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In this paper, we study the problem of statistical inference for a continuous-time moving average Lévy
process of the form

Zt =
∫
R

K(t − s) dLs, t ∈R,

with a deterministic kernel K and a Lévy process L. Especially the estimation of the Lévy measure ν of L

from low-frequency observations of the process Z is considered. We construct a consistent estimator, derive
its convergence rates and illustrate its performance by a numerical example. On the mathematical level, we
establish some new results on exponential mixing for continuous-time moving average Lévy processes.
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1. Introduction

Stochastic integrals of the type

Zt =
∫ ∞

−∞
K(s, t) dLs, (1)

where K is a deterministic kernel and (Lt )t∈R is a two-sided Lévy process, build a large class of
stochastic processes including semimartingales and non-semimartingales, cf. Basse and Pedersen
[3], Basse-O’Connor and Rosińsky [5], Bender, Lindner and Schicks [9], as well as long-memory
processes. Starting point was the paper by Rajput and Rosiński [16] providing conditions on the
interplay between K and L such that Z is well defined. Continuous-time Lévy-driven moving av-
erage processes provide a unifying approach to many popular stochastic models like Lévy-driven
Ornstein–Uhlenbeck processes, fractional Lévy processes and CARMA processes. Furthermore,
they are the building blocks of more general models such as Lévy semistationary processes and
ambit fields, cf. Barndorff-Nielsen, Benth and Veraart [1], Podolskij [15].
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Statistical inference for Ornstein–Uhlenbeck processes and CARMA processes is already well
studied in the literature due to the special structure of the processes, for an overview see Brock-
well and Lindner [10]. Nevertheless, for general continuous-time Lévy-driven moving average
processes only partial results are known so far mainly concerning parametric estimation of the
kernel function, cf. Cohen and Lindner [11] for an approach via empirical moments or Zhang,
Lin and Zhang [18] for a least squares approach. Further results concern limit theorems for the
power variation processes, cf. Glaser [12], Basse-O’Connor, Lachieze-Rey and Podolskij [4],
which may be used for statistical inference based on high-frequency data.

In this paper, we consider a special case of stationary continuous-time Lévy-driven moving av-
erage processes of the form Zt = ∫∞

−∞ K(s − t) dLs and aim to infer on the unknown parameters
of the driving Lévy process from its low-frequency observations. Our setting especially includes
the case of Gamma-kernels of the form K(t) = tαe−λt1[0,∞)(t) with λ > 0 and α > −1/2, which
serves as a popular kernel for applications in finance and turbulence, cf. Barndorff-Nielsen and
Schmiegel [2]. The special symmetric case of the well-balanced Ornstein–Uhlenbeck process
has been discussed in Schnurr and Woerner [17].

The considered statistical problem is rather challenging for several reasons. On the one hand,
the set of parameters, that is, the so-called Lévy triplet of the driving Lévy process, contains, in
general, an infinite dimensional object (a Lévy measure) making the statistical problem nonpara-
metric. On the other hand, the relation between the parameters of the underlying Lévy process
(Lt ) and those of the resulting moving average process (Zt ) is rather nonlinear and implicit,
pointing out to a nonlinear ill-posed statistical problem. It turns out that in Fourier domain this
relation becomes exponentially linear and has a form of multiplicative convolution. This ob-
servation underlies our estimation procedure, which basically consists of three steps. First, we
estimate the marginal characteristic function of the Lévy-driven moving average process (Zt ).
Then we estimate the Mellin transform of the second derivative of the log-transform of the char-
acteristic function. Finally, an inverse Mellin transform technique is used to reconstruct the Lévy
density of the underlying Lévy process. In order to obtain the convergence rates of the resulting
estimator, we need to analyse the mixing properties of the process (Zt ). The existing results of
this kind are very sparse and basically cover only the case of the exponential kernel K. Here, we
derive the exponential mixing of the process (Zt ) under rather general assumptions.

The paper is organized as follows. In the next session, we explain our setup and discuss some
basic properties of the considered model. The estimation procedure is presented in Section 3.
Our main theoretical results related to the rates of convergence of the estimates are given in
Section 4. Next, in Section 5, we provide a numerical example, which shows the performance of
our procedure. All proofs are collected in the Appendix.

2. Setup

In this paper, we study a stationary continuous-time moving average (MA) Lévy process (Zt )t∈R
of the form:

Zt =
∫ ∞

−∞
K(t − s) dLs, t ∈R, (2)
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where K : R → R+ is a measurable function and (Lt )t∈R is a two-sided Lévy process with the
triplet T = (γ, σ 2, ν). Throughout the paper, we assume that

K ∈ L1(R) ∩L2(R), (3)

and the Lévy measure ν satisfies ∫
x2ν(dx) < ∞, (4)

that is, the Lévy process L has finite second moment. As it is shown in Lemma 1 (see Ap-
pendix A), these conditions guarantee that the stochastic integral Zt exists for any t ∈ R, that is,
there exists a sequence of step functions converging to K, and the limit of corresponding integrals
doesn’t depend on the choice of this sequence. Moreover, under these assumptions, the process
(Zt )t∈R is strictly stationary with the characteristic function of the form

�(u) := E
[
eiuZt

]= exp
(
�(u)

)
, (5)

where

�(u) :=
∫
R

ψ
(
uK(s)

)
ds

and ψ(u) is a characteristic exponent of the process L. Due to the Lévy–Khintchine formula,
ψ(u) can be represented as

ψ(u) := iuγ − σ 2u2/2 +
∫
R

(
eiux − 1 − iux1{|x|≤1}

)
ν(dx).

In what follows, we will assume that ν is absolutely continuous w.r.t. to the Lebesgue measure on
R+. With a slight abuse of notation, we denote by ν(x) also the density of the Lévy measure ν.
Our main goal is the estimation of the Lévy density ν(x) from low-frequency observations of the
process (Zt ) given that the function K is known.

3. Mellin transform approach

3.1. Main idea

For the sake of clarity, we first assume that σ is known. Set

�σ (u) := �(u) + σ 2u2

2

∫
R

K2(x) dx. (6)

It follows then

� ′′
σ (u) =

∫
R

ψ ′′(uK(x)
) ·K2(x) dx + σ 2

∫
R

K2(x) dx

= −
∫
R

F[ν̃](uK(x)
) ·K2(x) dx,
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where ν̃(x) := x2ν(x), and F[ν̃] stands for the Fourier transform of ν̃. Next, let us compute the
Mellin transform of � ′′

σ :

M
[
� ′′

σ

]
(z) = −

∫
R+

[∫
R

F[ν̃](uK(x)
) ·K2(x) dx

]
uz−1 du

= −
∫
R

[∫
R+

F[ν̃](uK(x)
) · uz−1 du

]
K2(x) dx (7)

= −M
[
F[ν̃]](z) ·

∫
R

(
K(x)

)2−z
dx,

for all z such that
∫
R
(K(x))2−Re(z) dx < ∞ and

∫
R+ |F[ν̃](v)| · vRe(z)−1 dv < ∞. Since ν̃ ∈

L1(R+), it holds

M
[
F[ν̃]](z) =

∫ ∞

0
vz−1

[∫ ∞

−∞
eixvν̃(x) dx

]
dv

= M
[
ei·](z) ·M[ν̃+](1 − z) +M

[
e−i·](z) ·M[ν̃−](1 − z),

where

ν̃+(x) := ν̃(x) · 1{x ≥ 0}, ν̃−(x) := ν̃(−x) · 1{x ≥ 0}.
Analogously

M
[
F[ν̃]](z) =M

[
e−i·](z) ·M[ν̃+](1 − z) +M

[
ei·](z) ·M[ν̃−](1 − z).

