥ C
m1m2k0d

n
� r2

n,m

(
A(a, k0)

)
,

where C = C(α,a,U,σ ) > 0 is a constant. Then the test �n := 1{Tn>uα} where uα is the quantile
constant in (5.3) and Tn is as in (5.2) fulfills

sup
M∈A(a,k0)

EM,σ [�n] + sup
M∈A(a,k),‖M−A(a,k0)‖2

F ≥ρ2

EM,σ [1 − �n] ≤ α.

Now in order to apply Theorem 2.2 we use the soft-thresholding estimator proposed by
Koltchinskii et al. [29] which satisfies the oracle inequality (2.8) up to a log-factor in the trace
regression model. That this holds in the Bernoulli-model as well with PM0,σ -probability of at
least 1 − 1/d can be proven in a similar way and we sketch this in Proposition 8.1, removing the
log-factor by using stronger bounds on the spectral norm of the stochastic term (Bij εij )i,j .

This and Theorem 5.1 imply, using Theorem 2.2, that there exist honest and adaptive confi-
dence sets in the Bernoulli model if the variance of the errors is known.

Corollary 5.1. Let α ≥ 2/d and α′ ≥ 12 exp(−100d) be given. Suppose that σ > 0 is known,
that Assumption 1.1 is fulfilled and that n ≥ m log(d). Then, for any 1 ≤ k0 < k ≤ m, there
exists a honest confidence set Cn at the level α for the model A(a, k) ⊗ {σ }, that is, for any
M0 ∈A(a, k),

PM0,σ (M0 ∈ Cn) ≥ 1 − α,

and Cn adapts to the sub-model A(a, k0) ⊗ {σ } at level α′.

5.2. The case of the Bernoulli model with unknown error variance

In this subsection we assume again, as in Section 4.2, that the precise knowledge of the error
variance σ is not available. Whereas in this case for the trace-regression model the construction
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of honest and adaptive confidence set was seen to be possible, we will now show that this is not
the case for the Bernoulli model. We use again the duality between testing and confidence sets,
this time applying Theorem 2.1. The next theorem gives a lower bound for the minimax rate of
testing for the composite null hypothesis H0: M ∈A(a, k0) of M having rank at most k0 against
a rank-k alternative. To simplify the exposition, we will consider only square matrices (but see
the remark below) and also an asymptotic ‘high-dimensional’ framework where min(n,m) → ∞
and k0 = o(k). We formally allow for k0 = 0, thus including the ‘signal detection problem’ when
H0: M = 0, σ 2 = 1.

Theorem 5.2. Suppose that Assumption 1.1 is satisfied for some U ≥ 2 and assume m = m1 =
m2. Furthermore, let k = kn,m → ∞ be such that 0 < k ≤ m1/3 and k1/4√m/n < min(1, a)/2.
For 0 ≤ k0 < k satisfying k0 = o(k) and a sequence ρ = ρn,m ∈ (0,1/2) consider the testing
problem

H0: M ∈ A(a, k0), σ 2 = 1 vs.

H1: M ∈ A(a, k),
∥∥M −A(a, k0)

∥∥2
F

≥ m2ρ2, σ 2 = 1 − 4ρ2.
(5.4)

If as min(n,m) → ∞,

ρ2 = o

(√
km

n

)
, (5.5)

then for any test � we have that

lim inf
min(n,m)→∞

[
sup

M∈A(a,k0)

EM,1[�]+ sup
M∈A(a,k),‖M−A(a,k0)‖2

F ≥m2ρ2

E
M,

√
1−4ρ2 [1 − �]

]
≥ 1. (5.6)

In particular, if � ⊂ (0,U ] contains the interval [√1 − 4τ ,1] where τ = lim supn,m k1/4√m/n,
then (2.6) holds for the choices A0 =A(a, k0) ⊗ �, A=A(a, k) ⊗ � and β0 = 1, ρ∗ = ρ.

Using Theorem 2.1 this implies the non-existence of honest and adaptive confidence sets in
the model (1.3) if the variance of the errors is unknown and k0 = o(

√
k). In particular adaptation

to a constant rank k0, k0 = O(1), is never possible if k → ∞ as min(m,n) → ∞.

Corollary 5.2. Assume that the conditions of Theorem 5.2 are fulfilled and that k0 = o(
√

k).
Then for any α,α′ > 0 satisfying 0 < 2α+α′ < 1 a honest confidence set for the model A(a, k)⊗
� at level α that adapts to the sub-model A(a, k0) ⊗ � at level α′ does not exist. In fact if
α < 1/3, we have for every honest confidence set Cn for the model A(a, k) ⊗ � at level α and
constant c = c(a,U,α) that

sup
(M0,σ )∈A(a,k0)⊗�

EM0,σ |Cn|2F ≥ c
m3

√
k

n
.

The above results are formulated for square matrices (m1 = m2) to keep the technicalities in
the proof at a reasonable level. One can adapt the proof of Theorem 5.2 to obtain a lower bound of
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the order ρ2 �
√

km1m2/n which likewise leads to non-existence results for adaptive confidence
sets for non-square matrices in relevant asymptotic regimes of k0, k, m1, m2.

6. Conclusions

We have investigated confidence sets in two matrix completion models: the Bernoulli model and
the trace regression model. In the trace regression model, the construction of adaptive confidence
sets is possible, even if the variance is unknown. Contrary to this, we have shown that the in-
formation theoretic structure in the Bernoulli model is different; in this case the construction of
adaptive confidence sets is not possible if the variance is unknown.

One interpretation is that in practical applications (e.g., recommender systems such as Net-
flix [3]) one should incentivize users to perform multiple ratings, to justify the use of the trace
regression model and the proposed U-statistic confidence set.

Our proof only shows that one can not adapt to general low rank hypotheses if the variance is
unknown. This covers the key cases where k0 = 1 or more generally k0 = o(

√
k). It remains an

interesting open (and difficult) question whether the lower bound ρ in Theorem 5.2 is tight, but
the answer to this question does not affect the main conclusions of our results on the existence
of adaptive confidence sets in matrix completion problems.

