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In parametric estimation of covariance function of Gaussian processes, it is often the case that the true
covariance function does not belong to the parametric set used for estimation. This situation is called
the misspecified case. In this case, it has been shown that, for irregular spatial sampling of observation
points, Cross Validation can yield smaller prediction errors than Maximum Likelihood. Motivated by this
observation, we provide a general asymptotic analysis of the misspecified case, for independent and uni-
formly distributed observation points. We prove that the Maximum Likelihood estimator asymptotically
minimizes a Kullback–Leibler divergence, within the misspecified parametric set, while Cross Validation
asymptotically minimizes the integrated square prediction error. In Monte Carlo simulations, we show that
the covariance parameters estimated by Maximum Likelihood and Cross Validation, and the correspond-
ing Kullback–Leibler divergences and integrated square prediction errors, can be strongly contrasting. On
a more technical level, we provide new increasing-domain asymptotic results for independent and uniformly
distributed observation points.

Keywords: covariance parameter estimation; cross validation; Gaussian processes; increasing-domain
asymptotics; integrated square prediction error; Kullback–Leibler divergence; maximum likelihood

1. Introduction

Kriging models [37,48] consist in inferring the values of a Gaussian random field given observa-
tions at a finite set of observation points. They have become a popular method for a large range
of applications, such as numerical code approximation [39,40] and calibration [35] or global
optimization [24].

One of the main issues regarding Kriging is the choice of the covariance function for the Gaus-
sian process. Indeed, a Kriging model yields an unbiased predictor with minimal variance and
a correct predictive variance only if the correct covariance function is used. The most common
practice is to statistically estimate the covariance function, from a set of observations of the Gaus-
sian process, and to plug [48], Chapter 6.8, the estimate in the Kriging equations. Usually, it is
assumed that the covariance function belongs to a given parametric family (see [1] for a review
of classical families). In this case, the estimation boils down to estimating the corresponding
covariance parameters. For covariance, parameter estimation, Maximum Likelihood (ML) is the
most studied and used method, while Cross Validation (CV) [49,55] is an alternative technique.
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Consider first the case where the true covariance function of the Gaussian process belongs
to the parametric family of covariance functions used for estimation, which we call the well-
specified case. Then, it is shown in several references that ML should be preferred over CV. It is
proved in [46] that for the estimation of a signal-to-noise ratio parameter of a Brownian motion,
CV has twice the asymptotic variance of ML. In the situations treated by [7], the asymptotic
variance is also larger for CV than for ML. Several numerical results, showing an advantage for
ML over CV as well, are available, coming either from Monte Carlo studies as in [40], Chapter 3,
or deterministic studies as in [34]. The settings of both the above studies can arguably be clas-
sified in the well-specified case, since the interpolated functions are smooth, and the covariance
structures are adapted, being Gaussian in [34] and having a free smoothness parameter in [40].
Finally, in situations similar to the well-specified case, ML-type methods have been shown to be
preferable over CV-type methods in [47] for estimation and prediction.

Consider now the case where the true covariance function of the Gaussian process does not
belong to the parametric family of covariance functions used for estimation, which we call the
misspecified case. This can occur in many situations, given for example that it is frequent to
enforce the smoothness parameter in the Matérn model to an arbitrary value (e.g., 3/2 in [10]),
which de facto makes the covariance model misspecified if the Gaussian process has a different
order of smoothness. In the misspecified case, [5] shows that, provided the spatial sampling of
observation points is not too regular, CV can yield a smaller integrated square prediction error
than ML. In a context of spline approximation methods, [47] and [25] also suggest that CV-type
methods can provide smaller prediction errors than ML-type methods under misspecification.

In this paper, we primarily aim at showing, in agreement with the preceding discussion, that
CV can provide asymptotically optimal integrated square prediction errors under misspecifica-
tion. In this regard, the two most studied asymptotic frameworks in the Kriging literature are the
increasing-domain and fixed-domain asymptotics [48], page 62. In increasing-domain asymp-
totics, the average density of observation points is bounded, so that the infinite sequence of ob-
servation points is unbounded. In fixed-domain asymptotics, this sequence is dense in a bounded
domain.

In fixed-domain asymptotics, significant results are available concerning the estimation of the
covariance function, and its influence on Kriging predictions and confidence intervals. In this
asymptotic framework, two types of covariance parameters can be distinguished: microergodic
and non-microergodic covariance parameters. Following the definition in [48], a covariance pa-
rameter is microergodic if two covariance functions are orthogonal whenever they differ for it
(as in [48], we say that two covariance functions are orthogonal if the two underlying Gaussian
measures are orthogonal). Non-microergodic covariance parameters cannot be consistently esti-
mated, but have no asymptotic influence on Kriging predictions and confidence intervals [43–45,
54]. On the contrary, there is a fair amount of literature on consistent estimation of microergodic
covariance parameters [2,31,52–54]. Consistent estimation of microergodic parameters is shown,
in some cases, to entail asymptotically optimal predictions and confidence intervals [36].

Nevertheless, a downside of fixed-domain asymptotics is that the results currently under reach,
despite their significant insights, are restricted in terms of covariance model. For example, [53]
addresses ML for the tensorized exponential model only and [31] addresses ML for the Matérn
3/2 covariance model only.

Hence, in this paper, we work under increasing-domain asymptotics, in which case results can
be proved for fairly general covariance models [7,12,13,15,32]. In fact, generally speaking, under
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increasing-domain asymptotics, all (identifiable) covariance parameters have a strong asymptotic
influence on predictions [7] and can be consistently estimated with asymptotic normality [7,
32]. This is because increasing-domain asymptotics is characterized by a vanishing dependence
between observations from distant observation points, so that a large sample size gives more and
more information about the covariance structure. Note that, beside Kriging, increasing-domain
asymptotics is largely considered in spatial statistics [21,28].

The increasing-domain asymptotic setting we consider in this paper consists of n independent
observation points with uniform distribution on [0, n1/d ]d , for d ∈N

∗. In Theorem 3.4, we prove
that CV asymptotically minimizes the integrated square prediction error, within the misspecified
set of covariance functions used for estimation. On the other hand, we prove in Theorem 3.3
that ML asymptotically minimizes, the Kullback–Leibler divergence from the true covariance
function, defined at the observation vector. This latter finding does not provide information on the
prediction errors of the Gaussian process at new points, stemming from ML. Thus, an asymptotic
confirmation is given to the empirical finding of [5], that when the spatial sampling is not too
regular, CV can provide smaller integrated square prediction errors than ML in the misspecified
case.

On a more technical level, we provide increasing-domain asymptotic results for matrix-form
estimation criteria with independent and uniformly distributed observation points. To the best of
our knowledge, this type of situation has not been addressed in the existing literature.

We conclude this paper by Monte Carlo simulations, illustrating Theorems 3.3 and 3.4. The
simulations highlight that, in some cases, the ML and CV estimators can estimate radically dif-
ferent covariance parameters, and that their subsequent performances for the Kullback–Leibler
divergence and the integrated square prediction error can be strongly contrasting. In the Monte
Carlo simulations, we also present a case of non-Gaussian misspecification which, although out
of the scope of Theorems 3.3 and 3.4, yields interesting conclusions.

The rest of the paper is organized as follows. We present the context on parametric covariance
function estimation in the misspecified case and on the spatial sampling in Section 2. We give
the asymptotic optimality results for ML and CV in Section 3. We discuss the simulation results
in Section 4. All the proofs are given in the Appendix.

Finally, note that one should be cautious about inferring from this paper that CV is preferable
over ML in the misspecified case. Indeed, there exist other prediction scores than the integrated
square prediction error (see [17,18]) some of them also assessing the coverage of the confidence
intervals obtained from the Kriging model. The main contribution of this paper is to provide rig-
orous results for CV, relatively to the integrated square prediction error only, which is nonetheless
a largely considered criterion for comparing predictors.

2. Context

2.1. Presentation and notation for the covariance model

We consider a stationary Gaussian process Y on R
d with zero mean function and covariance

function K0. Noisy observations of Y are obtained at the random points X1, . . . ,Xn ∈ R
d , for

n ∈ N
∗. That is, for i = 1, . . . , n, we observe yi = Y(Xi) + εi , where ε = (ε1, . . . , εn)

t , Y and
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(X1, . . . ,Xn) are mutually independent and ε follows a N (0, δ0In) distribution, with δ0 ≥ 0 and
In the identity matrix of size n. The distribution of (X1, . . . ,Xn) is specified and discussed in
Condition 2.4 below.