Note that the Mellin transforms M[ν̃±](1 − z) are defined for all z with Re(z) ∈ (0,1), provided
ν̃± are bounded at 0. Next, using the fact that

M
[
ei·](z) = 
(z)eiπz/2, M

[
e−i·](z) = 
(z)e−iπz/2

for all z with Re(z) ∈ (0,1) (see [14], 5.1–5.2), we get

M
[
� ′′

σ

]
(z) = −(M[ν̃+](1 − z)eiπz/2 +M[ν̃−](1 − z)e−iπz/2)
(z)

∫
R

(
K(x)

)2−z
dx,

M
[
� ′′

σ

]
(z) = −(M[ν̃+](1 − z)e−iπz/2 +M[ν̃−](1 − z)eiπz/2)
(z)

∫
R

(
K(x)

)2−z
dx.

From these equations, it follows

M[ν̃+](1 − z) = M[� ′′
σ ](z)

Q1(z)
− M[� ′′

σ ](z)
Q2(z)

,

(8)

M[ν̃−](1 − z) = M[� ′′
σ ](z)

Q1(z)
− M[� ′′

σ ](z)
Q2(z)
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with

Q1(z) := −eiπz − e−iπz

eiπz/2

(z)

∫
R

(
K(x)

)2−z
dx,

(9)

Q2(z) := −eiπz − e−iπz

e−iπz/2

(z)

∫
R

(
K(x)

)2−z
dx.

The relations (8) form a basis of our estimation procedure, as they relate the measures ν+ and ν−
to the function �σ , which can be directly estimated from data.

3.2. Estimation procedure

Assume that the process Z is observed on the equidistant time grid {�,2�, . . . , n�}. Our aim is
to estimate the Lévy density ν of the process L. First, we estimate the Mellin transforms M[� ′′

σ ]
and M[� ′′

σ ] by

Mn

[
� ′′

σ

]
(1 − z) :=

∫ Un

0

[
�′′

n(u)

�n(u)
−
(

�′
n(u)

�n(u)

)2

+ σ 2‖K‖2
L2

]
u−z du,

(10)

Mn

[
� ′′

σ

]
(1 − z) :=

∫ Un

0

[
�′′

n(u)

�n(u)
−
(

�′
n(u)

�n(u)

)2

+ σ 2‖K‖2
L2

]
u−z du,

respectively, where Un is a sequence of cut-offs tending to infinity as n → ∞ and

�n(u) := 1

n

n∑
j=1

eiuZj�.

Second, we recover the measures ν̃+ and ν̃− by applying the inverse Mellin techniques:

ν̃n+(x) := 1

2π i

∫ c+iVn

c−iVn

(Mn[� ′′
σ ](z)

Q1(z)
− Mn[� ′′

σ ](z)
Q2(z)

)
x−z dz,

(11)

ν̃n−(x) := 1

2π i

∫ c+iVn

c−iVn

(Mn[� ′′
σ ](z)

Q1(z)
− Mn[� ′′

σ ](z)
Q2(z)

)
x−z dz,

where Vn → ∞ is another sequence of regularising parameters. Finally, we define the estimator
for the function ν̃(x) = x2ν(x) as

ν̃n(x) := ν̃n+(x) + ν̃n−(−x). (12)

3.3. Simplified version of the estimation procedure

In practice the estimation procedure described in previous section can be significantly simplified
under some additional assumptions. For example, if the Lèvy process L is a subordinator with
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finite activity of jumps and zero drift, then one can consider the first derivative of the function
�σ (u) instead of the second, and get that

M
[
� ′

σ

]
(z) = Q̆(z) ·M[ν̆](1 − z), Re(z) ∈ (0,1),

where ν̆(x) = xν(x), and

Q̆(z) = i
(z) exp{iπz/2}
∫
R

(
K(x)

)1−z
dx. (13)

The estimation scheme remains the same: we first estimate the Mellin transform of the function
� ′

σ , and then infer on the Lévy measure ν by applying the Mellin transform techniques. More
precisely, in the first step we construct the estimate

Mn

[
� ′

σ

]
(1 − z) :=

∫ Un

0

[
�′

n(u)

�n(u)
+ σ 2u‖K‖2

L2

]
u−z du, (14)

where Un → ∞. In the second step, we define the estimate of ν̆ via

ν̆n(x) := 1

2π i

∫ c+iVn

c−iVn

Mn[� ′
σ ](1 − z)

Q̆(1 − z)
x−z dz (15)

with some c ∈ (0,1) and a sequence Vn → ∞.

3.4. Case of unknown σ

In this subsection, we suggest how our procedure can be adapted to the case of unknown σ . First,
note that for a properly chosen bounded kernel w with supp(w) ⊆ [1,2] and

∫∞
0 w(u)du = 1,∫

R+
wn(u)� ′′(u) du = −σ 2

∫
R

K2(x) dx

−
∫
R

∫
R+

w(u)F[ν̃](uUnK(x)
)
K2(x) dudx

with wn(u) := U−1
n w(u/Un) and some sequence Un → ∞. Suppose that |F[ν̃](u)| ≤ C(1 +

u)−α for all u ≥ 0 and some constants α > 0, C > 0, then∣∣∣∣∫
R

∫
R+

w(u)F[ν̃](uUnK(x)
)
K2(x) dudx

∣∣∣∣≤ ‖w‖∞
∫
R

K2(x)

(1 + UnK(x))α
dx → 0

as n → ∞. For example, in the case of a one-sided exponential kernel K(x) = e−x
I(x ≥ 0), we

derive

∫
R

K2(x)

(1 + UnK(x))α
dx = 1

U−2
n

∫ Un

0

z

(1 + z)α
dz �

⎧⎪⎨⎪⎩
U−α

n , α < 2,

U−2
n log(Un), α = 2,

U−2
n , α > 2,
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as n → ∞. Hence, the quantity

−
[∫

R

K2(x) dx

]−1 ∫
R+

wn(u)

[
�′′

n(u)

�n(u)
−
(

�′
n(u)

�n(u)

)2]
du

can be used to estimate σ 2.

4. Convergence

Assume that the following condition holds.

(A1) The Lévy density ν fulfills
∫ 1
−1 |x|ν(x) dx < ∞, and moreover, for some A > 0, α ∈

(0,1), β+ > 0, β− > 0, c ∈ (0,1), it holds⎧⎪⎪⎨⎪⎪⎩
∫
R

(
1 + |y|)α∣∣F[ν̃](y)

∣∣dy ≤ A,∫
R

eβ±|u|∣∣M[ν̃±](c + iu)
∣∣du ≤ A.

Note that without loss of generality we can also assume that the constant A is such that
∫
R
(|x| ∨

x2)ν(x) dx ≤ A, since the integral in the left-hand side is bounded.

