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We provide a parameterization of the discrete nested Markov model, which is a supermodel that approx-
imates DAG models (Bayesian network models) with latent variables. Such models are widely used in
causal inference and machine learning. We explicitly evaluate their dimension, show that they are curved
exponential families of distributions, and fit them to data. The parameterization avoids the irregularities
and unidentifiability of latent variable models. The parameters used are all fully identifiable and causally-
interpretable quantities.
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1. Introduction

Directed acyclic graph (DAG) models, also known as Bayesian networks, are a widely used class
of multivariate models in probabilistic reasoning, machine learning and causal inference (Bishop
[1], Darwiche [2], Pearl [15]). The inclusion of latent variables within Bayesian network models
can greatly increase their flexibility, and also account for unobserved confounding; however,
latent variable models are typically non-regular, their dimension can be hard to calculate, and
they generally do not have fully identifiable parameterizations. In this paper, we will present
an alternative approach which overcomes these difficulties, and does not require any parametric
assumptions to be made about the latent variables.

Example 1.1. Suppose we are interested in the relationship between family income during child-
hood X, an individual’s education level E, their military service M , and their later income Y . We
might propose the model shown in Figure 1(a), which includes a hidden variable U representing
motivation or intelligence. Let the four observed variables be binary, but make no assumption
about U .

One can check using Pearl’s d-separation criterion (Pearl [15]) that M ⊥⊥ X | E under this
model, in other words there is no relationship between military service and family income after
controlling for level of education; this places two independent constraints on the variables’ joint
distribution p(x, e,m,y) (one for each level of E). In addition, let qEY (e, y | x,m) ≡ p(e |
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Figure 1. (a) A directed acyclic graph with the latent variable U ; (b) a (conditional) acyclic directed mixed
graph (the Verma graph) representing the observed distribution in (a).

x) · p(y | x,m, e); then the quantity

qEY (y | x,m) ≡
∑

e

qEY (e, y | x,m)

=
∑

e

p(e | x) · p(y | x,m, e)

(1)

does not depend upon x (Robins [18]); a short proof of this is given in Appendix A. If the graph
is interpreted causally, then qEY (y | x,m) = p(y | do(x,m)), that is, the distribution of Y in
an experiment that externally sets {X = x,M = m}. Note that generally qEY (y | x,m) �= p(y |
x,m).

The restriction that (1) does not depend on x corresponds to two further independent con-
straints on p, one for each level of m. The set of distributions that satisfy all four constraints is
the nested Markov model associated with the graph(s) in Figure 1; the number of free parameters
is 15 − 2 − 2 = 11.

The distributions in the model all factorize as

p(x, e,m,y) = p(x) · p(m | e) · qEY (e, y | x,m),

and each of the three factors can be parameterized separately. The model can therefore be de-
scribed using the following 11 free parameters:

p(x = 0), p(m = 0 | e), qEY (e = 0 | x),

qEY (y = 0 | m), qEY (e = y = 0 | x,m).

If we interpret the model causally these are, respectively, the quantities

P(X = 0), P
(
M = 0 | do(E = e)

)
, P

(
E = 0 | do(X = x)

)
,

P
(
Y = 0 | do(M = m)

)
, P

(
E = 0, Y = 0 | do(X = x,M = m)

)
.

The map from the set of positive probability distributions that satisfy the 4 constraints to these
11 parameters is smooth and bijective, and the parameters are fully identifiable. It follows that
the model is a curved exponential family of distributions, and that it can be fitted using standard
numerical methods.
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An alternative modelling approach would be to include a latent variable U explicitly in the
model, but this leads to some parameters being unidentifiable. For example, with a binary U the
model implied by Figure 1(a) has 12 parameters. We know that the true marginal distribution has
at most dimension 11, so at least one of these 12 parameters is unidentifiable. Even though the
model is not identified, this latent variable model is still ‘too small’, in the sense that the model
over the observed margin only has dimension 10, whereas dimension 11 can be obtained if U

is allowed to have more than two states. As U is not observed, it is undesirable to make spe-
cific assumptions about U ’s state-space because one may unwittingly impose restrictions on the
observable distribution. Further, latent variable models are not statistically regular, so standard
statistical theory for likelihood ratio tests and asymptotic normality of parameter estimates does
not apply (Mond et al. [13], Drton [5]).

1.1. Other work and this paper’s contribution

Models of conditional independence associated with margins of DAG models (we refer to these
as ‘ordinary Markov models’) have been studied by Richardson and Spirtes [25]; see also Wer-
muth [30]. These models were parameterized and shown to be smooth by Evans and Richardson
[10]. Other approaches using probit models (Silva and Ghahramani [24]) and cumulative distri-
bution networks (Huang and Frey [12], Silva et al. [23]) are more parsimonious than ordinary
Markov models, but impose additional constraints due to their parametric structure.

None of the models mentioned in the previous paragraph can account for constraints of the
kind in (1), which were first identified by Robins [18] and separately by Verma and Pearl [29].
Such constraints are attractive because they allow finer distinctions between different causal
models from purely observational data: for example, going by conditional independence alone
the graph in Figure 1(b) is Markov equivalent to the DAGs in Figure 2, and these causal models
are therefore indistinguishable without using other constraints; however the DAGs do not imply
the Verma constraint (1), so under the nested Markov model one can distinguish between these
models.

An algorithm for finding such constraints was given by Tian and Pearl [28], and developed
into a fully nonparametric statistical model (the nested Markov model) by Richardson et al. [17].
In this paper, we provide a smooth, statistically regular and fully identifiable parameterization of
the discrete version of nested Markov models. As a result, discrete nested Markov models are
shown to be curved exponential families of distributions of known dimension. All the parameters
we derive are interpretable as straightforward causal quantities. Evans [7] shows that the discrete
nested Markov model that we describe here is the best possible algebraic approximation to DAG

Figure 2. DAGs that represent the same conditional independence model as Figure 1(b), but which do not
imply the Verma constraint.
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models with latent variables, in the sense that the models have the same dimension over the
observed variables. An earlier review paper (Shpitser et al. [20]) mentions the parameterization
given here, but no proofs are provided.

The conditional independence constraints we consider here include the constraints described
in Tian and Pearl [28]. They are also a special case of the dormant independences. However,
not all dormant independences lead to constraints on the observed distribution – some impose
restrictions (solely) on intervention distributions; see Shpitser et al. [20]. A complete algorithm
for generating dormant constraints is given in Shpitser and Pearl [21].

The remainder of the paper is organized as follows. In Section 2, we introduce Conditional
Acyclic Directed Mixed Graphs, the class of graphs we use to represent our models; those models
are formally introduced in Section 3. Some graphical theory is given in Section 4, before the main
results in Section 5. Section 6 applies the method to data from a panel study.

2. Conditional acyclic directed mixed graphs

A directed acyclic graph (DAG) contains vertices representing random variables, and edges (ar-
rows) that imply some structure on the joint probability distribution. A DAG with latent vertices
can be transformed into an acyclic directed mixed graph (ADMG) over just its observed vertices
via an operation called latent projection (Pearl and Verma [14]). In the simplest case this just
involves replacing latent variables with bidirected edges (↔), as illustrated by the transforma-
tion from Figure 1(a) to (b); the transformed graph represents the marginal distribution over the
observed random variables XV .

For technical reasons, we work with a slightly larger class of graphs, called conditional acyclic
directed mixed graphs (CADMGs). These have two sets of vertices, fixed (W ) and random (V ),
and are used to represent the structure of a set of distributions for XV indexed by possible values
of XW .

Definition 2.1. A conditional acyclic directed mixed graph (CADMG) G is a quadruple
(V ,W,E,B). There are two disjoint sets of vertices: random, V , and fixed, W . The directed
edges E ⊆ (V ∪ W) × V are ordered pairs of vertices; if (a, b) ∈ E we write a → b. Loops
a → a and directed cycles a → ·· · → a are not allowed (hence ‘acyclic’). The bidirected edges,
B, are unordered pairs of distinct random vertices, and if {a, b} ∈ B we write a ↔ b.

