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We consider posterior consistency for a Markov model with a novel class of nonparametric prior. In this
model, the transition density is parameterized via a mixing distribution function. Therefore, the Wasserstein
distance between mixing measures can be used to construct neighborhoods of a transition density. The
Wasserstein distance is sufficiently strong, for example, if the mixing distributions are compactly supported,
it dominates the sup-L1 metric. We provide sufficient conditions for posterior consistency with respect to the
Wasserstein metric provided that the true transition density is also parametrized via a mixing distribution.
In general, when it is not be parameterized by a mixing distribution, we show the posterior distribution is
consistent with respect to the average L1 metric. Also, we provide a prior whose support is sufficiently large
to contain most smooth transition densities.
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1. Introduction

The Bayesian nonparametric modeling of first order time series models (i.e., Markov models) is
now widely routine following the development of mixture transition densities which are tractable
and describe stationary densities which are also mixture models. See, for example, [2] and the
references within that paper. While there is now a substantial literature on Bayesian nonparamet-
ric posterior consistency for i.i.d. observations and regression models, there is a lack of decent
results for Bayesian nonparametric Markov models. This is mainly due to the lack of suitable
priors and metrics. The aim in this paper is to provide a novel class of nonparametric prior with
techniques for demonstrating posterior consistency.

To set the scene and the notation; consider a time homogeneous X -valued Markov chain X =
(Xn)n≥0. The underlying probability law of the Markov chain X is completely determined by
the initial distribution and transition kernel whose Lebesgue densities are assumed to exist, and
denoted by (y, x) �→ f (y|x). In most statistical applications, the main interest is to infer the
transition kernel density f which may be considered as a finite or infinite dimensional parameter.

As is typical in i.i.d. cases, the performance of a statistical methodology, from both a frequen-
tist and Bayesian context, may be evaluated via its large sample properties. For example, if X is
generated from a true transition density f0, a reasonable estimator f̂n is expected to be consistent
for estimating f0, that is, d(f̂n, f0) → 0 almost surely, or in probability, for some metric d . If f
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can be parametrized by a finite dimensional parameter, the Euclidean metric is a natural choice
for d . In infinite dimensional cases, however, there is no natural counterpart to commonly used
metrics in i.i.d. models such as the Hellinger and total variation metrics. The main difficulty
arises because the distance d(f1(·|x), f2(·|x)) between two conditional densities depends on x,
so it cannot define suitable neighborhoods on F , where F is the set of every transition den-
sity of a positive Harris chain. To define a suitable topology on F , the dependence on x should
somehow be eliminated.

There is to date little work on constructing suitable neighborhoods on F . Tang and Ghosal
[26] considered three kinds of metric which can be applied for general families of transition
density. The first one is a metric between stationary distributions, but this is too weak because
different transition kernels can yield the same stationary distribution. The second and third types
are maximized and integrated distances defined by

dmax(f1, f2) = sup
x∈X

d
(
f1(·|x), f2(·|x)

)
and davg(f1, f2) =

∫
d
(
f1(·|x), f2(·|x)

)
dν(x),

where ν is some probability measure. The former, dmax, is too strong and cannot be used unless
X is compact, as mentioned in [1,9]. The average distance davg is often useful for consistency,
but the result in [26] is limited to a specific prior whose support is not sufficiently large. The same
authors also considered the minimized distance dmin(f1, f2) = infx∈X d(f1(·|x), f2(·|x)) in [9],
but this is not sufficiently strong, and can be highly unsuitable for some important models [1].
Antoniano-Villalobos and Walker [1] extended the idea of minimized distance, and considered
the metric

d̃min(f1, f2) = inf
x∈X

d
(
f̃1(·, ·|x), f̃2(·, ·|x)

)
,

where f̃ (y, z|x) = f (z|y)f (y|x) is a bivariate extension of the transition density f . Though it
is not a metric, they found that under certain conditions, d̃min yields a strong topology on F .
However, it still requires strong assumptions such as the compactness of X .

In this paper, we consider posterior consistency for a Markov model with a novel class of
nonparametric prior, which is an extension of [2]. In this model, the transition density is pa-
rameterized by a mixing distribution function, so a metric between mixing distributions can be
used to construct neighborhoods of a transition density. If f0 belongs to the model, that is, it
is also represented via a mixture, it is shown under reasonable conditions that the posterior
is consistent with respect to the Wasserstein metric. The Wasserstein distance is a sufficiently
strong metric in this model e.g. if mixing distributions are compactly supported, it dominates
supx∈C d(f1(·|x), f2(·|x)) for any compact set C, where d is the Hellinger or total variation dis-
tance. From one perspective, the Wasserstein consistency in this paper can be seen as a time
series version of the i.i.d. results for the mixing distribution obtained by [22].

For general f0, which may not be parameterized by a mixing distribution, the Wasserstein
distance cannot be used as a metric for consistency since no mixing distribution exists. In this
case, the posterior distribution is consistent in the average L1 metric, for all f0 in the Kullback–
Leibler (KL) support of the prior. We provide a prior whose KL support is sufficiently large to
contain most smooth transition densities. To the best of our knowledge, a nonparametric prior
for transition densities with such a large support is not known in the literature.
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The remainder of this paper is organized as follows. Section 2 presents the model and prior
with three examples. The main results pertaining to posterior consistency in the Wasserstein
and average L1 metrics are given in Sections 3 and 4, respectively. All proofs are deferred to
Section 5.

Before proceeding, it is useful to establish some notation. For any two densities f and g

with respect to a σ -finite measure μ, dH and dV denote the Hellinger and total variation (L1)
metrics defined by d2

H (f,g) = ∫
(
√

f −√
g)2 dμ and dV (f, g) = ∫ |f −g|dμ, respectively. The

Kullback–Leibler divergence is defined as K(f,g) = ∫
log(f/g)f dμ. Also, for two probability

measures P and Q on a set � ⊂R
d , define the L1-Wesserstein metric by

dW (P,Q) = inf
J∈J (P,Q)

{∫
�×�

‖θ1 − θ2‖dJ (θ1, θ2)

}
, (1.1)

where ‖ · ‖ is the Euclidean norm and J (P,Q) is the set of all joint distributions J with
marginals P and Q. For a given bivariate density f (y, x), we use the same notation f for
the marginal density (of the second component) f (x) = ∫

f (y, x) dy and conditional density
f (y|x) = f (y, x)/f (x). Denote the standard normal density as φ, and let φσ (x) = σ−1φ(x/σ).
For a metric space (S, d), its Borel σ -algebra is denoted as B(S) and N(ε,S, d) is the minimum
ε-covering number. Let a � b denote that a is smaller than b up to a constant multiple.

2. Model and prior

In this section, we introduce the nonparametric Markov model studied in [2]. We provide three
specific examples including the one considered in [2]. The other two examples possess interesting
statistical properties.

Assume that X = R and X0 has a known distribution, so probabilistic properties of X =
(Xn)

∞
n=0 are completely determined by the transition density f . The Markov chain X will be

assumed to be stationary. To be more precise, we first introduce some notions concerning the
stability of Markov chains. Readers are referred to the monograph [20] for details.