7. Proofs

7.1. Proof of Theorem 2.2

Proof. Let �n be a test that attains the rate ρ with error probabilities bounded by min(α/2, α′)
and let L = L(min(α/2, α′)) be the corresponding constant in (2.5). Let f̂ denote an estimator
that satisfies the oracle inequality (2.8) with probability of at least 1 − α/2. Define a confidence
set

Cn := {
f ∈ A : D(f̂ , f ) ≤ K

(
rn(A)�n + rn(A0)(1 − �n)

)}
,

where K > 0 is a constant to be chosen.
We first prove that Cn is adaptive: If f ∈ A \ A0 there is nothing to prove, and if f ∈ A0 we

have

P
n
f

(|Cn|D > Krn(A0)
) = P

n
f (�n = 1) ≤ α′.

For coverage, we investigate three distinct cases and note that

sup
f ∈Ã

P
n
f

(
D(f̂ , f ) > Crn(Ã)

) ≤ α/2, (7.1)

where C > 0 is as in (2.8) and where Ã ∈ {A0,A}. Hence f̂ is, by the oracle inequality, an
adaptive estimator.
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Then for f ∈A0, by (7.1)

P
n
f (f /∈ Cn) ≤ P

n
f

(
D(f̂ , f ) > Krn(A0)

) ≤ α/2 ≤ α

for K ≥ C.
If f ∈ A \A0 and D(f,A0) ≥ Lρn, then for K ≥ C

P
n
f (f /∈ Cn) = P

n
f

(
D(f̂ , f ) > Krn(A),�n = 1

) + P
n
f

(
D(f̂ , f ) > Krn(A),�n = 0

)
≤ P

n
f

(
D(f̂ , f ) > Krn(A)

) + P
n
f (�n = 0) ≤ α.

If f /∈ A \ A0 but D(f,A0) < Lρn, then by the oracle inequality and since ρn ≤ C′rn(A0) we
have with probability at least 1 − α/2 for such f that

D(f̂ , f ) ≤ C
(
D(f,A0) + rn(A0)

) ≤ CLρn + Crn(A0) ≤ C
(
LC′ + 1

)
rn(A0).

Thus, we still have

P
n
f (f /∈ Cn) = P

n
f

(
D(f̂ , f ) > Krn(A0)

) ≤ α/2 ≤ α

for K ≥ C(LC ′ + 1). �

7.2. Proof of Theorem 4.2

Proof. Recall that

EM0,σ (R̂N |N,N > 0) = ‖M̂ − M0‖2
F

m1m2
=: r. (7.2)

Thus using Markov’s inequality we have for N > 0 that

PM0,σ (M0 /∈ Cn|N,N > 0) ≤ PM0,σ

(|R̂N − r| > zα,N |N,N > 0
)

≤ VarM0,σ (R̂N |N,N > 0)

z2
α,N

.
(7.3)

Using equation (7.2), we compute

VarM0,σ (R̂N |N,N > 0) = 1

N
EM0,σ

(((
Zk − 〈M̂, X̃k〉

)(
Z′

k − 〈M̂, X̃i〉
) − r

)2|N,N > 0
)

≤ 1

N

[(
E〈M0 − M̂,X1〉4) + 2σ 2r + σ 4]

= 1

N

[‖M̂ − M0‖4
L4

m1m2
+ 2σ 2r + σ 4

]

≤ U4 + 8U2a2 + 16a4

N
= αz2

α,N
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since ‖M̂ − M0‖∞ ≤ 2a and where we define ‖M̂ − M0‖4
L4 := ∑

i,j (M̂ij − Mij )
4. Hence, (7.3)

implies

PM0,σ (M0 /∈ Cn|N > 0) ≤ α.

Moreover, as ‖M̂ − M0‖∞ ≤ 2a and zα,0 = 4a2, we have that P(M0 /∈ Cn|N = 0) = 0. �

7.3. Proof of Theorem 5.1

Proof. If M ∈ A(a, k0), then by definition of the infimum and uα we have

EM,σ [�] = PM,σ (Tn > uα) ≤ Pσ

(
1√
2n

∣∣∣∣∑
ij

Bij

(
ε2
ij − σ 2)∣∣∣∣ > uα

)
≤ α/3.

The case M ∈ A(a, k), ‖M −A(a, k0)‖2
F ≥ ρ2 requires more elaborate arguments. Let A∗ be a

minimizer in (5.2). Then

EM,σ [1 − �]
= PM,σ (Tn < uα)

= Pσ

(∣∣∣∣∑
ij

Bij

[(
A∗

ij − Mij

)2 − 2εij

(
A∗

ij − Mij

) + (
ε2
ij − σ 2)]∣∣∣∣ <

√
2nuα

)
.

(7.4)

For ρ ≥ 8072a
√

k0d/p = 8072a
√

m1m2k0d/n, we can apply Lemma 8.1 which yields a weaker
version of the Restricted Isometry Property (RIP). Namely, Lemma 8.1 implies that the event

� :=
{∑

i,j

Bij (Aij − Mij )
2 ≥ p

2
‖A − M‖2

F ∀A ∈A(a, k0)

}
, M ∈ H1,

occurs with probability of at least 1 − 2 exp(−100d). We can thus bound (7.4) by

Pσ

(
sup

A∈A(a,k0)

[
2

∣∣∣∣∑
i,j

Bij εij (Aij − Mij )

∣∣∣∣ −
∑

i,j Bij (Aij − Mij )
2

2

]
> −√

nuα,�

)
(7.5)

+ Pσ

(∣∣∣∣∑
i,j

Bij

(
ε2
ij − σ 2)∣∣∣∣ >

∑
i,j Bij (A

∗
ij − Mij )

2

2
− √

nuα,�

)
(7.6)

+ 2 exp(−100d).

