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We provide a general result for bounding the difference between point probabilities of integer supported
distributions and the translated Poisson distribution, a convenient alternative to the discretized normal. We
illustrate our theorem in the context of the Hoeffding combinatorial central limit theorem with integer
valued summands, of the number of isolated vertices in an Erdős–Rényi random graph, and of the Curie–
Weiss model of magnetism, where we provide optimal or near optimal rates of convergence in the local
limit metric. In the Hoeffding example, even the discrete normal approximation bounds seem to be new.
The general result follows from Stein’s method, and requires a new bound on the Stein solution for the
Poisson distribution, which is of general interest.

Keywords: approximation error; Curie–Weiss model; Erdős–Rényi random graph; Hoeffding
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1. Introduction

The local limit theorem for general sums W of independent integer valued random variables be-
gan with the seminal work of Essen [19], and is now well understood [29], Chapter VII. For sums
of dependent random variables, however, much less is known. A key idea, introduced by McDon-
ald [28], is to prove local theorems by using a combination of the corresponding (global) central
limit theorem, together with an a priori estimate of the smoothness of the distribution L(W)

being approximated. Röllin [30] used this strategy, combined with Stein’s method, to develop a
systematic approach to approximation by the discrete normal distribution, not only locally, but
also globally with respect to the total variation distance.

In both [28] and [30], the smoothness estimates are derived by finding a suitable large col-
lection of conditionally independent Bernoulli random variables embedded in the construction
of W . In [34], a fundamentally different technique was discovered, which is instead based on
finding a suitable exchangeable pair in the spirit of Stein [36], Chapter I, Lemma 3. They com-
bined it with Landau–Kolmogorov inequalities to give local limit approximations in a variety of
examples, but often with less than optimal rates. In this paper, we use Stein’s method and the
smoothness approach to give a general local limit approximation theorem for settings in which
dependence can be described in terms of an (approximate) Stein coupling as given in [13]. This
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formulation is very flexible, and includes exchangeable pair, local dependence and size-bias set-
tings as particular instances. In the examples that we consider, our approach yields bounds that,
when expressed as functions of σ 2 := VarW , are no worse than a log factor from the optimal
rate of O(σ−2). Our general bound is expressed in terms of quantities that typically arise when
using Stein’s method in the central limit context. As a result, we are able to give bounds for the
total variation error in discrete normal approximation as well as the local limit bounds with no
extra effort.

1.1. Translated Poisson distribution

As in [31], we use translated Poisson distributions as approximating family instead of discretised
normal distributions – Lemma 1.1 justifies this to the accuracy of interest to us. We say that the
random variable Z has the translated Poisson distribution and write Z ∼ TP(μ,σ 2) if Z − s ∼
P(σ 2 + γ ), where

s := ⌊
μ − σ 2⌋, γ := μ − σ 2 − ⌊

μ − σ 2⌋, (1.1)

and where P(λ) denotes the Poisson distribution with mean λ. Note that EZ = μ and σ 2 ≤
VarZ ≤ σ 2 + 1. The translated Poisson distribution is a Poisson distribution, but translated by
an integer chosen so that both its mean and variance closely match prescribed values μ and σ 2.
The following lemma say that the translated Poisson distribution is an appropriate substitute for
the discretized normal distribution. Its proof follows easily from the classical local central limit
theorem with error.

Lemma 1.1. There exists a constant C > 0 such that, for all μ ∈ R and σ 2 ≥ 1,

sup
n∈Z

∣∣∣∣TP
(
μ,σ 2){n} − 1√

2πσ 2
exp

(
− (n − μ)2

2σ 2

)∣∣∣∣ ≤ C

σ 2
.

We also note some basic properties of the translated Poisson distributions. Define the following
“smoothness” measure of an integer valued distribution,

Sl

(
L(W)

) := sup
h:‖h‖≤1

∣∣E�lh(W)
∣∣, l ≥ 1, (1.2)

where � denotes the first difference operator �g(k) := g(k+1)−g(k). Variations of the smooth-
ing terms (1.2) frequently appear in integer supported distributional approximation results; see,
for example, [5,24,32] and [20].

The next result shows the typical smoothness expected for approximately discretized normal
distributions. It is shown in [34], Lemma 4.1.

Lemma 1.2. For each k ≥ 1 there exists a constant C(k) such that, for all μ ∈R and σ 2 ≥ 1,

Sk

(
TP

(
μ,σ 2)) ≤ C(k)

σ k
. (1.3)
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1.2. Stein couplings

Our approximations are designed for random variables W that form part of a Stein coupling.
Following Chen and Röllin [13], we say that the random variables (W,W ′,G,R) with EW = μ

form an approximate Stein coupling if

E
[
G

(
f

(
W ′) − f (W)

)] = E
[
(W − μ)f (W)

] +E
[
Rf (W)

]
(1.4)

for all f such that the expectations exist. If R = 0 almost surely, we call (W,W ′,G) a Stein
coupling. Some examples of Stein couplings well used in Stein’s method are the following:

Local dependence. Let W = ∑n
i=1 Xi , with EXi = μi for 1 ≤ i ≤ n. Suppose that, for each i,

there is Ai ⊂ {1, . . . , n} such that Xi is independent of (Xj )j /∈Ai
. Then, for I a random index,

uniformly distributed on {1, . . . , n} and independent of (Xi)
n
i=1,

(
W,W ′,G

) :=
(

W,W −
∑
j∈AI

Xj ,−n(XI − μI )

)
(1.5)

is a Stein coupling.
Size bias. If Ws has the size bias distribution of W and EW = μ, then(

W,W ′,G
) := (

W,Ws,μ
)

is a Stein coupling.
Exchangeable pairs. If (W,W ′) is an exchangeable pair satisfying the linearity condition

E
[
W ′ − W |W ] = −a(W − μ) + aR, (1.6)

then (
W,W ′,G,R

) :=
(

W,W ′, W ′ − W

2a
,R

)
is an approximate Stein coupling.

Exchangeable pairs, one-sided version. If (W,W ′) is an exchangeable pair that satisfies (1.6),
then (

W,W ′,G,R
) :=

(
W,W ′, W ′ − W

a
I
[
W ′ − W > 0

]
,R

)
(1.7)

is an approximate Stein coupling.

Note also that, for (W,W ′,G,R) an approximate Stein coupling,

E
[
G

(
W ′ − W

)] = σ 2 +E
[
R(W − μ)

]
, (1.8)

which can be seen by taking f (x) = x and f (x) = 1 (to find ER = 0) in the defining rela-
tion (1.4). In particular, if R = 0 almost surely, then E[G(W ′ − W)] = σ 2.
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2. Main results and applications

We bound the error in the approximation by the translated Poisson distribution of the distribu-
tions L(W) of integer valued random variables with finite variances that can be represented as
the W in an (approximate) Stein coupling. Our bounds are expressed in terms of the moments
of W and of expectations involving the quantities G and D := W ′ − W , and the conditional
smoothness coefficients Sl(L(W |F)) for some appropriate associated sigma-field F . Exchange-
able pairs, size-biasing, and local dependence appear ubiquitously when using Stein’s method for
distributional approximation and concentration inequalities, so (1) many of the terms appearing
in our bound can be fruitfully bounded using well-established techniques, and (2) new techniques
developed here for bounding commonly appearing terms will prove useful in other applications
of Stein’s method.

2.1. An abstract bound

In order to express the accuracy of translated Poisson approximation, we define the total variation
metric as

dTV
(
L(X),L(Y )

) := sup
A⊆Z

∣∣P[X ∈ A] − P[Y ∈ A]∣∣,
as well as a metric to capture the local differences as

dloc
(
L(X),L(Y )

) := sup
a∈Z

∣∣P[X = a] − P[Y = a]∣∣.
We can now state our main general approximation result, which is proved in Section 3.

Theorem 2.1. Let (W,W ′,G,R) be an approximate Stein coupling with W and W ′ integer
valued, EW = μ and Var(W) = σ 2. Set D := W ′ − W , and let F1 and F2 be sigma-algebras
such that W is F1-measurable and such that (G,D) is F2-measurable. Define

� := ∣∣E[GD|F1] −E[GD]∣∣, ϒ := E
[∣∣GD(D − 1)

∣∣S2
(
L(W |F2)

)]
.

Then

dTV
(
L(W),TP

(
μ,σ 2)) ≤ E�

σ 2
+ 2

√
ER2

σ
+ 2(ϒ + 1)

σ
, (2.1)

and

dloc
(
L(W),TP

(
μ,σ 2)) ≤ E�

σ 3
√

2e
+ E[�|W − μ|]

σ 4
+ sup

a∈Z
E{�I[W = a]}

σ 2

+
√
ER2

σ 2

(
2 + 1√

2e
+ σ sup

a∈Z
P(W = a)

)
+ 2(ϒ + 1)

σ 2
.