The case where Y is observed exactly is treated by this framework by letting δ0 = 0. Otherwise,
letting δ0 > 0 can correspond for instance to measure errors [9] or to Monte Carlo computer
experiments [30]. Note also that the case of a Gaussian process with discontinuous covariance
function at 0 (nugget effect) is mathematically equivalent to this framework if the observation
points X1, . . . ,Xn are two by two distinct. [This is the case in this paper, in an almost sure sense,
see Condition 2.4.]

Let p ∈ N
∗ and let � be the compact subset [θinf, θsup]p with −∞ < θinf < θsup < +∞. We

consider a parametric model attempting to approximate the covariance function K0 and the noise
variance δ0, {(Kθ , δθ ), θ ∈ �}, with Kθ a stationary covariance function and δθ > 0. We call the
case where there exists θ0 ∈ � so that (K0, δ0) = (Kθ0 , δθ0) the well-specified case. The converse
case, where (K0, δ0) �= (Kθ , δθ ) for all θ ∈ � is called the misspecified case.

The well-specified case has been extensively studied in the Gaussian process literature, see
the references given in Section 1. Nevertheless, the misspecified case can occur in many prac-
tical applications. Indeed, even if we assume δθ = δ0 for all θ , the standard covariance models
{Kθ, θ ∈ �} are often driven by a limited number of parameters and thus restricted in some
ways. For instance, an existing practice (e.g., [11,34]) is to use the Gaussian covariance model,
where p = d + 1, � ⊂ (0,∞)p , θ = (σ 2, �1, . . . , �d) and Kθ(t) = σ 2 exp(−∑d

i=1 t2
i /�2

i ). With
the Gaussian covariance model, all the covariance functions Kθ generate Gaussian process re-
alizations that are almost surely infinitely differentiable (see the second part of Theorem 5 in
[41]). Thus, the Gaussian model is de facto misspecified if the realizations of Y have only a finite
order of differentiability. [Note that the use of the Gaussian covariance model is dis-advised in
several references, see [48].] In theory, the Matérn model considered in Section 4 provides more
flexibility by incorporating a tunable smoothness parameter ν > 0. However, it is also common
practice to enforce a priori this parameter ν to a fixed value (e.g. 3/2 in [10]).

In this paper, we are primarily interested in analyzing the misspecified case although the
asymptotic results that are given in Section 3 are valid for both the well-specified and misspeci-
fied cases.

We let X = (X1, . . . ,Xn) be the random n-tuple of the n observation points. For θ ∈ �, we
define the n × n random matrix Rθ by (Rθ )i,j = Kθ(Xi − Xj) + δθ1i=j . We define the n ×
n random matrix R0 by (R0)i,j = K0(Xi − Xj) + δ01i=j . We define the random vector y =
(y1, . . . , yn)

t of size n by yi = Y(Xi) + εi . Then, conditionally to X, y follows a N (0,R0)

distribution and is assumed to follow a N (0,Rθ ) distribution under the covariance parameter θ .

2.2. Maximum likelihood and cross validation estimators

The Maximum Likelihood (ML) estimator is defined by θ̂ML ∈ argminθ Lθ , where

Lθ := 1

n
log

(
det (Rθ )

) + 1

n
ytR−1

θ y (1)

is the modified opposite log-likelihood.
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Remark 2.1. For conciseness, we do not write explicitly the dependence of Rθ , R0, y and Lθ

on X, n, Y and ε. We make the same remark for the CV criterion in (2) and (3).

Remark 2.2. In this paper, we allow the criterion (1) to have more than one global minimizer, in
which case, the asymptotic results of Section 3 hold for any sequence of random variables θ̂ML

minimizing it. The same remark can be made for the CV criterion (2). We refer to Remark 2.1 in
[7] for the existence of measurable minimizers of the ML and CV criteria.

Under several increasing-domain asymptotics settings, ML is consistent and asymptotically
normal, with mean vector 0 and covariance matrix the inverse of the Fisher information matrix.
This is shown in [32], assuming either some convergence conditions on the covariance matrices
and their derivatives or gridded observation points. Similar results are provided for Restricted
Maximum Likelihood in [12,13]. In [7], asymptotic normality is also shown for Maximum Like-
lihood, using only simple conditions on the covariance model and for observation points that
constitute a randomly perturbed regular grid.

The Cross Validation (CV) estimator, minimizing the Leave One Out (LOO) mean square error
is defined by θ̂CV ∈ argminθ CVθ , with

CVθ := 1

n

n∑
i=1

(yi − ŷi,θ )
2, (2)

where ŷi,θ := Eθ |X(yi |y1, . . . , yi−1, yi+1, . . . , yn) is the LOO prediction of yi with parameter θ .
The conditional mean value Eθ |X denotes the expectation with respect to the distribution of Y and
ε with covariance function Kθ and variance δθ , given X, so that Eθ |X(yi |y1, . . . , yi−1, yi+1, . . . ,

yn) = Eθ (yi |X,y1, . . . , yi−1, yi+1, . . . , yn).
Let ri,θ = (Kθ (Xi,X1), . . . ,Kθ (Xi,Xi−1),Kθ (Xi,Xi+1), . . . ,Kθ (Xi,Xn))

t . Define ri,0 sim-
ilarly with K0. Define the (n − 1) × (n − 1) covariance matrix Ri,θ as the matrix extracted
from Rθ by deleting its line and column i. Define Ri,0 similarly with R0. Then, with y−i =
(y1, . . . , yi−1, yi+1, . . . , yn)

t , we have ŷi,θ = rt
i,θR

−1
i,θ y−i .

The criterion (2) can be computed with a single matrix inversion, by means of virtual LOO
formulas (see, e.g., [14,38]). These virtual LOO formulas yield, when writing diag(A) for the
matrix obtained by setting to 0 all the off diagonal elements of a square matrix A,

CVθ := 1

n
ytR−1

θ

(
diag

(
R−1

θ

))−2
R−1

θ y, (3)

which is useful both in practice (to compute the CV criterion quickly) and in the proofs for CV.
Finally, in [7] it is shown that, in the well-specified case, the CV estimator is consistent and

asymptotically normal for estimating correlation parameters, under increasing-domain asymp-
totics with a randomly perturbed grid of observation points.

Remark 2.3. Note that, as follows from (3), CVθ is invariant if Kθ and δθ are multiplied
by a common positive constant. Thus, the CV criterion (2) is designed to select only the pair
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(Kθ/Kθ(0), δθ /Kθ (0)). In particular, the CV criterion (2) does not assess the validity of quanti-
ties like varθ |X(Y (t)|y), where varθ |X denotes the variance under parameter θ given X. Hence,
the Kriging predictive confidence intervals obtained by CV can be unreliable and only the predic-
tors Eθ |X(Y (t)|y) of the values of Y at new points t are relevant. These predictors alone provide
the same applicability as many regression techniques like kernel regression or neural network
methods and can be used in a wide range of applications.

For some covariance models, any two different values of θ yield two different pairs
(Kθ/Kθ(0), δθ /Kθ (0)), and thus two different predictor functions Eθ |X(Y (t)|y). For these co-
variance models, the CV criterion CVθ is hence meant to estimate the full covariance parameter
θ . One important instance of these models is when δθ = δ1 for all θ ∈ � and where different
values of θ yield different covariance functions Kθ . The Monte Carlo simulations of Section 4
lie in this framework.

For other covariance models, there can exist different values of θ yielding identical pairs
(Kθ/Kθ(0), δθ /Kθ (0)), and thus identical predictor functions Eθ |X(Y (t)|y). The selection be-
tween these values of θ should thus be carried out based on criteria which do not involve
only the leave-one-out conditional means ŷi,θ . In these cases, it is possible to use the two-
step estimation procedure proposed in [5], or the log predictive probability criterion ([37],
Chapter 5, [49,55]). Both of these estimation methods take into account varθ |X(yi |y1, . . . , yi−1,

yi+1, . . . , yn).
In this paper, we shall not investigate these procedures aiming at distinguishing between val-

ues of θ yielding identical pairs (Kθ/Kθ(0), δθ /Kθ (0)). Note that Theorem 3.4 below keeps
the same interpretation and applicability also when different values of θ yield identical pairs
(Kθ/Kθ(0), δθ /Kθ (0)), see Remark 3.6.