For convenience, throughout this paper we will only consider CADMGs in which for every
fixed vertex w there is at least one edge w → v. (Note that it follows from the definition of a
CADMG that v will be random.)

These graphical concepts are most easily understood by example: see the CADMG in Figure 3.
We depict random vertices with round nodes, and fixed vertices with square nodes. CADMGs
are not generally simple graphs, because it is possible to have up to two edges between each pair
of vertices in V (one directed and one bidirected); see Figure 6 for two examples. CADMGs
are a slight generalization of ADMGs (Richardson [16]), which correspond to the special case
W = ∅. Note that no arrowheads can be adjacent to any fixed vertex: so neither a → w nor
a ↔ w is allowed for any w ∈ W . This reflects the fact that fixed vertices cannot depend on
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Figure 3. A conditional acyclic directed mixed graph L, with random vertices V = {2,3,4,5} and fixed
vertices W = {1}.

other variables, observed or unobserved, but that random vertices may depend upon fixed ones.
Mathematically, fixed nodes play a similar role to the ‘parameter nodes’ used by Dawid [3].

We make use of the following standard familial terminology for directed graphs.

Definition 2.2. If a → b, we say that a is a parent of b, and b a child of a. The set of parents
of b is denoted paG(b). We say that w is an ancestor of v if either v = w or there is a sequence
of directed edges w → ·· · → v. The set of ancestors of v is denoted anG(v). These definitions
are applied disjunctively to sets of vertices so that, for example, paG(A) ≡ ⋃

a∈A paG(a). An
ancestral set is one that contains all its own ancestors: anG(A) = A.

Note that the definitions of parents, children and ancestors do not distinguish between ran-
dom and fixed vertices. A random-ancestral set, A′ ⊆ V , is a set of random vertices such that
anG(A′) ⊆ A′ ∪ W ; that is, all the random ancestors of A′ are contained in A′ itself.

A set of vertices B is said to be sterile if it does not contain any of its children: equivalently
paG(B) ∩ B =∅. The sterile subset of a set C ⊆ V is sterileG(C) ≡ C \ paG(C) (sometimes
called the set of ‘sink nodes’ in the induced subgraph on C).

Example 2.3. Consider the CADMG L in Figure 3. The set of parents of the vertex 3 is
paL(3) = {2}, and the set of ancestors is anL(3) = {1,2,3}; hence {1,2,3} is ancestral, and
{2,3} is random-ancestral. The set {2,4,5} is sterile, but {2,3,5} is not.

Definition 2.4. A set of random vertices B ⊆ V is bidirected-connected if for each a, b ∈ B there
is a sequence of edges a ↔ ·· · ↔ b with all intermediate vertices in B . A maximal bidirected-
connected set is a district of the graph G (sometimes called a c-component). The set of districts
is a partition of the random vertices of a graph; the district containing v ∈ V is denoted disG(v).

We draw bidirected edges in red, which makes it easy to identify districts as the maximal
sets connected by red edges. In Figure 1(b) for example, there are three districts: {X}, {M}, and
{E,Y }. In Figure 3, there are two: {3} and {2,4,5}.

2.1. Transformations

We now introduce two operations that transform CADMGs by removing vertices: the first sepa-
rates into districts and the second one forms ancestral subgraphs. We will use these transforma-
tions to define our Markov property (and thereby our statistical model) in Section 3.
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Figure 4. Four reachable subgraphs of the graph in Figure 1(b). Graphs in (a), (b) and (c) correspond to
factorization into the districts {X}, {E,Y } and {M} respectively. Graph (d) corresponds to marginalizing
the childless node Y .

Definition 2.5. Let G be a CADMG containing a district D. Define dD(G) to be the CADMG
with: the set of random vertices D; the set of fixed vertices paG(D) \ D; the set of bidirected
edges whose endpoints are both in D in G; the set of directed edges from G pointing to a vertex
in D (including directed edges between vertices in D).

Let A be a random-ancestral set in G. Define mA(G) to be the graph with the set of random
vertices A, the set of fixed vertices paG(A)\A, and all edges between these vertices that are in G.
Note that, since A is random-ancestral, by definition the vertices in paG(A) \ A are already fixed
vertices in G.

If a graph G′ can be obtained from G by iteratively applying operations of the form d and m,
we say that G′ is reachable from G.

Note that if we start with a graph G in which all the fixed vertices w ∈ W have at least one
child, then this is also true of the graph obtained after applying either mA or dD .

Example 2.6. The graph in Figure 1(b) contains the districts {X}, {E,Y } and {M}. The corre-
sponding graphs dD(G) are given in Figure 4(a), (b) and (c), respectively. The sets {X,E,M},
{X,E} and {X} are ancestral in G, and the graphs m{X}(G) and m{X,E,M}(G) are shown in Fig-
ure 4(a) and (d), respectively.

Example 2.7. The graph in Figure 3 contains the district {2,4,5}, and d{2,4,5}(L) gives us the
graph in Figure 5(a). The sets {2,4} and {4,5} are both random-ancestral in d{2,4,5}(L), so we
can apply either m{2,4} or m{4,5} to obtain the CADMGs in Figure 5(b) and (c), respectively.

As we will see in the next section, both of these graphical operations correspond to an opera-
tion on a probability distribution we associate with the graph: mA to marginalization, and dD to
a factorization. The ‘fixing’ operation described in Richardson et al. [17] unifies and generalizes
m and d, but the statistical model we will describe is ultimately the same. For the purposes of
defining a parameterization, it is more convenient to use the formulation given here.

It is important to note that sets may become districts or random ancestral sets after sev-
eral iterations of m and d. For example, {2,4} is not random-ancestral in L, but it is in
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Figure 5. Three CADMGs reachable from the graph in Figure 3.

d{2,4,5}(L). Similarly, {4} is not a district in d{2,4,5}(L), but it is in m{2,4}(d{2,4,5}(L)); see Fig-
ure 5(b).

We now give a characterization of what reachable graphs look like.

Definition 2.8. Let G be a CADMG with random vertex set V . Given C ⊆ V the graph G[C] is
defined to be the CADMG with the set of random vertices C, fixed vertices paG(C) \ C, those
bidirected edges in G with both endpoints in C, and those directed edges that are directed from
C ∪ paG(C) to C.

In other words, G[C] is the subgraph containing precisely the edges whose arrowheads are all
in C. For example, if G is the graph in Figure 1(b), then Figure 4(a)–(d) corresponds to G[{X}],
G[{E,Y }], G[{M}] and G[{X,E,M}], respectively.

Lemma 2.9. Suppose that the graph G′ is reachable from G and has set of random vertices C.
Then G′ = G[C].

Proof. Since we assume all fixed vertices have at least one child, then G = G[V ]. In addition, it
is clear from the definitions of d and m that precisely the edges and fixed vertices mentioned are
preserved at each step. �

In the rest of this paper, we will only refer to G[C] if C is a reachable set, though Definition 2.8
in principle applies to any C ⊆ V . Unfortunately, there is generally no simple way of character-
izing which sets C correspond to reachable subgraphs without iteratively applying d and m as
defined above. If a set A is random-ancestral, then clearly G[A] is reachable just by applying m.
Note that Richardson et al. [17] use a more general definition of reachable sets.
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3. Nested Markov property

Graphical models relate the structure of a graph to a collection of joint probability distributions
over a set of random variables. We will work with the nested Markov property, which relates a
(C)ADMG and each of its reachable subgraphs to a collection of probability distributions over
random vertices, indexed by fixed vertices.

Suppose we are interested in random variables Xv taking values in a finite discrete set Xv . For
a set of vertices C, let XC ≡ ×v∈CXv . A probability kernel for V given W (or simply a kernel)
is a function pV |W :XV ×XW → [0,1] such that for each xW ∈XW ,

∑
xV ∈XV

pV |W(xV | xW ) = 1.

In other words, a kernel behaves like a conditional probability distribution for XV given XW .
We use the word ‘kernel’ to emphasize that some of the conditional distributions we obtain are
not equal to the usual conditional distribution obtained from elementary definitions, but instead
correspond to certain interventional quantities.