For A ∈ B(R), let τA = inf{n ≥ 1 : Xn ∈ A} be the first time a chain reaches A. For a positive
measure ϕ on (R,B(R)), X is called ϕ-irreducible if Px(τA < ∞) > 0 for all x ∈ R and A with
ϕ(A) > 0, where Px denotes the probability of events conditional on X0 = x. If, furthermore,
Px(Xn ∈ A i.o.) = 1 for every x ∈ A and A ∈ B(R) with ϕ(A) > 0, it is called a Harris recurrent
chain, where {Xn ∈ A i.o.} = ⋂∞

m=1
⋃∞

n=m{Xn ∈ A}. If X is ϕ-irreducible and has a stationary
distribution, that is, there exists a probability meausre ν such that

∫ ∫
A

f (y|x)dy dν(x) = ν(A)

for every A ∈ B(R), it is called a positive chain. If X is Harris recurrent and positive, then it is
called a positive Harris chain. Let F be the set of every transition density f (·|·) of a R-valued
positive Harris chain. Note that if the transition density f of the Markov chain X belongs to
F , then there exists a unique stationary distribution ν, and for every ν-integrable function h,
n−1 ∑n

i=1 h(Xi) converges Px -almost-surely to
∫

hdν for every x ∈R.
For a prior on (a subset of) F , we consider a class of bivariate mixtures. Let � be a subset of a

Euclidean space, P a set of Borel probability measures on �, and K = {Kθ : θ ∈ �} be a class
of probability measures on R× R, where Kθ has the continuous and positive Lebesgue density
(y, x) �→ kθ (y, x). If not explicitly specified in examples, we assume that P is the set of every
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Borel probability measure. Equip P with the weak topology, and let 
 be the prior distribution
on (P,B(P)). Let

fP (y, x) =
∫

kθ (y, x) dP (θ) (2.1)

be the density of a bivariate mixture. As explained in the Introduction, the notation fP is used to
denote the conditional density

fP (y|x) = fP (y, x)∫
fP (y, x) dy

, (2.2)

and the marginal

fP (x) =
∫

fP (y, x) dy, (2.3)

as well as the joint density (2.1).
Since the conditional density (2.2) is parameterized by a mixing distribution P ∈ P , for a

Bayesian analysis of the Markov chain X, we only need to choose an appropriate parametric
family K and put a prior on the space of mixing distribution P . The only requirement for
K and P is that fP (·|·) ∈ F for every P ∈ P . As mentioned in [2], fP (·|·) ∈ F if the two
marginals of fP (·, ·) are identical. Based on this idea, they proposed to use bivariate normal
kernels with the same mean and variance parameters; see Section 2.1. In Section 2.2, we provide
a novel example such that fP (·, ·) have different marginals but fP (·|·) ∈ F . As a consequence,
it is possible to construct a prior on F which has a sufficiently large KL support; see Section 4.
Furthermore, we propose a general method for fP (·, ·) to have the identical marginals via a
copula. This general approach can be applied in practice for flexible modeling.

One natural choice of 
 is a Dirichlet process [8], which is commonly adopted for density
estimation, again as a mixing distribution; see [15]. A Markov chain Monte Carlo algorithm
and some statistical applications, with our first example, are provided in [2], using the Dirichlet
process prior. This can be extended to more general K without much difficulty.

Note that mixtures can be used for modelling transition densities directly in a Markov model.
For example, [26] and [18] considered mixture densities of the form f (y|x) = ∫

kθ (y|x)dP (θ)

and f (y|x) = ∫
kθ (y) dP (θ |x), respectively. Also, [9] considered f (y|x) = g(y − ρx) for a

density g and AR coefficient ρ ∈ (−1,1), in which g can be modelled as a mixture. These
approaches are different to (2.2) which is derived from a bivariate mixture model. In particular,
it is difficult to study how flexible these mixtures are, while our proposal (2.2) can have a large
KL support with an appropriate choice of K and P .

2.1. Symmetric normal mixtures

As illustrated in [2], the kernel distribution Kθ can be taken as a bivariate normal distribution
with mean (μ,μ)T and variance

� = σ 2
(

1 ρ

ρ 1

)
(2.4)
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for some θ = (μ,σ 2, ρ)T . Since kθ is symmetric in the sense that kθ (y, x) = kθ (x, y) for every
x, y ∈ R, fP (·, ·) is also symmetric, so we call it as a symmetric normal mixture. Let � be a
subset of R× (0,∞) × [0,1]. By the symmetry, we have that

∫
fP (y, x) dy = ∫

fP (x, y) dy =
fP (x), so ∫

fP (y|x)fP (x) dx =
∫

fP (y, x) dx = fP (y)

for every P ∈ P . That means fP (·) is the density of the stationary distribution of fP (·|·). There-
fore, both the transition and stationary densities are explicitly expressed as a function of P . Since
fP (y|x) > 0 for every y, x ∈ R, it corresponds to an irreducible and aperiodic chain, so we con-
clude that fP (·|·) ∈ F for every P ∈ P .

2.2. Non-symmetric normal mixtures

Although symmetric normal mixtures form a large class of transition density, it may not be
sufficiently flexible. Note that probabilistic properties of a positive Harris chain are completely
determined by the density f (y, x) = f (y|x)f (x), where f (y|x) is the transition density and
f (x) = ∫

f (y, x) dy is the stationary density. Note here that f (y, x) need not be symmetric, as
it was in Section 2.1. Therefore, a transition density derived from a symmetric normal mixture
cannot capture some important data structures such as asymmetry and skewness, as reported in
[32,33].

For a more flexible stationary Markov model, general bivariate normal kernels with different
mean (or variance) parameters can be considered. However, K or P should be chosen carefully
because fP (·|·) may not belong to F without further constraints on P or K . To see this,
assume that kθ (y, x) is the bivariate normal density with mean μ = (μ1,μ2) and variance � =
(�ij ), where θ = (μ,�). If μ1 = μ2 = 0 and ρ�11/�22 = 1, then the transition density kθ (·|·)
corresponds to the standard random walk, which is non-stationary. One may impose constraints
on P such as symmetry, that is, P((μ1,μ2) ∈ B) = P((μ2,μ1) ∈ B) for every Borel set B and
P(�11 = �22) = 1, so that fP (·|·) ∈ F . However, it still results in a symmetric joint distribution
which is not sufficiently flexible.

We provide simple constraints on the form of kθ assuring fP (·|·) ∈ F . Let θ = (μ1,μ2, σ )

and kθ be the bivariate normal density of the form

kθ (y, x) = φσ (y − μ1)φσ (x − μ2). (2.5)

It should be noted that fP (·, ·) does not have the same marginals, so fP (·) is not the stationary
distribution of fP (·|·). Although the form of the stationary distribution is not explicitly given,
the following theorem still assures stationarity.

Theorem 2.1. Let kθ be defined as (2.5) and � = [−M,M]2 × [σ1, σ2] for some positive con-
stants σ1 < σ2 and M . Then, fP (·|·) ∈ F for every P ∈ P .

We call (2.5) a non-symmetric normal mixture. In Section 4, it will be shown that a non-
symmetric normal mixture prior has large KL support.
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2.3. Copula-based kernels

As noted at the beginning of this section it is sufficient for fP (·|·) ∈ F so that fP (·, ·) has the
same marginals. Obviously, it is sufficient that Kθ has the same marginals for every θ ∈ �. Such
a kernel can be constructed via a copula. With a slight abuse of notation, we use Kθ to denote
both univariate and bivariate kernels, and their cumulative distribution functions, where it is clear
from the context.

Recall that a bivariate distribution function C on [0,1]2 is called a (two-dimensional) copula if
its marginal distributions are uniform. Formally, a function C : [0,1]2 → [0,1] is called a copula
if

(1) C(0, x) = C(x,0) = 0 and C(1, x) = C(x,1) = x for all x ∈ [0,1];
(2) for every a, b, c, d ∈ [0,1] with a ≤ b and c ≤ d

C(a, c) − C(a, d) − C(b, c) + C(b, d) ≥ 0.

If (y, x) �→ f (y, x) is a bivariate density with the same marginals x �→ f (x), then it can be
written as

f (y, x) = f (y)f (x)c
(
F(y),F (x)

)
(2.6)

for some copula density c by the Sklar’s theorem [24], where F is the cumulative distribution
function of f .