Example 1. Consider a class of Lévy processes (Lt ) with Lévy measure ν(x) = ν+(x) +
ν−(−x), such that

ν±(x) =
J (±)∑
j=1

a
(±)
j x

−η
(±)
j −1

e
−λ

(±)
j x · I{x ≥ 0},

where J (+), J (−) ∈ N ∪ 0, a
(+)
j , a

(−)
j > 0, η

(+)
j , η

(−)
j < 1, λ

(+)
j , λ

(−)
j > 0 for all j . Note that this

class includes the tempered stable processes, corresponding to the case J (+) = 1, J (−) = 0 and
η

(+)
1 ∈ (0,1). Since

F[ν̃](y) =
J (+)∑
j=1

a
(+)
j

(
λ

(+)
j − iy

)η(+)
j −2



(
2 − η

(+)
j

)

+
J (−)∑
j=1

a
(−)
j

(
λ

(−)
j + iy

)η(−)
j −2



(
2 − η

(−)
j

)
,

M[ν̃±](z) =
J (±)∑
j=1

a
(±)
j

(
λ

(±)
j

)η(±)
j −z−1



(
z − η

(±)
j + 1

)
, ∀Re(z) > max

j=1,...,J (±)

(
η

(±)
j

)− 1,
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we derive that (A1) holds with any

α ∈ (0,1 − max
(
η

(+)
1 , . . . , η

(+)

J (+) , η
(−)
1 , . . . , η

(−)

J (−)

))
and β−, β+ ∈ (0,π/2).

Example 2. Many other examples can be constructed from the compound process
∑Nt

k=1 ξk ,
where ξ1, ξ2, . . . is a sequence of i.i.d. r.v.’s with absolutely continuous distribution, and (Nt )t≥0
is a Poisson process independent of ξ1, ξ2, . . . . Since the Lévy measure in this case is proportional
to the probability density p(·) of ξ1, the condition (A1) is in fact a condition on p(·). In particular,
Example 5 from [6] yields that (A1) is satisfied for the CPP such that ξ1 has a half-normal
distribution with density

p(x) =
√

2

π

1

v
exp

{
− x2

2v2

}
· I{x ≥ 0},

where v > 0.

The next theorem gives a general upper bound for the difference between ν̃n(x) and ν̃(x),
which depends on behaviour of the weighted empirical processes

Dj(u) := �
(j)
n (u) − �(j)(u)

�(u)
, j = 0,1,2.

Theorem 1. Consider the estimate ν̃n(x) of ν̃(x) constructed by (10), (11), (12) with some se-
quences Un → ∞,Vn → ∞ and c ∈ (0,1). Assume that (A1) holds with the same c ∈ (0,1) and
some A > 0, α ∈ (0,1), β+ > 0, β− > 0. Fix some K > 0 and denote

AK :=
{

max
j=0,1,2

‖Dj‖Un ≥ Kεn

}
, K ≥ 0,

where for any real valued function f on R, ‖f ‖Un := supu∈[−Un,Un] |f (u)|, and εn is a sequence
of positive numbers such that εn → 0 as n → ∞, and

Kεn

(
1 + ∥∥� ′

σ

∥∥
Un

)≤ 1/2.

Then on the set AC
K (complementary set to AK ), the estimate ν̃n(x) satisfies

sup
x∈R

{|x|c∣∣ν̃n(x) − ν̃(x)
∣∣}

(16)

≤ 1

2π

∫
{|v|≤Vn}

�n

min(|Q1(1 − c − iv)|, |Q2(1 − c − iv)|) dv + A

2π
e−βVn,

where Q1(·), Q2(·) are defined in (9),

�n := 2K

1 − c
εnWnU

1−c
n +

(
A + 2αA

1 − c

)∫
R

[
K(x)

]c+1[1 + UnK(x)
]−α

dx,
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with

Wn := 2 + ∥∥� ′′
σ

∥∥
Un

+ ∥∥� ′
σ

∥∥2
Un

+ 3
∥∥� ′

σ

∥∥
Un

. (17)

Proof. The proof is given in Appendix B. �

Remark 1. Similarly, in the setup of Section 3.3, we can establish analogous result for the
estimate ν̆n(x) of ν̆(x). Namely, we can show (see p. 919), that if ν(x) satisfies the assumption
(A1) (where ν̃ is changed to ν̆ everywhere), then the estimate ν̆n(x) satisfies

sup
x∈R+

{
xc
∣∣ν̆n(x) − ν̆(x)

∣∣}≤ 1

2π

∫
{|v|≤Vn}

�̃n

|Q̆(1 − c − iv)| dv + A

2π
e−βVn, (18)

where Q̆(·) as in (13),

�̃n := 2K

1 − c
εnW̃nU

1−c
n +

(
A + 2αA

1 − c

)∫
R

[
K(x)

]c[1 + UnK(x)
]−α

dx,

with W̃n := 1 + ‖� ′
σ ‖Un .

Theorem 1 implies that supx∈R{|x|c|ν̃n(x) − ν̃(x)|} converges to 0 on the set AC
K as long

as εnWnU
1−c
n → 0 and Un → ∞. It would be a worth mentioning that Wn can be uniformly

bounded, see Lemma 2 from Appendix C.
Let us now estimate the probability of the event AK . This probability crucially depends on the

mixing properties of the process (Zt ).

Theorem 2. Suppose that the following assumptions are fulfilled.

(A2) The kernel K satisfies

∞∑
j=−∞

∣∣∣∣F[K]
(

2π
j

�

)∣∣∣∣ ≤ K∗, (19)

(K �K)(�j) ≤ κ0|j |κ1e−κ2|j |, ∀j ∈ Z (20)

for some positive constants K∗, κ0, κ1 and κ2, and moreover all eigenvalues of the matrix

M = (
(K �K)

(
�(j − k)

))
k,j∈Z

are bounded from below and above by two finite positive constants.
(A3) The Lévy measure ν satisfies ∫

|x|>1
eR|x|ν(x) dx ≤ AR (21)

for some R > 0 and AR > 0. Moreover, the process (Lt ) has a non-zero Gaussian part,
that is, σ > 0.
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Then under the choice

εn =
√

log(n)

n
· exp

(
A

2
σ 2U2

n

∫ (
K(x)

)2
dx

)
with a constant A such that

∫
R

x2ν(dx) ≤ A (see remarks after (A1)), it holds for n large enough
and any K > 0

P(AK) ≤ C1√
K

√
Unn

(1/4)−C2K
2

log1/4(n)
,

where the positive constants C1, C2 may depend on K∗, AR and κi , i = 0,1,2. Hence by an
appropriate choice of K we can ensure that P(AK) → 0 as n → ∞.

Proof. The proof of Theorem 2 is based on some kind of exponential mixing for the general
Lévy-driven moving average processes of the form (2), and is provided in Appendix D. In fact,
such mixing properties were previously established in the literature only for the processes Z

corresponding to the exponential kernel function K. �

The assumption (A2) of Theorem 2 may seem to be strong, but as shown below, is fulfilled for
a large family of kernels (22).

Example 3. Consider the class of symmetric kernels of the form

K(x) =
(

R∑
r=0

br |x|kr

)
e−ρ|x|, (22)

where ρ > 0, br ≥ 0 for all r = 0, . . . ,R, and 0 ≤ k0 < · · · < kR . Note that the assumption k0 ≥ 0
guarantees that K ∈ L1(R) ∩L2(R). Since

F[K](u) =
R∑

r=0

br
(kr + 1)

[
1

(ρ − iu)kr+1
+ 1

(ρ + iu)kr+1

]
,

we conclude that

∞∑
j=−∞

∣∣∣∣F[K]
(

2π
j

�

)∣∣∣∣≤ 2
R∑

r=0

br
(kr + 1)

[ ∞∑
j=−∞

(
ρ2 +

(
2πj

�

)2)−(kr+1)/2
]

< ∞,

that is, (19) is fulfilled. Assumption (20) and assumption on the matrix M are proved in Lemma 4
(see p. 925), and therefore (A2) holds. Next, assume that the Lévy measure ν is supported on
R+ and satisfies the assumptions (A1) and (A3). For instance, it can be chosen as a sum of a
Brownian motion with drift and a jump process with a Lévy measure considered in Example 1.
Then, as it is shown in Appendix E,

�n � KεnU
1−c
n + U−α

n , n → ∞
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and ∫
{|v|≤Vn}

1

|Q(1 − c − iv)| dv �
{

V
c+3/2
n , b0 > 0,R = 0,

V c+1
n , otherwise.