(2.2)
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Note that we have distinguished � and ϒ as the significant quantities in the bound, but that �

is random while ϒ is not.

Remark 2.2. If (W,W ′) is an exchangeable pair such that (1.6) holds, and if we assume in
addition that D ∈ {−1,0,+1}, then we can use the coupling (1.7); in this case, � and ϒ simplify
to

� = 1

a

∣∣P(D = 1|F1) − P(D = 1)
∣∣ and ϒ = 0. (2.3)

2.2. Towards a concrete bound

The bounds in Theorem 2.1 are still rather abstract, and it may not be obvious how to handle
the individual terms in concrete applications. We now show that, by making a natural additional
assumption, the terms appearing in (2.1) and (2.2) can be made more manageable.

To this end, we assume that, for some κ > 0, for some integer k ≥ 0 and for some non-negative
random variable T , we have

� ≤ σκ

k∑
j=0

( |W − μ|
σ

)j

+ T . (2.4)

This assumption appears naturally in many applications, and it is worthwhile emphasising that
it is weaker than similar conditions appearing in the literature around Stein’s method, such as
Condition (3.3) in Theorem 3.1 of Chen, Fang and Shao [12] or the condition in Theorem 3.11
of Röllin [31]. We now have the following easy corollary of Theorem 2.1.

Corollary 2.3. Under the conditions of Theorem 2.1 and assuming in addition (2.4), we have

dTV
(
L(W),TP

(
μ,σ 2)) ≤ κ

σ

k∑
j=0

E|W − μ|j
σ j

+ ET

σ 2
+ 2

√
ER2

σ
+ 2(ϒ + 1)

σ
(2.5)

and

dloc
(
L(W),TP

(
μ,σ 2))

≤ 2κ

σ 2

k+1∑
j=0

E|W − μ|j
σ j

+ κ

σ 2
sup
a∈Z

(
P(W = a)

k∑
j=0

|a − μ|j
σ j−1

)
(2.6)

+ 2
√
ET 2

σ 3
+ supa∈ZE[T I[W = a]]

σ 2
(2.7)

+
√
ER2

σ 2

(
3 + σ sup

a∈Z
P(W = a)

)
(2.8)

+ 2(ϒ + 1)

σ 2
. (2.9)
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Assumption (2.4) is always satisfied by taking T = � and an empty sum, so its real use is
if T is more easily managed than � – for instance, if T = 0 almost surely. In what follows,
we take assumption (2.4) to be satisfied, and consider the bounds (2.6)–(2.9) in turn. We tacitly
assume throughout the following discussion that we have a sequence of integer valued random
variables W = Wm with means μ = μm and whose variances σ 2 = σ 2

m grow to infinity with m;
order estimates are to be understood as m → ∞, and the dependence on m is suppressed in the
notation.

First, we expect E{|σ−1(W − μ)|k+1} to be bounded, so that the first term of (2.6) is of our
target order O(σ−2). For the second term of (2.6), we have the following lemma.

Lemma 2.4. Write δ := dTV(L(W),TP(μ,σ 2)) and assume that for some 1/2 < α ≤ 1, we have

δ = O
(
σ−α

)
and S2

(
L(W)

) = O
(
σ−1−α

)
.

Then, for any � ≥ j ≥ 1,

sup
a∈Z

P(W = a)
|a − μ|j

σ j−1
≤ O(1) +E

{( |W − μ|
σ

)�}
σ 1/2+α−(2α−1)�/(2j)

and

sup
a∈Z

P(W = a) = O
(
σ−1).

Proof. Recall the definitions s = 
μ − σ 2� and γ = μ − σ 2 − s, and let Pλ(·) := P(λ){·}. First
note that

sup
a∈Z

P(W = a) ≤ δ + O
(
σ−1),

which follows easily from the definition of total variation, and because supa∈ZPλ(a) = O(λ−1/2)

as λ → ∞, where λ = σ 2 + γ .
For the first assertion, we first bound P(W = a) for a “near” μ. Note that the second assertion

follows from (2.10) below, used in this argument, and the last sentence of the previous paragraph.
Now, [34], Theorem 2.2(i) with l = 2, m = 1, and Lemma 3.1, implies that for some constant C,

dloc
(
L(W),TP

(
μ,σ 2)) ≤ CdTV

(
L(W),TP

(
μ,σ s

))1/2(
S2

(
L(W)

) + S2
(
TP

(
μ,σ 2)))1/2

,

which, with (1.3) and the hypotheses of the lemma, implies

dloc
(
L(W),TP

(
μ,σ 2)) = O

(
σ−1/2−α

)
.

Hence ∣∣P(W = a) −Pσ 2+γ (a − s)
∣∣ = O

(
σ−1/2−α

)
, (2.10)

so that

P(W = a)
|a − μ|j

σ j−1
≤ |a − μ|j

σ j−1/2+α
+Pσ 2+γ (a − s)

|a − μ|j
σ j−1

.



1082 A.D. Barbour, A. Röllin and N. Ross

Combining this inequality with the observation that

sup
λ≥1

sup
r∈Z

Pλ(r)
|r − λ|j
λ(j−1)/2

< ∞,

and noting that, for r = a − s and λ = σ 2 + γ ,

r − λ = a − (
μ − σ 2 − γ

) − (
σ 2 + γ

) = a − μ,

it follows that P(W = a){σ−(j−1)|a − μ|j } = O(1) for σ−1|a − μ| ≤ σ (2α−1)/(2j).
For values of a “far” from μ, that is, σ−1|a − μ| > σ(2α−1)/(2j), use Markov’s inequality to

give

|a − μ|j
σ j−1

P(W = a) ≤ σ |a − μ|j
σ j

P

( |W − μ|
σ

≥ |a − μ|
σ

)

≤ σ

∣∣∣∣a − μ

σ

∣∣∣∣−(l−j)

E

{( |W − μ|
σ

)�}

≤ σE

{( |W − μ|
σ

)�}
σ (2α−1)(j−�)/2j ,

concluding the proof. �

Remark 2.5. Thus, if (2.4) and the hypotheses of Lemma 2.4 are satisfied, and if E|W − μ|K =
O(σK) for some K ≥ k(1+2α)/(2α −1), with α as in Lemma 2.4, then the second term of (2.6)
is of order O(σ−2).

We next show that, if T is concentrated around zero, then the two terms of (2.7) can be suitably
bounded.

Lemma 2.6. Suppose that the nonnegative random variable T = Tm satisfies

E
(
σ−1T I

[
σ−1T ≥ t

]) ≤ ε(t), t ≥ 1 (2.11)

for some ε(t) with
∫ ∞

1 ε(t) dt < K < ∞, and K is the same for all m. Then ET 2 = O(σ 2).
If (2.11) is satisfied, then for any k ∈ Z and t ≥ 1,

E
[
T I[W = k]] ≤ σε(t) + tσ sup

a∈Z
P(W = a).

Proof. By a standard calculation, ET 2 ≤ σ 2(1 + ∫ ∞
1 ε(t) dt). For the second assertion, note that

E
[
T I[W = k]] ≤ E

{
T I[T ≥ tσ ]} + tσP(W = k).

The former term is bounded by σε(t) and the latter by tσ supa∈Z P(W = a). �
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Remark 2.7. For example, suppose that supa∈Z P(W = a) = O(σ−1). Then if ε(t) = 0
for all t ≥ t0, for some t0 < ∞, we have a bound for (2.7) of the ideal order O(σ−2).
If, for some constant c, we have ε(t) ≤ e−t2/2c , then the choice t = √

2c logσ gives
supk E[T I[W = k]] = O(

√
logσ), and a bound for (2.7) of order O(σ−2√logσ). If ε(t) ≤ e−t/c,

then the choice t = c logσ gives a bound for (2.7) of order O(σ−2 logσ). Note also that, under
the conditions of Lemma 2.4,

ET P[W = k] ≤
√
ET 2P[W = k] = O(1),

and so, in (2.7), supa E[T I[W = a]] can be replaced by

sup
a

∣∣Cov
(
T , I[W = a])∣∣ + O(1).

For the remaining terms in Corollary 2.3, if ER2 = O(1), then it is easy to see that (2.8) is
of order O(σ−1 supa∈Z P(W = a) + σ−2). This leaves ϒ , which is handled using the methods
discussed in [34] and illustrated in the applications below. We collect the results above in the
following corollary.