The copula approach to Markov models has been considered in the frequentist literature; for
some important references, Darsow et al. [7] studied the mathematical relationship between
Markov processes and copulas. Joe [13] considered a class of parametric copulas and parametric
stationary distribution. A semiparametric approach based on parametric copula and nonparamet-
ric stationary distributions is studied in [5,6], and in particular, Chen et al. [6] proved that a
smooth functional of a sieve MLE is asymptotically normal and efficient.

We consider mixtures of kernels of the form (2.6) in a Bayesian framework. For a given para-
metric family S = {Kα : α ∈ A } of univariate distributions and C = {Cβ : β ∈ B} of copu-
las, the bivariate kernel family can be constructed as K = {Kθ : θ ∈ �}, where � = A × B,
Kθ ∈ K is the bivariate distribution with the density kθ (y, x) = kα(y)kα(x)cβ(Kα(y),Kα(x)),
and kα(·) and cβ are densities of Kα ∈ S and Cβ , respectively. Let P be a class of product
probability measure P = P A × PB on �. Since the mixing measure has a product form, the
marginal density fP (·) is given as

∫
kθ (x) dPA (α). This implies that we can model the station-

ary distribution and the dependence structure of the Markov chain separately.
A class of univariate normal distributions is a good candidate for S . The bivariate normal

family described in Section 2.1 is in fact a special case that S is a class of univariate normal
distributions and C is a class of Gaussian copula. Mixtures of Student t -distributions are also
popularly used for robust modelling, see [23]. Wu and co-authors [32,33] have studied some
Bayesian inferential methods for copula mixtures, and these can be extended to Markov models
without much technical difficulty.
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3. Posterior consistency with the Wasserstein metric

For the Markov model given in Section 2, we provide sufficient conditions for the posterior
consistency in the Wasserstein metric. Note that for the Wasserstein consistency to hold, it must
be implicitely assumed that f0 = fP0 for some P0 ∈ P . Under a certain compactness assumption
on �, the main theorem for the posterior consistency can be applied to various families of K and
priors on P . We first study the property of the Wasserstein metric in the nonparametric Markov
model.

3.1. Wasserstein metric

As mentioned in the Introduction, it is generally not easy to define a suitable metric d on a space
of transition densities. Since we parameterize the transition density by P ∈ P , any metric on
P induces a semimetric on F0 = {fP (·|·) : P ∈ P} ⊂ F . We use the Wasserstein metric dW

defined as (1.1). It is well known that

dW (P,Q) = sup

{∣∣∣∣∫ hdP −
∫

hdQ

∣∣∣∣ : h ∈ L (�)

}
, (3.1)

by the Kantorovich–Rubinstein theorem [14], where L (�) is the set of all functions h : � → R

such that |h(θ1) − h(θ2)| ≤ ‖θ1 − θ2‖ for every θ1, θ2 ∈ �. Note that the topology generated by
dW is stronger than the weak topology on P , and coincides if � is bounded, [10].

The Wasserstein metric between mixing measures P1 and P2 of two mixture densities
f1 = ∫

kθ dP1(θ) and f2 = ∫
kθ dP2(θ) is typically stronger than the Hellinger and total vari-

ation metric between f1 and f2. The reverse does not generally hold. Thus, it is regarded as
a strong metric in density estimation problems. For details about this and more recent results,
see [22]. The forthcoming Theorem 3.1 asserts that dW is also strong enough as a distance
in the Markov model considered in Section 2. For example, under a certain condition it dom-
inates dC(fP1, fP2) = supx∈C dV (fP1(·|x), fP2(·|x)) for every compact set C. Therefore, pos-
terior consistency with respect to dW implies consistency with respect to dC for any compact
C. For a simple illustration, consider two bivariate normal distributions N((μ1,μ1)

T ,�1) and
N((μ2,μ2)

T ,�2), where the �j ’s are defined in (2.4) with σ 2 = 1 and ρ = ρj for j = 1,2.
This is the case, in our terminology, that K is a bivariate normal family and Pj ’s are Dirac mea-
sures. Since each conditional distribution is N(μj + ρj (x − μj ),1 − ρ2

j ), if ρ1 �= ρ2 we have
dmax(fP1 , fP2) = 2. We assume the following condition for the kernel family.

(M) For every compact subset C of R, there exist a continuous function g : R → [0,∞) and
positive constants γ1 and γ2 such that

∫
g(y)dy < ∞ and

γ1 ≤ kθ (x) ≤ γ2, (3.2)∣∣kθ (y, x1) − kθ (y, x2)
∣∣ ≤ g(y)‖x1 − x2‖, (3.3)∣∣kθ1(y, x) − kθ2(y, x)
∣∣ ≤ g(y)‖θ1 − θ2‖, (3.4)

for every x, x1, x2 ∈ C, y ∈R and θ, θ1, θ2 ∈ �.
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Note that γ1, γ2 and g are allowed to depend on a compact set C. Condition (M) is required
for technical reasons, and typically holds when � is bounded and the scale parameter of kθ is
bounded away from zero.

Theorem 3.1. For any probability measures P1 and P2,∫
dV

(
fP1(·|x), fP2(·|x)

)
fP2(x) dx ≤ 2dV

(
fP1(·, ·), fP2(·, ·)

)
. (3.5)

Furthermore, if (M) holds, then for every compact C ⊂R there exists a constant D > 0 such that

sup
x∈C

dV

(
fP1(·|x), fP2(·|x)

) ≤ D dW(P1,P2).

3.2. Posterior consistency with the Wasserstein metric

To investigate asymptotic properties, we assume that there exists the true transition density
f0 ∈ F generating the observation X0,X1, . . . ,Xn. Also, we assume that f0(·|·) = fP0(·|·) for
some P0 ∈ P . Denote the density of stationary distribution of f0(·|·) as f0(·). The joint den-
sity f0(·, ·) refers to f0(y, x) = f0(y|x)f0(x), which is consistent in our notation. Recall that
f0(·|·) = fP0(·|·), but it is not necessarily required that f0(·) = fP0(·) and f0(·, ·) = fP0(·, ·).

Let 
n be the posterior distribution given X0,X1, . . . ,Xn. Then for any measurable subset A

of P , the posterior probability is given by 
n(A) = LnA/In, where LnA = ∫
A

Rn(P )d
(P ),
In = ∫

P Rn(P )d
(P ) for n ≥ 0 (L0A = 
(A) and I0 = 1), and

Rn(P ) =
n∏

i=1

fP

f0
(Xi |Xi−1).

For f1, f2 ∈ F0, let hn(f1, f2) = 1
2 d2

H (f1(·|Xn),f2(·|Xn)). Also let

fnA(y|x) =
∫

fP (y|x)d
n
A(P ),

where 
n
A is the posterior distribution restricted and renormalized to the set A. The posterior

distribution is said to be consistent at f0 with respect to a (psuedo-)metric d if


n
({

P ∈ P : d(fP ,f0) > ε
}) → 0 P-almost surely,

for every ε > 0, where P is the underlying probability measure generating X.
The posterior probability of Bc

ε = {P ∈ P : dW (P,P0) > ε} is given by 
n(Bc
ε ) = LnBc

ε
/In.

Typically, 
n(Bc
ε ) can be shown to converge almost surely to zero by proving, roughly speaking,

that P-almost-surely LnBc
ε
< exp(−nδ) for some δ > 0 and In ≥ exp(−nε) for every ε > 0. The

lower bound of the denominator In can be obtained by the so-called KL support condition as in
the i.i.d. cases; see [1,9] and the forthcoming condition (K). In the literature on Markov models,
proofs for the upper bound of the numerator LnBc

ε
rely on the martingale approach proposed by
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[30,31] for i.i.d. models. We use similar techniques to [1,9], where Bc
ε is partitioned into a finite

number of sets Bj ,1 ≤ j ≤ N , satisfying (5.5). Then, for each j , it is typically needed to bound
supx∈C dV (fP1(·|x), fP2(·|x)) for some set C with

∫
C

f0(x) dx > 0. We construct partitions via
Wasserstein balls (with different radii) so this uniform bound can be achieved by Theorem 3.1.
The following two conditions are required for the posterior consistency.