As a result we have on AC
K

sup
x∈R

{|x|c∣∣ν̃n(x) − ν̃(x)
∣∣}� V ζ

n

(
εnU

(1−c)
n + U−α

n

)+ e−βVn

with β = β+ and ζ = c + 1 + I{R = 0}/2. By taking Vn = κ log(Un) with κ > α/β and Un =
θ log1/2(n) for any θ < (A

∫
(K(x))2 dx)−1/2, we conclude that

sup
x∈R

{|x|c∣∣ν̃n(x) − ν̃(x)
∣∣}� log−α/2(n), n → ∞,

where � stands for an inequality with some positive finite constant depending on the parameters
of the corresponding class.

5. Numerical example

5.1. Simulation

Consider the integral Zt := ∫
R
K(t − s) dLs with the kernel K(x) = e−|x| and the Lévy process

Lt = L
(1)
t I{t > 0} − L

(2)
−t I{t < 0},

constructed from the independent compound Poisson processes

L
(1)
t

d= L
(2)
t

d=
Nt∑

k=1

ξk,

where Nt is a Poisson process with intensity λ, and ξ1, ξ2, . . . are independent r.v.’s with standard
exponential distribution. Note that the Lévy density of the process L

(1)
t is ν(x) = λe−x .

For k = 1,2, denote the jump times of L
(k)
t by s

(k)
1 , s

(k)
2 , . . . and the corresponding jump sizes

by ξ
(k)
1 , ξ

(k)
2 , . . . . Then

Zt =
∞∑

j=0

K
(
t − s

(1)
j

)
ξ

(1)
j −

∞∑
j=0

K
(
t + s

(2)
j

)
ξ

(2)
j .

In practice, we truncate both series in the last representation by finding a value xmax :=
maxx∈R+{K(x) > α} for a given level α. Let

Z̃t =
∑

k∈K(1)

K
(
t − s

(1)
j

)
ξ

(1)
j −

∑
k∈K(2)

K
(
t + s

(2)
j

)
ξ

(2)
j ,
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Figure 1. Typical trajectory of the process Zt constructed from the compound Poisson process with posi-
tive jumps.

where

K(1) := {
k : max(0, t − xmax) < s

(1)
k < t + xmax

}
,

K(2) := {
k : 0 < s

(2)
k < max(0,−t + xmax)

}
.

For simulation study, we take λ = 1, α = 0.01 (and therefore xmax = 6.908). Typical trajectory
of the process Z̃t is presented on Figure 1.

5.2. Estimation procedure

We will use the simplified version of the estimation procedure described in Section 3.3.

Estimation of the Mellin transform of � ′(·)
The most natural estimate is

Mn

[
� ′](1 − z) := i

∫ Un

0

mean(Zk�eiuZk�)

mean(eiuZk�)
u−z du, (23)

where

mean
(
eiuZk�

) := 1

n

n∑
k=1

eiuZk�,

mean
(
Zk�eiuZk�

) = 1

n

n∑
k=1

Zk�eiuZk�.
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In order to improve the numerical rates of convergence of the integral involved in (23), we slightly
modify this estimate:

Mn

[
� ′](1 − z) := i

∫ Un

0

[
mean(Zk�eiuZk�)

mean(eiuZk�)
− mean(Z)eiu

]
u−z du

+ 2iλ
(1 − z) exp
{
iπ(1 − z)/2

}
.

Note that Mn[� ′](1 − z) is also a consistent estimate of M[� ′](1 − z) (since mean(Z) → 2λ),
but involves the integral with better convergence properties. In our case M[ν̃](z) = λ
(1 + z),
and therefore the Mellin transform of the function � ′ is equal to

M
[
� ′](1 − z) = Q̆(1 − z) ·M[ν̆](z) = 2iλ


(1 − z)
(1 + z)

z
eiπ(1−z)/2.

We estimate M[� ′](1 − z) for z = c + ivk , where c is fixed and vk, k = 1, . . . ,K , are taken on
the equidistant grid from (−Vn) to Vn with step δ = 2Vn/K . Typical behavior of the the Mellin
transform M[� ′](1 − z) and its estimate Mn[� ′](1 − z) is illustrated by Figure 2.

Estimation of ν(x)

Finally, we estimate the Lévy density ν(x) by

ν̂n(x) := δ

2πx

K∑
k=1

Re

{Mn[� ′](1 − c − ivk)

Q̆(1 − c − iv)
· x−(c+ivk)

}

Figure 2. Absolute values of the empirical (solid curve) and theoretical (dashed curve) Mellin transforms
of the function � ′(·) depending on the imaginary part of the argument.
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Table 1. The results of the optimization procedure

n Un Vn mean(R(ν̂n)) Var(R(ν̂n))

1000 0.4 1.1 0.0109 1.62 × 10−5

5000 0.4 1.2 0.0079 9.07 × 10−6

10 000 0.5 1.3 0.0063 6.56 × 10−6

20 000 0.3 1.3 0.0023 9.15 × 10−7

and measure the quality of this estimate by the L2-norm on the interval [1,3]:

R(ν̂n) =
∫ 3

1

(
ν̂n(x) − ν(x)

)2
dx.

To show the convergence of this estimate, we made simulations with different values of n. The
parameters Un and Vn are chosen by numerical optimization of R(ν̃n). The results of this opti-
mization, for different values of n, as well as the means and variances of the estimate ν̃n based
on 20 simulation runs, are given in Table 1.

The boxplots of this estimate based on 20 simulation runs are presented on Figure 3.

Appendix A: Existence of Zt

Lemma 1. The conditions (3) and (4) guarantee that the stochastic integral Zt exists.

Figure 3. Boxplot of the estimate R(ν̂n) based on 20 simulation runs.
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Proof. As shown in [16], under the conditions∫
R

∫
R\{0}

(∣∣K(s)x
∣∣2 ∧ 1

)
ν(dx)ds < ∞, (24)

σ 2
∫
R

K2(s) ds < ∞, (25)∫
R

∣∣∣∣K(s)

(
γ +

∫
R

x(1{|xK(s)|≤1} − 1{|x|≤1})ν(dx)

)∣∣∣∣ds < ∞ (26)

the stochastic integral in (2) exists. In our case, (25) is trivial, and condition (24) directly follows
from the inequality ∫

R

∫
R\{0}

(∣∣K(s)x
∣∣2 ∧ 1

)
ν(dx)ds

≤
∫
R

∫
R\{0}

∣∣K(s)x
∣∣2ν(dx)ds

=
∫
R

(
K(s)

)2
ds ·

∫
R\{0}

x2ν(dx).

As to the condition (26), we have∫
R

∣∣∣∣K(s)

(
γ −

∫
R

x1{|x|≤1}ν(dx)

)
+
∫
R

xK(s)1{|xK(s)|≤1}ν(dx)

∣∣∣∣ds

=
∫
R

∣∣∣∣K(s)E[L1] −
∫
R

xK(s)1{|xK(s)|>1}ν(dx)

∣∣∣∣ds

≤ ∣∣E[L1]
∣∣ ∫

R

K(s) ds +
∫
R

∫
R

x2(K(s)
)2

ν(dx)ds,

where the right-hand side is finite due to our assumptions. This observation completes the
proof. �

Appendix B: Proof of Theorem 1

For the sake of simplicity, we will provide the proof for the case when supp(ν) ⊂ R+. For the
general case, the proof follows the same lines separately for ν̃+ and ν̃−.