The stochastic term (7.6) can be bounded using d2 ≥ 3n and that ρ is large enough. Indeed, on
the event � we have that∑

i,j Bij (A
∗
ij − Mij )

2

2
≥ pρ2/4 ≥ (1 + √

2)/
√

3duα ≥ (1 + √
2)

√
nuα
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for ρ ≥ 2
√

uαd/p which implies together with the definition of uα in (5.3) that (7.6) can be
bounded by α/3. For the cross term (7.5), we use the two following inequalities which, just as
before, hold on the event � ∀A ∈ A(a, k0)

∑
i,j Bij (Aij − Mij )

2

4
≥ √

nuα and

∑
i,j Bij (Aij − Mij )

2

8
≥ p‖A − M‖2

F

16
.

Hence, using also a peeling argument, (7.5) can be bounded by

∑
s∈N:pρ2/2≤2s<∞

Pσ

(
sup

A∈A(a,k0),2s≤p‖A−M‖2
F ≤2s+1

|∑i,j Bij εij (Aij − Mij )|
p‖A − M‖2

F

>
1

16

)

≤
∑

s∈N:pρ2/2≤2s<∞
Pσ

(
sup

A∈A(a,k0),p‖A−M‖2
F ≤2s+1

∣∣∣∣∑
i,j

Bij εij (Aij − Mij )

∣∣∣∣ >
2s

16

)

=
∑

s∈N:pρ2/2≤2s<∞
Pσ

(
Z(s) >

2s

16

)
,

(7.7)

where we set the corresponding probability to 0 if the supremum is taken over an empty set and
where we define

Z(s) := sup
A∈A(a,k0),p‖A−M‖2

F ≤2s+1

∣∣∣∣∑
i,j

Bij εij (Aij − Mij )

∣∣∣∣.

Lemma 8.2 (with choices z = 162, ξij = εij , t = 2s and q = 1 there) implies for ρ ≥
16 144U

√
k0d/p and for 2s ≥ pρ2/2 that

Pσ

(
Z(s) >

2s

16

)
≤ exp

( −2s

2 097 152U2 + 517 120aU

)
.

Hence, (7.7) can be upper bounded by

∑
s∈N:pρ2/2≤2s<∞

exp

( −2s

2 097 152U2 + 517 120aU

)

≤ 2 exp

(
− pρ2

2 097 152U2 + 517 120aU

)

≤ 2 exp(−100d)

(7.8)

for ρ ≥ 16 169U(a ∨ U)
√

d/p. Consequently (7.4) can be bounded by α/3 + 4 exp(−100d) ≤
2α/3 since α ≥ 12 exp(−100d). �
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7.4. Proof of Theorem 5.2

Proof. Step I: Reduction to an easier testing problem between two distributions
Assume without loss of generality that m is divisible by k. Suppose

ρ = ρn,m = vk1/4√m√
n

, (7.9)

where v = vn,m is a sequence such that v = o(1), and assume w.l.o.g. that 0 < v ≤ 1. Moreover
we denote u = 2ρ. For 1 ≤ i ≤ m, 1 ≤ κ ≤ k, 1 ≤ j ≤ m let

Bij
i.i.d.∼ B(p) and Uκ

i

i.i.d.∼ R and Vj
i.i.d.∼ R,

where B(p) is a Bernoulli distribution of parameter p = n/m2 and R is the standard Rademacher
distribution Pr(V1 = ±1) = 1/2. Let P be a uniform random partition of {1, . . . ,m} in k groups
of size m/k, and denote by Kj , Kj ∈ {1, . . . , k}, the label of element j of P . Consider the
following testing problem:

H ′
0: M = 0 and εij

i.i.d.∼ R against

H ′
1: Mij = uU

Kj

i Vj and εij ∼ δ{1−Mij }(1 + Mij )/2 + δ{−1−Mij }(1 − Mi,j )/2.

(7.10)

Note that the variance of εij under H0 is 1 and the variance of the noise under H1 is

(1 − Mij )
2(1 + Mij )/2 + (−1 − Mij )

2(1 − Mij )/2 = (1 − Mij )(1 + Mij ) = 1 − 4ρ2,

so the noise variables are homoscedastic across the (i, j)’s and |εij | ≤ 2 ≤ U . Let π be the
distribution of M under H ′

1 and write ν0 and ν1 for the distribution of Y under H ′
0 and H ′

1,
respectively.

Since the prior M in (7.10) consists of k i.i.d. scaled Rademacher vectors that each form m/k

columns of M we have rank(M) ≤ k and ‖M‖∞ = u = 2ρ ≤ a for v small enough and since
k1/4√m/n ≤ a/2. Thus, M ∈A(a, k). Then, reordering the columns of M we have∥∥M −A(a, k0)

∥∥2
F

= ∥∥Mord −A(a, k0)
∥∥2

F
,

where Mord is a m×m matrix with the (((i −1)m/k)+1)th to the (im/k)th columns each given
by uri where ri are i.i.d . Rademacher vectors of length m, i = 1, . . . , k. Then (as in the proof of
Theorem 1 in [16]) we transform Mord into the m × k matrix MordP = u

√
m/kR consisting of

k column vectors u
√

m/kri , i = 1, . . . , k. The m × k projection matrix P consists of k column
vectors, the ith having zero entries except for the indices s ∈ [((i −1)m/k)+1, . . . , im/k] where
it equals

√
k/m. Hence, P is an orthonormal projection matrix and we obtain∥∥M −A(a, k0)

∥∥2
F

≥ ∥∥(
Mord −A(a, k0)

)
P

∥∥2
F

= ∥∥u
√

m/kR −A(a
√

m/k, k, k0)
∥∥2

F
,

where we define

A(a, k, k0) := {
A ∈R

m×k : ‖A‖∞ ≤ a and rank(A) ≤ k0
}
.
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Therefore, if σmin(A) denotes the minimal singular value of a matrix A, we have that

∥∥M −A(a, k0)
∥∥2

F
≥ m2

k

∥∥uR/
√

m −A(a/
√

m,k, k0)
∥∥2

F

≥ m2u2

k
(k − k0)