Corollary 2.8. Assume the notation and hypotheses of Theorem 2.1 and suppose that (2.4) is
satisfied for some choice of κ , k and T .

(i) If E{(σ−1|W − μ|)k} = O(1), ET = O(σ ) and ER2 = O(1), then it follows that

δ := dTV
(
L(W),TP

(
μ,σ 2)) = O

(
σ−1(1 + ϒ)

)
.

(ii) If ER2 = O(1) and, for some 1/2 < α ≤ 1,
(1) δ = O(σ−α) and S2(L(W)) = O(σ−1−α);
(2) E{(σ−1|W − μ|)K } = O(1) for some K ≥ k(1 + 2α)/(2α − 1);
(3) T/σ is almost surely uniformly bounded,

then

dloc
(
L(W),TP

(
μ,σ 2)) = O

(
σ−2(ϒ + 1)

)
. (2.12)

If (3) is replaced by
(3a) supa|Cov(T , I[W = a])| is bounded,
then (2.12) still holds. If (3) is replaced by
(3b) ε(t) of Lemma 2.6 has an exponential tail,
then the term O(σ−2(ϒ + 1)) has to be replaced by O(σ−2(ϒ + 1) logσ) in the bound
in (2.12).

Note that the value of α used in (1) and (2) does not appear in the error estimate; the as-
sumptions are there to ensure that enough moments of σ−1|W − μ| are finite. However, if the
largest α for which S2(L(W)) = O(σ−1−α) is such that α < 1, then, even in the ideal case
in which |GD(D − 1)| = O(σ 2) almost surely, the quantity ϒ is only guaranteed to be of or-
der O(σ 1−α), yielding a bound in (2.12) of order O(σ−1−α), and not of the ideal order O(σ−2).
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Remark 2.9 (Sums of independent random variables). If Wn = ∑n
i=1 Xi , where the Xi are

independent integer valued random variables such that
∑n

i=1 E|Xi −EXi |3 = O(σ 2
n ), and which

satisfy an aperiodicity condition, then Theorems 4 and 5 in Chapter VII of [29] imply that the
error made in the local limit approximation by the discrete normal (and hence the translated
Poisson) is of best order σ−2

n . If we assume the somewhat stronger aperiodicity assumption,
that σ−2

n

∑n
i=1(1 − dTV(L(Xi),L(Xi + 1))) is bounded away from zero, then it follows that

S2(L(Wn)) = O(σ−2
n ) and that ϒ is also of the correct order for good rates, so that the only

problem term, in the decomposition (2.4), is supk∈ZE[T I[W = k]]. Using our approach, in con-
junction with the local dependence Stein coupling at (1.5) with Ai = {i}, we deduce a T = � of
the form ∣∣∣∣∣

n∑
i=1

Xi(Xi − μi) − σ 2
n

∣∣∣∣∣,
and, as in Corollary 2.8, this together with Lemma 2.6 leads to bounds that depend strongly on
the tail behaviour of Xi . For example, if the Xi have finite (2j)th moment for some j ≥ 2, then
by Hölder’s and Rosenthal’s inequalities,

sup
k∈Z

E
[
T I[W = k]] ≤ (

ET j
)1/j sup

k∈Z
(
P(W = k)

)(j−1)/j = O
(
n−1/(2j)

)
,

with a constant depending on j , implying an upper bound on the local metric of sub-optimal or-
der n−1+1/(2j). Thus a direct application of our approach, which can be effective in much more
challenging applications, is sub-optimal in this classical case. As it happens, a small modification
of the proof of Lemma 3.5 below, adding and subtracting GD�f (W ′) rather than GD�f (W)

after (3.8), eliminates the problem term, and leads to an approximation error of the same asymp-
totic order as that given in [29], Theorems 4 and 5 in Chapter VII, albeit under our stronger
aperiodicity assumption. This is essentially the approach taken by Röllin [32], Theorem 2.1.

2.3. Hoeffding permutation statistic

Let (aij )1≤i,j≤n be an array of integers, and define

W :=
n∑

i=1

aiρi
,

where ρ is a uniformly chosen random permutation. Defining

ai+ :=
n∑

j=1

aij , a+j :=
n∑

i=1

aij , a++ :=
n∑

i,j=1

aij ,

âij := aij − ai+
n

− a+j

n
+ a++

n2
,
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we have

μ := EW = 1

n
a++ and σ 2 := VarW = 1

n − 1

∑
i,j

â2
ij . (2.13)

We are interested in the accuracy of local approximation to L(W) by TP(μ,σ 2).
Central limit theorems for W have a long history going back to [37] and [25]. More recent

refinements obtaining Berry–Esseen error bounds under various conditions on the matrix a were
derived by [7,11,21]; see references of the last for an up to date history.

Our main results are in terms of asymptotic rates as n → ∞ for a sequence of such matri-
ces a(n), assuming that, for suitable positive constants A1, α0, α1, and α2,

• Assumption A1. max1≤i,j≤n |a(n)
ij | ≤ A1 < ∞ and n−1(σ (n))2 ≥ (α0A1)

2 > 0 for all n.
• Assumption A2. There exists a set I := {{il1, il2},1 ≤ l ≤ n1} of n1 ≥ α1n disjoint pairs

of indices in [n] such that, for {i1, i2} ∈ I , there exists a set J (i1, i2) of n2 ≥ α2n
2 pairs

(clearly not disjoint) of indices {j1, j2} such that

|ai1,j1 + ai2,j2 − ai1,j2 − ai2,j1 | = 1.

We also assume without loss that |μ| ≤ n/2, by replacing aij by aij +m for all i, j , for a suitably
chosen integer m. Assumption A1 is a standard simplifying assumption when studying the Ho-
effding permutation statistic and something like Assumption A2 is necessary to ensure that W

is not concentrated on a sub-lattice of Z. For instance, if all the aij are even, the distribution
of W lies on the lattice 2Z, and then S2(L(W)) = 4; so some additional conditions on the ma-
trix a are needed to ensure smoothness. Our methods still apply if either of these assumptions
are weakened, but at the cost of worse bounds or greater technicality.

Our main result is as follows.

Theorem 2.10. Let a(n) be a sequence of matrices satisfying Assumptions A1 and A2 and
let W = Wn be the Hoeffding permutation statistic defined above. Then,

dTV
(
L(W),TP

(
EW,Var(W)

)) = O
(
σ−1),

dloc
(
L(W),TP

(
EW,Var(W)

)) = O

(√
log(σ )

σ 2

)
.

2.4. Isolated vertices in the Erdős–Rényi random graph

We show a local limit bound with optimal rate for W defined to be the number of isolated vertices
in an Erdős–Rényi graph on n vertices with edge probability p ∼ λ/n for some λ > 0. Note that

μ := EW = n(1 − p)n−1; σ 2 := Var(W) = n(1 − p)n−1[1 + (np − 1)(1 − p)n−2],
and so in the regime p ∼ λ/n, we have μ ∼ ne−λ and σ 2 ∼ ne−λ{1 + (λ − 1)e−λ} are of strict
order n.
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Studying degree and subgraph count statistics to understand the structure of Erdős–Rényi
graphs has a long history, and is still an active area to this day; for example, [27] and [33].
A number of works derive central limit theorems with error rates for isolated degrees. Error rates
for smooth test function metrics are provided by Barbour, Karoński and Ruciński [4] and Ko-
rdecki [26]; for Kolmogorov distance by [22]; and for total variation distance (to a discretized
normal) by [20]. We show the following optimal local limit theorem that strengthens the rate
provided in [34].

Theorem 2.11. Let W = Wn be the number of isolated vertices in an Erdős–Rényi graph on n

vertices with edge probability p ∼ λ/n. Then

dloc
(
L(W),TP

(
EW,Var(W)

)) = O

(√
log(σ )

σ 2

)
.

2.5. Magnetization in the Curie–Weiss model

The Curie–Weiss model on n sites is given by a Gibbs measure on {−1,+1}n having param-
eters β > 0 and h ∈ R. The random vector S = (S1, . . . , Sn) ∈ {−1,+1}n has this distribution
if

P
(
S = (s1, . . . , sn)

) = Z−1
β,h exp

{
β

n

∑
1≤i<j≤n

sisj + h

n∑
i=1

si

}
. (2.14)

The magnetization W = ∑n
i=1 Si of the system has been the object of intense study over the last

forty years or more; see [16], Section IV.4. By symmetry, we only need consider h ≥ 0.
We first state the law of large numbers for W/n, which relies on the following equation for

fixed β > 0, h ≥ 0:

m = tanh(βm + h). (2.15)

For h > 0, there is only one positive solution mh satisfying (2.15). If h = 0 and 0 < β < 1,
m0 = 0 is the only solution to (2.15).