In what follows, ∪̇ is used to denote a union of disjoint sets.

Definition 3.1. Let pV |W be a kernel, and let A ∪̇ B ∪̇ C = V . The marginal kernel over A,B |
W is defined to be:

pAB|W(xA,xB | xW ) ≡
∑
xC

pV |W(xV | xW ).

It is easy to check that pAB|W is also a kernel. A (version of the) conditional kernel of A|B,W

is any kernel pA|BW satisfying

pA|BW (xA | xB, xW ) · pB|W(xB | xW ) ≡ pAB|W(xA,xB | xW ).

This is uniquely defined precisely for xB, xW such that pB|W(xB | xW ) > 0.

Remark 3.2. Note that, for convenience, if some of the fixed variables W ∗ ⊆ W in a kernel pV |W
are entirely irrelevant, (i.e. if the functions pV |W(· | ·, yW ∗) are identical for all yW ∗ ∈ XW ∗ ) we
will describe it interchangably as a kernel of V given W , and as a kernel of V given W \ W ∗,
since in this case these objects are isomorphic: pV |W = pV |W\W ∗ .

We are now in a position to define the nested model. The definition is recursive, and works by
reference to the model applied iteratively to smaller and smaller graphs. The model is introduced
in Richardson et al. [17], and is based on the constraint finding algorithm of Tian and Pearl [28],
which follows a similar recursive structure.

Definition 3.3. Let G be a CADMG and pV |W a probability kernel. Say that pV |W recursively
factorizes according to G, and write pV |W ∈Mrf (G) if either |V | = 1, or both:



856 R.J. Evans and T.S. Richardson

(i) if G has districts D1, . . . ,Dk , k ≥ 1, then

pV |W(xV | xW ) =
∏
i

ri(xDi
| xpa(Di)\Di

) (2)

and where, if k ≥ 2, each ri recursively factorizes according to G[Di] = dDi
(G); and

(ii) for each ancestral set A with V \ A �=∅, the marginal distribution

pA∩V |W (xA∩V | xW ) =
∑
xV \A

pV |W(xV | xW )

does not depend upon xW\A (so we denote it by pA∩V |A∩W in line with Remark 3.2), and
this recursively factorizes according to G[V ∩ A] =mV ∩A(G).

Given a graph G, we shall refer to Mrf (G) as the nested model associated with G, and say that
distributions in that set satisfy the nested Markov property with respect to G. There are other,
equivalent definitions: see Richardson et al. [17].

Remark 3.4. It is important to note that, in terms of the factors ri whose existence is implied by
condition (i), the definition of recursive factorization ‘starts from scratch’ each time we perform
the recursion. For example, we make no claim (yet) about the connection between a factor ri
obtained from (i) and any such factors which arise after first applying (ii) and then later (i): see
Example 3.5.

In the base case V = {v} the definition places no restriction on the distribution of Xv given XW

(recall that, by assumption, all fixed vertices have at least one random child). The observed distri-
bution obtained from a directed acyclic graph model with latent variables will satisfy conditions
(i) and (ii) with respect to the ADMG that is the latent projection of that DAG (Tian and Pearl
[27,28]). The models defined by the Markov properties for ADMGs introduced by Richardson
[16] and parameterized by Evans and Richardson [9,10] can be defined by replacing (i) with the
weaker requirement:

(i′) G has districts D1, . . . ,Dk , k ≥ 1, and pV |W = ∏
i ri where each ri is a kernel for Di

given paG(Di) \ Di .

In other words, although the distribution must satisfy the ancestrality condition (ii) and then
factorize, no further conditions are imposed on those factors: they are not required to obey any
additional constraints implied by the graph G[Di]. This leads to a model defined entirely by
conditional independence relations on the original joint distribution pV |W .

As a consequence of this, the m-separation criterion for ordinary Markov models (as well as
the other Markov properties described by Richardson [16]) can be applied correctly to the initial
ADMG G to derive conditional independences in p(xV ); however, applied solely to G, this does
not completely describe the nested model.

Example 3.5. Consider the CADMG in Figure 1(b). Criterion (i) of recursive factorization re-
quires that

p(x, e,m,y) = rX(x) · rEY (e, y | x,m) · rM(m | e)
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for distributions rX , rEY and rM which recursively factorize according to the graphs in Fig-
ure 4(a), (b) and (c), respectively.

On the other hand, if we apply condition (ii) to the childless node Y we see that the margin
p(x, e,m) must satisfy recursive factorization with respect to the DAG in Figure 4(d), so

p(x,m, e) = r̃X(x) · r̃E(e | x) · r̃M(m | e)
for some kernels r̃X , r̃M and r̃E . This factorization implies the conditional independence X ⊥⊥
M | E, which can also be deduced using m-separation. We add a tilde to the kernels to emphasise
that the definition starts afresh at each iteration, and makes no claim of any relationship between
this factorization and the factorization of p = rXrEY rM . However, it is not hard to verify that in
this case

rX(x) = r̃X(x) = p(x),

rM(m | e) = r̃M(m | e) = p(m | e),∑
y

rEY (e, y | x,m) = r̃E(e | x) = p(e | x).

In fact, it will follow from Theorem 5.4 that, in general, kernels such as rX and r̃X that have the
same random vertex set but are derived in different ways are equal under the model. Note that

rEY (e, y | x,m) = p(e | x) · p(y | x,m, e)

�= p(e | x,m) · p(y | x,m, e)

= p(e, y | x,m),

and so rEY is not the usual conditional distribution of E, Y given X, M .

3.1. Properties of the recursive kernels

Here we show that the kernels ri from (2) in Definition 3.3 are products of conditional distribu-
tions derived from pV |W at the current level of the recursion, and that they are uniquely defined
up to versions of those conditional distributions.

A topological ordering of the random vertices of a CADMG is a total ordering < on V such
that every vertex precedes its children. We denote by pre<(v) the set of (random) vertices which
precede v under <.

The following proposition shows that the factors in the definition of recursive factorization are
unique up to versions of conditional distributions.

Proposition 3.6. Let G be a CADMG with districts D1, . . . ,Dk , and let < be any topological
ordering of V . Let pV |W = ∏

i ri , where each ri recursively factorizes with respect to G[Di].
Then

ri(xDi
| xpaG(Di)\Di

) =
∏
v∈Di

pv|pre<(v)∪W(xv | xpre<(v), xW ), (3)

where pv|pre<(v)∪W is any pV |W -version of the conditional distribution of Xv|Xpre<(v),XW .
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Remark 3.7. The equation in (3) is an instance of the g-formula of Robins [18]. The result also
appears as Corollary 1 in Tian [26], Section 4.3, in the case of latent variable models.

Proof. For the purposes of induction, we generalize the result slightly to allow Di to be collec-
tions of several districts. Let Ei ≡ paG(Di) \ Di . We proceed by induction on |V |: if |V | ≤ 1
there is nothing to show. Otherwise, let t ∈ Dk be the last vertex in the ordering <, so that xt

only appears as a variable in the factor rk . Then

pV \{t}|W(xV \{t} | xW ) ≡
∑
xt

pV |W(xV | xW )

=
∑
xt

k∏
i=1

ri(xDi
| xEi

)

=
(∑

xt

rk(xDk
| xEk

)

) k−1∏
i=1

ri(xDi
| xEi

)

= r̃k(xDk\{t} | xEk
)

k−1∏
i=1

ri(xDi
| xEi

),

where, by property 1 of recursive factorization, the kernel r̃k recursively factorizes with respect
to the graph G[Dk \{t}]. Similarly, all the factors ri for i = 1, . . . , k−1 recursively factorize with
respect to G[Di], so by the induction hypothesis each such ri is of the required form (3), and

r̃k(xDk\{t} | xEk
) =

∏
v∈Dk\{t}

pv|pre<(v)∪W(xv | xpre<(v), xW ).