(
σmin(R/

√
m)

)2

≥ m2u2

2

(
σmin(R/

√
m)

)2 ≥ m2u2

4
= m2ρ2

(7.11)

with probability going to 1, where we have used that k − k0 ≥ k/2 for m large enough (recall
k0 = o(k)) as well as the variational characterisation of minimal eigenvalues combined with
Corollary 1 in [33] (with choices n = m, p = k1 = k, θ = 0 and �min = 1 there) to lower bound
σ 2

min(R/
√

m) by 1/2.
To conclude, π is concentrated on H1 and the primed testing problem above is, asymptotically,

strictly easier than the testing problem (5.4) since H ′
0 is contained in H0 and H ′

1 is asymptotically
contained in H1. Thus, we have for any test � by a standard lower bound (as, e.g., in (6.23) in
[20]) that for all η > 0

EH0� + sup
H1

EH1(1 − �) ≥ EH ′
0
� +EH ′

1
(1 − �) − o(1)

≥ (1 − η)

(
1 − dχ2(ν0, ν1)

η

)
− o(1),

where dχ2(ν0, ν1) denotes the χ2-distance between ν0 and ν1, which remains to be bounded.

Step II: Expectation over censored data
We define I = [m] × [m] and observe that the likelihood of the data under ν0 is

L(Y1, . . . Ym,m) =
∏

(i,j)∈I

(
(1 − p)1{Yij =0} + p

2
1{Yij =1} + p

2
1{Yij =−1}

)

and that the likelihood of the data under ν1 is

L(Y1, . . . Ym,m)

= EM∼π

∏
(i,j)∈I

(
(1 − p)1{Yij =0} + p(1/2 + Mij/2)1{Yij =1} + p(1/2 − Mij/2)1{Yij =−1}

)
.

Thus, the likelihood ratio L between these two distributions is given by

L = EM∼π

∏
(i,j)∈I

(
1{Yij =0} + (1 + Mij )1{Yij =1} + (1 − Mij )1{Yij =−1}

)
.
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So we have that

dχ2(ν0, ν1)
2 + 1

= EY∼ν0L2

= EY∼ν0

[
EM∼π

∏
(i,j)∈I

(
1{Yij =0} + (1 + Mij )1{Yij =1} + (1 − Mij )1{Yij =−1}

)]2

= EM,M ′∼π

∏
i,j

[(
1 − p + p

2
(1 + Mij )

(
1 + M ′

ij

) + p

2
(1 − Mij )

(
1 − M ′

ij

))]

= EM,M ′∼π

∏
i,j

[
1 + pMijM

′
ij

]
,

(7.12)

where M ′ is an independent copy of M .

Step III: Conditioning over the cross information
Let Nr,r ′ be the number of times where the couple Kj = r,K ′

j = r ′ occurs. That is,

Nr,r ′ :=
m∑

j=1

1{Kj =r,K ′
j =r ′}.

We enumerate the elements inside these groups from 1 to Nr,r ′ . We write Ṽ
r,r ′
j for the corre-

sponding enumeration of the Vj . Setting N = (Nr,r ′)r,r ′ and using the definition of the prior, we
compute

EM,M ′∼π

∏
i,j

[
1 + pMijM

′
ij

]

= EN,U,Ṽ ,U ′,Ṽ ′
m∏

i=1

∏
r,r ′∈{1,...,k}2

Nr,r′∏
j=1

[
1 + pu2Ur

i Ṽ
r,r ′
j

(
Ur ′

i

)′(
Ṽ

r,r ′
j

)′]

=: EN

∏
r,r ′∈{1,...,k}2

I(Nr,r ′),

(7.13)

where we define for any N = Nr,r ′ > 0

I(N) = EX,W,X′,W ′
m∏

i=1

N∏
j=1

[
1 + pu2XiWjX

′
iW

′
j

]

and where (Xi)i≤m, (X′
i )i≤m, (Wi)j≤N , (W ′

i )j≤N are i.i.d. Rademacher random variables. More-
over, we set Ir,r ′(0) = 0.
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Step IV: Bound on EN
∏

r,r ′∈{1,...,k}2 I(Nr,r ′)
In order to bound I(N) we use the following lemma proved below.

Lemma 7.1. Let N = Nr,r ′ . There exist constants C1,C2,C3 > 0 such that for v small enough

I(N) ≤ exp
(
C1v

4N/m
)

exp
(
C2v

4k2N/m2) exp
(
C3v

4k2N2/m2). (7.14)

Using (7.12), (7.13) and (7.14), we have that

dχ2(ν0, ν1)
2 + 1

= EN

∏
r,r ′∈{1,...,k}2

I(Nr,r ′)

≤ EN

[(
exp

(
C2v

4k2

m2

∑
r,r ′

Nr,r ′
))(

exp

(
C1v

4

m

∑
r,r ′

Nr,r ′
))

·
( ∏

r,r ′∈{1,...,k}2

exp
(
C3v

4N2
r,r ′k2/m2))]

= exp

(
C2v

4 k2

m
+ C1v

4
)
EN

[ ∏
r,r ′∈{1,...,k}2

exp
(
C3v

4k2N2
r,r ′/m2)],

(7.15)

since
∑

r,r ′ Nr,r ′ = m. We bound the expectation of the stochastic term in (7.15) using the fol-
lowing lemma proved below.