2.3. Random spatial sampling

We consider an increasing-domain asymptotic framework where the observation points are inde-
pendent and uniformly distributed, which constitutes the archetype of an irregular spatial sam-
pling.

Condition 2.4. For all n ∈ N
∗, the observation points X1, . . . ,Xn are random and follow in-

dependently the uniform distribution on [0, n1/d ]d . The variables Y , (X1, . . . ,Xn) and ε are
mutually independent.

Condition 2.4 constitutes an increasing-domain asymptotic framework in the sense that the
volume of the observation domain is n and the average density of observation points is constant.
Some authors define increasing-domain asymptotics by the condition that the minimum distance
between two different observation points is bounded away from zero (e.g., [56]), which is not
the case here. In [26] and [27], the term increasing-domain is also used, when points are sampled
randomly on a domain with volume proportional to n.
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3. Asymptotic optimality results

3.1. Technical assumptions

We shall assume the following condition for the covariance function K0, which is satisfied
in all the most classical cases, and especially for the Matérn covariance function. Let |t | =
maxi=1,...,d |ti |.

Condition 3.1. The covariance function K0 is stationary and continuous on R
d . There exists

C0 < +∞ so that for t ∈R
d , ∣∣K0(t)

∣∣ ≤ C0

1 + |t |d+1
.

In addition, for any k ∈ N, for any two-by-two distinct points x1, . . . , xk , the matrix (K0(xi −
xj ))1≤i,j≤k is invertible. Finally, we have δ0 ≥ 0.

Next, the following condition for the parametric set of covariance functions and noise vari-
ances is slightly non-standard but not restrictive. We discuss it below.

Condition 3.2. For all θ ∈ �, the covariance function Kθ is stationary. For all fixed t ∈ R
d ,

Kθ(t) is p + 1 times continuously differentiable with respect to θ . For all i1, . . . , ip ∈ N so that
i1 + · · · + ip ≤ p + 1, there exists Ai1,...,ip < +∞ so that for all t ∈ R

d , θ ∈ �,

∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

Kθ (t)

∣∣∣∣ ≤ Ai1,...,ip

1 + |t |d+1
.

There exists a constant Cinf > 0 so that, for any θ ∈ �, δθ ≥ Cinf. Furthermore, δθ is p + 1 times
continuously differentiable with respect to θ . For all i1, . . . , ip ∈N so that i1 + · · · + ip ≤ p + 1,
there exists Bi1,...,ip < +∞ so that for all θ ∈ �,

∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

δθ

∣∣∣∣ ≤ Bi1,...,ip .

In Condition 3.2, we require a differentiability order of p + 1 for Kθ and δθ with respect to θ .
In the related context of [7], where a well-specified covariance model is studied, consistency of
ML and CV can be proved with a differentiability order of 1 only. [One can check that the proofs
of Propositions 3.1 and 3.4 in [7] require only the first order partial derivatives of the Likelihood
function.] The reason for this difference is that, as discussed after Theorem 3.4, an additional
technical difficulty is present here, compared to [7]. The specific approach we use requires the
condition of differentiability order of p + 1 and we leave open the question of relaxing it. Note,
anyway, that many parametric covariance models are infinitely differentiable with respect to the
covariance parameters, especially the Matérn model. In Condition 3.2, assuming that the covari-
ance function and its derivatives vanish with distance with a polynomial rate of order d + 1 is not
restrictive. Indeed, many covariance functions vanish at least exponentially fast with distance.
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Finally, the condition that the noise variance δθ is lower bounded uniformly in θ is crucial for
our proof methods. Indeed, the ML and CV criteria (1) and (3) involve the inverse covariance
matrix R−1

θ , and other inverses of covariance matrices obtained from Kθ . Having the upper bound
1/(infθ∈� δθ ) on the spectral norm of R−1

θ is thus necessary in our proof. We remark that, on the
other hand, the inverse covariance matrix R−1

0 does not appear in the expression of the ML and
CV criteria, see (1) and (3). Thus, the asymptotic results given in this paper remain valid in the
case δ0 = 0.

On a practical standpoint, the primary application cases addressed by this paper are measure
errors, stochastic outputs and nugget effect, where δ0 > 0 and infθ∈� δθ > 0, see the discussion
in Section 2. The case δ0 = 0 and infθ∈� δθ > 0 can also be relevant for applications. Indeed,
even when the Gaussian process under consideration is observed exactly, it can be desirable to
incorporate an instrumental positive term δθ in the parametric model, for numerical reasons or
for not interpolating exactly the observed values [3].

3.2. Maximum likelihood

In this paper, the analysis of the ML estimator in the misspecified case is based on the Kullback–
Leibler divergence of the distribution of y assumed under (Kθ , δθ ), for θ ∈ �, from the true
distribution of y. More precisely, conditionally to X, y has a N (0,R0) distribution and is as-
sumed to have a N (0,Rθ ) distribution. The conditional Kullback–Leibler divergence of the latter
distribution from the former is (1/2)[log(det(RθR

−1
0 ))+Tr(R0R

−1
θ )−n]. We define the normal-

ized Kullback–Leibler divergence Dn,θ by multiplying the above conditional Kullback–Leibler
divergence by 2/n. Hence, we have

Dn,θ = 1

n

{
log

(
det

(
RθR

−1
0

)) + Tr
(
R0R

−1
θ

)} − 1. (4)

The normalized Kullback–Leibler divergence in (4) is equal to 0 if and only if Rθ = R0 and
is strictly positive otherwise. It is interpreted as an error criterion for using (Kθ , δθ ) instead of
(K0, δ0), when making inference on the Gaussian process Y .

Note that the normalization with factor 2/n leading to Dn,θ is appropriate so that, if for a fixed
θ (Kθ , δθ ) �= (K0, δ0), Dn,θ should generally not vanish, nor diverge to infinity under increasing-
domain asymptotics. This can be shown for instance in the framework of [7], by using the meth-
ods employed there. It is also well known that, in the case of a regular grid of observation points
for d = 1, Dn,θ converges to a finite limit as n → +∞ [4]. This limit is twice the asymptotic
Kullback information in [4] and is positive if (Kθ (t), δθ ) differs from (K0(t), δ0) for at least
one point t in the regular grid of observation points. Similarly, in the spatial sampling frame-
work of Condition 2.4, we observe in the Monte Carlo simulations of Section 4 that the order of
magnitude of (4) does not change when n increases, for (Kθ , δθ ) �= (K0, δ0).

The following theorem shows that the ML estimator asymptotically minimizes the normalized
Kullback–Leibler divergence.

Theorem 3.3. Under Conditions 2.4, 3.1 and 3.2, we have, as n → ∞,

D
n,θ̂ML

= inf
θ∈�

Dn,θ + op(1),
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where the op(1) in the above display is a function of X and y only that goes to 0 in probability
as n → ∞.

Theorem 3.3 is in line with the well-known fact that, in the i.i.d. setting, ML asymptotically
minimizes the Kullback–Leibler divergence (which does not depend on sample size) from the
true distribution, within a misspecified parametric model [51]. Theorem 3.3 conveys a similar
message, with the normalized Kullback–Leibler divergence that depends on the spatial sampling.
As discussed above, the infimum in Theorem 3.3 is typically lower bounded as n → ∞ in the
misspecified case.

Note that Theorem 3.3 can be shown, in increasing-domain asymptotics, under other spatial
samplings than that of Condition 2.4 (e.g., for the randomly perturbed regular grid of [7]). Nev-
ertheless, to the best of our knowledge, in the context of Condition 2.4, Theorem 3.3 is not a
simple consequence of the existing literature, and an original proof is provided in the Appendix.

The Kullback–Leibler divergence is of course a central quality criterion for covariance param-
eters. Nevertheless, in the misspecified-case, Theorem 3.3 does not imply that ML is optimal for
other common quality criteria, such as the integrated square prediction error introduced below.
In addition, note that the Kullback–Leibler divergence addresses the distribution of the Gaussian
process only at the observation points, thus providing no information on the inference of the
values of Y at new points, obtained from (Kθ , δθ ).