Denote Gj(u) = �
(j)
σ,n(u) − �

(j)
σ (u), j = 1,2, where

�σ,n(u) = log�n(u) + σ 2u2

2

∫
R

K2(x) dx.
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Then

G1(u) = D1(u) − D0(u)� ′
σ (u)

1 + D0(u)
, (27)

G2(u) = (−� ′′
σ (u) + (� ′

σ (u))2 + � ′
σ (u)G1(u))D0(u)

1 + D0(u)
(28)

− (2� ′
σ (u) + G1(u))D1(u)

1 + D0(u)
+ D2(u)

1 + D0(u)
.

We have

ν̃n(x) − ν̃(x) = 1

2π i

∫ c+iVn

c−iVn

[Mn[� ′′
σ ](1 − z) −M[� ′′

σ ](1 − z)

Q(1 − z)

]
x−z dz

− 1

2π

∫
{|v|≥Vn}

M[ν̃](c + iv)x−(c+iv) dv

and

xc
(
ν̃n(x) − ν̃(x)

) = 1

2π

∫
{|v|≤Vn}

R1(v) + R2(v)

Q(1 − c − iv)
x−iv dv

(29)

− 1

2π

∫
{|v|≥Vn}

M[ν̃](c + iv)x−iv dv,

where Q(·) = Q1(·), and

R1(v) :=
∫ Un

0
G2(u)u−c−iv du,

R2(v) := −
∫ ∞

Un

� ′′
σ (u)u−c−iv du.

We have on AK , under the assumption Kεn(1 + ‖� ′
σ ‖Un) ≤ 1/2, that the denominator of the

fractions in G1 and G2 can be lower bounded as follows:

min
u∈[−Un,Un]

∣∣1 + D0(u)
∣∣≥ 1 − max

u∈[−Un,Un]
∣∣D0(u)

∣∣≥ 1 − Kεn ≥ 1/2.

Therefore,

‖G1‖Un ≤ 2Kεn

(
1 + ∥∥� ′

σ

∥∥
Un

)≤ 1,

‖G2‖Un ≤ 2Kεn

(
1 + ∥∥� ′′

σ

∥∥
Un

+ ∥∥(� ′
σ

)2∥∥
Un

+ (
1 + ∥∥� ′

σ

∥∥
Un

)‖G1‖Un + 2
∥∥� ′

σ

∥∥
Un

)
.
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Thus ∣∣R1(v)
∣∣≤ 2K

1 − c
U1−c

n εn

(
2 + ∥∥� ′′

σ

∥∥
Un

+ ∥∥� ′
σ

∥∥2
Un

+ 3
∥∥� ′

σ

∥∥
Un

)
.

Since

� ′′
σ (u) = −

∫ ∞

−∞
K2(x) ·F[ν̃](uK(x)

)
dx,

it holds for any z ∈C∫ ∞

Un

� ′′
σ (u)u−z du = −

∫ ∞

−∞
K2(x)

[∫ ∞

Un

F[ν̃](uK(x)
)
u−z du

]
dx

= −
∫ ∞

−∞
[
K(x)

]z+1
[∫ ∞

UnK(x)

F[ν̃](v)v−z dv

]
dx.

Next, for any fixed x ∈ R, we can upper bound the inner integral in the right-hand side of the last
formula:∣∣∣∣∫ ∞

UnK(x)

F[ν̃](v)v−z dv

∣∣∣∣≤ (
1 + UnK(x)

)−α ·
∫ ∞

0
v−Re(z)(1 + v)α

∣∣F[ν̃](v)
∣∣dv.

Due to (24) we get that for any z with Re(z) ∈ (0,1) it holds∫ ∞

0
v−Re(z)(1 + v)α

∣∣F[ν̃](v)
∣∣dv <

δ̄

1 − Re(z)
+ A

with δ̄ = 2α
∫
R+ x2ν(x) dx ≤ 2αA due to the remark after (A1). Finally, we conclude that

∣∣R2(v)
∣∣ = ∣∣∣∣∫ ∞

Un

� ′′
σ (y)y−c−iv dy

∣∣∣∣
≤
(

δ̄

1 − c
+ A

)∫
R

[
K(x)

]c+1(1 + UnK(x)
)−α

dx.

Now an upper bound for the last term in (30) follows from the assumption on the Mellin transform
of the function ν̄. Indeed, since (A1) is assumed, it holds∣∣∣∣∫{|u|≥Vn}

M[ν̃](c + iu)x−iu du

∣∣∣∣
≤ e−βVn

∫
{|u|≥Vn}

eβVn
∣∣M[ν̃](c + iu)

∣∣du ≤ Ae−βVn .

This observation completes the proof of Theorem 1.
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Proof of Remark 1. The proof basically follows the same lines. Analogously to the key identity
(30), we are using the following decomposition:

xc
(
ν̆n(x) − ν̆(x)

) = 1

2π

∫
{|v|≤Vn}

R̆1(v) + R̆2(v)

Q̆(1 − c − iv)
x−iv dv

− 1

2π

∫
{|v|≥Vn}

M[ν̆](c + iv)x−iv dv,

where

R̆1(v) :=
∫ Un

0
G1(u)u−c−iv du, R̆2(v) := −

∫ ∞

Un

� ′
σ (u)u−c−iv du.

Note that on the set AK ,∣∣R̆1(v)
∣∣≤ 1

1 − c
‖G1‖UnU

1−c
n ≤ 2K

1 − c
U1−c

n εn

(
1 + ∥∥� ′

σ

∥∥
Un

)
.

The treatment for R̆2 also follows the same lines as in the proof for (i),

∣∣R̆2(v)
∣∣= ∣∣∣∣∫ ∞

Un

� ′
σ (y)y−c−iv dy

∣∣∣∣≤ (
δ̄

1 − c
+ A

)∫
R

[
K(x)

]c(1 + UnK(x)
)−α

dx. �

Appendix C: Boundedness of Wn

The following lemma holds.

Lemma 2. Let A be a constant such that
∫
R
(|x| ∨ x2)ν(x) dx ≤ A. Then Wn defined by (17) is

uniformly bounded.

Proof. Indeed,∣∣ψ ′(u) + σ 2u
∣∣= ∣∣∣∣iγ +

∫
R

ixeiuxν(x) dx

∣∣∣∣≤ γ +
∫
R

|x|ν(x) dx ≤ γ + A,

by our remark after (A1). Analogously,∣∣ψ ′′(u) + σ 2
∣∣= ∣∣∣∣∫

R

x2eiuxν(x) dx

∣∣∣∣≤ ∫
R

x2ν(x) dx ≤ A.