But then

∏
i

ri = pV |W = pt |W,V \{t} · pV \{t}|W = pt |W,V \{t} · r̃k ·
k−1∏
i=1

ri;

therefore whenever pV \{t}|W > 0

rk(xDk
| xEk

, xW ) = pt |W,V \{t}(xt | xW ,xV \{t}) · r̃k. (4)

Hence pt |W,V \{t} satisfies (4) if and only if it is a version of the relevant conditional distribution,
as required. �

The next result shows that the positivity of pV |W is preserved in any derived kernels.

Lemma 3.8. Let pV |W(xV | xW ) be a probability distribution, < some total ordering on V , and
let A ⊆ V and B ≡ W ∪ pre<(A) \ A. Define

rA|B(xA | xB) ≡
∏
v∈A

pv|pre<(v),W (xv | xpre<(v), xW ),

for some versions pv|pre<(v),W of the conditional distributions of Xv | XW,Xpre<(v).
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Then:

(a) rA|B is a kernel for XA | XB ;
(b) for any T ⊆ V , xT ∈ XT and xW ∈XW , if pT |W(xT | xW ) > 0 then

rT ∩A|B(xT ∩A | xB) ≡
∑
yA\T

rA|B(yA\T , xT ∩A | xB) > 0

and all versions of rT ∩A|B(xT ∩A | xB) are the same;
(c) if pT |W(xT | xW ) = 0 then there exists t ∈ T such that (every version of)

pt |pre<(t),W (xt | xpre<(t), xW ) = 0.

Proof. (a) Clearly rA|B ≥ 0 since it is a product of conditional distributions, which are them-
selves non-negative. In addition, by summing the expression above in reverse order of < it is
easy to see that

∑
xA

rA|B(xA | xB) = 1 for any xB ∈XB . Hence, rA|B is a kernel.
For (b), note that if pT |W(xT | xW ) > 0, then there exists some xV \T ∈ XV \T such that

pV |W(xV | xW ) > 0. Then

pV |W(xV | xW ) =
∏
v∈V

pv|pre<(v),W (xv | xpre<(v), xW )

= rA|B(xA | xB)
∏

v∈V \A
pv|pre<(v),W (xv | xpre<(v), xW ),

so if the left-hand side is positive then so is rA|B(xA | xB) > 0. Since all the events in this expres-
sion have positive pV |W probability, all versions of each conditional probability are equal.

Lastly, if pT |W(xT | xW ) = 0 then clearly some factor of

0 = pT |W(xT | xW ) =
∏
t∈T

pt |pre<(t),W (xt | xpre<(t), xW )

is also zero. Pick the <-minimal t such that this holds, so that ppre<(t)|W(xpre<(t) | xW ) > 0. Then
(c) holds. �

A corollary of this lemma is the following.

Corollary 3.9. Let pV |W ∈ Mrf (G) be a strictly positive kernel. Then any kernel derived from
pV |W by repeated applications of Definition 3.3 (using G) is uniquely defined.

Proof. Clearly applying (ii) is always unique, since it only involves summing. By Proposi-
tion 3.6, application of (i) is a factorization into univariate conditional distributions, each of
which is uniquely defined when the joint distribution is positive. In addition, by Lemma 3.8 each
such conditional distribution is also strictly positive, so following the recursion with each unique
factor gives the result. �



860 R.J. Evans and T.S. Richardson

4. Intrinsic sets and partitions

In this section, we provide the necessary theory to link the graphical notions of Section 3 to the
parameterization in Section 5. The parameterization uses factorizations of the distribution into
pieces that correspond to special subsets of vertices in the graph; these subsets are themselves
derived from the idea of the ‘reachable’ sets already introduced.

Definition 4.1. Let G be a CADMG. A non-empty set S of random vertices is intrinsic if it is
bidirected-connected and the graph G[S] is reachable from G.

For each intrinsic set S, define the associated recursive head by rhG(S) = sterileG(S); that is,
it is the set of sink nodes in the induced subgraph over S. The set of recursive heads is denoted
by H(G), or simply H.1

The tail associated with a recursive head H (and the relevant intrinsic set S) is T (H) ≡
paG(S). We will denote a tail by T if it is unambiguous which recursive head it is derived from.

Intrinsic sets are central to the nested Markov property as they are the sets of variables over
which the kernels ri in Definition 3.3 specify distributions. Intrinsic sets do not appear to be easily
characterized in terms of the presence of a path in the original graph; Definition 4.1 implicitly
considers a sequence of graphs generated via repeated applications of the two operations d and m.
The set of intrinsic sets may be found in polynomial time; see Shpitser et al. [22].

Example 4.2. For the graph L in Figure 3, {2,4,5} and {3} are districts and therefore intrin-
sic sets. The graph L[{2,4,5}] is shown in Figure 5(a); applying m appropriately to random-
ancestral sets yields all the other intrinsic sets: {2,5}, {4,5}, {2}, {4} and {5}. Each recursive
head is equal to the associated intrinsic set.

Definition 4.3. Let B ⊆ V be a set of random vertices in G. Suppose we alternately marginalize
vertices that are not ancestors of B , and remove those which are not in the same district as some
element of B:

G �→manG(B)(G), G �→ ddisG(B)(G). (5)

If these two operations change anything at all then they reduce the size of the set of random
vertices; consequently repeatedly applying both these operations successively will eventually
reach some stable point, which is a graph whose set of random vertices we denote by IG(B).
Note that at each step of (5) the random vertices in the resulting graph always include B , so
B ⊆ IG(B).

If IG(B) is bidirected-connected, then it is an intrinsic set by definition, and we call IG(B) the
intrinsic closure of B .

1Note that the definition of a recursive head differs from the head used in Evans and Richardson [10] for ADMGs. We
will see in Example 4.12 that {E,Y } is a recursive head in the graph in Figure 1(b), but one can check that it is not a head
in the Evans and Richardson [10] sense.
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Figure 6. (a) A (C)ADMG G and (b) G1 ≡ ddis(Y )(G).

Proposition 4.4. If G′ = G[C] is reachable from G for some set C ⊇ B , then

manG′ (B)

(
G′) ⊆manG(B)(G), ddisG′ (B)

(
G′) ⊆ ddisG(B)(G).

Note that here and in what follows we use ⊆ as a subgraph relation when applied to graphs.

Proof. From Lemma 2.9, G′ = G[C]; We have manG′ (B)(G′) = G[anG′(B)] and manG(B)(G) =
G[anG(B)]. Any ancestor of B in the subgraph G′ = G[C] must be also be an ancestor in G, so
clearly G[anG′(B)] ⊆ G[anG(B)]. A similar argument holds for d. �

Both of the operators in (5) are idempotent; in addition, since the sets an(B) and dis(B) only
get smaller through repeated iterations, it follows from Proposition 4.4 that the stable point does
not depend upon which operation is applied first. Hence, IG(B) is well-defined.

Example 4.5. Let G be the graph in Figure 6(a) and consider the intrinsic closure of the
bidirected-connected set {Y }. The graph man(Y )(G) is just G, since everything is an ancestor
of Y . However G1 ≡ ddis(Y )(G) gives the graph G[{X,Y }] shown in Figure 6(b) in which Z is
fixed, but the edges are all unchanged. It then becomes clear that repeatedly applying m and d

will not result in any further changes to the graph. Hence, the intrinsic closure is just the set of
random vertices in this graph: IG({Y }) = {X,Y }.

On the other hand, consider the graph L in Figure 3 and the intrinsic closure of the set
{4,5}. Again man({4,5})(L) = L, and then ddis({4,5})(L) gives the graph in Figure 5(a). Apply-
ing man({4,5})(·) to this graph yields the graph in Figure 5(c), whose only random vertices are
{4,5}. Hence, the procedure terminates and, since it forms a district in this graph, {4,5} is an
intrinsic set and its own intrinsic closure.

One consequence of the next result is that, as we would hope, every intrinsic set is its own
intrinsic closure.

Lemma 4.6. Let S be an intrinsic set with recursive head H in a graph G. Then for any set A

such that H ⊆ A ⊆ S we have IG(A) = S.