3.3. Cross validation

Let us recall the notation Eθ |X(Y (t)|y) = Eθ (Y (t)|y,X) and let ŷθ (t) = Eθ |X(Y (t)|y). With the
n × 1 vector rθ (t) so that (rθ (t))j = Kθ(t − Xj), we have ŷθ (t) = rt

θ (t)R
−1
θ y. Then, define the

family of random variables

En,θ = 1

n

∫
[0,n1/d ]d

(
ŷθ (t) − Y(t)

)2
dt, (5)

where the integral is defined in the L2 sense since K0 is continuous. We call the criterion (5) the
integrated square prediction error. This criterion (or evaluations of it) is very commonly used, in
particular for Gaussian process surrogate models of computer experiments (see, e.g., [19,33]).
More generally, the square prediction error is largely considered to evaluate predictors, see [17].

It is natural to consider that the first objective of the CV estimator θ̂CV is to yield a small
E

n,θ̂CV
. If the observation points X1, . . . ,Xn are regularly spaced, then this objective might how-

ever not be fulfilled. Indeed, the principle of CV does not really have grounds in this case, since
the LOO prediction errors are not representative of actual prediction errors for new points. This
fact is only natural and has been noted in for example, [23] and [5]. If however the observation
points X1, . . . ,Xn are not regularly spaced, then it is shown numerically in [5] that the CV esti-
mator θ̂CV can yield a small E

n,θ̂CV
and, especially, smaller than E

n,θ̂ML
. The following theorem,

which is the main contribution of this paper, supports this conclusion under increasing-domain
asymptotics.
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Theorem 3.4. Under Conditions 2.4, 3.1 and 3.2, we have, as n → ∞,

E
n,θ̂CV

= inf
θ∈�

En,θ + op(1),

where the op(1) in the above display is a function of X, y and Y only that goes to 0 in probability
as n → ∞.

In (5), we stress that En,θ and the observation vector y are defined with respect to the same
Gaussian process Y . Thus, Theorem 3.4 gives a guarantee for the estimator θ̂CV relatively to the
predictions it yields for the actual Gaussian process at hand. Theorem 3.4 does not only confirm
that CV will not provide asymptotically larger integrated square prediction errors than ML, with
independent and uniformly distributed observation points, it also shows that these integrated
square prediction errors will be asymptotically minimal, over all possible estimators.

The setting of the proof of Theorem 3.4 combines independent and uniformly distributed ob-
servation points with the matrix-form estimation criteria (1) and (3). These criteria and their
derivatives involve imbrications of covariance matrix derivatives and inverse covariance matri-
ces, which can generally not be put in explicit matrix-free forms. To the best of our knowledge,
this specific combination has not been addressed in the previous literature.

Indeed, on the one hand, when matrix-form criteria like (1) and (3) are treated, it is assumed,
implicitly or explicitly that there exists a positive minimal distance between two different obser-
vation points. This is the case in [7]. Also, [32] and [12,13] work under non-trivial assumptions
on the covariance matrices involved, and show that these assumptions are fulfilled for examples
of spatial samplings for which the minimal distance between two different observation points
is bounded away from zero. This minimal distance assumption does not hold with independent
observation points. Instead clusters of closely spaced observation points may appear. As a con-
sequence, the maximum eigenvalues of the covariance matrices and their derivatives are not
upper bounded, even in probability, which brings new obstacles for the analysis of criteria like
(1) and (3). In addition, considering random observation points with no underlying grid struc-
ture makes it more challenging to control the fluctuations of functions of (random) covariance
matrices, compared to Proposition D.7 of [7], for instance.

On the other hand, when independent and uniformly distributed observation points are con-
sidered (see, e.g., [26,27,29]), the quantities of interest do not involve derivatives and inverse of
n × n covariance matrices.

As a consequence, the proof we propose for Theorem 3.4 is original and we do not address
the asymptotic distribution of the ML and CV estimators. We leave this problem open to further
research. Note nevertheless that, in the misspecified case addressed here, the fact that the ML
and CV estimators minimize two different criteria and are thus typically asymptotically different
is, in our opinion, at least as important as their asymptotic distributions.

Remark 3.5. An important element in the proof of Theorem 3.4 is that the variable t in the
expression of the integrated square prediction error En,θ in (5) plays the same role as a new point
Xn+1, uniformly distributed on [0, n1/d ]d and independent of (X1, . . . ,Xn). Hence, using the
symmetry of X1, . . . ,Xn+1, for fixed θ , the mean value of En,θ is equal to the mean value of a
modification of the CV criterion CVθ in (2), where there are n + 1 observation points instead
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of n. Thus, one can indeed expect that the CV estimator minimizing CVθ also asymptotically
minimizes En,θ . [The challenging part for proving Theorem 3.4 is to control the deviations of
the criteria En,θ and CVθ from their mean values, uniformly in θ .] This discussion is exactly the
paradigm of CV, that uses the LOO errors as empirical versions of the actual prediction errors. On
the other hand, if the observation points constitute for instance a regular grid, then the variable
t in En,θ has close to nothing in common with them, so that Theorem 3.4 would generally not
hold. This stresses that CV is generally not efficient for regular sampling of observation points,
as discussed above.

Remark 3.6. Theorem 3.4 holds regardless of whether there is a unique θ minimizing CVθ or
not. In particular, in some cases it is possible to have θ = (s, θ̄ ) and � = S × �̄, where CVθ and

En,θ actually depend only on θ̄ . Then, in these cases ŝ would be obtained separately from ˆ̄θCV,
and Theorem 3.4 would read E

n, ˆ̄θCV
= infθ̄∈�̄ En,θ̄ + op(1) and would not address ŝ.

One instance of the situation addressed above is when one has the decomposition θ = (s, θ̄ ),
� = [0,∞) × �̄, with θ̄ = (θ̄1, θ̄2), �̄ = �̄1 × �̄2, θ̄1 ∈ �̄1, θ̄2 ∈ �̄2, and where (Kθ , δθ ) =
(sK̄θ̄1

, sθ̄2), where K̄θ̄1
is a correlation function. When setting �̄2 = {0}, we find back the setting

of [5], where ŝ can be obtained from equation (7) in this reference. Note that Theorem 3.4 does
not apply when �̄2 = {0}.

4. Monte Carlo simulations

We illustrate Theorems 3.3 and 3.4 in several Monte Carlo simulations. First, we consider an
illustrative one-dimensional case. Then we present several two-dimensional settings. Finally,
we present a simulation study where the observed stochastic process is non-Gaussian. This last
simulation is out of the scope of Theorems 3.3 and 3.4, but is a case of model misspecification
providing interesting conclusions.

4.1. An illustrative one-dimensional case

We consider the Matérn covariance model in dimension d = 1 [37,40,48]. A covariance function
on R is Matérn (σ 2, �, ν) when it is written

Kmat,σ 2,�,ν(t) = σ 2


(ν)2ν−1

(
2
√

ν
|t |
�

)ν

Kν

(
2
√

ν
|t |
�

)
, (6)

with 
 the Gamma function and Kν the modified Bessel function of the second kind with order ν.
The parameters σ 2, � and ν are respectively the variance, correlation length and smoothness
parameters. Note that another parametrization of the Matérn covariance function exists, see, for
instance, equation (32) in [48]. The parametrization (6) is the one used for instance in [22,37,
40]. We find that this parameterization provides a good interpretation of the variance, correlation
length and smoothness parameters. Indeed, the correlation length � is only involved in the |t |/�
term in (6) and thus acts solely as a scale parameter. Note also the interesting fact that as ν → ∞,



1542 F. Bachoc

Kmat,σ 2,�,ν(t) → σ 2e−t2/�2
, as is obtained from the discussion following equation (4.14) in [37].

Hence, the value of �, as a spatial correlation length, can be interpreted independently of ν.
Further discussion of this interpretation is provided in Remark 2.28 in [6], as well as in Figures 4
and 5 in Chapter 2 of [48].