Lemma 7.2. There exists a constant C′ > 0 such that for v small enough we have

EN

[∏
r,r ′

exp
(
C3v

4N2
r,r ′k2/m2)] ≤ 1 + 2C′v4 + exp

(−m/k2). (7.16)

Inserting (7.16) into (7.15) and summarizing all the steps, we obtain

0 ≤ dχ2(ν0, ν1)
2 ≤ C

(
v2 + exp

(−m/k2)) = o(1)

for a constant C > 0 and therefore, letting η → 0,

E0[�] + sup
H1

EH1[1 − �] ≥ (1 − η)

(
1 − dχ2(ν0, ν1)

η

)
− o(1) = 1 − o(1). �

Proof of Lemma 7.1. Note that, by construction of P , we have that

N = Nr,r ′ ≤ m/k
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since the number of j where M·,j corresponds to Kj = r is bounded by m/k. As the product
of two independent Rademacher random variables is again a Rademacher random variable, we
have

I(N) = ER,R′
m∏

i=1

N∏
j=1

[
1 + pu2RiR

′
j

]
,

where R = (Ri)
m
i=1, R′ = (R′

i )
N
i=1 are independent Rademacher vectors of length m and N ,

respectively. The usual strategy to use 1+x ≤ ex and then to bound iterated exponential moments
of Rademacher variables (as in the proof of Theorem 1 of [16]) only works when k = const, and
a more refined estimate is required for growing k, as relevant here.

We now bound I(N) for a fixed N,m/k ≥ N > 0. Using the binomial theorem twice we have

I(N) = ER′

[[
1

2

N∏
j=1

[
1 + pu2R′

j

] + 1

2

N∏
j=1

[
1 − pu2R′

j

]]m]

= 1

2m

m∑
s=1

(
m

s

)[
1

2

[
1 + pu2]s[1 − pu2]m−s + 1

2

[
1 − pu2]s[1 + pu2]m−s

]N

= 1

2m2N

m∑
s=1

(
m

s

) N∑
q=1

(
N

q

)[
1 + pu2]sq+(m−s)(N−q)[1 − pu2](m−s)q+s(N−q)

= EQ,S

[[
1 + pu2]SQ+(m−S)(N−Q)[1 − pu2](m−S)Q+S(N−Q)]

with independent Binomial random variables S ∼ B(1/2,m),Q ∼ B(1/2,N). If A := 1−pu2

1+pu2 ,
we obtain

I(N) = EQ,S

[[
1 + pu2]mN

[
1 − pu2

1 + pu2

]SN+mQ−2SQ]

= [
1 + pu2]mN

EQ

[
AmQ

ESAS(N−2Q)
]

= [
1 + pu2]mN

EQ

[
AmQ2−m

(
A(N−2Q) + 1

)m]
= [

1 + pu2]mN
EQ

[
ANm/2

(
1

2
A(N/2−Q) + 1

2
A(−N/2+Q)

)m]

= [
1 − p2u4]mN/2

EQ

(
1

2
AQ−N/2 + 1

2
AN/2−Q

)m

.

Now, we denote x := pu2 = 4vk1/2/m ≤ 1/2 for v small enough. Furthermore, we Taylor ex-
pand log(A) about 1 up to second order, that is,

log(A) = log(1 − x) − log(1 + x) = −2x − 1

2

(
1

ξ2
1

− 1

ξ2
2

)
x2 =: −2x − c(x)x2
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for ξ1 ∈ [1/2,1], ξ2 ∈ [1,3/2] and where c(x) ∈ [0,16/9] since x ≤ 1/2. Hence, using also the
inequality ex ≤ 1 + x + x2/2 + x3/6 + 2x4 we deduce

I(N) ≤ exp
[−mNx2/2

]
EQ

[
1

2
exp

(−2x(Q − N/2) − c(x)(Q − N/2)x2)

+ 1

2
exp

(−2x(N/2 − Q) − c(x)(N/2 − Q)x2)]m

≤ exp
[−mNx2/2

]
·EQ

[
1

2

(
1 − 2x(Q − N/2) − c(x)(Q − N/2)x2

+ (−2x(Q − N/2) − c(x)(Q − N/2)x2)2
/2

+ (−2x(Q − N/2) − c(x)(Q − N/2)x2)3
/6

+ 2
(−2x(Q − N/2) − c(x)(Q − N/2)x2)4)

+ 1

2

(
1 − 2x(N/2 − Q) − c(x)(N/2 − Q)x2

+ (−2x(N/2 − Q) − c(x)(N/2 − Q)x2)2
/2

+ (−2x(N/2 − Q) − c(x)(N/2 − Q)x2)3
/6

+ 2
(−2x(N/2 − Q) − c(x)(N/2 − Q)x2)4)]m

.

Since x ≤ 1/2 and |N/2 − Q|x ≤ 1/4 there exist two constants c2 = c2(x) = c(x)/2 +
c(x)2/32 ≤ 1 and c1 = c1(x) = 32 + 32c(x) + 12c(x)2 + 2c(x)3 + c(x)4/8 ≤ 140 such that
the last equation above can be bounded by

≤ exp
[−mNx2/2

]
EQ

[
1 + 2x2(Q − N/2)2 + c1|Q − N/2|4x4 + c2|Q − N/2|x2]m

≤ exp
[−mNx2/2

]
EQ exp

[
mx2(N − 2Q)2/2 + c1m(Q − N/2)4x4 + c2m|Q − N/2|x2]

= EQ

[
exp

(
m

2

(
x2(2Q − N)2 − Nx2)) exp

(
c1m(Q − N/2)4x4 + c2m|Q − N/2|x2)].

Using the Cauchy–Schwarz inequality twice, this implies that

I(N) ≤
√
EQ

[
exp

(
mx2N

(
(2Q − N)2/N − 1

))][
EQ

[
exp

(
c1mx4(N − 2Q)4/4

)]
·EQ

[
exp

(
2c2m|2Q − N |x2)]]1/4

=: √
(I )(II)1/4(III)1/4.
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Step 1: Bound on term (III)
Since Q ∼ B(1/2,N), since (2Q − N) is symmetric and since 2c2mx2 ≤ 1/2 we have that

(III) = EQ

[
exp

(
2c2m|2Q − N |x2)] ≤ 2EQ

[
exp

(
2c2m(2Q − N)x2)]

= 2
[
exp

(
2c2mx2) + exp

(−2c2mx2)]N ≤ 2
[
1 + 8c2

2m
2x4]N

≤ exp
(
8c2

2m
2x4N

) ≤ exp

(
C2v

4k2N

m2

)
.