Therefore ∥∥� ′
σ

∥∥
Un

=
∥∥∥∥∫

R

(
ψ ′(uK(x)

)+ σ 2u
)
K(x) dx

∥∥∥∥
Un

≤ (γ + A)‖K‖L1,

∥∥� ′′
σ

∥∥
Un

=
∥∥∥∥∫

R

(
ψ ′′(uK(x)

)+ σ 2)K2(x) dx

∥∥∥∥
Un

≤ A‖K‖2
L2,
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where the integrals in the right-hand sides are bounded due to the assumption K ∈ L1(R) ∩
L2(R). �

Appendix D: Mixing properties of the Lévy-based MA
processes

Proposition 1. Let (Lt ) be a Lévy process with Lévy triplet (μ,σ 2, ν), where σ > 0 and
supp(ν) ⊆ R+. Consider a Lévy-based moving average process of the form

Zs =
∫

K(s − t) dLt , s ≥ 0

with a non-negative kernel K. Fix some � > 0 and denote

ZS := (Zj�)j∈S

for any subset S of {1, . . . , n}. Fix two natural numbers m and p such that m + p ≤ n. For any
subsets S ⊆ {1, . . . ,m} and S′ ⊆ {p + m, . . . , n}, let g and g′ be two real valued functions on
R

|S| and R
|S′| satisfying

max
{∥∥e−R�

S ·g
∥∥

L1 ,
∥∥e−R�

S′ ·g′∥∥
L1

}
< ∞

for some RS ∈ R
|S|
+ and RS′ ∈ R

|S′|
+ , and denote C◦ := ‖e−R�

S ·g‖L1 · ‖e−R�
S′ ·g′‖L1 . Suppose that

the Fourier transform K̂ of K fulfils

K∗ :=
∞∑

j=−∞

∣∣∣∣K̂(2π
j

�

)∣∣∣∣< ∞

and ∫
|x|>1

eR∗|x|x2ν(dx) ≤ AR∗

for R∗ = ‖RS∪S′ ‖∞K∗
�

. Then∣∣Cov
(
g(ZS), g′(ZS′)

)∣∣ ≤ CRC◦ max|l|>p
(K �K)(l�)

(30)

×
∫

‖uS∪S′ − iRS∪S′ ‖2 exp
(−σ 2λS∪S′(u)

)
duS∪S′ ,

where λS(u) :=∑
k,j∈S ukuj (K�K)(�(k−j)) for any u ∈R

n and CR = exp(σ 2λS∪S′(RS∪S′)).
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Proof. For the sake of simplicity, we prove the result for the case supp(ν) ∈ R+. We have for
any S ⊆ {1, . . . , n}

�S(uS − iRS) := E

[
exp

(
i
∑
j∈S

ujZj� +
∑
j∈S

RjZj�

)]

= exp

(∫
ψ

(∑
j∈S

(uj − iRj)K(t − j�)

)
dt

)
,

where uS := (uj ∈ R, j ∈ S) and RS := (Rj ∈ R+, j ∈ S), provided

E

[
exp

(∑
j∈S

RjZj�

)]
< ∞.

Denote for any subsets S ⊆ {1, . . . ,m} and S′ ⊆ {p + m, . . . , n},
D(uS − iRS,uS′ − iRS′)

:= �S,S′(uS − iRS,uS′ − iRS′) − �S(uS − iRS)�S′(uS′ − iRS′),

where it is assumed that

E

[
exp

( ∑
j∈S∪S′

RjZj�

)]
< ∞.

Then using the elementary inequality |ez − ey | ≤ (|ez| ∨ |ey |)|y − z|, y, z ∈C, we derive∣∣D(uS − iRS,uS′ − iRS′)
∣∣

≤ {∣∣�S,S′(uS − iRS,uS′ − iRS′)| ∨ |�S(uS − iRS)�S′(uS′ − iRS′)
∣∣}

×
∣∣∣∣∫ {ψ

( ∑
j∈S∪S′

(uj − iRj )K(x − j�)

)
− ψ

(∑
j∈S

(uj − iRj )K(x − j�)

)

− ψ

(∑
j∈S′

(uj − iRj )K(x − j�)

)}
dx

∣∣∣∣.
Due to Lemma 3 and the Poisson summation formula, we derive∣∣D(uS − iRS,uS′ − iRS′)

∣∣
≤ {∣∣�S,S′(uS − iRS,uS′ − iRS′)

∣∣∨ ∣∣�S(uS − iRS)�S′(uS′ − iRS′)
∣∣}

×
[∑

j∈S

∑
l∈S′

∣∣(ul − iRl)(uj − iRj)
∣∣(K �K)

(
(j − l)�

)]

×
∫

y2e
y‖R‖∞K∗

� ν(dy).
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We have

Cov
(
g(ZS), g′(ZS′)

)
=
∫
R

|S|
+

∫
R

|S′|
+

g(xS)g′(xS′)
(
pS,S′(xS, xS′) − pS(xS)pS′(xS′)

)
dxS dxS′

and the Parseval’s identity implies

Cov
(
g(ZS), g′(ZS′)

) = 1

(2π)|S|+|S′|

∫
R|S|

∫
R|S′|

ĝ(iRS − uS)ĝ′(iRS′ − uS′).

× D(uS − iRS,uS′ − iRS′) duS duS′ ,

ĝ stands for the Fourier transform of g. Hence∣∣Cov
(
g(ZS), g′(ZS′)

)∣∣
≤ CR

(2π)|S|+|S′|

∫
R|S|

∫
R|S′|

∣∣D(uS − iRS,uS′ − iRS′)
∣∣duS duS′ .

Furthermore, for any set S ⊂ {1, . . . , n}, we have∫
ψ

(∑
j∈S

(uj − iRj )K(s − j�)

)
ds ≤ −σ 2λS(u) + σ 2λS(R).

As a result ∣∣�S(uS − iRS)
∣∣≤ CR exp

(−σ 2λS(u)
)

and ∣∣D(uS − iRS,uS′ − iRS′)
∣∣ ≤ max|l|>p

(K �K)(l�)
∑
j∈S

∑
l∈S′

∣∣(ul − iRl)(uj − iRj )
∣∣

× CR exp
(−σ 2λS∪S′(u)

)
. �

Lemma 3. Set

ψ(z) =
∫ ∞

0

(
exp(zx) − 1

)
ν(dx)

for any z ∈C, such that the integral
∫
|x|>1 exp(Re(z)x)ν(dx) is finite. Then

∣∣ψ(z1 + z2) − ψ(z1) − ψ(z2)
∣∣≤ 2|z1||z2|

∫
x2ex(Re(z1)+Re(z2))ν(dx),

provided the integral
∫

x2ex(Re(z1)+Re(z2))ν(dx) is finite.
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Proof. We have

ψ(z1 + z2) − ψ(z1) − ψ(z2)

=
∫ ∞

0

(
exp

(
(z1 + z2)x

)− exp(z1x) − exp(z2x) + 1
)
ν(dx)

=
∫ ∞

0

(
exp(z1x) − 1

)(
exp(z2x) − 1

)
ν(dx).

Since ∣∣exp(z) − 1
∣∣ = ∣∣eRe(z)ei Im(z) − 1

∣∣
= ∣∣eRe(z)(ei Im(z) − 1

)+ eRe(z) − 1
∣∣

≤ ∣∣Im(z)
∣∣eRe(z) + ∣∣eRe(z) − 1

∣∣
≤ (∣∣Re(z)

∣∣+ ∣∣Im(z)
∣∣)eRe(z)

≤ √
2|z|eRe(z),

we get

∣∣ψ(z1 + z2) − ψ(z1) − ψ(z2)
∣∣ ≤ ∫ ∞

0

∣∣exp(z1x) − 1
∣∣∣∣exp(z2x) − 1

∣∣ν(dx)

≤ 2|z1||z2|
∫

x2ex(Re(z1)+Re(z2))ν(dx). �

Proof of Theorem 2. The rest of the proof of Theorem 2 basically follows the same lines as the
proof of Proposition 3.3 from [7]. First note that

max|u|≤Un

|�n(u) − �(u)|
|�(u)| ≤ exp

{
C1σ

2U2
n

∫
R

(
K(x)

)2
dx

}
· max|u|≤Un

∣∣�n(u) − �(u)
∣∣

for n large enough. Next, we separately consider the real and imaginary parts of the difference
between �n(u) and �(u). Denote

Sn(u) := nRe
(
�n(u) − �(u)

)=
n∑

k=1

[
cos(uZk�) −E

[
cos(uZk�)

]]
.