(I) For P ∈ P , fP (·|·) = fP0(·|·) implies P = P0.
(K) For every ε > 0




({
P ∈ P :

∫
K

(
f0(·|x), fP (·|x)

)
f0(x) dx < ε

})
> 0.

If two marginals of fP (·, ·) are identical for every P ∈ P , that is,∫
fP (y, x) dx =

∫
fP (x, y) dx for all y ∈R,

then fP (·) is the stationary distribution of the transition density fP (·|·), so fP (·|·) = fP0(·|·)
implies that fP (·, ·) = fP0(·, ·). Therefore in this case, condition (I) is equivalent to the following
condition:

(I′) For P ∈ P , fP (·, ·) = fP0(·, ·) implies P = P0.
Note that condition (I′) can be viewed as an identifiability condition for bivariate mixture mod-

els. In general, a family of bivariate normal mixtures does not satisfy (I′) because a convolution
of two normal distributions is again a normal distribution. If we put a restriction on � or P ,
normal mixtures can be shown to be identifiable. For example, the class of all finite mixtures of
normal distributions can be shown to be identifiable. For the identifiability of continuous nor-
mal mixtures, some conditions on �, such as compactness, are required. There is a vast amount
of literature about the identifiability of mixtures including both finite and infinite mixtures; see
[25,27–29] for general conditions and [4] for infinite normal mixtures. Without the identifiability
condition (I), the posterior distribution cannot be consistent in the Wasserstein metric, and so a
weaker metric or topology should be considered.

Theorem 3.2 (Posterior consistency). Assume that (M), (I), (K) hold, � is bounded and P is
compact in dW . If f0 = fP0 ∈ F for some P0 ∈ P , then


n
({

P ∈ P : dW (P,P0) > ε
}) → 0

P-almost-surely for every ε > 0.

Note that the compactness of P in dW is mild because the set of every Borel probability
measure on a compact set is compact in dW ; see [10,19]. We apply Theorem 3.2 to three examples
considered in Section 2. A Dirichlet process mixture prior is one of the most important priors,
so we consider it in the examples. Let DP(α,G0) be the Dirichlet process with mean measure
G0 and precision parameter α > 0; see for example [12]. Assume that the support of G0 is �, so
every Borel probability measure on � is contained in the weak support of DP(α,G0), [17].
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3.2.1. Symmetric normal mixtures

Let

� = {(
μ,σ 2, ρ

) : μ ∈ [−M,M], σ 2
1 ≤ σ 2 ≤ σ 2

2 , |ρ| ≤ 1 − δ
}

for some positive constants M,δ,σ1, σ2. For θ = (μ,σ 2, ρ), let kθ (y, x) be the bivariate normal
densities with mean vector (μ,μ)T and variance �, where � is defined in (2.4). Note that

kθ (y, x) = 1

2πσ 2
√

1 − ρ2
exp

(
z

2(1 − ρ2)

)
,

where

z = 1

σ 2

{
(y − μ)2 − 2ρ(y − μ)(x − μ) + (x − μ)2}.

Condition (I′), which is equivalent to (I), is well studied in [4] under the compactness of �. What
remains to prove is (M) and (K).

Corollary 3.1. Let K be the class of symmetric normal distributions described above. If 
 is the
DP(α,G0) prior on P , where G0 has full support on �, the posterior distribution is consistent
in dW at every P0 ∈ P .

3.2.2. Non-symmetric normal mixtures

Let

� = {
(μ1,μ2, σ ) : μ1,μ2 ∈ [−M,M], σ 2

1 ≤ σ 2 ≤ σ 2
2

}
for some positive constants σ1 < σ2 and M . For θ = (μ1,μ2, σ ), let Kθ be the bivariate normal
distribution with mean (μ1,μ2) and variance σ 2I . Conditions (M) and (K) can be proved in the
same way as the symmetric normal mixture.

Although the identifiability condition (I′) holds, (I) is not assured for every P0 ∈ P . For
example, if P0 is the Dirac measure at (μ01,μ02, σ0) ∈ �, then fP (·|·) = fP0(·|·) for every
product measure of the form P = δμ01,σ0 × Q, where δμ01,σ01 is the Dirac measure at (μ01, σ0)

and Q is a probability measure on [−M,M]. Thus, we consider a slightly weaker topology than
the one induced by dW . Let P0 ⊂ P be the collection of every P such that fP (·|·) = fP0(·|·).
If a sequence (Pn) in P0 converges to P∞ in dW , then limn fPn(y|x) = fP∞(y|x) for every
y and x, so, P0 is dW -closed. Therefore, we can define the distance between P and P0 as
d0(P,P0) = infQ∈P0 dW (P,Q). A neighborhood of fP0(·|·) can be defined using the pseudo-
metric d0 as Aε = {fP ∈ F : P ∈ Bε}, where Bε = {P ∈ P : d0(P,P0) < ε}. The result of
Theorem 3.1 still holds in the sense that, for every compact set C ⊂ R, there exists a constant
C > 0 such that supx∈C dV (fP (·|x), fP0(·|x)) ≤ Cε for every ε > 0 and P ∈ Bε . Thus, Aε can
be regarded as a strong and suitable neighborhood of fP0(·|·).

Corollary 3.2. Let K be the class of non-symmetric normal distributions described above. If 


is the DP(α,G0) prior on P , where G0 has full support on �, 
n(Bε) → 1 P-almost-surely for
every ε > 0.
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3.2.3. Copula-based kernels

As particular examples of copula based kernels, we consider semiparametric models that can
effectively model the dependence structure of the Markov chain, as studied in [5,6]. We pa-
rameterize the class of stationary distributions and of copulas separately, and denote them as
S = {Kα : α ∈ A } and C = {Cβ : β ∈ B}, respectively, where A and B are subsets of Eu-
clidean spaces. Let θ = (α,β), � = A × B, and kθ (y, x) = kα(y)kα(x)cβ(y, x). Let P be the
set of every product probability probability measure on � of the form P × δβ , where P is a
probability measure on A and δβ is the Dirac measure at β ∈ B. This is a semiparametric model
considered in [6].

Condition (I) is equivalent to (I′) and can be handled with general approaches introduced in
Section 3. In particular, once C is identifiable, that is, Cβ1 = Cβ2 implies β1 = β2, it sufficies to
check that

∫
kα(·) dP1(α) = ∫

kα(·) dP2(α) implies P1 = P2. Condition (K) can be proved in the
same way to symmetric normal mixtures. More specifically, if{

fP0(y, x)

fP (y, x)

}δ

(3.6)

is bounded by an integrable function for some δ > 0 and every P ∈ P , (3.4) implies condition
(K); see the proof of Corollary 3.1.