Lemma 2.12 ([16], Theorem IV.4.1). If S is distributed as (2.14) for some h > 0 and β > 0 or
for h = 0 and 0 < β < 1, and if W = ∑n

i=1 Si , then as n → ∞,

W

n

prob−→ mh.

We then have the following distributional convergence result from [17], Theorem 2.1; see
also [18].

Theorem 2.13. If S is distributed as (2.14) for some h > 0 and β > 0 or for h = 0 and 0 < β < 1,
and if W = ∑n

i=1 Si , then as n → ∞,

L
(

W − nmh√
n

)
→ N

(
0,

1 − m2
h

1 − β + βm2
h

)
.
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Above the critical temperature, a convergence rate of order O(n−1/2) in Kolmogorov distance
is a consequence of Barbour [2], Theorem 3 and pp. 602–605; see also [10] and [15]. Concentra-
tion inequalities are derived in [8] and [9]; total variation and local limit bounds (that are weaker
than those obtained below) are given in [34]. Note also that, for μn := EW and σ 2

n := Var(W),
μn ∼ nmh and σ 2

n ∼ n(1 − m2
h)/(1 − β + βm2

h) as n → ∞.
Our main result for the magnetization is a sharp rate of convergence in the local limit metric.

Note that W sits on a lattice of span 2, so we ultimately shift and scale to put it on {0, . . . , n}.

Theorem 2.14. Let S be distributed as (2.14) for some h > 0 and β > 0 or for h = 0 and 0 <

β < 1, W = Wn = ∑n
i=1 Si , and W̃ := (W + 1

2 {1 − (−1)n})/2. Then in the notation above,

dTV

(
L(W̃ ),TP

(
nmh

2
,

n(1 − m2
h)

4(1 − β + βm2
h)

))
= O

(
σ−1

n

) = O
(
n−1/2),

dloc

(
L(W̃ ),TP

(
nmh

2
,

n(1 − m2
h)

4(1 − β + βm2
h)

))
= O

(
σ−2

n

) = O
(
n−1).

The remainder of the paper is devoted to proofs of the results above. Theorem 2.1 is proved in
the next section, and application statements are proved in Section 4.

3. Proof of Theorem 2.1

3.1. Preliminaries

To express the accuracy of approximation by a translated Poisson distribution using Stein’s
method, we need the solutions (gA)A⊂Z+ of the Poisson Stein equation

λ�gA(i) − (i − λ)gA(i) = I[i ∈ A] −P(λ){A}, i ≥ 0; gA(i) = 0, i ≤ 0. (3.1)

For approximation by TP(μ,σ 2), defining s and γ as in (1.1), we take λ := σ 2 + γ and de-
fine fA : Z → R by fA(i) := gA(i − s). Where there is no likelihood of confusion, we write fa

for f{a}. Then the following representations of the accuracy of translated Poisson approximation
to an integer valued random variable W were shown in [31], (3.18).

Proposition 3.1. Let W be an integer valued random variable with mean μ and variance σ 2,
and let fA be defined as above. Then

dTV
(
L(W),TP

(
μ,σ 2)) ≤ sup

A⊆Z+

∣∣Eσ 2�fA(W) − (W − μ)fA(W)
∣∣ + 2σ−2,

dloc
(
L(W),TP

(
μ,σ 2)) ≤ sup

a∈Z+

∣∣Eσ 2�fa(W) − (W − μ)fa(W)
∣∣ + 2σ−2.

These inequalities form the basis of our approximations and leveraging them requires detailed
understanding of the functions fA. Though much is known about these functions due to their
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role in Stein’s method for Poisson approximation (see, for example, [3]), our results require new,
finer properties potentially of interest in other Poisson approximation settings; see Lemma 3.3.

3.2. Properties of the solutions of the Poisson Stein equation

We first review the known bounds on gA.

Lemma 3.2 ([3]). Let A ⊆ Z
+, and let gA be as in (3.1). Then

‖gA‖ ≤ 1

λ1/2
and ‖�gA‖ ≤ 1 − e−λ

λ
≤ 1

λ
.

If A = {a} for some a ∈ Z
+, then

‖ga‖ ≤ 1

λ
.

Note that fA satisfies the same bounds as does gA, but with λ = σ 2 + γ .
The bound on ‖ga‖ is smaller than the general bound on ‖gA‖ for A ⊂ Z

+ by a factor of λ−1/2.
This suggests that the same might be true for a bound on ‖�ga‖, but it is not the case: In
fact, �ga(a) is typically comparable to λ−1 and is not of order O(λ−3/2), as might have been
hoped. In the remainder of this section, we establish non-uniform bounds on |�ga(k)|, showing
that |�ga(k)| is nonetheless ‘typically’ of order O(λ−3/2). This enables us to make the sharper
local limit approximations of the paper.

Let Uj := {0, . . . , j − 1} and Pλ(·) := P(λ){·}. Then the solution ga of (3.1) with A = {a} can
be written as

ga(k) = λ−keλ(k − 1)!
{
Pλ(a)Pλ

(
Uc

k

)
, k ≥ a + 1,

−Pλ(a)Pλ(Uk), 1 ≤ k ≤ a.
(3.2)

We use this expression to prove the following bound.

Lemma 3.3. Let ga be as defined at (3.2). Then, for k ≥ 0,∣∣�ga(k)
∣∣ ≤ 1

λ3/2
√

2e

(
I[k > a, k ≥ λ] + I[k < a, k < λ])

+
(Pλ(a)

a + 1
+ (λ − k)

λ2

)
I[a < k < λ]

+
(Pλ(a)

λ
+ (k − λ)

λ2

)
I[λ ≤ k < a]

+ 1

λ
I[k = a]

≤ 1

λ3/2
√

2e
+ |λ − k|

λ2
+ 1

λ
I[k = a].
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Proof. The second bound follows from the first by noting that Pλ(a)/(a + 1) = λ−1Pλ(a + 1);
here and below we use the bound supk≥0 Pλ(k)

√
λ ≤ (2e)−1/2, from [3], Proposition A.2.7.

The proof of the first bound consists of separate arguments in a number of cases, depending
on the relative magnitudes of λ, k and a.

Case 1: Assume that k ≥ a + 1. Then

�ga(k) = λ−k−1eλ(k − 1)!Pλ(a)
(
kPλ

(
Uc

k+1

) − λPλ

(
Uc

k

))
= λ−k−1eλ(k − 1)!Pλ(a)

(
k

∞∑
j=k+1

e−λλj

j ! −
∞∑

j=k+1

e−λλj

(j − 1)!

)

= λ−k−1eλ(k − 1)!Pλ(a)

∞∑
j=k+1

e−λλj

j ! (k − j).

We now use the fact that

Ik(λ) := 1

k!
∫ λ

0
tke−t dt =

∞∑
j=k+1

e−λλj

j ! = −e−λλk

k! + Ik−1(λ)

to give

�ga(k) = λ−k−1eλ(k − 1)!Pλ(a)
{
kIk(λ) − λIk−1(λ)

}
= −Pλ(a)

k

(
1 + eλλ−k−1(λ − k)

∫ λ

0
tke−t dt

)

= −Pλ(a)

k

(
1 + λ − k

λ

∫ λ

0

(
t

λ

)k

eλ−t dt

)
.

(3.3)

Subcase 1.1: If k ≥ λ, then

0 ≤ k − λ

λ

∫ λ

0

(
t

λ

)k

eλ−t dt = k − λ

λ

∫ λ

0

(
1 + t − λ

λ

)k

eλ−t dt

≤ k − λ

λ

∫ λ

0
e(λ−t)(1−k/λ) dt = 1 − eλ−k ≤ 1.

(3.4)

Therefore, in this case,∣∣∣∣1 − k − λ

λ

∫ λ

0

(
t

λ

)k

eλ−t dt

∣∣∣∣ = 1 − k − λ

λ

∫ λ

0

(
t

λ

)k

eλ−t dt

≤ 1 − k − λ

λ

∫ λ

0

(
t

λ

)k

dt = λ + 1

k + 1
,
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and so ∣∣�ga(k)
∣∣ ≤ Pλ(a)(λ + 1)

k(k + 1)
≤ 1√

2e
λ−3/2.