(7.17)

Step 2: Term (II)
We use mN2x4 ≤ 64v4/m, (N − 2Q)2 ≤ N2 and N ≤ m/k to obtain

(II) ≤ EQ

[
exp

(
64c1v

4N/m · (N − 2Q)2/N
)]

.

Since Q ∼ B(1/2,N) the Rademacher average Z = (N − 2Q)/
√

N is sub-Gaussian with sub-
Gaussian constant at most 1. It hence satisfies (e.g., equation (2.24) in [20]) for c > 2

E exp
{
Z2/c2} ≤ 1 + 2

c2/4 − 1
≤ ec3c

−2
,

which for v small enough and the choice c−2 = 64c1v
4N/m implies for some constant C1 that

(II) ≤ exp

(
4C1v

4N

m

)
.

Step 3: Term (I )

We have that

(I ) = EQ

[
exp

(
mNx2

[
(2Q − N)2

N
− 1

])]

= E

[
exp

(
16v2Nk

m

[
1

N

(
N∑

i=1

εi

)2

− 1

])]
= E

[
exp

(
16v2k

m

∑
i �=j,i,j≤N

εiεj

)]
,

where εi are i.i.d. Rademacher random variables. If A = (aij ) is a symmetric matrix with all ele-
ments on the diagonal equal to zero, then for the Laplace transform of an order-two Rademacher
chaos Z = ∑

i,j aij εiεj we have the inequality

EeλZ ≤ exp

{
16λ2‖A‖2

F

2(1 − 64‖A‖λ)

}
, λ > 0,

see, for example, Exercise 6.9 on p. 212 in [5] with T = {A}. Now take A = (δi �=j )i,j≤N so that
we have ‖A‖ ≤ N and for v small enough 16v2kN/m ≤ 16v2 ≤ 1/128.

E

[
exp

(
16v2k

m

∑
i �=j,i,j≤N

εiεj

)]
≤ exp

(
163v4k2‖A‖2

F

2m2(1 − 1024v2k‖A‖/m)

)
≤ exp

(
163v4k2N2

m2

)
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and therefore we conclude for a constant C3 > 0 that

(I ) ≤ exp
(
C3v

4k2N2/m2). (7.18)

Step 4: Conclusion on I(N)

Combining the bounds for (I ), (II) and (III) with the bound on I(N) we have that

I(N) ≤ exp
(
C1v

4N/m
)

exp
(
C2v

4k2N/m2) exp
(
C3v

4k2N2/m2). �

Proof of Lemma 7.2. We bound the expectation by bounding it separately on two complemen-
tary events. For this, we consider the event ξ where all Nr,r ′ are upper bounded by τ := 15m/k2,
assumed to be an integer (if not replace it by its integer part plus one in the argument below).
More precisely, we define

ξ = {∀r ≤ k,∀r ′ ≤ k : Nr,r ′ ≤ τ
}
.

Note that {Nr,r ′ > τ } occurs only if the size of the intersection of the class r of partition P with
the class r ′ of partition P ′ is larger than τ . This means that at least τ elements among m/k

elements of the class r ′, must belong to the class r . The positions of these τ elements can be
taken arbitrarily within the m/k elements. For the first element, among those τ , the probability
to belong to the class r is m/k

m
. For the second element, this probability is m/k

m−1 or (m/k)−1
m−1 and so

on. All these probabilities are smaller than (m/k)/(m − m/k + 1). Therefore, we have

PN(Nr,r ′ > τ) ≤
(

m/k

τ

)(
m/k

m − m/k + 1

)τ

≤ (m/k)τ

τ ! (2/k)τ ≤ 2τ
(
m/k2)τ

τ−τ eτ ≤ e−τ ,

where we use
(
m/k
τ

) ≤ (m/k)τ

τ ! and Stirling’s formula. Using a union bound this implies that the
probability of ξ is lower bounded by 1 − k2 exp(−15m/k2).

We have on the event ξ

EN

[
1{ξ }

∏
r,r ′∈{1,...,k}2

exp
(
C3v

4N2
r,r ′k2/m2)]

≤ exp
(
C3v

4k2 · 152(m/k2)2
k2/m2)

≤ exp
(
C′v4) ≤ 1 + 2C′v4.

for C′ = 225C3 and for v small enough. Moreover, by definition of Nr,r ′ , we have that Nr,r ′ ≤
m/k and

∑
r,r ′ Nr,r ′ = m. Hence

∑
r,r ′

N2
r,r ′ ≤ km2/k2 = m2/k
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which implies that on ξC

EN

[
1
{
ξC

} ∏
r,r ′∈{1,...,k}2

exp
(
C3v

4N2
r,r ′k2/m2)]

≤ PN
(
ξC

)
exp

(
C3v

4k
) ≤ k2 exp

(−15m/k2 + C3v
4k

)
≤ k2 exp

(−3m/k2) ≤ exp
(−m/k2),

for v small enough and since k3 ≤ m. Thus, combining the bounds on ξ and ξC , we have that

EN

[∏
r,r ′

exp
(
C3v

4N2
r,r ′k2/m2)] ≤ 1 + 2C′v4 + exp

(−m/k2).
�

8. Auxiliary results

8.1. Proof of Lemma 4.1

Proof. Assume that among the first n/4 samples, we have less than n/8 entries that are sampled
twice - otherwise the result holds since n/8 ≥ n2/64m1m2 for n ≤ m1m2. Then, among the first
n/4 samples, there are at least n/8 distinct elements of B, the set of all standard basis matrices
in R

m1×m2 , that have been sampled at least once. We write S for the set of distinct elements of
{Xi}i≤n/4 and obviously have |S| ≥ n/8. Hence, by definition of the sampling scheme, we have
that

P(Xi ∈ S) ≥ n

8m1m2
, n/4 < i ≤ n/2.