The technical condition (M) can be satisfied under mild integrability and smoothness condi-
tions on kα and cβ . For this, let k′

α(x), k̇α(x), K̇α(x), c′
β(u, v) and ċβ(u, v) be partial deriva-

tives of maps x �→ kα(x), α �→ kα(x), α �→ Kα(x), v �→ cβ(u, v) and β �→ cβ(u, v), re-
spectively. For simplicity, assume that cβ(u, v) = cβ(v,u) for every u,v ∈ [0,1] and β , then
∂cβ(u, v)/∂u = c′

β(v,u). We also assume that the marginal density kα satisfies (3.2) for every

compact C ⊂R. If k′
α(x), k̇α(x) and K̇α(x) are bounded uniformly in α and x ∈R, and∫

sup
x∈C

sup
θ

kα(y)cβ

(
Kα(y),Kα(x)

)
dy < ∞,∫

sup
x∈C

sup
θ

kα(y)
∥∥c′

β

(
Kα(y),Kα(x)

)∥∥dy < ∞
(3.7)

for every compact C ⊂R, then (3.3) holds. Also, (3.4) holds provided that∫
sup
x∈C

sup
θ

∥∥k̇α(y)
∥∥cβ

(
Kα(y),Kα(x)

)
dy < ∞,∫

sup
x∈C

sup
θ

kα(y)
∥∥c′

β

(
Kα(x),Kα(y)

)∥∥dy < ∞,∫
sup
x∈C

sup
θ

kα(y)
∥∥ċβ

(
Kα(x),Kα(y)

)∥∥dy < ∞.

(3.8)

As a concrete example, we consider the location family of Student t -distributions and the
Farlie–Gumbel–Morgenstern copula, see [21]. That is, kα is the density of the Student t -
distribution with the median α ∈ [−M,M], scale parameter σ , and d ≥ 1 degrees of freedom,



888 M. Chae and S.G. Walker

and the copula is given as

Cβ(u, v) = uv + βuv(1 − u)(1 − v), |β| ≤ βmax

for some constant βmax < 1, and � = {(α,β) ∈ R
2 : |α| < M, |β| ≤ βmax}. Note that cβ(u, v) =

1 + β(2u − 1)(2v − 1), and integrability conditions (3.7) and (3.8) are easily satisfied. Since
k′
α(x), k̇α(x) and K̇α(x) are uniformly bounded, condition (M) is satisfied as described above.

Condition (K) can be proved by (3.6), which holds for small enough δ > 0 because the tail of
x �→ kα(x) has a polynomial order and cβ is bounded away from zero. The class of location
mixtures of Student t -distributions is identifiable, see [29], so the monotonicity of β �→ Cβ(u, v)

implies the identifiability (I′).

4. Posterior consistency with the average L1 metric

In this section, we consider the posterior consistency for a general true transition density f0. As
mentioned earlier, the Wasserstein distance cannot be used as a metric for the posterior consis-
tency because f0 may not be presented as a mixture, that is, no P0 exists. As done in [26], we
consider the average metric davg defined as

davg(f1, f2) =
∫

dV

(
f1(·|x), f2(·|x)

)
f0(x) dx.

For the posterior consistency to hold at f0, it is standard that the prior puts sufficient mass around
f0 in the sense of the KL support condition (K). Note that∫

K
(
f0(·|x), fP (·|x)

)
f0(x) dx = K

(
f0(·, ·), fP (·, ·)) − K

(
f0(·), fP (·)),

so condition (K) can be implied by the following condition:
(K′) for every ε > 0



({

P ∈ P : K(
f0(·, ·), fP (·, ·)) < ε

})
> 0.

Condition (K′) is the KL support condition for bivariate densities required for i.i.d. models.
In particular with the non-symmetric normal mixtures, condition (K′) is very mild and satisfied
for most bivariate density f0 provided that 
 has full weak support; see for example Theorem 2
of [34]. Recall that most important priors on P , including the Dirichlet process, has full weak
support, [3].

Thus, we focus on the non-symmetric normal mixtures. For condition (K′) to hold for a large
class of f0, small values of σ should be considered. It should be noted that by considering
small σ , the support of the prior contains much more transition densities than that considered
in Section 3.2.2. For technical convenience and notational simplicity, we restrict the parameter
set to � = [−M,M]2 × (0,M], where M > 0 is an arbitrary constant. In this case, (K′) is
easily satisfied provided that f0(·, ·) is supported on [−M,M]2. We provide a DP prior yielding
consistent posterior at f0 satisfying (K′). Note that our construction is based on a strong tail
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assumption on the prior. We leave more delicate construction of priors, incorporating nearly
optimal convergence rate and M → ∞, as our future work.

Consider Gaussian mixtures of the form

fP,σ (y, x) =
∫

φσ (y − z1)φσ (x − z2) dP (z),

where z = (z1, z2). Let P be the set of probability measures on [−M,M]2. For a given probabil-
ity measure G0 whose support is [−M,M]2, let 
1 be DP(α,G0). Let 
2 be a prior on (0,M]
satisfying 
2((0, ηn]) ≤ e−cn for some constant c > 0 and sequence ηn ↓ 0. We assume that
eaη−2

n = o(n) as n → ∞ for any constant a > 0, which holds if G0([x,M]) increases sufficiently
slowly as x → 0. Let 
 = 
1 × 
2 be the product prior on P × (0,M]. We further assume the
following:

(U) The true joint density f0(·, ·) is supported on [−M,M]2 and there exists a probability
measure ϕ on R, λ > 0, and an integer k ≥ 1 such that

Px(Xk ∈ B) ≥ λϕ(B)

for every initial x and B ∈ B(R).
Condition (U) is closely related to the assumptions of uniform ergodicity and Doeblin re-

currence; see [20]. Technically, it is required for Hoeffding’s inequality to hold for Markov
chains [11].

Theorem 4.1. With the prior described above, assume that conditions (K′) (fP replaced by
fP,σ ) and (U) hold. Then, the posterior is consistent in davg, that is, for every ε > 0


n
({

(P,σ ) ∈ P × (0,M] : davg(fP,σ , f0) > ε
}) → 0

P-almost-surely.

5. Proofs

5.1. Proofs for Section 2

5.1.1. Proof of Theorem 2.1

Assume that X is a Markov chain with transition fP (·|·) and let A ∈ B(R) be a given set with
positive Lebesgue measure. Since fP (y|x) > 0 for every y, x ∈R, X is aperiodic in the sense of
[20]. Since fP (y|x) = ∫

�
kθ (y, x) dP (θ)/

∫
�

kθ (x) dP (θ), we have that

inf
θ∈�

φσ (y − μ1) = inf
θ∈�

kθ (y|x) ≤ fP (y|x) ≤ sup
θ∈�

kθ (y|x) = sup
θ∈�

φσ (y − μ1) (5.1)
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for every y, x ∈ R. If the Lebesgue measure of Ac is equal to zero, it is obvious that Px(Xn ∈
A i.o.) = 1. Otherwise,

Px(Xn ∈ A i.o.) = lim
m→∞Px

( ∞⋃
n=m

{Xn ∈ A}
)

= 1 − lim
m→∞Px

( ∞⋂
n=m

{
Xn ∈ Ac

})

and, by (5.1),

Px

( ∞⋂
n=m

{
Xn ∈ Ac

}) = lim
N→∞Px

(
N⋂

n=m

{
Xn ∈ Ac

}) ≤ lim sup
N→∞

(1 − α)N−m+1 = 0,

where α = ∫
A

infθ∈� φσ (y − μ1) dy > 0. Therefore, X is Harris recurrent. Also, by (5.1),
limC→∞ supn≥1 Px(|Xn| > C) = 0 for every x ∈ R, which implies that X is bounded in prob-
ability on average in the sense of [20]. Thus, there exists at least one invariant measure of fP (·|·)
by Theorem 12.0.1 of [20]. By the Ergodic theorem (Theorem 13.0.1 in [20]), it suffices to show
that supx∈REx(τA) < ∞, where Ex denotes the expectation under Px . If the Lebesgue measure
of Ac is equal to zero, this is trivial because Px(τA = 1) = 1. Otherwise, by (5.1),

Px(τA = t) = Px

(
Xt ∈ A|Xs ∈ Ac, s < t

) ≤ (1 − α)t−1,

so we have that

sup
x∈R

Ex(τA) =
∞∑
t=1

t (1 − α)t−1 < ∞.

This completes the proof.