Since Sn(u) is a sum of centred real-valued random variables, bounded by 2 and satisfying (30)
and (33), there exist a positive constant c1 such that

P
{∣∣Sn(u)

∣∣≥ x
}≤ exp

{ −c1x
2

2n + x log(n) log log(n)

}
, ∀x ≥ 0, (31)
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see Theorem 1 from [13]. In order to apply now the classical chaining argument, we divide
the interval [−Un,Un] by 2J equidistant points (uj ) =: G, where uj = Un(−J + j)/J , j =
1, . . . ,2J . Applying (31), we get for any x ≥ 0,

P

{
max
uj ∈G

∣∣Sn(uj )
∣∣≥ x/2

}
≤ 2J exp

{ −c1x
2

8n + 2x log(n) log log(n)

}
. (32)

Note that for any u ∈ [−Un,Un] there exists a point u� ∈ G such that |u − u�| ≤ Un/J and
therefore for all k ∈ 1, . . . , n,∣∣cos(uZk�) − cos

(
u�Zk�

)∣∣≤ |Zk�| · ∣∣u − u�
∣∣≤ |Zk�| · Un/J.

Next, we get

P

{
max|u|≤Un

∣∣Sn(u)
∣∣≥ x

}
≤ P

{
max
uj ∈G

∣∣Sn(uj )
∣∣≥ x/2

}
+ P

{
n∑

k=1

(|Zk�| +E
[|Zk�|])Un/J ≥ x/2

}
.

Applying (32) and the Markov inequality, we arrive at

P

{
max|u|≤Un

∣∣Sn(u)
∣∣≥ x

}
≤ 2J exp

{ −c1x
2

8n + 2x log(n) log log(n)

}
+ 4Un

xJ
nE|Z�|,

where E[|Z�|] ≤ (E[|Z�|2])1/2 is finite due to (4). The choice

J = floor

(√
Unn

x
· exp

{
c1x2

8n + 2x log(n) log log(n)

})
,

where floor(·) stands for the largest integer smaller than the argument, leads to the estimate

P

{
max|u|≤Un

∣∣Sn(u)
∣∣≥ x

}
≤ c2

√
Unn

x
exp

{ −c1x
2

16n + 4x log(n) log log(n)

}

≤ c2

√
Unn

x
exp

{−c3x
2

n

}
,

which holds for n large enough with c2 = 2(1 + E[|Z�|]), c3 = c1/17, provided x � n1−ε with
some ε > 0. Finally,

P

{
max|u|≤Un

∣∣Sn(u)
∣∣≥ x

}
≥ P

{
max|u|≤Un

|Re(�n(u) − �(u))|
|�(u)| ≥ x

n
exp

{
C1σ

2U2
n

∫
R

(
K(x)

)2
dx

}}
.



Inference for continuous-time moving average Lévy processes 925

Therefore, the choice

x = Kn exp

{
−C1σ

2U2
n

∫
R

(
K(x)

)2
dx

}
εn/2 = K

√
n log(n)/2

with any positive K leads to

P

{
max|u|≤Un

|Re(�n(u) − �(u))|
|�(u)| ≥ Kεn

2

}
≤

√
2c2√
K

√
Unn

(1/4)−c3(K
2/4)

log1/4(n)
.

Since the same statement holds for | Im(�n(u) − �(u))|/|�(u)|, we arrive at the desired
result. �

Appendix E: Proofs for Example 3

Lemma 4. Let K(x) = (
∑R

r=0 br |x|kr )e−ρ|x| with ρ > 0, br ≥ 0 for all r = 0, . . . ,R, and 0 ≤
k0 < · · · < kR . Then

(K �K)(�(k − j))

(K �K)(0)
≤ κ0(j − k)κ1e−κ2(j−k) (33)

for all j > k with some positive constants κ0, κ1 and κ2. Moreover, all eigenvalues of the matrix
M are bounded from below and above by two finite positive numbers, provided κ2 (equivalently
ρ) is large enough.

Proof. Let us focus for simplicity on the case K(x) = |x|re−ρ|x| with some r > 0, ρ > 0; proof
for the general case follows the same lines. We have

(K �K)(0) = 2
∫ ∞

0
x2r e−2ρx dx = 2(2ρ)−2r−1
(2r + 1)

and ∫
R

K�j (v)K�k(v) dv =
(∫ �k

−∞
+
∫ �j

�k

+
∫ ∞

�j

)
K�j (v)K�k(v) dv =: I1 + I2 + I3,

where Kt (s) := K(s − t),∀s, t ∈ R+. In the sequel we separately consider integrals I1, I2, I3.
We have

I1 =
∫ ∞

�j

(v − �j)r(v − �k)re−2ρv+�ρ(j+k) dv

=
∫
R+

ur
(
u + �(j − k)

)r
e−2ρu−ρ�(j−k) du

= 2re−ρ�(j−k)
(

(2r + 1) + (

�(j − k)
)r


(r + 1)
)
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and

I2 =
∫ �j

�k

[−(v − �j)(v − �k)
]r

e−ρ�(j−k) dv

≤ �2r+1

22r
(j − k)2r+1e−ρ�(j−k),

because maximum of the quadratic function f (v) := −(v − �j)(v − �k) is attained at the point
v = �(k + j)/2 and is equal to (�2/4)(j − k)2. Furthermore,

I3 =
∫ �k

−∞
(�j − v)r (�k − v)re2ρv−ρ�(j+k) dv

=
∫
R+

(
u + �(j − k)

)r
ure−2ρu−ρ�(j−k) du = I1.

Next, the well-known Gershgorin circle theorem implies that the minimal eigenvalue of the ma-
trix ((K �K)(�(k − j)))k,j∈Z is bounded from below by

(K �K)(0) − 2
∑
l>0

(K �K)(l)

= (K �K)(0)

[
1 − 2κ0

∑
l>0

lκ1e−κ2l

]
.

Note that for any natural number κ1 > 0

∑
l≥1

lκ1e−κ2l = (−1)κ1
dκ1

dxκ1

(
e−x

1 − e−x

)∣∣∣∣
x=κ2

.

Hence the minimal eigenvalue of the matrix ((K � K)(�(k − j)))k,j∈Z is bounded from below
by a positive number, if κ2 is large enough. Analogously the maximal eigenvalue of the matrix
((K �K)(�(k − j)))k,j∈Z is bounded from above by

(K �K)(0) + 2
∑
l>0

(K �K)(l) = (K �K)(0)

[
1 + 2κ0

∑
l>0

lκ1e−κ2l

]
which is finite. �

For the sake of simplicity in what follows we consider the case K(x) = |x|r e−|x|, and assume
that either the kernel K is symmetric or is supported on R+, so that it suffices to study the integral
over R+.