Proof. By the definition of H , every vertex in S is either in H or is a parent of some other
element of S. Since S is bidirected-connected, the operations dA, mA therefore cannot remove
any element of S without also having removed an element of H , but this is not allowed since
H ⊆ A. Hence, no element of S is ever removed, and IG(A) ⊇ S.
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Suppose that IG(A) ⊃ S and so B ≡ IG(A)\S is non-empty. Every element of B is an ancestor
of some other entry in IG(A). In addition, every element of IG(A) is connected to A ⊆ S by
sequences of bidirected edges through IG(A), so IG(A) is, like S, a bidirected-connected set.
Thus, we cannot remove any element of B via operations of the form m,d without first removing
some element of A ⊆ S. If B is non-empty, then this implies S is not reachable, which contradicts
the assumption that S is intrinsic. �

Note that a corollary of this result is that recursive heads are in one-to-one correspondence
with intrinsic sets: two distinct intrinsic sets may not have the same recursive head.

Proposition 4.7. If B is a bidirected-connected set with intrinsic closure IG(B), then the recur-
sive head H associated with the intrinsic set IG(B) satisfies H ⊆ B .

Proof. By definition of intrinsic closure, every vertex v in IG(B) is an ancestor of B in G[IG(B)].
If v /∈ B , then v /∈ sterileG(IG(B)), hence v /∈ H . �

Lemma 4.8. Every singleton {v} for v ∈ V is a recursive head.

Proof. Take the intrinsic closure IG({v}) of v. Every element of IG({v}) other than v is a parent
of some other element of IG({v}) by definition; therefore {v} is the sterile set, and a recursive
head. �

Lemma 4.9. Let G be a CADMG, and G′ be a CADMG with random vertices V ′, reachable
from G. Then the intrinsic sets of G′ are precisely the intrinsic sets of G that are contained in V ′,
and their associated recursive heads and tails are the same.

Proof. Since G′ = G[V ′] is reachable from G, any intrinsic set in G′ is also an intrinsic set in G.
For the converse, suppose that D ⊆ V ′ is an intrinsic set in G. Take the intrinsic closure of D in
G′, say C; if C = D then we are done.

Suppose not, so that C \D is non-empty. This occurs precisely when C is bidirected-connected
in G′, and every vertex in C \ D is an ancestor in G′ of some other vertex in C. But if this is true
in G′, then it must also be true in G, which contains any edges that G′ does; thus the intrinsic
closure of D in G is a strict superset of D. This contradicts the assumption that D is intrinsic
in G.

By Lemma 2.9 the recursive heads and tails associated with each intrinsic set are unchanged,
since the parent sets of each random vertex are preserved. �

Corollary 4.10. Let G be a CADMG containing random-ancestral sets A1,A2. If H ∈ H(G[A1])
and H ∈H(G[A2]), then H ∈ H(G[A1 ∩ A2]).

Proof. If A1 and A2 are random-ancestral, then so is A1 ∩ A2, so the graph G[A1 ∩ A2] is
reachable from G. The result follows from Lemma 4.9. �
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4.1. Partitions

We follow the approach of Evans and Richardson [10] by defining partitions of sets via appropri-
ate collections of subsets. Define a partial ordering ≺ on recursive heads by H1 ≺ H2 whenever
IG(H1) ⊂ IG(H2).

Definition 4.11. Define a function �G on sets of random vertices C ⊆ V that ‘picks out’ the set
of ≺-maximal recursive heads H ∈H(G) that are subsets of C. That is,

�G(C) ≡ {
H ∈H | H ⊆ C and H ⊀H ′ for all other H ′ ⊆ C,H ′ ∈H

}
.

Define

ψG(C) ≡ C
∖ ⋃

D∈�G(C)

D.

Now recursively define a function �·�G that partitions subsets of V : define �∅�G =∅, and

�W �G ≡ �G(W) ∪ �ψG(W)�G .

For full details, including a proof that this definition does indeed define a partition, see the
Appendix B.

Example 4.12. The recursive heads of the graph in Figure 1(b) are {X}, {E}, {M}, {Y }, {E,Y },
and the ordering requires that {E} and {Y } precede {E,Y }. Hence, for example

�{X,E,Y }�G = {{X}, {E,Y }},
�{M,Y }�G = {{M}, {Y }}.

The partitioning function [·]G in Evans and Richardson [10] made use of ‘heads’ rather than
‘recursive heads’, and therefore the partition obtained differs from the one here. For example,
applied to the same graph as above,

[{X,E,Y }]G = {{X}, {E}, {Y }}.
Lemma 4.13. If G′ = G[D] is reachable from G then �C�G′ = �C�G for every C ⊆ D.

Proof. By Lemma 4.9, the intrinsic sets of G ′ = G[D] are precisely the intrinsic sets of G that
are subsets of D, with the same associated recursive heads. Hence the result follows from the
definition of ≺. �

Lemma 4.14. If G is such that V = D1 ∪̇ D2 for sets D1,D2 not connected by bidirected edges,
then

�C�G = �C ∩ D1 �G ∪ �C ∩ D2 �G .
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Proof. Since every intrinsic set (and therefore recursive head) is a subset of either D1 or D2, the
result follows from Propositions B.4 and B.5 in the Appendix. �

5. Parameterization

We are now in a position to introduce the parameterization. Recall that T denotes the tail asso-
ciated with a recursive head H . We will present the parameterization for binary variables only,
that is, those with state-space Xv ≡ {0,1}, each v ∈ V ∪̇ W ; the extension to non-binary discrete
variables is conceptually simple but notationally cumbersome. Appendix C contains notes on the
general case.

Definition 5.1. Let G be a CADMG with random vertices V and fixed vertices W . We say that
pV |W is parameterized according to G, and write pV |W ∈ Mp(G), if it can be written in the
form:

pV |W(xV | xW ) =
∑

C:O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT ), xV W ∈ XV W , (6)

where we define O ≡ O(xV ) ≡ {v ∈ V | xv = 0}. Here qH (xT ) ∈ R for each H ∈ H, xT ∈ XT ,
and T ≡ T (H) is the tail associated with the recursive head H .

Note that if C = ∅ then the product is empty, which we define to be equal to 1. It will be
shown in Section 5.3 that if pV |W is of the above form then qH (xT ) ∈ [0,1] for all H and xT ,
or can be chosen to be so. In fact, if the graph is interpreted causally, then each qH (xT ) is the
same as pH |T (0H | x

T \T̃ ,do(x
T̃
)), where T̃ is a suitable subset of T (see Theorem 5.5), and 0H

denotes
⋃

h∈H {Xh = 0}.

5.1. Comparison to other graphical parameterizations

It is worth remarking on some special cases of the parameterization: if G is a DAG then each
H is a singleton {h}, and (6) is just the familiar parameterization in terms of conditional prob-
ability tables using corner-point identifiability constraints: qH (xT ) = ph|pa(h)(0h | xpa(h)). If G
has only bidirected edges, then T = ∅, and (6) reduces to the parameterization given in Drton
and Richardson [6]. If G has a chain graph structure, that is, the districts can be ordered so that
v → w only if v’s district is strictly before w’s, then the parameterization reduces to that given
in Drton [4].

A comparison with the parameterization of Evans and Richardson [10] is more subtle. Since
the ordinary Markov models in that paper only use the weaker requirement (i′) (see Section 3)
we would expect that they generally have a larger dimension than the nested model for the same
graph, and therefore use a different parameterization. If the models are the same, and if each
intrinsic set can be obtained from a single marginalization step followed by factorization, then
the ‘ordinary’ heads and tails will be the same as the recursive heads and tails, and hence the
parameterization will be identical.
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Figure 7. An ADMG whose nested and ordinary Markov models are the same, but for which the parame-
terizations of Evans and Richardson [10] and this paper are distinct.

However, even if the ordinary and nested models are the same, the parameterizations can be
different. Consider the graph in Figure 7 (a modified version of L). In this case, the ordinary
and nested models are the same and both represent the distributions for which X5 ⊥⊥ X3 | X2 and
X4 ⊥⊥ X2 | X3; this is the same as the corresponding maximal ancestral graph model. Since the set
{2,4,5} is a recursive head the nested parameterization includes the quantity q245(x3) = P(X2 =
X4 = X5 = 0 | do(x3)) (see Theorem 5.5), whereas the ordinary parameterization does not have
such a head, and uses only ordinary conditional probabilities such as P(X4 = 0,X5 = 0 | x2, x3).