5.2. Proofs for Section 3

5.2.1. Proof of Theorem 3.1

Note that

fP1(y|x) − fP2(y|x) = fP1(y, x)

fP1(x)
− fP2(y, x)

fP2(x)

for every x, y ∈ R. Since

b

a
− d

c
= b(c − a)

ac
+ b − d

c
(5.2)

for every positive numbers a, b, c and d , |fP1(y|x) − fP2(y|x)| is bounded by

fP1(y, x)

fP1(x)fP2(x)

∣∣fP1(x) − fP2(x)
∣∣ + 1

fP2(x)

∣∣fP1(y, x) − fP2(y, x)
∣∣. (5.3)
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Thus, the left-hand side of (3.5) is bounded by∫∫ [
fP1(y|x)

∣∣fP1(x) − fP2(x)
∣∣ + ∣∣fP1(y, x) − fP2(y, x)

∣∣]dy dx

≤ dV

(
fP1(·), fP2(·)

) + dV

(
fP1(·, ·), fP2(·, ·)

) ≤ 2dV

(
fP1(·, ·), fP2(·, ·)

)
,

which completes the proof of (3.5).
Note that dV (fP1(·|x), fP2(·|x)) = 2 supB∈B(R) |fP1(B|x) − fP2(B|x)|, where fP (B|x) =∫

B
fP (y|x)dy. Let a compact set C ⊂R be given. Then, for every x ∈ C and B ∈ B(R),

fP1(B|x) − fP2(B|x) =
∫

B

[∫
kθ (y, x) dP1(θ)

fP1(x)
−

∫
kθ (y, x) dP2(θ)

fP2(x)

]
dy

≤ C1

∫
B

{
fP1(y, x)

∣∣∣∣∫ kθ (x) dP2(θ) −
∫

kθ (x) dP1(θ)

∣∣∣∣
+

∣∣∣∣∫ kθ (y, x) dP1(θ) −
∫

kθ (y, x) dP2(θ)

∣∣∣∣}dy

(5.4)

by (3.2) and (5.2), where C1 > 0 is a constant depending only on γ1. By (3.4), two terms∣∣∣∣∫ kθ (x) dP2(θ) −
∫

kθ (x) dP1(θ)

∣∣∣∣
and ∣∣∣∣∫ kθ (y, x) dP1(θ) −

∫
kθ (y, x) dP2(θ)

∣∣∣∣
are bounded by a constant multiple of dW (P1,P2), and g(y)dW (P1,P2), respectively. Since∫
B

fP1(y, x) dy ≤ fP1(x) ≤ γ2 by (3.2), and
∫

g(y)dy < ∞, (5.4) is bounded by a constant
multiple of dW (P1,P2). �

5.2.2. Proof of Theorem 3.2

We first provide three lemmas. In particular, the proof of Lemma 5.1 is motivated from the
martingale approach [30,31] for i.i.d. models. Similar techniques can be found in [2,9].

Lemma 5.1. For any measurable A ⊂ P , if

lim inf
m

1

m

m−1∑
n=0

hn−1(fn−1A,f0) > ε P-almost-surely (5.5)

for some constant ε > 0, then there exists δ > 0, depending only on ε, such that
lim supn enδLnA ≤ 1 P-almost-surely.
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Proof. Note that for a sequence of real random variables (Yn) and real sequence (bn) with bn ↑
∞, if

∑∞
n=1 Var(Yn)/b

2
n < ∞ then

1

bn

n∑
k=1

(
Yk −E(Yk|Y1, . . . , Yk−1)

) → 0 (5.6)

almost surely; see [16].
Since

fnA(Xn+1|Xn) =
∫

fP (Xn+1|Xn)d
n
A(P ) =

∫
A

fP (Xn+1|Xn)Rn(P )d
(P )∫
A

Rn(P )d
(P )
,

we have

Ln+1A

LnA

= fnA

f0
(Xn+1|Xn) (5.7)

for every measurable A ⊂ P . Thus,

E(
√

Ln+1A|Fn) = √
LnA

(
1 − 1

2
d2
H

(
fnA(·|Xn),f0(·|Xn)

))
= √

LnA

(
1 − hn(fnA,f0)

)
,

where E is the expectation under the true distribution and Fn = σ(Xi : i ≤ n) is the σ -algebra
generated by X0, . . . ,Xn. Therefore, the sequence (Mm,Fm) forms a martingale, where

Mm =
m∑

n=1

{√
LnA/Ln−1A − 1 + hn−1(fn−1A,f0)

}
.

Since E(Ln+1A/LnA) = 1 by (5.7) and the Hellinger distance is bounded by
√

2, the variance of
each summand in the last display is bounded by a constant. Thus, Mm/m → 0 P-almost-surely
by (5.6). Condition (5.5) implies that

lim sup
m→∞

1

m

m∑
n=1

√
LnA

Ln−1A

< 1 − ε

P-almost-surely. Since

√
LmA =

m∏
n=1

√
LnA

Ln−1A

≤
(

1

m

m∑
n=1

√
LnA

Ln−1A

)m

,

we have

lim sup
m→∞

(LmA)1/2m ≤ 1 − ε
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P-almost-surely. Thus, for every small enough γ > 0, with δ = −2 log(1 − ε + γ ) > 0, we have
lim supm emδLmA ≤ 1 P-almost-surely. �

Lemma 5.2. If (M) holds and � is bounded, then for every fixed z ∈ R and Q ∈ P , the real-
valued function (x,P ) �→ dV (fP (·|x), fQ(·|z)) defined on R× P is continuous, where R× P
is equipped with the product metric.

Proof. By (3.3) and (3.4), for a given compact set C ⊂R, there exists a constant C > 0 such that∣∣kθ (x1) − kθ (x2)
∣∣ ≤ C‖x1 − x2‖ and

∣∣kθ1(x) − kθ2(x)
∣∣ ≤ C‖θ1 − θ2‖ (5.8)

for all x, x1, x2 ∈ C and θ, θ1, θ2 ∈ �. We first claim that maps (x,P ) �→ fP (x) and (x,P ) �→
fP (y, x), for every y ∈ R, from C ×P to R are continuous with respect to the product topology.

Let (xn,Pn) be a sequence in C × P converging to (x∞,P∞) and y ∈R be given. Then,∣∣∣∣∫ kθ (xn) dPn(θ) −
∫

kθ (x∞) dP∞(θ)

∣∣∣∣
≤

∣∣∣∣∫ kθ (xn) dPn(θ) −
∫

kθ (xn) dP∞(θ)

∣∣∣∣ +
∣∣∣∣∫ kθ (xn) dP∞(θ) −

∫
kθ (x∞) dP∞(θ)

∣∣∣∣
≤ C1

(
dW (Pn,P∞) + ‖xn − x∞‖)

for some constant C1 > 0, where the last inequality holds by (5.8). Also,∣∣∣∣∫ kθ (y, xn) dPn(θ) −
∫

kθ (y, x∞) dP∞(θ)

∣∣∣∣
≤

∣∣∣∣∫ kθ (y, xn) dPn(θ) −
∫

kθ (y, x∞) dPn(θ)

∣∣∣∣
+

∣∣∣∣∫ kθ (y, x∞) dPn(θ) −
∫

kθ (y, x∞) dP∞(θ)

∣∣∣∣
≤ g(y)

(‖xn − x∞‖ + dW (Pn,P∞)
)
,

where g is the function in condition (M). This proves the claim.
Since for some fixed x0 and θ0

kθ (y, x) ≤ kθ0(y, x0) + g(y)
(‖x − x0‖ + ‖θ − θ0‖

)
by (3.3) and (3.4), there exists a constant M > 0 such that fP (y, x) ≤ kθ0(y, x0) + Mg(y) for
every x ∈ C, y ∈ R and P ∈ P due to the boundedness of C and �. Now, by (3.2) and the
dominated convergence theorem

dV

(
fPn(·|xn), fQ(·|z)) =

∫ ∣∣∣∣fPn(y, xn)

fPn(xn)
− fQ(y, z)

fQ(z)

∣∣∣∣dy,
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converges to dV (fP∞(·|x∞), fQ(·|z)). Since C can be arbitrarily large, this completes the
proof. �

Lemma 5.3. If (I) holds and f0 = fP0 ∈ F , then for every P1 ∈ P − {P0},

lim inf
m

1

m

m∑
n=1

hn(fP1 , fP0) > 0 (5.9)

P-almost-surely.