In the one-dimensional simulation, the true covariance function of Y is Matérn (σ 2
0 , �0, ν0)

with σ 2
0 = 1, �0 = 3 and ν0 = 10. This choice of ν0 corresponds to a smooth Gaussian process

and enables, as we see below, to illustrate Theorems 3.3 and 3.4 in a more striking manner. The
true noise variance is δ0 = 0.252.

We consider that the noise variance is fixed (for all θ ∈ �, δθ = δ1), and that the covariance
model is given by θ = (σ 2, �) and Kσ 2,� = Kmat,σ 2,�,ν0

, so that the smoothness parameter ν0 is
known. The parameter θ = (σ 2, �) is estimated by ML or CV. For both ML and CV, the optimiza-
tion is restricted to the domain � = [0.12,102] × [0.2,10]. [We experience that the conclusions
of the Monte Carlo simulation are the same if a larger optimization domain is considered.] Note
that for CV, we have (σ̂ 2

CV, �̂CV) ∈ argmin(σ 2,�)∈� CV(σ 2,�), and that even for a fixed �, different
values of σ 2 may yield different values of CV(σ 2,�) (as the ratio Kσ 2,�(0)/δ1 depends on σ 2 and
has an impact on the conditional means).

The well-specified case corresponds to δ1 = δ0 and the misspecified case corresponds to δ1 =
0.12 �= δ0. These settings are representative of practical applications. Indeed, first it is common
practice to fix the value of the smoothness parameter in the Matérn model, as is discussed in
Section 2. Second, when using Gaussian process models on experimental or natural data, it can
often occur that field experts provide an a priori value for the noise variance (see, e.g., [9]). The
misspecified case we address corresponds to an underestimation of the noise variance, possibly
because some sources of measurement errors have been neglected.

The Monte Carlo simulation is carried out as follows. For n = 100,500 and N = 2000 we
repeat N data generations, estimations and quality criterion computations and average the results.
More specifically, we simulate N independent realizations of the n observation points, of the
observation vector and of the Gaussian process on [0, n], under the true covariance function and
noise variance. For each of these N realizations, we compute the ML and CV estimates under
the well-specified and misspecified models. For each of these estimates of the form θ̂ = (σ̂ 2, �̂),
we compute the corresponding criteria D

n,σ̂ 2,�̂
and E

n,σ̂ 2,�̂
.

In Table 1 we report, for n = 100 and n = 500, for the well-specified and misspecified cases
and for ML and CV, the averages and standard deviations of the estimates �̂, and of the values of
the error criteria D

n,σ̂ 2,�̂
and E

n,σ̂ 2,�̂
.

Let us first discuss the case n = 100. In the well-specified case, the conclusions are in agree-
ment with the main message of previous literature: Both estimators estimate the true �0 = 3
with reasonable accuracy and have error criteria that are relatively small. We observe that ML
performs better than CV in all aspects. The estimation error for � and the normalized Kullback–
Leibler divergence are significantly smaller for ML, while the integrated square prediction error
is similar under ML and CV estimation, but nonetheless smaller for ML.

The conclusions are however radically different in the misspecified case, as is implied by The-
orems 3.3 and 3.4. First, the ML estimates of � are significantly smaller than in the well-specified
case, and can even be equal to the lower-bound 0.2 (as can be seen in Figure 1 of the supplemen-
tary material [8]). The ML estimates of σ 2 are not reported in Table 1 for the sake of concision
and are close to 1, so that, approximately, the variance of the observations, as estimated by ML,
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Table 1. Simulation of N = 2000 independent realizations of n = 100 or n = 500 i.i.d. observation points
with uniform distribution on [0, n], of the Gaussian process Y on [0, n] with Matérn (σ2

0 = 1, �0 = 3, ν0 =
10) covariance function, and of the corresponding observation vector with noise variance δ0 = 0.252. For
each simulation, ν0 is known, the noise variance is fixed to δ1 = δ0 (well-specified case) or δ1 = 0.12 �= δ0
(misspecified case), σ 2 and � are estimated by ML and CV and the corresponding error criteria D

n,σ̂ 2,�̂
(normalized Kullback–Leibler divergence) and E

n,σ̂ 2,�̂
(integrated square prediction error) are computed.

The averages and standard deviations of �̂, D
n,σ̂ 2,�̂

and E
n,σ̂ 2,�̂

are reported. In the well-specified case, the
estimates are on average reasonably close to the true values, the error criteria are reasonably small and ML
performs better than CV in all aspects. In the misspecified case, the ML and CV estimates of the correlation
lengths are significantly different, ML performs better than CV for D

n,σ̂ 2,�̂
and CV performs better than

ML for E
n,σ̂ 2,�̂

Average Standard deviation Average Average
n Specification Estimation of �̂ of �̂ of E

n,σ̂ 2,�̂
of D

n,σ̂ 2,�̂

100 Well-specified ML 3.035 0.379 0.073 0.023
Well-specified CV 3.390 1.066 0.084 0.195
Misspecified ML 1.166 0.581 0.247 1.033
Misspecified CV 3.438 1.166 0.087 3.541

500 Well-specified ML 3.007 0.157 0.070 0.004
Well-specified CV 3.076 0.382 0.072 0.034
Misspecified ML 1.011 0.278 0.238 0.968
Misspecified CV 3.076 0.386 0.072 3.407

is close to the true variance of the observations. The reason for these small estimates of � by
ML is the underestimation of the noise variance δ0, coupled with the large smoothness parame-
ter ν0. Indeed, there exist pairs of closely spaced observation points for which the corresponding
differences of observed values are large compared to δ1, so that for values of � that are larger
than those computed by ML, the criterion (1) blows up, for all values of σ 2. [Using a value of σ 2

smaller or approximately equal to 1 does not counterbalance the damaging impact on (1) of these
pairs of closely spaced observation points with large observed value differences. Increasing σ 2

over 1 is also not optimal for (1), since on a large scale, the observations do have variances close
to 1.] This phenomenon for ML is all the more important when the smoothness parameter ν0 is
large, which is why we choose here the value ν0 = 10 to illustrate it. To summarize, ML gives an
important weight to pairs of closely spaced observation points with large observation differences
and consequently estimates small correlation lengths to explain, so to speak, these observation
differences.

On the contrary for CV, if we consider only the predictions ŷσ 2,�(t) at new points t and the
LOO predictions ŷi,σ 2,�, with (�, σ 2) ∈ �, then the situation is virtually the same as if the model
was well-specified. Indeed, the covariance matrices and vectors obtained from σ 2, � and δ0 are
equal to δ0/δ1 time those obtained from σ 2δ1/δ0, � and δ1, so that the corresponding predictions
are identical. Hence, the empirical distribution of �̂CV is approximately the same between the
well-specified and misspecified cases (see also Figure 1 in the supplementary material [8]). In
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the misspecified case, we find that the empirical distribution of σ̂ 2
CV (not reported in Table 1 for

the sake of concision) is δ1/δ0 time that of the well-specified case. Of course, although the CV
predictions are not damaged by the misspecified δ1, the CV estimations of other characteristics
of the conditional distribution of Y given the observed data are damaged. [For example, the
confidence intervals for Y(t) obtained from the CV estimates are significantly too small.]

The averages of E
n,σ̂ 2,�̂

and D
n,σ̂ 2,�̂

for ML and CV in Table 1 confirm the discussion on
the estimated parameters in the misspecified case. For ML which estimates small correlation
lengths, the average of the error criteria E

n,σ̂ 2
ML,�̂ML

is approximately 3 times larger than in the
well-specified case. The average of the error criteria D

n,σ̂ 2
ML,�̂ML

also increases and becomes
larger than that of both ML and CV in the well-specified case. For CV, the average of the error
criteria E

n,σ̂ 2
CV,�̂CV

is, as discussed, as small as in the well-specified case and approximately 3

times smaller than for ML, illustrating Theorem 3.4. However, the average of D
n,σ̂ 2

CV,�̂CV
is 3

times larger for CV than for ML, in the misspecified case, illustrating Theorem 3.3.
Finally, for n = 500 in Table 1, the relative differences between ML and CV are the same as

for n = 100. The estimates of � under ML and CV have less variance than for n = 100.
We remark that, for ML and CV in the misspecified case, E

n,σ̂ 2,�̂
and D

n,σ̂ 2,�̂
keep the same

averages between n = 100 and n = 500. In the well-specified case, E
n,σ̂ 2,�̂

also keeps the same
average, while D

n,σ̂ 2,�̂
becomes very small. This is because Dn,σ 2

0 ,�0
= 0 in the well-specified

case, while En,σ 2
0 ,�0

is non-zero and should not vanish to 0 as n → ∞, since the density of
observation points in the prediction domain is constant with n.