Subcase 1.2: If a < k < λ, then both summands in the expression for �ga(k) at the end of (3.3)
are positive, and so, because Ik(λ) ≤ 1, we have

Pλ(a)

k

(
1 + λ − k

λ

∫ λ

0

(
t

λ

)k

eλ−t dt

)
≤ Pλ(a)

k

(
1 + (λ − k)k!

e−λλk+1

)
= Pλ(a)

k
+ (λ − k)

λ2

Pλ(a)

Pλ(k − 1)

≤ Pλ(a)

a + 1
+ (λ − k)

λ2
,

(3.5)

where, in the last inequality, we have used the unimodality of the Poisson distribution.
Case 2: Assume that k ≤ a − 1. Then, if k ≥ 1, following arguments similar to those above,

we have

�ga(k) = λ−k−1eλ(k − 1)!Pλ(a)
(
λPλ(Uk) − kPλ(Uk+1)

)
= λ−k−1eλ(k − 1)!Pλ(a)

k−1∑
j=0

(j − k)
e−λλj

j !

= Pλ(a)

k

(
−1 + eλλ−k−1(λ − k)

∫ ∞

λ

tke−t dt

)

= Pλ(a)

k

(
−1 + λ − k

λ

∫ ∞

λ

(
t

λ

)k

eλ−t dt

)
.

Subcase 2.1: If k < λ, we first take k = 0, where it is easy to see that

∣∣�ga(0)
∣∣ = −ga(1) = λ−1Pλ(a) ≤ 1√

2e
λ−3/2.

For 1 ≤ k < λ, an argument similar to (3.4) shows that

∣∣�ga(k)
∣∣ = Pλ(a)

k

(
1 − λ − k

λ

∫ ∞

λ

(
t

λ

)k

eλ−t dt

)
,

and by bounding t/λ > 1, we easily find that

∣∣�ga(k)
∣∣ ≤ Pλ(a)

λ
≤ 1√

2e
λ−3/2.
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Subcase 2.2: For λ ≤ k < a, following the same argument as in (3.5) yields that∣∣�ga(k)
∣∣ ≤ Pλ(a)

λ
+ (k − λ)

λ2
≤ 1√

2e
λ−3/2 + (k − λ)

λ2
.

Case 3: If k = a, then we use the known bound ‖�ga‖∞ < 1/λ from [3], Lemma 1.1.1. �

For translated Poisson approximation, the bound in Lemma 3.3 easily translates into the fol-
lowing result.

Lemma 3.4. Let μ,σ 2 > 0, s = 
μ − σ 2�, γ = μ − σ 2 − s, and set λ = σ 2 + γ and fa(k) =
ga(k − s) for ga the Poisson Stein solution defined at (3.2). Then∣∣�fa(k)

∣∣ ≤ 1

σ 3
√

2e
+ |μ − k|

σ 4
+ I{k = a + s}

σ 2
.

3.3. Completing the proof of Theorem 2.1

In order to exploit Proposition 3.1, we first need a manageable bound for the expectations
|Eσ 2�f (W) − (W − μ)f (W)| that appear there. This is given in the following lemma.

Lemma 3.5. Let (W,W ′,G,R) be an approximate Stein coupling with W and W ′ integer val-
ued, EW = μ and Var(W) = σ 2. Set D := W ′ − W , and let F1 and F2 be sigma-algebras such
that W is F1-measurable and such that (G,D) is F2-measurable. Then∣∣Eσ 2�f (W) − (W − μ)f (W)

∣∣
≤ ∣∣E[(

E[GD|F1] −EGD
)
�f (W)

]∣∣ +E
∣∣R(W − μ)

∣∣E∣∣�f (W)
∣∣ +E

∣∣Rf (W)
∣∣ (3.6)

+E

[ |GD(D − 1)|
2

min
{‖�f ‖S1

(
L(W |F2)

)
,‖f ‖S2

(
L(W |F2)

)}]
. (3.7)

Proof. Since (W,W ′,G,R) is an approximate Stein coupling,

E(W − μ)f (W) = E
[
G

(
f

(
W ′) − f (W)

)] −E
[
Rf (W)

]
,

and therefore ∣∣E[
σ 2�f (W) − (W − μ)f (W)

]∣∣
≤ ∣∣E[

σ 2�f (W) − G
(
f

(
W ′) − f (W)

)]∣∣ +E
∣∣Rf (W)

∣∣. (3.8)

With D = W ′ − W , add and subtract GD�f (W), and write σ 2 = E[GD] − E{R(W − μ)}
using (1.8), giving

E
[
σ 2�f (W) − G

(
f

(
W ′) − f (W)

)] = E
[(
E[GD] − GD

)
�f (W) −E

{
R(W − μ)

}
�f (W)

+ GD�f (W) − G
(
f

(
W ′) − f (W)

)]
.
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Hence (3.8) can be bounded by∣∣E[(
E[GD|F1] −E[GD])�f (W)

]∣∣ +E
∣∣R(W − μ)

∣∣E∣∣�f (W)
∣∣ +E

∣∣Rf (W)
∣∣ (3.9)

+ ∣∣E[
GD�f (W) − G

(
f

(
W ′) − f (W)

)]∣∣. (3.10)

It is easy to see that (3.9) is equal to (3.6). For (3.10), we observe that

D�f (W) − (
f

(
W ′) − f (W)

)
= I[D > 0]

D−1∑
i=0

(
�f (W) − �f (W + i)

) − I[D < 0]
−D∑
i=1

(
�f (W) − �f (W − i)

)

= −I[D > 1]
D−1∑
i=1

i−1∑
j=0

�2f (W + j) − I[D < 0]
−D∑
i=1

i−1∑
j=0

�2f (W − i + j).

Using this expression, conditioning on F2, and noting that for k ∈ Z,∣∣E[
�2f (W + k)|F2

]∣∣ ≤ min
{‖�f ‖S1

(
L(W |F2)

)
,‖f ‖S2

(
L(W |F2)

)}
,

we find that (3.7) upper bounds (3.10). �

Proof of Theorem 2.1. The total variation bound (2.1) is a consequence of Proposition 3.1
and Lemma 3.5, together with the bounds from Lemma 3.2; cf. [31], Theorem 3.1, and [20],
Theorem 1.3. To prove (2.2), we can argue similarly, but taking f = fa and using Lemma 3.4 to
bound �fa(·). This yields (2.2): the terms in (2.2) (except for the last one) bound (3.6), and the
last term in (2.2) bounds (3.7) and the extra term 2σ−2 in Proposition 3.1. �

4. Proofs of applications

In this section, we prove the application results given in Section 2.

4.1. Hoeffding combinatorial local central limit theorem

Recall the definitions of a, W , μ and σ 2 from Section 2 and also Assumptions A1 and A2.
The first step is to find a Stein coupling for W . We choose among those discussed in [13],

Section 4.1. The most direct procedure is to let I, J be i.i.d. uniform on {1, . . . , n}, and to define
W ′ := W − aIρI

− aJρJ
+ aIρJ

+ aJρI
; then (W,W ′) is an exchangeable pair satisfying E[W ′ −

W |W ] = − 2
n−1 (W −μ), giving an exact Stein coupling with G := (n−1)(W ′ −W)/4. However,

we use another exact Stein coupling, that yields a simpler form for T in (2.4); we take

W ′ := W −aIρI
−aJρJ

, I �= J ; W ′ := W −aIρI
, I = J ; G := n(aIρJ

−aIρI
).
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Now, E[GD|ρ] = 2n−1μ(W − μ) + ∑4
l=1 Tl + n−1μ2, where

T1 :=
∑

i

a2
iρi

, T2 := −1

n

∑
i

aiρi
ai+, T3 := −1

n

∑
a+ρj

ajρj
, T4 := 1

n
(W − μ)2,

and so

∣∣E[GD|ρ] −E[GD]∣∣ ≤ 2A1|W − μ| + T , with T :=
4∑

l=1

|Tl −ETl |,

satisfying condition (2.4) with k = 1 and κ = 2A1. We now consider the remaining conditions
to be satisfied in Corollary 2.8(i), (ii). Since R = 0, for (i), we need to bound ET and ϒ . Note
that since D := W ′ − W satisfies |D| ≤ 2A1, and also that σ−2|G| ≤ 2/(α2

0A1), we have ϒ ≤
Cσ 2

E[S2(L(W)|F2)], where we define F2 be the sigma-algebra generated by (I, J,ρI , ρJ ).
The smoothing term. We begin with the smoothing coefficient E[S2(L(W)|F2)]; recall As-

sumption A2.

Lemma 4.1. Under Assumptions A1 and A2, we have

E
[
S2

(
L(W)|F2

)] = O
(
n−1).