Proof. By the strong law of large number for positive Harris chain, for every P ∈ P ,

1

m

m∑
n=1

hn(fP ,fP0) → 1

2

∫
d2
H

(
fP (·|x), fP0(·|x)

)
f0(x) dx

P-almost-surely. Therefore, if the left-hand side of (5.9) is equal to zero with positive P-
probability, then dH (fP1(·|x), fP0(·|x)) = 0 for f0-almost-surely. Since fP0(y|x) > 0 for every
y, x ∈ R, f0 has full support on R. By the continuity of fPj

(·|·), j = 0,1, this implies that
fP1(y|x) = fP0(y|x) for every x, y ∈ R. By the identifiability condition (I), this contradicts that
P1 �= P0. �

Lemma 5.4. Assume that (I), (M) hold, � is compact and f0 = fP0 ∈ F . Then, for every P1 ∈
P − {P0}, there exists a δ > 0 such that (5.5) hold with A = {P ∈ P : dW (P,P1) < δ}.

Proof. By Lemma 5.3, there exists x1 ∈ R such that ε ≡ dV (fP1(·|x1), fP0(·|x1)) > 0. Also,
by Lemma 5.2 and the equivalence of dH and dV , there exists a δ > 0 such that max{‖x −
x1‖, dW (P,P1)} < δ implies that

max
{
dH

(
fP (·|x), fP1(·|x1)

)
, dH

(
fP0(·|x), fP0(·|x1)

)}
< ε/5.

If max{‖x − x1‖, dW (P,P1)} < δ, then we have

dH

(
fP0(·|x), fP (·|x)

) ≥ dH

(
fP1(·|x1), fP0(·|x1)

)
− dH

(
fP0(·|x1), fP0(·|x)

) − dH

(
fP (·|x), fP1(·|x1)

)
≥ ε/2 − ε/5 − ε/5 = ε/10,

so

dH

(
fnA(·|x), fP0(·|x)

) ≥ dH

(
fP1(·|x), fP0(·|x)

) − dH

(
fP1(·|x), fnA(·|x)

)
≥ ε/10 − dH

(
fP1(·|x), fnA(·|x)

)
,

where A = {P ∈ P : dW (P,P1) < δ}. By Theorem 3.1 and the convexity of Hellinger balls, we
can choose δ > 0 sufficiently small, so that dH (fP1(·|x), fnA(·|x)) < ε/20 for ‖x − x1‖ < δ.
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Finally, by ergodicity, the cardinality of the set {n ≤ m : ‖Xn − x1‖ < δ} divided by m converges
almost surely to a positive constant γ , and we conclude that the left hand side of (5.5) is greater
than or equal to γ ε2/800. �

Proof of Theorem 3.2. Condition (K) implies that for every c > 0

lim sup
n→∞

encIn = ∞

P-almost-surely; by Lemma 3.3 of [1].
Let A = {P ∈ P : dW (P,P0) ≥ ε}. Then by Lemma 5.4, for every P ∈ A, we can choose a

δP > 0 such that lim infm−1 ∑m
n=1 hn−1(fn−1AP

,fP0) > 0, where AP = {P̃ ∈ P : dW (P̃ ,P ) <

δP }. Since A is compact in dW , we can choose a finite collection {P1, . . . ,PM} such that
A ⊂ ⋃M

m=1 APm . Since 
n(APm) → 0 P-almost-surely for every m by Lemma 5.1, the proof
is complete. �

5.2.3. Proof of Corollary 3.1

Since |μ| is bounded above and σ 2 is bounded away from zero and infinity, (3.2) is easily sat-
isfied. To prove (3.3) and (3.4), it suffices to check that partial derivatives of (θ, x) �→ kθ (y, x),
viewed as a map from � × C, are bounded by an integrable function, where C is a compact set.
Note that partial derivatives of (θ, x) �→ kθ (y, x) is equal to kθ (y, x) times partial derivatives of
(θ, x) �→ logkθ (y, x). Let �(y, x, θ) = logkθ (y, x), then its partial derivatives are given as

∂

∂x
�(y, x, θ) = (x − μ) − ρ(y − μ)

σ 2(1 − ρ2)
,

∂

∂μ
�(y, x, θ) = (1 − ρ){(y − μ) + (x − μ)}

σ 2(1 − ρ2)
,

∂

∂σ 2
�(y, x, θ) = 1

σ 2

(
z

2(1 − ρ2)
− 1

)
,

∂

∂ρ
�(y, x, θ) = ρ

1 − ρ2
+ (y − μ)(x − μ)

σ 2(1 − ρ2)

− ρ{(y − μ)2 − 2ρ(y − μ)(x − μ) + (x − μ)2}
σ 2(1 − ρ2)2

.

The map g̃ defined by

g̃(y) = sup
x∈C

sup
θ∈�

(y − μ)2kθ (y, x)

is of order O(exp{−y2/(2σ 2
2 )}) as |y| → ∞, so it is Lebesgue integrable. Thus if we let g(y) =

C(1 + g̃(y)) for a sufficiently large constant C > 0, then both (3.3) and (3.4) are satisfied.
To prove (K), note that

inf
P∈P

fP (y, x) ≥ inf
θ∈�

kθ (y, x) � exp
{−C1

(
y2 + x2)},
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sup
P∈P

fP (y, x) ≤ sup
θ∈�

kθ (y, x) � exp
{−C2

(
y2 + x2)}

as ‖(y, x)‖ → ∞ for some constants C1,C2 > 0. Thus, there exists a small enough δ > 0 and a
function h such that ∫ ∫

h(y, x)fP0(y, x) dy dx < ∞

and {
fP0(y, x)

fP (y, x)

}δ

< h(y, x)

for every P ∈ P . Since∫
K

(
fP0(·|x), fP (·|x)

)
f0(x) dx

= K
(
fP0(·, ·), fP (·, ·)) − K

(
fP0(·), fP (·))

≤ K
(
fP0(·, ·), fP (·, ·)) ≤ 1

δ
log

∫ ∫ {
fP0(y, x)

fP (y, x)

}δ

fP0(y, x) dy dx

and fP (y, x) → fP0(y, x) as dW (P,P0) → 0, where the convergence of fP (y, x) holds by (3.1)
and (3.4), it holds by the dominated convergence theorem that∫

K
(
fP0(·|x), fP (·|x)

)
f0(x) dx → 0

as dW (P,P0) → 0. Thus (K) holds because 
 has the full weak support.

5.2.4. Proof of Corollary 3.2

It is easy to check that the result of Lemmas 5.3 and 5.4 holds for every P1 ∈ P − P0. Since
Bε is open, P − Bε is compact, so we can follow the same line of the proof of Theorem 3.2 by
replacing the set A with P − Bε .