Finally, in Figures 1 and 2 of the supplementary material [8], we provide the histograms of
the N = 2000 values of �̂, E

n,σ̂ 2,�̂
and D

n,σ̂ 2,�̂
. For n = 100, these histograms are unimodal,

although the boundary of the optimization domain can be reached by �̂, for ML. For n = 500, the
histograms are more concentrated and become symmetric.

4.2. Two-dimensional settings

We now address the case d = 2. We proceed exactly as for d = 1, and consider different con-
figurations of (K0, δ0) and {(Kθ , δθ ), θ ∈ �}. In all the configurations, we set θ = (σ 2, �), that
is we estimate one variance parameter and one correlation length, common to the two spatial
directions (isotropic case). Furthermore, as in the one-dimensional case above, we set, for all
θ ∈ �, δθ = δ1, where δ1 = δ0 in the well-specified case and where δ1 can differ from δ0 in the
misspecified case.

Misspecification of δ

We consider the same case of misspecification of the noise variance as for the illustrative
one-dimensional case. With ‖t‖2 = (t2

1 + t2
2 )1/2, we let Kσ 2,�(t) = Kmat,σ 2,�,10(‖t‖2), with

Kmat,σ 2,�,ν as in (6). We let K0 = Kσ 2
0 ,�0

with (σ 2
0 , �0) = (1,4) and we let δ0 = 0.252. In the well-

specified case, δ1 = δ0 while in the misspecified case δ1 = 0.12 �= δ0. The obtained results are
presented in Table 2. The conclusions and the interpretation are identical to the one-dimensional
case.
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Table 2. Similar settings as in Table 1 but with d = 2. The conclusions and the interpretation are identical
to the one-dimensional case

Average Standard deviation Average Average
n Specification Estimation of �̂ of �̂ of E

n,σ̂ 2,�̂
of D

n,σ̂ 2,�̂

100 Well-specified ML 4.014 0.600 0.021 0.026
Well-specified CV 4.525 1.564 0.024 0.123
Misspecified ML 1.279 0.385 0.112 1.120
Misspecified CV 4.637 1.754 0.024 3.725

500 Well-specified ML 3.990 0.244 0.016 0.004
Well-specified CV 4.158 0.698 0.016 0.031
Misspecified ML 1.216 0.122 0.104 1.076
Misspecified CV 4.167 0.727 0.016 3.477

Misspecification of ν

We address a case where the smoothness parameter of the Matérn covariance function is misspec-
ified. We let δ1 = δ0 = 0.12 in both the well-specified and misspecified cases. Let Kmat,σ 2,�,ν

be as in (6). We let Kσ 2,�(t) = Kmat,σ 2,�,10(‖t‖2) in both the well-specified and misspecified
cases. With (σ 2

0 , �0) = (1,4) we let K0(t) = Kmat,σ 2
0 ,�0,10(‖t‖2) in the well-specified case and

K0(t) = Kmat,σ 2
0 ,�0,1

(‖t‖2) in the misspecified case. Hence, misspecification consists in assum-
ing that the observed Gaussian process is smoother than in reality.

The obtained results are presented in Table 3. Similarly to Tables 1 and 2, ML performs better
than CV in all aspects in the well-specified case. Note that, in the well-specified case E

n,σ̂ 2,�̂
is

smaller than in Table 2 since δ0 is smaller than in Table 2. In the misspecified case, the error
criteria E

n,σ̂ 2,�̂
and D

n,σ̂ 2,�̂
are considerably larger than in the well-specified case. In agreement

with Theorem 3.3, ML performs significantly better for the Kullback–Leibler divergence. Also,
in agreement with Theorem 3.4, CV performs better than ML for the integrated square prediction
error in the misspecified case. Nevertheless, the improvement brought by CV for the integrated
square prediction error is more marginal than for Tables 1 and 2. Hence, an asymmetry appears
here, where using CV instead of ML degrades the Kullback–Leibler divergence more importantly
than it improves the integrated square prediction error (although of course the values of E

n,σ̂ 2,�̂
and D

n,σ̂ 2,�̂
have different interpretation). The fact that, in the misspecified case, CV improves

E
n,σ̂ 2,�̂

compared to ML more marginally than in Table 2 is not easy to interpret. One possible
interpretation is that in Table 3, the Gaussian process to predict is not smooth (ν = 1 in the
Matérn model), so that the choice of the covariance parameters could have less impact on the
integrated square prediction error.

Misspecification with spherical and Wendland 1 covariance functions

We let, with a+ = max(a,0)

Ksph,σ 2,�(t) = σ 2(1 − ‖t‖2
)2
+
(
1 + ‖t‖2/2

)
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Table 3. Similar settings as in Table 1 but with d = 2 and where δ is always well-specified but where ν can
be misspecified. The conclusions are similar to those of Tables 1 and 2, with the exception that CV provides
a lesser improvement of E

n,σ̂ 2,�̂
in the misspecified case

Average Standard deviation Average Average
n Specification Estimation of �̂ of �̂ of E

n,σ̂ 2,�̂
of D

n,σ̂ 2,�̂

100 Well-specified ML 4.019 0.416 0.006 0.025
Well-specified CV 4.350 1.200 0.007 0.179
Misspecified ML 1.511 0.195 0.094 0.283
Misspecified CV 2.181 0.952 0.090 1.949

500 Well-specified ML 3.994 0.175 0.004 0.004
Well-specified CV 4.162 0.642 0.004 0.053
Misspecified ML 1.484 0.086 0.085 0.256
Misspecified CV 1.759 0.201 0.075 1.588

and

Kwen1,σ 2,�(t) = σ 2(1 − ‖t‖2
)4
+
(
1 + 4‖t‖2

)
be respectively, the spherical and Wendland 1 covariance functions (see, e.g., [15,16,50]). Both
of these covariance functions are compactly supported. The spherical covariance function is not
differentiable at the origin, while the Wendland 1 covariance function is. We let δ0 = δ1 = 0.12.
We let Kσ 2,�(t) = Kwen1,σ 2,�(t) in both the well-specified and misspecified cases. We let K0(t) =
Kwen1,1,6(t) in the well-specified case and we let K0(t) = Ksph,1,6(t) in the misspecified case.

The results obtained are presented in Table 4. The conclusions are the same as for Table 3. In
articular CV marginally improves the integrated square prediction error in the misspecified case

Table 4. Similar settings as in Table 1 but with d = 2 and where the spherical and Wendland 1 covariance
functions are investigated. The conclusions are the same as for Table 3

Average Standard deviation Average Average
n Specification Estimation of �̂ of �̂ of E

n,σ̂ 2,�̂
of D

n,σ̂ 2,�̂

100 Well-specified ML 6.000 0.809 0.048 0.025
Well-specified CV 6.234 1.515 0.050 0.391
Misspecified ML 3.364 0.708 0.202 0.347
Misspecified CV 6.390 1.767 0.174 5.125

500 Well-specified ML 5.996 0.345 0.041 0.004
Well-specified CV 6.095 0.878 0.041 0.065
Misspecified ML 3.361 0.349 0.191 0.325
Misspecified CV 6.653 1.103 0.160 4.578
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compared to ML. Again, this could be due to the lack of smoothness of the Gaussian process to
predict (having spherical covariance function).

4.3. A non-Gaussian case

In the situations treated above, the observed stochastic process Y is Gaussian, and, in the misspec-
ified case, its covariance model (K0, δ0) does not belong to {(Kθ , δθ ); θ ∈ �}. We now address
an other type of model misspecification, where (K0, δ0) ∈ {(Kθ , δθ ); θ ∈ �} but where Y is not
a Gaussian process. We remark that this situation is not addressed in the theoretical results of
Section 3.