1. Upper bound for �n := ∫
R+[K(x)]c+1[1 + UnK(x)]−α dx In the sequel, we consider only

the case r > 0, since for r = 0 the statement becomes obvious. Note that the function K(x) =
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xre−x has two intervals of monotonicity on R+: [0, r] and [r,∞). Denote the corresponding
inverse functions by g1 : [0, rre−r ] → [0, r] and g2 : [0, rre−r ] → [r,∞). Then

�n =
(∫ r

0
+
∫ ∞

r

)[
K(x)

]c+1[1 + UnK(x)
]−α

dx

=
∫ rr e−r

0
wc+1(1 + Unw)−αg′

1(w)dw

+
∫ 0

rr e−r

wc+1(1 + Unw)−αg′
2(w)dw

=
∫ rr e−r

0
wc+1(1 + Unw)−αG(w)dw

= U−c−2
n

(∫ 1

0
+
∫ rr e−rUn

1

)
yc+1(1 + y)−α · G(y/Un)dy

=: J1 + J2,

where G(·) = g′
1(·) − g′

2(·). In what follows, we separately analyze the summands J1 and J2.
1a. Upper bound for J1 Clearly, the behavior of the function G(·) at zero is crucial for the

analysis of J1. Since K(g1(y)) = y for any y ∈ [0, rre−r ], we get g1(0) = 0 and moreover as
y → 0,

g′
1(y) = 1

K′(g1(y))
= 1

[g1(y)]r−1e−g1(y)(r − g1(y))
� 1

r[g1(y)]r−1
.

Analogously, due to K(g2(y)) = y for any y ∈ [0, rre−r ], we conclude that limy→0 g2(y) = +∞,
and as y → 0

g′
2(y) = 1

[g2(y)]r−1e−g2(y)(r − g2(y))
� −1

[g2(y)]r e−g2(y)
= −1

K(g2(y))
= −1

y
.

For further analysis of the asymptotic behaviour of g1(·), we apply the asymptotic iteration
method. We are interested in the behaviour of the solution g1(y) of the equation

f (x) := xre−x − y = 0

as y → 0. Note that the distinction between the solutions is in the asymptotic behaviour as y → 0:
g1(y) → 0, g2(y) → ∞. Let us iteratively apply the recursion

ϕn+1 = ϕn − f (ϕn)

f ′(ϕn)
= ϕn − ϕr

ne
−ϕn − y

ϕr−1
n e−ϕn(r − ϕn)

, n = 1,2, . . . .

Motivated by the power series expansion of the function e−x at zero,

xre−x = xr − xr+1 + 1

2
xr+2 + o

(
xr+2),
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we take for the initial approximation of g1(y), the function ϕ0 = y1/r . Then

ϕ1(y) = y1/r − ye−y1/r − y

y(r−1)/re−y1/r
(r − y1/r )

= y1/r

(
1 − e−y1/r − 1

e−y1/r
(r − y1/r )

)
= y1/r + O

(
y2/r

)
.

Finally, we conclude that as y → 0,

G(y) = 1

ry(r−1)/r

(
1 + o(1)

)+ 1

y

(
1 + o(1)

)= 1

y

(
1 + o(1)

)
.

Therefore, J1 can be upper bounded as follows:

J1 ≤ C3U
−c−1
n

∫ 1

0
yc(1 + y)−α

(
1 + o(1)

)
dy.

The integral in the right-hand side converges iff
∫ 1

0 yc dy < ∞. Since c ∈ (0,1), we get J1 �
U−c−1

n .
1b. Asymptotic behaviour of J2 Analogously, the asymptotic behavior of J2 crucially depends

on the behavior of G(y) at the point y = rre−r . Note that as y → rre−r ,

g′
k(y) = 1

K′(gk(y))
= 1

[gk(y)]r−1e−gk(y)(r − gk(y))
� C

r − gk(y)

for k = 1,2. Taking logarithms of both parts of the equation xre−x = y and changing the vari-
ables u = x − r and δ = rre−r − y, we arrive at the equality

u = r log

(
1 + u

r

)
− log

(
1 − δ

rre−r

)
.

Consider this equality as u → 0 and δ → 0+, we get

u = r

(
u

r
− 1

2

u2

r2

)
+ δ

rre−r
+ O

(
δ2)+ O

(
u3),

and therefore

u = ±
√

2r1−r er · √δ + O(δ) + O
(
u3/2)

corresponding to the functions g1 and g2. Finally, we conclude

∣∣G(y)
∣∣� C

√
2√

r1−r er

1√
rre−r − y

, y → rre−r ,
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and therefore

J2 ∼ U
−c−3/2
n

∫ rr e−rUn

1
yc+1(1 + y)−α · 1√

rre−rUn − y
dy.

We change the variable in the last integral:

z =
√

rre−rUn − 1

rre−rUn − y
, y = rre−rUn + 1 − rre−rUn

z2
,

and get with Ũn = rre−rUn

J2 � U
−c−3/2
n

∫ ∞

1

(
Ũn + 1 − Ũn

z2

)c+1

·
(

1 + Ũn + 1 − Ũn

z2

)−α

· z√
Ũn − 1

2(Ũn − 1)

z3
dz.

Therefore,

J2 � C4U
−c−3/2
n Ũ c+1

n (Ũn + 1)−α

√
Ũn − 1, n → ∞,

with some constant C4 > 0 and we conclude that J2 � C5U
−α
n as n → ∞. To sum up, �n �

U
−min(α,c+1)
n = U−α

n as n → ∞.
2. Upper bound for Hn := ∫

{|v|≤Vn} |Q(1 − c − iv)|−1 dv Recall that

Hn =
∫

{|v|≤Vn}
e−πv/2

|
(1 − c − iv)| · | ∫
R
(K(x))c+1+iv dx| dv.

Note that for our choice of the function K(·), it holds for any z ∈C∫
R

(
K(x)

)z
dx = 2

∫
R+

(
xre−x

)z
dx = 2

[
lim

R→+∞

∫
γR(z)

urze−u du

]
· z−(rz+1),

where γR(z) is the part of the complex line {(x Re(z), x Im(z)), x ∈ [0,R]}. Note that due to the
Cauchy theorem, for any z with positive real part∫

R+
urze−ρu du = lim

R→+∞

∫
γR(z)

urze−u du + lim
R→+∞

∫
cR

urze−u du (34)

with cR := {(R cos(θ),R sin(θ)), θ ∈ (0, arctan(Im(z)/Re(z)))}. Since the last limit in (34) is
equal to 0, we conclude that∫

R

(
K(x)

)c+1+iv
dx = 2


(
r(c + 1) + 1 + ivr

) · e−(r(c+1)+1+ivr)·log(c+1+iv).
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Next, using the fact that there exists a constant C̄ > 0 such that |
(α + iβ)| ≥ C̄|β|α−1/2e−|β|π/2

for any α ≥ −2, |β| ≥ 2 (see Corollary 7.3 from [8]), we get that

e−πv/2

|
(1 − c − iv)| ≤ vc−1/2,

and moreover∣∣∣∣∫
R

(
K(x)

)c+1+iv
dx

∣∣∣∣= 2
|
(r(c + 1) + 1 + ivr)|

((c + 1)2 + v2)(r(c+1)+1)/2e−vr arctan(v/(c+1))
.

The asymptotic behavior of the last expression depends on the value r . More precisely,

∣∣∣∣∫
R

(
K(x)

)c+1+iv
dx

∣∣∣∣∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
c(vr)r(c+1)+1/2e−vrπ/2

((c + 1)2 + v2)(r(c+1)+1)/2e−vr arctan(v/(c+1))
∼ v−1/2,

if r = 1,2, . . . ,

v−1, if r = 0

as v → +∞. Finally, we conclude that Hn � V c+1
n , if r = 1,2, . . . , and Hn � V

c+3/2
n if r = 0.
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