In general, the number of parameters in the nested model is no greater than the number in
the ordinary Markov model, though this number can be quite large even for sparse graphs if the
districts are large. The number of parameters for a particular district will be at least quadratic
in the district size, this most parsimonious case occurring if the district is a single chain. The
number of parameters may grow exponentially in the number of vertices, even for models with
only a linear number of edges: for example, if we have a ‘star’ graph with all bidirected edges
(this is equivalent to a star-shaped DAG with all edges pointing to the central node). Such large
models are potentially undesirable, and methods to reduce the parameter count are suggested by
Shpitser et al. [19].

5.2. Main results

We will show that distributions are parameterized according to G precisely when they recursively
factorize according to G, so that in fact Mrf (G) = Mp(G). In particular, a distribution of the
form (6) satisfies properties (i) and (ii) of the recursive factorization. This is shown by the next
two lemmas.

Lemma 5.2. Let G be a CADMG with random vertices V = D1 ∪̇ · · · ∪̇ Dl , such that for i �= j

there is no bidirected edge in G from a vertex in Di to a vertex in Dj . Then for all xV W ∈ XV W

and O ≡ O(xV ),

∑
O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT ) =
l∏

i=1

∑
Oi⊆C⊆Di

(−1)|C\Oi | ∏
H∈�C�G

qH (xT ),

where Oi = O ∩ Di .
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Proof. We prove the result for l = 2, from which the general result follows by induction. From
Lemma 4.14,

∏
H∈�C�G

qH (xT ) =
∏

H∈�C∩D1 �G

qH (xT ) ×
∏

H∈�C∩D2 �G

qH (xT ).

In addition, if Ci = C ∩ Di , then C \ O = (C1 \ O1) ∪ (C2 \ O2) and this is the union of two
disjoint sets, so |C \ O| = |C1 \ O1| + |C2 \ O2|. Hence,

∑
O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT )

=
∑

O⊆C⊆D1∪D2

(−1)|C\O| ∏
H∈�C∩D1 �G

qH (xT )
∏

H∈�C∩D2 �G

qH (xT )

=
∑

O1⊆C1⊆D1

(−1)|C1\O1| ∏
H∈�C1 �G

qH (xT )

×
∑

O2⊆C2⊆D2

(−1)|C2\O2| ∏
H∈�C2 �G

qH (xT ).

�

Lemma 5.3. Let G be a CADMG with a random vertex v. Then for all xV W ∈ XV W and O ≡
O(xV ),

∑
O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT )

=
∑

O⊆C⊆V \{v}
(−1)|C\O| ∏

H∈�C�G

qH (xT ) −
∑

O∪{v}⊆C⊆V

(−1)|C\(O∪{v})| ∏
H∈�C�G

qH (xT ).

Proof. Separating the sum into those subsets C that contain v and those which do not gives

∑
O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT )

=
∑

O⊆C⊆V \{v}
(−1)|C\O| ∏

H∈�C�G

qH (xT ) +
∑

O∪{v}⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT ),

which is seen to be the same as the given expression by including a factor of −1 inside and
outside the second sum. �

We now move to the main result of the paper.

Theorem 5.4. The kernel pV |W recursively factorizes according to G if and only if it is parame-
terized according to G.
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Proof. Throughout the proof, we will write the partitions of vertices in a CADMG as �·�G re-
gardless of which graph we are dealing with; since all the graphs we consider are reachable from
G, this is justified by Lemma 4.13.

We proceed by induction on the size of V . If V = {v} then recursive factorization is by defini-
tion, so the condition holds for any distribution. On the other hand, parameterization entails

pv|W(0v | xW ) = qv(xpa(v)), pv|W(1v | xW ) = 1 − qv(xpa(v)), (7)

which follows from setting qv(xpa(v)) = pv|W(0v | xW ) and the fact that pv|W(0v | xW ) +
pv|W(1v | xW ) = 1 because pv|W is a probability distribution; hence parameterization also holds
for any distribution with one random variable.

(⇐) Now consider a general V and suppose pV |W is parameterized according to G. If G has
multiple districts then, by Lemma 5.2, the kernel factorizes into pieces which are parameterized
according to G[Di], and so by the induction hypothesis recursively factorize according to G[Di].

Otherwise take any a ∈ sterileG(V ), and consider a specific xW,V \{a} ∈XW,V \{a}; let O = {v ∈
V \ {a} | xv = 0}, so then

∑
xa

p(xV | xW ) = p(xV \a,0a | xW ) + p(xV \a,1a | xW )

=
∑

O∪{a}⊆C⊆V

(−1)|C\(O∪{a})| ∏
H∈�C�G

qH (xT )

+
∑

O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT )

=
∑

O⊆C⊆V \{a}
(−1)|C\O| ∏

H∈�C�G

qH (xT )

by Lemma 5.3. By the induction hypothesis, this last expression recursively factorizes accord-
ing to G[V \ {a}] = mV \a(G), and this extends easily to any random-ancestral margin V \ B

by sequentially marginalizing the variables in B . Hence, pV |W obeys properties (i) and (ii) of
recursive factorization, and therefore recursively factorizes according to G.

(⇒) Conversely, suppose that pV |W recursively factorizes according to G. In this direction,
we will strengthen the induction hypothesis slightly and show that if pV |W recursively factorizes
according to G then pV |W is parameterized according to G, and that for each parameter qH (xT ),
either: pT \W |W(xT \W | xT ∩W,yW\T ) > 0 for some yW\T , in which case qH (xT ) is uniquely re-
coverable from pV |W ; or pT \W |W(xT \W | xT ∩W,yW\T ) = 0 for all yW\T , in which case qH (xT )

can take any value. For the base case with |V | = 1, the result follows from the derivation of (7).
If G has multiple districts then, by definition, pV |W factorizes into pieces which themselves

recursively factorize according to the district subgraphs G[Di], and by the induction hypothesis
each factor is parameterized according to G[Di]. Applying Lemma 5.2 it follows that pV |W is pa-
rameterized according to G, and no parameters are shared between these factors by Lemma 4.14.

For uniqueness of qH (xT ), note that this parameter only appears in the expansion for proba-
bilities pV |W(xV | xW ) (i.e., those indexed by the same values xT ). If pT \W |W(xT \W | xW ) > 0,
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then the factorization of pV |W is unique for these values by Proposition 3.6, and each factor is
also positive for those values of xT by Lemma 3.8; thus qH (xT ) is uniquely recoverable from
that factor by the strengthened induction hypothesis.

If pT \W |W(xT \W | xW ) = 0, then by Lemma 3.8 there is some t ∈ T \ W and xV \T such that
every version of pt |pre<(t),W (xt | xpre<(t), xW ) = 0. We split into two cases: either t is in the same
district as H , or not; let D1 be the district containing H , and the associated kernel r1. If t is
in D1, then it follows from Proposition 3.6 that r1(xT ∩D1 | xT \D1) = 0, and so by the induction
hypothesis applied to G[D1] we get that qH (xT ) can take any value. Otherwise if t is in a different
district (say D2), then it follows from Proposition 3.6 that r2(xT ∩D2 | xpa(D2)\D2) = 0; so clearly
whatever the value of any other factor, including r1, the product will always be zero.

Now suppose G has a single district V ; it follows from the definitions that V is intrinsic
with recursive head H ∗ = sterileG(V ) and tail T ∗ = (V ∪ W) \ H ∗. For any vertex h ∈ H ∗
the set V \ {h} is random-ancestral, so the margin pV \h|W recursively factorizes with respect
to G[V \ {h}], and therefore (by the induction hypothesis) is also parameterized according to
G[V \ {h}]. Every recursive head H other than H ∗ is found in at least one random-ancestral
margin V \ {h} of G, so applying the induction hypothesis to G[V \ {h}] we obtain either a well
defined parameter, or determine that its value is irrelevant.