Proof. Condition on I, J,ρI , ρJ , let ρ◦ be a uniformly chosen permutation given ρ◦
k = ρk

for k = I, J , and define W ◦ = ∑n
i=1 aiρ◦

i
so that L(W ◦) = L(W |F2). Now, for each 1 ≤ l ≤ n1

such that neither of il1, il2 are equal to I or J , independently and with probability 1/2, multi-
ply ρ◦ by the transposition (ρ◦

il1
, ρ◦

il2
), so that, if the multiplication takes place, then il2 �→ ρ◦

il1
and il1 �→ ρ◦

il2
. This process forms a new permutation ρ̃, which is still uniformly distributed

given ρ̃k = ρk for k = I, J , so that W̃ := ∑n
i=1 aiρ̃i

has the same distribution as W ◦. Moreover,
writing

Cl

(
ρ◦) := (ail1,ρ

◦
il2

+ ail2,ρ
◦
il1

− ail1,ρ
◦
il1

− ail2,ρ
◦
il2

),

we have for EIJ := {l : 1 ≤ l ≤ n1, {il1, il2} ∩ {I, J } = ∅},

W̃ = W ◦ +
∑

l∈EIJ

BlCl

(
ρ◦),

where B1, . . . ,Bn1 are i.i.d. Bernoulli Be(1/2) random variables, independent of ρ. Defining

N
(
ρ◦) := ∣∣{l : {il1, il2} ∩ {I, J } = ∅,

∣∣Cl

(
ρ◦)∣∣ = 1

}∣∣,
it thus follows immediately that, on the event {N(ρ◦) ≥ kn}, we have

S2
(
L

(
W̃ |ρ◦)) ≤ S2

(
Bi(kn,1/2)

) ≤ 10k−1
n ,

where the last inequality is [34], Proposition 3.8.
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Taking expectations, this in turn implies that

S2
(
L(W |F2)

) = S2
(
L

(
W ◦)) = S2

(
L(W̃ )

) ≤ 8k−1
n + 4P

(
N

(
ρ◦) < kn

)
.

Defining kn := 
 1
2EN(ρ◦)�, we show that, for suitable β1 > 0, β2 < ∞, we have kn ≥ β1n

and P(N(ρ◦) < kn) ≤ β2n
−1 for large n, thus completing the proof of the lemma.

Note that ρ◦ is a uniformly chosen map from {1, . . . , n} \ {I, J } to {1, . . . , n} \ {ρI ,ρJ }. Thus,
from our assumption on the matrix a,

EN
(
ρ◦) ≥ −2 +

∑
l∈EIJ

P
(∣∣Ci

(
ρ◦)∣∣ = 1

)
= −2 +

∑
l∈EIJ

P
({

ρ◦
il1

, ρ◦
il2

} ∈ J (il1, il2)
)

≥ −2 + (n1 − 2)(n2 − 2n)

n(n − 1)
≥ n

((
α1 − 2

n

)(
α2 − 2

n

)
− 2

n

)
,

and so kn ≥ β1n for n large, with β1 := α1α2/4. Then, by Chebyshev’s inequality, we have the
upper bound

P
(
N

(
ρ◦) ≤ kn

) ≤ Var(N(ρ◦))
(EN(ρ◦) − kn)2

= 4 Var(N(ρ◦))
(EN(ρ◦))2

. (4.1)

It is now enough to show that Var(N(ρ◦)) ≤ Cn, for some C < ∞.
To bound Var(N(ρ◦)), we need to compute the covariance of Xl and Xk for l �= k, both in EIJ ,

where

Xr := I
({

ρ◦
ir1

, ρ◦
ir2

} ∈ J (ir1, ir2)
)
.

Now, given Xl = 1 and (ρ◦
il1

, ρ◦
il2

) = (j1, j2), the conditional probability that Xk = 1 can be
no larger that P(Xk = 1)(n − 2)(n − 3)/(n − 4)(n − 5), since pairs that are excluded by hav-
ing (j1, j2) as images of il1 and il2 under ρ would only reduce the conditional probability, and
the probability of an accessible pair being attained is increased by the factor (n − 2)(n − 3)/

(n − 4)(n − 5). Hence,

Cov(Xl,Xk) ≤ P(Xl = 1)P(Xk = 1)

{
(n − 2)(n − 3)

(n − 4)(n − 5)
− 1

}
≤ P(Xl = 1)P(Xk = 1)

2(2n − 7)

(n − 4)(n − 5)
,

so that, for n ≥ 28,

Var
(
N

(
ρ◦)) =

∑
l∈EIJ

Var(Xl) +
∑

l �=k;l,k∈EIJ

Cov(Xl,Xk)

≤ EN
(
ρ◦) + 5n−1{

EN
(
ρ◦)}2 = O(n).

This proves the lemma. �
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As a consequence of Lemma 4.1 and the remarks preceding it, we have ϒ = O(1), and we
now show ET = O(σ ), after which, Corollary 2.8(i) implies

dTV
(
L(W),TP

(
EW,Var(W)

)) = O(1/σ). (4.2)

Observing first that

E
[
T I[W = k]] =

4∑
l=1

E
[|Tl −ETl |I[W = k]],

we apply Lemma 2.6 to the first three terms; for the fourth, we immediately have

E
[|T4 −ET4|I(W = k)

] ≤ 2ET4 = n−1σ 2 = O(1),

so that this element of T gives a contribution to the error bound of order O(σ−2).
The remaining elements each have the form |∑i ãiρi

− E
∑

i ãiρi
|, for appropriate choices

of ãij ≤ A2
1 (take ãij to be a2

ij , aij ai+/n and aij a+j /n, respectively). It thus follows from (2.13)
that

E|Tl −ETl | ≤
√

VarTl = O(
√

n), 1 ≤ l ≤ 3,

and hence that ET = O(σ ), as desired.
For the local approximation, Lemma 4.1 and (4.2) imply that Condition (1) of of Corol-

lary 2.8(ii) is satisfied with α = 1. For Condition (2), under Assumption A1, [8], Proposition 1.2,
implies that, for any j ≥ 0,

σ−2j
E(W − μ)2j ≤ (2j − 1)2jA

2j

1 σ−2j nj = O(1).

Finally, we (essentially) use Condition (3b) for the T term and treat T1, T2 and T3 using con-
centration bounds. Under Assumption A1, [8], Proposition 1.1, and [23], Theorem 3.1, imply,
for l = 1,2,3, that

P
(
(A1σ)−1|Tl −ETl | ≥ t

) ≤ 2 exp

{
− t2

2(vl/(A1σ)2) + 16(A1/σ)t

}
,

where vl = Var(Tl), and vl/(A1σ)2 ≤ Cl for some suitable Cl . We can then apply Lemma 2.6,
taking

εl(t) = tF l(t) +
∫ ∞

t

F l(v) dv,

where

F l(t) := 2 exp

{
− t2

2Cl + (16/α0)tn−1/2

}
,

and the choice t = C′
l

√
logσ , for C′

l suitably large but fixed, gives

E
[|Tl −ETl |I[W = k]] ≤ σεl(t) + t = O(

√
logσ).



1096 A.D. Barbour, A. Röllin and N. Ross

Hence, from Corollary 2.8, under Assumptions A1 and A2, we have

dloc
(
L(W),TP

(
EW,Var(W)

)) = O

(√
log(σ )

σ 2

)
.

4.2. Number of isolated vertices in an Erdős–Rényi random graph

Let G := G(n,p) be an Erdős–Rényi random graph on n vertices v1, . . . , vn, and let W

be the number of isolated vertices in G. Let Ws have the size-biased distribution of W .
Then (W,W ′,G) = (W,Ws,EW) is a Stein coupling. To couple (W,Ws), construct Ws from G
by choosing a vertex at random and erasing all edges (if any) connected to the vertex. Recall from
the introduction that we consider the regime p � λ/n for some λ > 0, in which case μ ∼ ne−λ

and σ 2 ∼ ne−λ{1 + (λ − 1)e−λ} are of strict order n.
Let Ei be the event that vertex vi is not isolated in G, let W1(v) be the number of degree-1

vertices connected to vertex v of G, and let W1 be the number of degree-1 vertices in G. To
check (2.4), we observe that

∣∣E[GD|G] − σ 2
∣∣ =

∣∣∣∣∣μn
n∑

i=1

(
W1(vi) + I{Ei}

) − σ 2

∣∣∣∣∣
=

∣∣∣∣μn (
W1 + (n − W)

) − σ 2
∣∣∣∣.