We set d = 2. In both the well-specified and misspecified cases, δ0 = 0.12 and δθ = 0.12 for
all θ ∈ �. Furthermore, in both cases, θ = (σ 2, �) and Kθ(t) = σ 2 exp(−(‖t‖2/�)

2). In the well-
specified case, Y is a Gaussian process with covariance function Kθ0 with θ0 = (σ 2

0 , �0) = (1,4).
We base the misspecified case on a spectral decomposition of Kθ0 . Following Proposition 1 in

[42], let β = 4/�2
0, let for i ∈ N, Hi be the ith order Hermite polynomial, let

λi =
√

2

1 + β + √
1 + 2β

(
β

1 + β + √
1 + 2β

)i

and for x ∈R

φi(x) = (1 + 2β)1/8

√
2i i! exp

(
−x2

2

√
1 + 2β − 1

2

)
Hi

((
1

4
+ β

2

)1/4

x

)
.

Then, for any sequence (zi,j )i,j∈N of i.i.d. random variables with mean 0 and variance 1, we
have that, if for t = (t1, t2) ∈ R

2

Y(t) = σ0

+∞∑
i,j=1

√
λiλjφi(t1)φj (t2)zi,j , (7)

then Y is a stochastic process with zero mean function and covariance function Kθ0 (as follows
from Proposition 1 in [42]). Hence, in the misspecified case, Y is defined by (7), where the
zi,j are of the form (vi,j − 
(1 − 1/5))/(
(1 − 2/5) − 
(1 − 1/5)2)1/2 where (vi,j )i,j∈N is
composed of i.i.d. random variables with Frechet distribution with location parameter 0, scale
parameter 1 and shape parameter 5. Hence, the zi,j indeed have mean 0 and variance 1, as
follows from the expression of the moments of the Frechet distribution. In addition, the zi,j

are non-Gaussian variables. Hence, the just-defined stochastic process Y is non-Gaussian with
mean function zero and covariance function σ 2

0 exp(−(‖t‖2/�0)
2). Hence, we can speak of a true

covariance parameter θ0 even in the misspecified case, since in this case, setting θ = θ0 yields
the true covariance function of Y (even if this process is non-Gaussian).

We carry out the Monte Carlo simulation in the same way as for the previous cases. For each
of the N = 2000 iterations of the Monte Carlo simulation, we sample the trajectory of Y , the
observation points (X1, . . . ,Xn) and the observation vector y. We compute θ̂ML and θ̂CV and
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the corresponding E
n,θ̂

. However, the criterion D
n,θ̂

is specific to the Gaussian case, so that we
replace it by

ELn,θ = Eỹ|X
(
Lθ(ỹ)

)
,

with Lθ(ỹ) as in (1) with y replaced by ỹ, and where the mean value is taken conditionally to the
observation points X, and when conditionally to X, ỹ is an independent copy of y. We remark
that maximizing ELn,θ with respect to θ ∈ � is equivalent to minimizing the Kullback–Leibler
divergence of the Gaussian distribution of y assumed under covariance parameter θ , from the
true non-Gaussian distribution of y. Hence, the larger ELn,θ is, the better. Since Y has mean zero
and covariance function Kθ0 , EL

n,θ̂
can be computed exactly for each of the N Monte Carlo

iterations, since we have

EL
n,θ̂

= 1

n
log

(
det(R

θ̂
)
) + 1

n
Tr

(
R0R

−1
θ̂

)
,

with R0 = [Kθ0(Xi − Xj)]i,j=1,n.
The results obtained are presented in Table 5. We observe that both the ML and CV estimators

seem to be consistent for estimating �0, in the well- and misspecified cases. In particular, the
biases are very small, and the estimator variances decrease when n increases. Although, to our
knowledge, there do not exist increasing-domain asymptotic results regarding ML or CV estima-
tion in the non-Gaussian case, this apparent consistency can be interpreted. Indeed, for a given
covariance function K0, the mean values of the ML and CV criteria Lθ and CVθ are the same,
regardless of whether the stochastic process Y is Gaussian or not.

We also observe that the estimation error for �0 is larger in the misspecified case, for ML
when n = 500. Otherwise, for CV when n = 100 and n = 500 and for ML when n = 500, the
estimation errors for �0 are comparable in the well-specified and misspecified cases. The inte-

Table 5. Same type of Monte Carlo simulation as in Table 1, but with d = 2, where a Gaussian covariance
function is used, and where the stochastic process Y is non-Gaussian in the misspecified case. Here we can
speak of a true covariance parameter θ0 even in the misspecified case. The CV and ML estimators both
estimate θ0 with reasonable accuracy. Despite the Gaussianity misspeficiation, ML performs here better
than CV in all aspects

Average Standard deviation Average Average
n Specification Estimation of �̂ of �̂ of E

n,σ̂ 2,�̂
of EL

n,σ̂ 2,�̂

100 Well-specified ML 4.007 0.371 0.0048 −2.506
Well-specified CV 4.312 1.005 0.0055 −2.358
Misspecified ML 4.005 0.395 0.0047 −2.492
Misspecified CV 4.244 0.969 0.0054 −2.346

500 Well-specified ML 3.995 0.145 0.0031 −2.717
Well-specified CV 4.081 0.439 0.0032 −2.671
Misspecified ML 3.985 0.259 0.0024 −2.528
Misspecified CV 3.975 0.497 0.0024 −2.407
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grated square prediction error E
n,θ̂

is smaller in the misspecified case than in the well-specified
case. Finally, the criterion EL

n,θ̂
is smaller (hence more favourable) in the well-specified case.

Hence, to summarize, this non-Gaussian misspecification appears to be less unilaterally harmful
for inference on the process Y , compared to misspecification of the covariance model. Note nev-
ertheless that, in the non-Gaussian case, it is more difficult to obtain confidence intervals for the
values of Y , or to sample trajectories, conditionally to the observations.

We observe in Table 5 that ML performs better than CV for all the criteria displayed there.
This is in contrasts with the case of covariance model misspecification, where CV performs
better than ML for the integrated square prediction error. Our interpretation is that, when the
covariance model is misspecified, ML is not always asymptotically optimal for the integrated
square prediction error, while CV is, as is shown in Theorem 3.4. On the other hand, when
the Gaussianity is misspecified, both the CV and ML estimators appear to converge to the true
covariance parameters, and could thus be both asymptotically optimal for the integrated square
prediction error.

5. Discussion

Theorems 3.3 and 3.4, together with the results of the simulation studies and the existing litera-
ture, draw the following conclusion.

In the well-specified case, any covariance parameter estimator can be evaluated relatively to
the estimation error criterion. The ML estimator is thus generally optimal in the well-specified
case. In the simulation study, ML performs better than CV for the estimation error, the conditional
Kullback–Leibler divergence and the integrated square prediction error.

On the other hand, when the covariance model is misspecified, there is not a unique quality
criterion for covariance parameter estimation. Different criteria are optimized by different co-
variance parameters and estimators. We prove that ML asymptotically minimizes the conditional
Kullback–Leibler divergence. In the case of independent and uniformly distributed observation
points, we prove that CV asymptotically minimizes the integrated square prediction error. Thus,
CV is asymptotically optimal for the criterion it is designed for, provided the spatial sampling
is in agreement with the CV principle. As shown in the simulation studies, the estimated covari-
ance parameters and quality criterion values can differ radically between ML and CV when the
covariance model is misspecified. In this regard, we point out that ML is not optimal relatively
to all the common quality criteria, contrarily to the well-specified case. Note finally that our aim
is not to provide a hierarchy between ML and CV, in case of covariance model misspecification.

The fact that ML and CV typically optimize different criteria in case of covariance model
misspecification can serve as a practical guideline. That is, one can compute the estimated co-
variance parameters with both methods and compare the two estimates and the corresponding
log-likelihood and LOO mean square error values. If the differences between ML and CV are
large, then it could be a warning that the covariance model at hand can be inappropriate.

We would like to mention some avenues for future research. First, the results of the Monte
Carlo simulations make it conceivable that, for independent and uniform observation points, the
ML and CV estimators converge to optimal parameters, for respectively the Kullback–Leibler
divergence and the integrated square prediction error, and are asymptotically normal. [These
optimal parameters would be equal to the true ones in the well-specified case.] Considering
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asymptotic normality might require new techniques to account for independent and uniformly
distributed observation points.