If two or more random-ancestral margins contain the recursive head H , note that by Corol-
lary 4.10 there is a ‘smallest’ such margin pan(H)\W |W containing H ; all other random-ancestral
margins contain this margin, and therefore by the induction hypothesis they will agree either on a
value for qH (xT ) or agree that it is arbitrary. So for every random-ancestral set A � V the margin
G[A] is parameterized according to pA|W and any parameters that two or more of these margins
jointly use either are consistent, or can be chosen to be consistent.

The only recursive head not found in a random-ancestral margin is H ∗, so the only parameter
yet to be defined is qH ∗(xT ∗). We define this to be any version of pH ∗|T ∗(0H ∗ | xT ∗); this is well
defined if p(xT ∗\W | xT ∗∩W) > 0, and arbitrary otherwise. Then

pV |W(0H ∗ , xV \H ∗ | xW ) = qH ∗(xT ∗) · p(xV \H ∗ | xW ).

Since V \ H ∗ is a random-ancestral margin of G, it follows that p(xV \H ∗ | xW ) is parameterized
according to G[V \ H ∗], and so

pV |W(0H ∗ , xV \H ∗ | xW ) = p(0H ∗ | xV \H ∗ , xW ) ·
∏

O⊆C⊆V \H ∗
(−1)|C\O| ∏

H∈�C�G

qH (xT )

=
∏

O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT ).

This gives the required result if xh = 0 for all h ∈ H ∗. On the other hand, if xh = 1h for some
h ∈ H ∗, then using a second induction on the number of zeros in xH ∗ we have

p(xV \h,1h | xW )

= p(xV \h | xW ) − p(xV \h,0h | xW )
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=
∑

O⊆C⊆V \{h}
(−1)|C\O| ∏

H∈�C�G

qH (xT ) −
∑

O∪{h}⊆C⊆V

(−1)|C\(O∪{h})| ∏
H∈�C�G

qH (xT )

=
∑

O⊆C⊆V

(−1)|C\O| ∏
H∈�C�G

qH (xT )

using Lemma 5.3. Hence, every probability pV |W(xV | xW ) is of the required form. �

5.3. Model smoothness

For some ADMGs G, the parameters qH (xT ) are just (versions of) the ordinary conditional prob-
abilities P(XH = 0 | XT = xT ), and hence the alternating sum is similar to the Möbius form of
the parameterization studied in Evans and Richardson [10] in the context of ‘ordinary’ Markov
models. However, we have already seen that not all of the parameters can be interpreted this
way; recall the example in Section 3 for Figure 1(b). In this case, as noted in Example 3.5,
qEY (x,m) = rEY (0,0 | x,m) is not an ordinary conditional probability, but if the graph is in-
terpreted causally then it is the conditional probability of {E = Y = 0} after intervening to fix
{X = x,M = m}:

qEY (x,m) = pE|X(0 | x) · pY |XME(0 | x,m,0)

= P
(
Y = E = 0 | do(X = x,M = m)

)
.

By the requirement that the graph is ‘interpreted causally’ we mean that it is the latent projection
of a causal DAG in the sense of Pearl [15], Definition 1.3.1. This result holds more generally.

Theorem 5.5. If pV |W is strictly positive and recursively factorizes according to some CADMG
G, then all the parameters qH (xT ) are unique and can be smoothly recovered from pV |W (i.e.,
there is an infinitely differentiable function from pV |W to the qH (xT )).

In addition, if the graph is interpreted causally, then

qH (xT ) = P
(
XH = 0H | X

T \T̃ = x
T \T̃ ,do(X

T̃
= x

T̃
)
)
,

where T̃ ≡ T \ S = paG(S) \ S is the subset of T that does not intersect S.

Proof. The first claim follows directly from the proof of Theorem 5.4, since the operations in-
volved are just summations and divisions by positive quantities; the fact that pV |W is strictly
positive ensures that each parameter is always uniquely defined rather than being arbitrary.

For the second part: recall that the steps (i) and (ii) in Definition 3.3 correspond to the al-
gorithm in Tian and Pearl [27], so it follows from that paper that the conditional distribution
obtained when we reach a particular intrinsic set S is pV (xS | do(xpa(S)\S)). Then calculating
qH (xT ) just gives pV (0H | xS\H ,do(xpa(S)\S)), and hence the result. �

We remark that if the distribution is not strictly positive then it follows from the ‘⇒’ part
of the proof of Theorem 5.4 that the parameters qH (xT ) are uniquely defined if and only if
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p(xV ∩T | xW∩T , yW\T ) > 0 for some yW\T . In the case that W = ∅ and G is an ADMG, this
reduces to qH (xT ) being uniquely defined if and only if p(xT ) > 0.

We now return to the generality of a finite discrete state-space Xv for each Xv . Let X̃v be the
same set with some arbitrary entry removed (so that |X̃v| = |Xv| − 1). Then for any set C let
X̃C ≡ ×v∈CX̃v . See Appendix C for explicit definitions of the parameters in this case.

Corollary 5.6. The set of strictly positive distributions obeying the recursive factorization prop-
erty with respect to a CADMG G is a curved exponential family of dimension

d(G) =
∑

H∈H(G)

|X̃H | · |XT |.

Proof. Theorem 5.5 shows that there is a smooth (infinitely differentiable) map from positive
distributions obeying the recursive factorization to the model parameters; it is clear from the
form of the parameterization that the map from parameters to the probabilities is also smooth.
The result follows by the same argument as Theorem 6.5 of Evans and Richardson [10]. �

This result allows us to invoke standard statistical theory within this class of models. For
example, if G′ is a subgraph of G, then we can perform a hypothesis test of H0 : pV |W ∈Mrf (G′)
versus H1 : pV |W ∈Mrf (G) by comparing the likelihood ratio statistic to a χ2

k distribution, where
k = d(G) − d(G′).

Fitting these models is relatively straightforward given the explicit maps between parameters
and probabilities. Maximum likelihood estimation can be performed using the same method as
in Evans and Richardson [8]. The parameters qH (xT ) are clearly variation dependent, which can
cause algorithmic complications and interpretability problems. A (generally variation dependent)
log-linear parameterization of the kind given in Evans and Richardson [9] can relatively easily
be adapted to nested models; see also Shpitser et al. [19].

6. Examples

The Wisconsin Longitudinal Study (Hauser et al. [11]) is a panel study of over 10 000 people
who graduated from Wisconsin High Schools in 1957. We consider males who, when asked in
1975, had either been drafted or had not served in the military at all; after removing missing data
this left 1676 respondents. We wish to know whether, after controlling for family income and
education, being drafted had a significant effect on future earnings.

The variables measured were:

• X, an indicator of whether family income in 1957 was above $5k;
• Y , an indicator of whether the respondent’s income in 1992 was above $37k;
• M , an indicator of whether the respondent was drafted into the military;
• E, an indicator of whether the respondent had education beyond high school.

Dichotomizations for X, Y and E were chosen to be close to the median values of the original
variables. The data are shown in Table 1; in each case the value 1 corresponds to the statement
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Table 1. Data from the Wisconsin Longitudinal Study

X = 0, E = 0 X = 1, E = 0

M\Y 0 1 M\Y 0 1

0 241 162 0 161 148
1 53 39 1 33 29

X = 0, E = 1 X = 1, E = 1

M\Y 0 1 M\Y 0 1

0 82 176 0 113 364
1 13 16 1 16 30

above being true, 0 otherwise. One possible model is that future income is unrelated to family
income at the time of graduation after controlling for military service and level of education.
This suggests the graph in Figure 8(a), where the directed edge from X to Y is not present. We
can fit this model using the parameterization and an algorithm based on the one given by Evans
and Richardson [8]; the resulting fit has a deviance of 31.3 on 2 degrees of freedom, strongly
suggesting that the model should be rejected. Unsurprisingly, the graph in Figure 1(b) is also
rejected for these data.