Since E[GD] = σ 2, which is (1.8) for a Stein coupling (thus with R = 0), it follows that

∣∣E[GD|G] − σ 2
∣∣ =

∣∣∣∣μn (
(W1 −EW1) − (W −EW)

)∣∣∣∣
≤ (1 − p)n−1{|W − μ| + |W1 −EW1|

}
≤ |W − μ| + |W1 −EW1|,

which is (2.4) with k = 1, κ = 1 and T = |W1 −EW1|.
To apply Corollary 2.8, we need to show that σ−j

E|W − μ|j = O(1) for suitable values of j .
To do so, and also to show that the distribution of T is concentrated, we take d = 0 and d = 1 in
the following theorem of Bartroff, Goldstein and Işlak [6] (see also [1]).

Theorem 4.2. For any integer d ≥ 0, let Wd be the number of degree d vertices in an Erdős–
Rényi random graph G with parameters n and p. Then, for any t > 0,

P
(|Wd −EWd | > t

) ≤ 2 exp

{
− t2

4(n −EWd) + (4/3)t

}
.
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So, for any value of d , we have

P
(
σ−1|Wd −EWd | ≥ t

) ≤ 2 exp

{
− t2

4 n

σ 2 + 4
3σ

t

}

≤ ηn(t) := 2 exp

{
− t2

4γ + 4t
√

γ /n/3

}
,

where γ is an upper bound for n/σ 2. It follows easily, taking d = 0, that σ−k
E|W − μ|k = O(1)

for all k ≥ 1, and then, taking d = 1 and

εn(t) := tηn(t) +
∫ ∞

t

ηn(v) dv,

that
∫ ∞

1 εn(t) dt ≤ ∫ ∞
1 ε1(t) dt < ∞ for all n ≥ 1, so that ET 2 = O(σ 2). Since also R = 0 almost

surely, and since [34], Lemma 4.7, shows that

S2
(
L(W)

) = O
(
σ−2),

then once we show ϒ = O(1), all the hypotheses and conditions of Corollary 2.8(i), (ii) except
for (3) of (ii) are satisfied, with α = 1. But a variation of Condition (3b) is satisfied: for t = tn =
c
√

logσ , it is easy to check that εn(tn) = O(n−1/2) if c > 0 is chosen fixed but large enough, so
that, from Lemma 2.6, E[T I[W = k]] = O(

√
logσ), and thus the contribution from T is at most

of order O(σ−2√logσ).
All that is left is to to show that ϒ = O(1), for which we follow [20]. Let I , uniformly

distributed on {1, . . . , n}, be the index of the vertex of G chosen to be isolated in construct-
ing Ws , and for k = 0,1,2, let N (i)

k be the set of vertices at distance k from vertex vi in G.

Then let F2 be the sigma algebra generated by (I,N (I )
1 ,N (I )

2 ) and the presence or absence of

all edges that have one or more vertices in {I } ∪ N (I )
1 . Clearly Ws − W is F2-measurable. To

bound ϒ := E[|GD(D − 1)|S2(W |F2)], consider the expectation on the event {|N (I )
1 | >

√
n}

and on its complement.
First, note that |D| = |Ws − W | ≤ 1 + |N (I )

1 |, so that

E
[∣∣GD(D − 1)

∣∣S2(W |F2)I
{∣∣N (I )

1

∣∣ >
√

n
}] ≤ CnE

[(
1 + ∣∣N (I )

1

∣∣2)I
{∣∣N (I )

1

∣∣ >
√

n
}]

.

Since |N (I )
1 | ∼ Bi(n − 1,p), and p ∼ λ/n,

E
[∣∣N (I )

1

∣∣k] ≤ Ck for all n ≥ 1,

for suitable constants Ck , so that

E
[(

1 + ∣∣N (I )
1

∣∣2)I
{∣∣N (I )

1

∣∣ >
√

n
}] = O

(
n−k/2)

for all integers k ≥ 1.
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For the complementary event, we show that, for some universal constant C,

S2(W |F2)I
{∣∣N (I )

1

∣∣ ≤ √
n
} ≤ Cσ−2, a.s. (4.3)

If this is the case, then

E
[∣∣GD(D − 1)

∣∣S2(W |F2)I
{∣∣N (I )

1

∣∣ ≤ √
n
}] ≤ Cnσ−2

E
[(

1 + ∣∣N (I )
1

∣∣2)] = O(1),

as desired. For (4.3), the basic idea is that there still remain almost
(
n
2

)
edges to be independently

assigned, and the methods leading to [34], Lemma 4.7(i), can be applied to give the required
order.

From now on, we have |N (I )
1 | ≤ √

n. Given F2, define a new random graph G̃ on n vertices

labeled {v1, . . . , vn} such that all edges with an endpoint in V (I) := {vi : i ∈ {I } ∪ N (I )
1 } are

determined by F2, and the remaining edges, those in E(I) := {{i, j } : i, j /∈ V (I)}, are assigned
using i.i.d. Be(p) variables; we let G̃(I ) denote the graph G̃ restricted to E(I). Note that the
number of edges in E(I) is (

n − ∣∣N (I )
1

∣∣ − 1

2

)
∼ 1

2
n2,

because |N (I )
1 | ≤ √

n. Let G̃′ be the graph obtained by choosing at random one of the edges
of E(I) and resampling it, and let G̃′′ be the graph obtained from the same operation applied
to G̃′. Let W̃ , W̃ ′, W̃ ′′ be the number of isolated vertices in G̃, G̃′, G̃′′. Then L(W̃ ) = L(W |F2),
and (W̃ , W̃ ′, W̃ ′′) are three successive states of a reversible Markov chain. Thus [34], Theo-
rem 3.7, implies that

S2
(
L(W |F2)

)
≤ 1

P(W̃ ′ = W̃ + 1)2

[
2 Var

(
P
(
W̃ ′ = W̃ + 1|G̃)) + 2 Var

(
P
(
W̃ ′ = W̃ − 1|G̃))

+E
∣∣P(

W̃ ′′ = W̃ ′ + 1, W̃ ′ = W̃ + 1|G̃) − P
(
W̃ ′ = W̃ + 1|G̃)2∣∣

+E
∣∣P(

W̃ ′′ = W̃ ′ − 1, W̃ ′ = W̃ − 1|G̃) − P
(
W̃ ′ = W̃ − 1|G̃)2∣∣].

Bounds on the first two terms are given by [20], Inequalities (2.23)–(2.25), which yield

P
(
W̃ ′ = W̃ + 1

) ≥ Cn−1 and Var
(
P
(
W̃ ′ = W̃ ± 1|G̃)) ≤ Cn−3.

For the last two terms of the bound, let V(I )
1 be the set of vertices having degree one in both

of G̃ and G̃(I ), and let V̂(I )
1 be the subset of these vertices that are connected to a vertex having

degree two in both of G̃ and G̃(I ); write W̃
(I)
1 := |V(I )

1 | and Ŵ
(I)
1 := |V̂(I )

1 |. Let E (I )
2 be the set of

edges that are isolated in both G̃ and G̃(I ), and let E (I )
3 be the set of pairs of connected edges that

are isolated in both G̃ and G̃(I ); denote their numbers by E
(I)
2 and E

(I)
3 respectively. Note that



Error bounds in local limit theorems using Stein’s method 1099

no vertices of N
(I)
1 are isolated, but that vI may be isolated (and then N

(I)
1 is empty); note also

that the endpoints of elements of E (I )
3 belong to V̂(I )

1 .
Now the only way to increase the number of isolated vertices in going from G̃ to G̃′ is to choose

a non-isolated edge connected to a degree one vertex, and then remove it; however, the number
of isolated vertices increases by 2 if the edge removed belongs to E (I )

2 . Hence, writing n̂(I ) :=
n − |N (I )

1 | − 1, we have

P
(
W̃ ′ = W̃ + 1|G̃) = (W̃

(I)
1 − 2Ẽ

(I )
2 )(

n̂(I )
2

) (1 − p).