Furthermore, when sampling an element from S we have to remove this element from S as we
have to use the entry that is stored in S to form a pair of entries. Hence, the probability to sample
another element from S decreases and is bounded by

P
(
Xj ∈ S \ {Xi}|Xi ∈ S

) ≥ n − 1

8m1m2

for n/4 < i < j < n/2. We deduce by induction for j > i + k and k ≤ n/2 − i − 1 that

P
(
Xj ∈ S \ {Xi, . . . ,Xi+k}|Xi, . . . ,Xi+k ∈ S

) ≥ n − k

8m1m2

which yields

P

(
N ≥ n2

64m1m2

)
≥ P

( ∑
n/4<i≤n/2

1{Xi∈S} ≥ n2

64m1m2

)

≥ P

( ∑
n/4<i≤n/2

Zi ≥ n2

64m1m2

)
,

(8.1)
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where Zi can be taken to be Bernoulli random variables with success probability

p′ = n − n2

64m1m2

8m1m2
.

Then, Bernstein’s inequality for bounded random variables (see, e.g., Theorem 3.1.7 in [20]),
(8.1) and the estimates

E

[ ∑
n/4<i≤n/2

Zi

]
≥ n2

33m1m2

which holds for n ≤ m1m2 and

Var

( ∑
n/4<i≤n/2

Zi

)
≤ n2

32m1m2

imply that

P

(
N ≥ n2

64m1m2

)
≥ 1 − P

( ∑
n/4<i≤n/2

Zi −E

[ ∑
n/4<i≤n/2

Zi

]
≤ −n2

72m1m2

)

≥ 1 − exp

(
n2

372m1m2

)
. �

8.2. Lemma 8.1

Lemma 8.1. Consider the Bernoulli model (1.3) and assume n ≥ m log(d). Then, with proba-
bility at least 1 − 2 exp(−100d) we have for any given M ∈ A(a,m) that

sup
A∈A(a,m),‖M−A‖F ≥Ca

√
(rank(A)∨1)d/p

[∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣ − p

2
‖M0 − A‖2

F

]
≤ 0,

where C = 8072.

Proof. We have, using a union bound, that

P

(
sup

A∈A(a,m),‖M−A‖F ≥Ca
√

(rank(A)∨1)d/p

[∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣

− p

2
‖M0 − A‖2

F

]
> 0

)

≤
m∑

k=1

P

(
sup

A∈A(a,k),p‖M−A‖2
F ≥C2a2kd

[∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣

− p

2
‖A − M‖2

F

]
> 0

)
.

(8.2)



Confidence sets for matrix completion 2455

Then, using a peeling argument each of the terms in (8.2) can be bounded by

∑
s∈N:C2a2kd/2≤2s<∞

P

(
sup

A∈A(a,k),2s≤p‖A−M‖2
F ≤2s+1

∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣ > 2s/2

)

≤
∑

s∈N:C2a2kd/2≤2s<∞
P

(
sup

A∈A(a,k),p‖A−M‖2
F ≤2s+1

∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣ > 2s/2

)(8.3)

with the convention that if the supremum is taken over an empty set the corresponding probability
is set equal to 0. For the cases where the supremum is not taken over an empty set, we apply
Lemma 8.2 (with choices ξij = 1, q = 2, z = 4, U = 1 and t = 2s there) and obtain for

Z(s) := sup
A∈A(a,k),p‖A−M‖2

F ≤2s+1

∣∣∣∣∑
i,j

(Bij − p)(Aij − Mij )
2
∣∣∣∣

that we can bound

P
(
Z(s) > 2s/2

) ≤ exp

( −2s

260 352a2

)
Hence, (8.3) can be upper bounded by

∑
s∈N:Ca2kd/2≤2s<∞

exp

( −2s

260 352a2

)
≤ 2 exp

(
− C2kd

260 352

)
≤ 2 exp(−101d).

The result then follows by noting that log(m) ≤ d . �

8.3. Lemma 8.2

Lemma 8.2. Consider the Bernoulli model (1.3). Suppose that ξij are independent random
variables with maxij |ξij | ≤ U and that m log(d) ≤ n. Let z > 0, q ∈ {1,2}, M ∈ A(a,m)

and 1 ≤ k0 < m be given. Finally, for C = 1009 suppose that t ∈ R+ is such that t ≥
C2z(4a)2q−2U2k0d/2 and that the supremum in

Z(t) := sup
A∈A(a,k0),p‖A−M‖2

F ≤2t

∣∣∣∣∑
i,j

[
(Bij ξij −EBij ξij )(Aij − Mij )

q
]∣∣∣∣

is not empty. Then,

P

(
Z(t) >

t√
z

)
≤ exp

( −t

322(8(2a)2q−2U2z + 505(2a)qU
√

z/32)

)
. (8.4)

Proof. We first bound EZ(t) and then apply Talagrand’s [39] inequality. Using symmetrization
(e.g., Theorem 3.1.21 in [20]) and two contraction inequalities (e.g., Theorems 3.1.17 and 3.2.1
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in [20]), we obtain that

EZ(t) ≤2UE

(
sup

A∈A(a,k0),p‖A−M‖2
F ≤2t

∣∣∣∣∑
i,j

Bij εij (Aij − Mij )
q

∣∣∣∣
)

≤2(4a)q−1UE

(
sup

A∈A(a,k0),p‖A−M‖2
F ≤2t

∣∣∣∣∑
i,j

Bij εij (Aij − Mij )

∣∣∣∣
)

≤2(4a)q−1UE

(
sup

A∈A(a,k0),p‖A−M‖2
F ≤2t

∣∣〈�R,A − A0〉
∣∣)

+ 2(4a)q−1UE
∣∣〈�R,A0 − M〉∣∣

≤8(4a)q−1U
√

k0t/pE‖�R‖ + 2(4a)q−1UE
∣∣〈�R,A0 − M〉∣∣,

(8.5)

where εij are independent Rademacher random variables, �R := (Bij εij )ij and where A0 is
an arbitrary element in A(a, k0) such that p‖A0 − M‖2

F ≤ 2t . Such an A0 exists as soon as
the supremum is not taken over an empty set. An extension of Corollary 3.6 in [1] to rectangular
matrices by self-adjoint dilation (e.g., Section 3.1. in [1]) implies (with choices ξij = Bij εij /

√
p,

bij = √
p, α = 3 and σ = max(maxj

√∑m1
i=1 b2

ij ,maxi

√∑m2
j=1 b2

ij ) ≤ √
pd there) that

E‖�R‖ ≤ e2/3(2
√

pd + 42
√

log(d)
) ≤ 86

√
pd

since m log(d) ≤ n. For the second term in (8.5), we have

E
∣∣〈�R,A0 − M〉∣∣ ≤ (

Var
(〈�R,A0 − M〉))1/2 = (

p‖A0 − M‖2
F

)1/2 ≤ √
2t .