On the other hand the model shown in Figure 8(b) has a deviance of 5.57 on 6 degrees of
freedom, which indicates a good fit. Note that this implies that there is no evidence of a signifi-
cant effect of being drafted on future income, even though marginally there is a strong negative
correlation. Models obtained by removing any additional edges are strongly rejected. Under this
model, the probability of having a high income in 1992 is estimated as 0.50 (standard error 0.018)
if the family had high income, and 0.36 (0.016) if not.

In other words, we estimate

P
(
Y = 1 | do(X = 1)

) = 0.50, P
(
Y = 1 | do(X = 0)

) = 0.36,

indicating a strong causal effect.

Figure 8. Two models for the Wisconsin miltary service data. (a) A proposed but rejected model; (b) a
well-fitting model. See text for discussion.
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Appendix A: Proof of the Verma constraint

Note that

∑
e

p(e | x) · p(y | x,m, e) =
∑

e

p(x,m, e, y)

p(x) · p(m | x, e)

=
∑

e

∑
u p(u, x,m, e, y)

p(x) · p(m | x, e)

by elementary laws of conditional probability. Applying the usual factorization of the DAG in
Figure 1(a), we obtain

=
∑

e

∑
u p(u) · p(x) · p(e | x,u) · p(m | e) · p(y | m,u)

p(x) · p(m | x, e)

noting that M ⊥⊥ X | E, and cancelling, gives

=
∑
e,u

p(u) · p(e | x,u) · p(y | m,u)

=
∑
u

p(u) · p(y | m,u),

which does not depend upon x.

Appendix B: Partitions

Let V be an arbitrary finite set, and let H be an arbitrary collection of non-empty subsets of V ,
with the restriction that {v} ∈ H for all v ∈ V (i.e. all singletons are in H). A partial ordering ≺ on
the elements of H will be said to be partition suitable if for any H1,H2 ∈ H with H1 ∩ H2 �=∅,
there exists H ∗ ∈ H such that H ∗ ⊆ H1 ∪ H2 and Hi � H ∗ for each i = 1,2. (Here H1 � H2

means H1 ≺ H2 or H1 = H2.)
Define a function � on subsets of V such that �(W) ‘picks out’ the set of ≺-maximal elements

of H that are subsets of W . That is,

�(W) ≡ {
H ∈ H | H ⊆ W and H ⊀ H ′ for all other H ′ ⊆ W

}
.

Define ψ(W) to be the set of vertices not in any set in �(W), that is:

ψ(W) ≡ W
∖ ⋃

C∈�(W)

C.
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Now recursively define a function [·] that partitions subsets of V : define [∅] =∅, and

[W ] ≡ �(W) ∪ [
ψ(W)

]
.

It is clear that
⋃

A∈[W ] A = W .
The next proposition shows that [W ] is indeed a partition of W .

Proposition B.1. If H1,H2 ∈ �(W) with H1 �= H2 then H1 ∩ H2 =∅.

Proof. Suppose H1 ∩ H2 �= ∅. Then by partition suitability, there exists H ∗ ⊆ H1 ∪ H2 with
H ∗ � H1,H2, and in particular H ∗ � Hi for at least one of i = 1,2. Hence at least one of the Hi

is not maximal in W . �

Proposition B.2. If A ⊆ W1 ⊆ W2, and A ∈ �(W2) then A ∈ �(W1).

Proof. If A is maximal amongst elements of H that are subsets of W2, then it is certainly still
maximal amongst those that are subsets of W1, since there are fewer such sets. �

Proposition B.3. If C ∈ [W ], then [W ] = {C} ∪ [W \ C].

Proof. We proceed by induction on the size of W . If [W ] = {C}, including any case in which
|W | = 1, the result is trivial.

If C is not maximal with respect to ≺ among subsets of W , then �(W) = �(W \ C), and so

[W ] = �(W) ∪ [
ψ(W)

]
= �(W \ C) ∪ [

ψ(W)
]
,

and the problem reduces to showing that [ψ(W)] = {C} ∪ [ψ(W \ C)], which follows from the
induction hypothesis. Thus, suppose C ∈ �(W).

Now by Proposition B.2, �(W \ C) ∪ {C} ⊇ �(W), and if equality holds we are done. Other-
wise let C1, . . . ,Ck be the sets in �(W \ C) but not in �(W). These sets are maximal in W \ C,
so they are in �(ψ(W)) by Proposition B.2, since by hypothesis, ψ(W) ⊆ W \ C. Then the
problem reduces to showing that

[
ψ(W)

] = {C1, . . . ,Ck} ∪ [
ψ(W) \ (C1 ∪ · · · ∪ Ck)

]
,

which follows from repeated application of the induction hypothesis. �

Proposition B.4. Let D1, . . . ,Dk be a partition of V , and suppose that each H ∈H is contained
within some Di . Let ≺ be a partition-suitable partial ordering. Then

[W ] =
k⋃

i=1

[W ∩ Di].
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Proof. We prove the case k = 2, from which the general result follows by repeated applications.
We proceed by induction on the size of W . If either W ∩D1 or W ∩D2 are empty, then the result
is trivial. By definitions

[W ] = �(W) ∪ [
ψ(W)

];
ψ(W) is strictly smaller than W , so by the induction hypothesis

[W ] = �(W) ∪ [
ψ(W) ∩ D1

] ∪ [
ψ(W) ∩ D2

]
.

From the condition on H we can write �(W) = C1 ∪ C2 where each H ∈ Ci is a subset of Di ;
since the elements of Ci are maximal with respect to ≺ in W , they are also maximal in W ∩ Di .
Hence Ci ⊆ �(W ∩ Di), and then applying Proposition B.3 repeatedly gives

Ci ∪ [
ψ(W) ∩ Di

] = [W ∩ Di],

because (ψ(W) ∩ Di) ∪ ⋃
Ci = W ∩ Di . Hence the result. �

B.1. Partition suitability of recursive head ordering

The next result, together with Proposition B.1, shows that the function �·�G , from Definition 4.11,
is indeed a partition.

Proposition B.5. ≺ is partition suitable for H(G).

Proof. Lemma 4.8 shows that H contains the singleton vertices. Now suppose we have two
recursive heads H1,H2 with H1 ∩ H2 �= ∅. Let the associated intrinsic sets be S1, S2. Since
S1, S2 are bidirected connected sets and they share a common element, S1 ∪S2 is also bidirected-
connected. Let S∗ be the intrinsic closure of S1 ∪ S2, with recursive head H ∗. Then S∗ contains
both S1 and S2, and therefore H ∗ � H1,H2.

By Proposition 4.7, H ∗ = sterileG(S∗) ⊆ S1 ∪S2; by definition of a recursive head, any v ∈ S1

is either in H1 or is a parent of some other element of S1 (and the same for S2). Hence H ∗ ⊆
H1 ∪ H2. �

Appendix C: General discrete state-space

Lemmas 5.2 and 5.3 and Theorem 5.4 are stated and proved for binary variables to avoid cum-
bersome notation; here we provide some notes on how one would adapt them to the general
case.

Suppose that XV W is possibly non-binary. For each v ∈ V pick an arbitrary element kv ∈ Xv

to be a corner-point. Let X̃v ≡ Xv \ {kv} and X̃C ≡ ×v∈CX̃v . In the binary case we took kv = 1,
so that X̃v = {0} for each v.
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The parameters then become qH (xH | xT ) for H ∈ H(G), xH ∈ X̃H and xT ∈ XT . The param-
eterization in (6) becomes:

pV |W(xV | xW ) =
∑

O⊆C⊆V

(−1)|C\O| ∑
yC∈X̃C :yO=xO

∏
H∈�C�G

qH (yH | xT ),

where O ≡ O(xV ) = {v | xv ∈ X̃v}. Note that, in the binary case, the inner sum only ever has one
term.

Lemma 5.2 goes through as before by splitting the inner sum up as

∑
yC∈X̃C :yO=xO

=
∑

yC1 ∈X̃C1 :yO1=xO1

∑
yC2∈X̃C2 :yO2 =xO2

.

The proof of Theorem 5.4 is also the same, except that instead of xh = 0 and xh = 1 the important
cases become xh ∈ X̃h and xh = kh.
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