Considering the different ways of increasing the number of isolated vertices by exactly one in
consecutive steps is more complicated; isolating a vertex in V̂(I )

1 leaves the number of vertices

of degree 1 unchanged, so that (W̃
(I)
1 )′ = W̃

(I)
1 , but if the vertex belonged to an element of E (I )

3 ,

then (Ẽ
(I )
2 )′ = Ẽ

(I )
2 + 1. Hence

P
(
W̃ ′′ = W̃ ′ + 1, W̃ ′ = W̃ + 1|G̃) = (W̃

(I)
1 − 2Ẽ

(I )
2 − Ṽ

(I )
1 )(W̃

(I)
1 − 1 − 2Ẽ

(I )
2 )(

n̂(I )
2

)2
(1 − p)2

+ (Ṽ
(I )
1 − 2Ẽ

(I )
3 )(W̃

(I)
1 − 2Ẽ

(I )
2 )(

n̂(I )
2

)2
(1 − p)2

+ 2Ẽ
(I )
3 (W̃

(I)
1 − 2Ẽ

(I )
2 − 2)(

n̂(I )
2

)2
(1 − p)2,

so that

E
∣∣P(

W̃ ′′ = W̃ ′ + 1, W̃ ′ = W̃ + 1|G̃) − P
(
W̃ ′ = W̃ + 1|G̃)2∣∣

≤ E|W̃ (I)
1 − 2Ẽ

(I )
2 | +EŴ

(I)
1 + 4EẼ

(I )
3(

n̂(I )
2

)2
(1 − p)2 = O

(
n−3),

since |W̃ (I)
1 − 2Ẽ

(I )
2 | ≤ W̃

(I)
1 ≤ n, Ŵ

(I)
1 ≤ n, Ẽ

(I )
3 ≤ n, and |N (I )

1 | ≤ √
n. Similarly, but more

easily, we have

P
(
W̃ ′ = W̃ − 1|G̃) = (W̃ − I[deg(vI ) = 0])(n̂(I ) − W̃ + I[deg(vI ) = 0])(

n̂(I )
2

) p

and

P
(
W̃ ′′ = W̃ ′ − 1, W̃ ′ = W̃ − 1|G̃) = 4

(
W̃−I[deg(vI )=0]

2

)(
n̂(I )−W̃+I[deg(vI )=0]+1

2

)
(
n̂(I )

2

)2
p2,
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so that

E
∣∣P(

W̃ ′′ = W̃ ′ − 1, W̃ ′ = W̃ − 1|G̃) − P
(
W̃ ′ = W̃ − 1|G̃)2∣∣

= (W̃ − I[deg(vI ) = 0])(n̂(I ) − W̃ + I[deg(vI ) = 0])(n̂(I ) − 2W̃ + 2I[deg(vI ) = 0] + 1)p2(
n̂(I )

2

)2
,

which is again O(n−3), since 0 ≤ W̃ ≤ n. Therefore, S2(L(W |F2)) = O(n−1) almost surely, as
desired.

4.3. Curie–Weiss

Recall from Section 2 the definition of the Curie–Weiss distribution, the magnetization W , and
associated discussion. Assume that either h > 0 and β > 0, or that h = 0 and 0 < β < 1. Define
the exchangeable pair (W,W ′) as follows. Let I be uniform on {1, . . . , n}. Given I = i and S = s,
let

P
(
S′

i = x
) = P

(
Si = x|(Sj )j �=i = (sj )j �=i

)
for x = ±1. Defining W ′ := W − SI + S′

I , we note that (W,W ′) are two consecutive states
of a stationary Gibbs sampler, and so form an exchangeable pair. Note that W actually sits on a
lattice of span 2 (even or odd numbers, depending on n), so that our eventual conclusion concerns
W̃ := (W + 1

2 {1 − (−1)n})/2.
We next want to establish an approximate linear regression, so as to determine an approximate

Stein coupling. From [8], page 315 (see also [35], (7.10)), for μn := EW , we have

E
[
W ′ − W |S] = −1

n
W + 1

n

n∑
i=1

tanh

(
β

n
(W − Si) + h

)

= −1

n
(W − μn) + 1

n

n∑
i=1

(
tanh

(
β

n
(W − Si) + h

)
− tanh

(
β

n
W + h

))

+ tanh

(
β

n
W + h

)
− tanh(βmh + h) + (mh − μn/n).

(4.4)

Now since, 0 ≤ d
dx

tanh(x) = 1 − tanh2(x) ≤ 1 and | d2

dx2 tanh(x)| ≤ 1, by Taylor expansion we
have ∣∣ tanh(βw + h) − tanh(βm + h) − β(w − m)

(
1 − tanh2(βm + h)

)∣∣ ≤ C|w − m|2;∣∣ tanh
(
β(w − s) + h

) − tanh(βw + h)
∣∣ ≤ βs,

from which it follows that∣∣∣∣ tanh

(
β

n
W + h

)
− tanh(βmh + h) − n−1β(W − nmh)

(
1 − m2

h

)∣∣∣∣ ≤ C

(
W

n
− mh

)2

(4.5)
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and ∣∣∣∣∣1

n

n∑
i=1

(
tanh

(
β

n
(W − Si) + h

)
− tanh

(
β

n
W + h

))∣∣∣∣∣ ≤ β

n
. (4.6)

This gives an approximate linear regression E[W ′ − W |W ] = −a(W − μn) + aR, with

a := n−1(1 − β
(
1 − m2

h

));
|R| ≤ R′ := β

1 − β(1 − m2
h)

+ |μn − nmh| + Cn|W/n − mh|2
1 − β(1 − m2

h)
,

(4.7)

and the approximate Stein coupling is completed by taking G := (W ′ − W)/(2a). Below we
work on (W,W ′,G,R), but note that all results easily transfer to (W̃ , W̃ ′, G̃, R̃) where W̃ is
as above, W̃ ′ is defined in the obvious way, G̃ = G/2 and R̃′ = R′/2. In this case, (W̃ , W̃ ′)
satisfy (1.6) and |W̃ ′ − W̃ | ≤ 1, so we apply our approximation framework, using Remark 2.2.

The first step is to bound the centred moments of n−1/2(W −nmh). From [8], Proposition 1.3,
for any fixed k ≥ 1,

E

∣∣∣∣Wn − tanh

(
β

(
W

n

)
+ h

)∣∣∣∣k ≤ O
(
n−k/2). (4.8)

Now, for y small enough, there exists C′
y < ∞ such that∣∣w − tanh(βw + h)

∣∣ ≥ C′
y |w − mh| in |w − mh| ≤ y.

On the other hand, [14], Theorem 1.4, show that

P

(∣∣∣∣Wn − mh

∣∣∣∣ > t

)
≤ e−nC(t)

for some C(t) > 0, so that P(|n−1W − mh| > y) = O(e−nC(y)). Combining these last two state-
ments, it follows from (4.8) that, for any k ≥ 1,

E

∣∣∣∣W − nmh√
n

∣∣∣∣k = O(1). (4.9)

Now we turn to verifying (2.4); we use the representation in Remark 2.2. According to [34],
Lemma 4.4, and using (4.9),∣∣∣∣P(

W ′ − W = 2|S) − (1 − mh)
2

4

∣∣∣∣ ≤ Cn−1/2
( |W − μn|

σn

+ n−1/2
)

,∣∣∣∣P(
W ′ − W = 2

) − (1 − mh)
2

4

∣∣∣∣ ≤ Cn−1/2,
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so that (2.4) is satisfied for some constant κ > 0, with k = 1 and T = 0 almost surely:

1

a

∣∣P(
W ′ − W = 2|S) − P

(
W ′ − W = 2

)∣∣ ≤ κσn

( |W − μn|
σn

+ 1

)
.

We next show E[(R′)2] = O(1). From (4.9) and (4.7),√
E

[(
R′)2] ≤ C

(
1 + |μn − nmh|

)
.

To bound |μn − nmh| when h �= 0, note that the expectation of (4.4) is zero, which, with (4.5)
and (4.6), implies that

|nmh − μn| ≤ |∑n
i=1 E(tanh(

β
n
(W − Si) + h) − tanh(

β
n
W + h))| + CnE(W

n
− mh)

2

|β(1 − m2
h) − 1| ;

applying (4.5) and (4.6) yields |μn − nmh| = O(1), and hence
√
E[(R′)2] = O(1).

Collecting the results above, it now follows from Corollary 2.8(i) that

dTV

(
L(W̃ ),TP

(
1

2
μn,

1

4
σ 2

n

))
= O

(
σ−1

n

) = O
(
n−1/2).

For the local limit bound, we only need to show

S2
(
L(W̃ )

) = O
(
σ−2

n

)
,

which follows from [34], Lemma 4.4. Noting Remark 2.2, Corollary 2.8(ii) now easily implies
that

dloc

(
L(W̃ ),TP

(
1

2
μn,

1

4
σ 2

n

))
= O

(
σ−2

n

) = O
(
n−1).

Then μn can be replaced by nmh and σ 2
n by

n(1−m2
h)

(1−β+βm2
h)

. This follows from properties of the

translated Poisson distribution, because |μn − nmh| = O(1), |σ 2
n − n(1−m2

h)

(1−β+βm2
h)

| = O(n1/2) and

n−1σ 2
n is bounded away from 0.
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