Hence, for C2z(4a)2q−2U2k0d/2 ≤ t and since C = 1009 we have that

EZ(t) ≤ 688(4a)q−1U
√

k0td + 2(4a)q−1U
√

2t ≤ 31t/(32
√

z). (8.6)

We now make use of the following inequality due to Talagrand [39], which in the current form
with explicit constants can be obtained by inverting the tail bound in Theorem 3.3.16 in [20].

Theorem 8.1. Let (S,S) be a measurable space and let n ∈ N. Let Xk , k = 1, . . . , n be inde-
pendent S-valued random variables and let F be a countable set of functions f = (f1, . . . , fn) :
Sn → [−K,K]n such that Efk(Xk) = 0 for all f ∈F and k = 1, . . . , n. Set

Z := sup
f ∈F

n∑
k=1

fk(Xk).

Define the variance proxy

Vn := 2KEZ + sup
f ∈F

n∑
k=1

E
[(

fk(Xk)
)2]

.
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Then, for all t ≥ 0,

P(Z −EZ ≥ t) ≤ exp

( −t2

4Vn + (9/2)Kt

)
.

The functional A → ‖A − M‖2
F is continuous on the compact set of matrices {A ∈ A(a, k0) :

‖A − M‖2
F ≤ 2t}, hence by continuity and compactness the supremum is attained over a count-

able subset. Thus, we may apply Talagrand’s inequality to Z(t). We have for our particular case,
since supf ∈F |f (X)| = supf ∈{F∪{−F}} f (x), that

Xij = Bij ξij −EBij ξij , S = [−2U,2U ],
F = {

f : Sm1×m2 → [−2(2a)qU,2(2a)qU
]m1×m2, fij (Xij ) = (−1)lXij (Aij − Mij )

q,

A ∈ A(a, k0),p‖A − M‖2
F ≤ 2t, l ∈ {0,1}}

and moreover

sup
(A,l),A∈A(a,k0),p‖A−M‖2

F ≤2t,l∈{0,1}

∑
i,j

E
[(

(−1)l(Bij ξij −EBij ξij )(Aij − Mij )
q
)2]

≤ (2a)2q−2 sup
A∈A(a,k0),p‖A−M‖2

F ≤2t

∑
i,j

Var(Bij ξij )(Aij − Mij )
2

≤ (2a)2q−2U2 sup
A∈A(a,k0),p‖A−M‖2

F ≤2t

∑
i,j

p(Aij − Mij )
2 ≤ 2(2a)2q−2U2t.

Therefore, using our previous estimate in (8.6) for EZ(t) as well, we have for the variance proxy
Vm1m2 that

Vm1m2 ≤ 2(2a)2q−2U2t + 31(2a)qUt/(8
√

z).

Hence, using (8.6) and Talagrand’s inequality, we obtain

P

(
Z(t) >

t√
z

)
≤ P

(
Z(t) −EZ(t) >

t

32
√

z

)

≤ exp

( −t

322(8(2a)2q−2U2z + 505(2a)qU
√

z/32)

)
. �

8.4. An oracle estimator in the Bernoulli model

Here we prove that the soft-thresholding estimator proposed by Koltchinskii et al. [29] for the
trace-regression setting fulfills the oracle inequality (2.8) in the Bernoulli model.

Their estimator is defined as

M̂ ∈ arg min
A∈Rm1×m2

( ‖A‖2
F

m1m2
− 2

n
〈Y,A〉 + λ‖A‖∗

)
, (8.7)
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where λ is a tuning parameter which we choose as

λ = 3

(
3
√

2σ + √
2CU√

mn

)
, (8.8)

where C > 0 is the constant in Corollary 3.12 in [1].

Proposition 8.1. Consider the Bernoulli model (1.3). Assume n ≥ m log(d) and that Assump-
tion 1.1 is fulfilled. Let M̂ be given as in (8.7) with a choice of λ as in (8.8). Then, with PM0,σ -
probability of at least 1 − 1/d we have for any M0 ∈A(a,m) that

‖M̂ − M0‖2
F

m1m2
≤ inf

A∈Rm1×m2

(‖M0 − A‖2
F

m1m2
+ C

d rank(A)

n

)

≤ inf
k∈{0,...,m}

(‖M0 −A(a, k)‖2
F

m1m2
+ C

dk

n

)

for a constant C = C(a,σ,U) > 0.

Proof. Going through the proof of Theorem 2 and Corollary 2 in [29] line by line, we see that
we only need to bound the spectral norm of the matrix

� := 1

n
(Bij εij )i,j

by λ/3 with high probability. Using self-adjoint dilation to generalize Corollary 3.12 and Re-
mark 3.13 in [1] for rectangular matrices (with choices ε = 1/2, σ̃∗ = U and

σ̃ = max

(
max

j

√√√√ m1∑
i=1

Eσ B2
ij ε

2
ij ,max

i

√√√√ m2∑
j=1

Eσ B2
ij ε

2
ij

)
= σ

√
n/m

there), we obtain

Pσ

(∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥ > 3
√

2σ

√
n

m
+ t

)
≤ d exp

(
− −t2

C1U2

)

for a constant C1 > 0. Choosing t = √
2C1U

√
n
m

and using that n ≥ m log(d) yields that �

occurs with Pσ -probability at least 1 − 1/d . �
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