5.3. Proofs for Section 4

Lemma 5.5. For every ε > 0, there exists a constant C > 0 (depending only on M) and an
integer N (depending only on M and ε) such that

sup
|x|≤M

dV

(
fP1,σ1(·|x), fP2,σ2(·|x)

) ≤ eCη−2
n

(
dW (P1,P2) + |σ1 − σ2|

) + ε

for every Pj ∈ P , σj ≥ ηn, for j = 1,2 and n ≥ N .
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Proof. Let ε be given. Assume that P1,P2 ∈ P , σ1, σ2 > ηn and |x| ≤ M . Note that there exists
a constant D > 0, depending only on M and ε, such that∫

{|y|>D}
fP,σ (y|x)dy ≤

∫
{|y|>D}

sup
σ≤M

sup
|z|≤M

φσ (y − z) dy <
ε

2

for every P ∈ P and σ ≤ M . Therefore, by (5.3), |fP1,σ1(B|x) − fP2,σ2(B|x)| is bounded by

1

fP2,σ2(x)

[∣∣fP1,σ1(x) − fP2,σ2(x)
∣∣ +

∫
{|y|≤D}

∣∣fP1,σ1(y, x) − fP2,σ2(y, x)
∣∣dy

]
+ ε (5.10)

for every Borel set B , where fP,σ (B|x) = ∫
B

fP,σ (y|x)dy. Note that∣∣∣∣ ∂

∂x
φσ (x)

∣∣∣∣ = |x|
σ 2

φσ (x) � |x|
σ 3

,∣∣∣∣ ∂

∂σ
φσ (x)

∣∣∣∣ ≤
(

1

σ
+ x2

σ 3

)
φσ (x) � 1 + x2

σ 4
.

Thus, we have

max
{∣∣fP1,σ1(x) − fP2,σ1(x)

∣∣, ∣∣fP2,σ1(x) − fP2,σ2(x)
∣∣} � dW (P1,P2) + |σ1 − σ2|

η4
n

,

max
{∣∣fP1,σ1(y, x) − fP2,σ1(y, x)

∣∣, ∣∣fP2,σ1(y, x) − fP2,σ2(y, x)
∣∣} � dW (P1,P2) + |σ1 − σ2|

η5
n

by the Kantorovich–Rubinstein representation (3.1). Since

fP2,σ2(x) � inf|z|≤M
exp

(
− (x − z)2

2σ 2
2

)
≥ exp

(
−2M2

η2
n

)
,

the proof is complete by (5.10). �

5.3.1. Proof of Theorem 4.1

Let ε > 0 be given. Note that (K) implies that lim infn enδIn = ∞ for every δ > 0. It follows that

(σ < ηn|X1, . . . ,Xn) → 0 P-almost-surely. Thus, it suffices to prove that lim supn ecnLnA = 0
P-almost-surely for some constant c > 0, where

A = {
(P,σ ) ∈ P × [ηn,M] : davg(fP ,f0) > ε

}
.

Here, the dependence of A on n is abbreviated for notational convenience.
Note that N(γ, (0,M], | · |) � γ −1 and

logN(γ,P, dW ) � γ −2 logγ −1,
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where the second inequality holds by Lemma 4 of [22]. Note that implicit constants in the no-
tation � depend only on M . Let δn = e−Cη−2

n εn, where C > 0 is a constant in Lemma 5.5 and
εn ↓ 0 is an arbitrary sequence. By Lemma 5.5, if εn decreases sufficiently slowly, for every large
enough n, we can pick (Pn,j , σn,j ) ∈ P ×[ηn,M], for j = 1, . . . ,Nn, such that P = ⋃Nn

j=1 An,j ,
logNn = o(n) and

sup
|x|≤M

dV

(
fP1,σ1(·|x), fP2,σ2(·|x)

) ≤ ε2/32 (5.11)

for any pairs (P1, σ1) and (P2, σ2) in the same partition, where

An,j ⊂ {
(P,σ ) ∈ P × [ηn,M] : dW (P,Pn,j ) + |σ − σn,j | < δn

}
.

Let fn,j = fPn,j ,σn,j
and

d ′
avg(f1, f2) =

∫
d2
H

(
f1(·|x), f2(·|x)

)
f0(x) dx.

Then

d ′
avg(f1, f2) ≥ 1

4

∫
d2
V

(
f1(·|x), f2(·|x)

)
f0(x) dx ≥ 1

4

{
davg(f1, f2)

}2
,

so d ′
avg(fP,σ , f0) > ε2/4 for every (P,σ ) ∈ A. By the Hoeffding’s inequality for Markov chain

[11], there exist constants d,n0 > 0 depending only on k, λ (see condition (U)) and ε such that

P

(∣∣∣∣∣1

n

n∑
m=1

hm(fP,σ , f0) − d ′
avg(fP,σ , f0)

∣∣∣∣∣ >
ε2

8

)
≤ e−dn

for every (P,σ ) ∈ A and n ≥ n0. Thus,

P

(
max

1≤j≤Nn

∣∣∣∣∣1

n

n∑
m=1

hm(fn,j , f0) − d ′
avg(fn,j , f0)

∣∣∣∣∣ >
ε2

8

)

≤
Nn∑
j=1

P

(∣∣∣∣∣1

n

n∑
m=1

hm(fn,j , f0) − d ′
avg(fn,j , f0)

∣∣∣∣∣ >
ε2

8

)

≤ e−dn/2

(5.12)

for large enough n.
Let

�n =
{

min
1≤j≤Nn

1

n

n∑
m=1

hm(fmAn,j
, f0) >

ε2

32

}
.

Note that

hm(f0, fn,j ) ≤ 2
(
hm(fmAn,j

, f0) + hm(fn,j , fmAn,j
)
)
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and

h2
m(fn,j , fmAn,j

) = 2

(
1 −

∫ √
fn,j (y|Xm)fmAn,j

(y|Xm)dy

)
≤

∫
2

(
1 −

∫ √
fn,j (y|Xm)fP,σ (y|Xm)dy

)
d
m

An,j
(P )

≤ sup
(P,σ )∈An,j

h2
m(fn,j , fP,σ ),

where the first inequality holds by Cauchy–Schwarz. Thus,

1

n

n∑
m=1

hm(f0, fn,j ) ≤ ε2

8

for some j on �c
n. It follows that

d ′
avg(f0, fn,j ) − 1

n

n∑
m=1

hm(f0, fn,j ) ≥ ε2

8

for some j on �c
n, so P(�c

n) ≤ e−dn/2 by (5.12).
Since hm is bounded by 2, there exists a constant α ∈ (0,1), depending only on ε, such that

Kn,j /n > α for every 1 ≤ j ≤ Nn on �n, where Kn,j is the cardinality of{
m ≤ n : hm(fmAn,j

, f0) > ε2/64
}
.

As in the proof of Lemma 5.1, we have

E(
√

Lm+1An,j
|Fm) =

√
LmAn,j

(
1 − hm(fmAn,j

, f0)
)

for every m,n ≥ 1. Thus, on �n

E(
√

LnAn,j
|F1) ≤

(
1 − ε2

64

)�αn�−1√
L1An,j

for every j , where �a� is the largest integer less than or equal to a. It follows that

E(
√

LnA|F1) ≤
Nn∑
j=1

E(
√

LnAn,j
|F1)

≤
(

1 − ε2

64

)�αn�−1 Nn∑
j=1

√
L1An,j
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on �n. Thus,

enβ
E(

√
LnA) = enβ

E
[
1�nE(

√
LnA|F1) + 1�c

n
E(

√
LnA|F1)

]
≤ enβ

(
1 − ε2

64

)�αn�−1 Nn∑
j=1

E

√
L1,An,j

+ enβ

√
P
(
�c

n

)
E

{
E(

√
LnA|F1)

}2

≤ enβNn

(
1 − ε2

64

)�αn�−1

+ enβ
√
P
(
�c

n

)
for every β > 0, where the last inequality holds because

E

√
LnB ≤ √

ELnB ≤ 1

for every B . Therefore, lim supn enβLnA = 0 for sufficiently small enough β > 0 by the Borel–
Cantelli lemma. �
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