Second, consider the alternative CV estimator, maximizing the log predictive probability cri-
terion ([37], Chapter 5, [49,55]). It would be interesting to see whether this estimator can be
shown to minimize with respect to θ the quality criterion

∫
[0,n1/d ]d dθ (t) dt , where dθ (t) is the

conditional Kullback–Leibler divergence of the conditional distribution of Y(t), given y and
X, assumed under (Kθ , δθ ), from the corresponding true conditional distribution obtained from
(K0, δ0).

Finally, in the Monte Carlo simulations, we have addressed a misspecification setting where
the covariance model is well-specified but where the observed stochastic process is non-
Gaussian. We have obtained different conclusions compared to the case of covariance model
misspecification. In particular, both the CV and ML estimators appear to be consistent for esti-
mating the true covariance parameters. It would be interesting to obtain asymptotic results for
ML and CV estimation for non-Gaussian processes, that would confirm these numerical obser-
vations.

Appendix: Proofs

The appendix proof section is organized as follows. In Section A.1, we present some technical
notation that are used throughout the proofs. In Section A.2, we provide the outline of the proof
of Theorem 3.3. In Section A.3, we give additional proofs, completing the proof of Theorem 3.3.
Similarly, in Section A.4, we provide the outline of the proof of Theorem 3.4, and in Section A.5
we complete this proof. The proofs in Sections A.2 to A.5 rely on additional technical results
that are stated in Section A.6 and proved in the supplementary material [8].

The purpose of this proof organization is that the reading of Sections A.2 and A.4 alone be
sufficient to get a global understanding of the proofs of Theorems 3.3 and 3.4.

A.1. Notation

In all the appendix, we consider that Conditions 2.4, 3.1 and 3.2 hold. For a column vector v of
size m, we let ‖v‖2 = ∑m

i=1 v2
i and |v| = maxi=1,...,m |vi |. For a real m × m matrix A, we write

as in [20], |A|2 = 1
m

∑m
i,j=1 A2

i,j and ‖A‖ for the largest singular value of A. Both | · | and ‖ · ‖
are norms and ‖ · ‖ is also a matrix norm.

For a sequence of real random variables zn, we write zn →p 0 and zn = op(1) when zn con-
verges to zero in probability. For a random variable A and a deterministic function f (A), we may
write EA(f (A)) for E(f (A)). For two random variables A and B and a deterministic function
f (A,B) we may write EA|B(f (A,B)) for E(f (A,B)|B).

For a finite set E, we write |E| for its cardinality. For a continuous set E ⊂ R
d , we write |E|

for its Lebesgue measure. For two sets A, B in R
d , we write d(A,B) = infa∈A,b∈B |a − b|.

We write Csup a generic non-negative finite constant (not depending on n, X, Y , ε and θ ).
The actual value of Csup is of no interest and can change in the same sequence of equations. For
instance, instead of writing, say, a ≤ 2b ≤ 4c, we shall write a ≤ Csupb ≤ Csupc. Similarly, we
write Cinf a generic strictly positive constant (not depending on n, X, Y , ε and θ ).
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A.2. Outline of proof for Theorem 3.3

We have, for all θ ∈ �,

D
n,θ̂ML

− Dn,θ = L
θ̂ML

+ D
n,θ̂ML

− L
θ̂ML

− Lθ − Dn,θ + Lθ

= L
θ̂ML

− Lθ + D
n,θ̂ML

+ 1 + 1

n
log

(
det(R0)

) − L
θ̂ML

+ Lθ

− Dn,θ − 1 − 1

n
log

(
det(R0)

)
≤ L

θ̂ML
− Lθ + 2 sup

θ∈�

∣∣∣∣Lθ − 1

n
log

(
det(R0)

) − 1 − Dn,θ

∣∣∣∣
≤ 2 sup

θ∈�

∣∣∣∣Lθ − 1

n
log

(
det(R0)

) − 1 − Dn,θ

∣∣∣∣, (8)

where the last inequality follows from the fact that θ̂ML minimizes Lθ .
In order to prove Theorem 3.3, it is thus sufficient to prove that the supremum in (8) goes to

zero in probability as n → ∞. Note that in the developments preceding (8), we have introduced
the term [1/n] log(det(R0))+ 1 precisely so that the random variable inside the supremum in (8)
has mean zero (conditionally to X) when θ is fixed.

We have, using the triangle inequality and the definitions of Lθ and Dn,θ in (1) and (4),

sup
θ∈�

∣∣∣∣Lθ − 1

n
log

(
det(R0)

) − 1 − Dn,θ

∣∣∣∣
≤ sup

θ∈�

∣∣Lθ −E(Lθ |X)
∣∣ + sup

θ∈�

∣∣∣∣E(Lθ |X) − 1

n
log

(
det(R0)

) − 1 − Dn,θ

∣∣∣∣
≤ sup

θ∈�

∣∣Lθ −E(Lθ |X)
∣∣ + sup

θ∈�

∣∣∣∣E
(

1

n
log

(
det(Rθ )

) + 1

n
ytR−1

θ y

∣∣∣X)
− 1

n
log

(
det(R0)

) − 1

− 1

n
log

(
det

(
RθR

−1
0

)) − 1

n
Tr

(
R0R

−1
θ

) + 1

∣∣∣∣.
We now use (i) in Lemma A.16 to obtain

sup
θ∈�

∣∣∣∣Lθ − 1

n
log

(
det(R0)

) − 1 − Dn,θ

∣∣∣∣
≤ sup

θ∈�

∣∣Lθ −E(Lθ |X)
∣∣ + sup

θ∈�

∣∣∣∣1

n
log

(
det(Rθ )

) + 1

n
Tr

(
R0R

−1
θ

)

− 1

n
log

(
det(R0)

) − 1

n
log

(
det

(
RθR

−1
0

)) − 1

n
Tr

(
R0R

−1
θ

)∣∣∣∣
= sup

θ∈�

∣∣Lθ −E(Lθ |X)
∣∣.
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We now aim at showing that supθ∈� |Lθ − E(Lθ |X)| = op(1). With the following lemma
(proved in Section A.3), we first have a convergence result for a fixed θ .

Lemma A.1. Consider a fixed θ ∈ �. Then

E
(∣∣Lθ −E(Lθ |X)

∣∣) →
n→∞ 0.

In order to obtain a uniform-in-θ convergence result from Lemma A.1, we show the following
lemma and corollary (proofs in Section A.3), establishing a control of derivatives w.r.t. θ .

Lemma A.2. For i = 1, . . . , p,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

Lθ

∣∣∣∣
)

is bounded w.r.t. n.

Corollary A.3. For any i = 1, . . . , p,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

E
(
Lθ |X

)∣∣∣∣
)

is bounded w.r.t. n.

We can now show that supθ∈� |Lθ − E(Lθ |X)| = op(1). Indeed, for fixed θ , the term
|Lθ − E(Lθ |X)| goes to 0 in probability because of Lemma A.1. Hence, using Lemma A.2
and Corollary A.3, together with Lemma A.15, we have supθ∈� |Lθ − E(Lθ |X)| = op(1). This
finishes the proof of Theorem 3.3, up to the complementary proofs in Section A.3.

A.3. Complement of proof for Theorem 3.3

Proof of Lemma A.1. We have, applying Jensen inequality twice and (ii) in Lemma A.16,

E
(∣∣Lθ −E(Lθ |X)

∣∣) ≤ E
(√

var(Lθ |X)
) ≤

√
E

(
var(Lθ |X)

) =
√
E

(
2

n2
Tr

[
R0R

−1
θ R0R

−1
θ

])
.

The eigenvalues of R−1
θ are smaller than a finite constant Csup for any n,X, θ from Lemma A.22.

Thus, by applying Lemmas A.17, A.21 and A.25,

E
(∣∣Lθ −E(Lθ |X)

∣∣) ≤
√

2

n

√
E

(∣∣R0R
−1
θ

∣∣2) ≤ Csup√
n

. �



Asymptotic analysis of misspecified case 1553

Proof of Lemma A.2. We have, using the definition of Lθ in (1) and Lemma A.18,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

Lθ

∣∣∣∣
)

= E

(
sup
θ∈�

∣∣∣∣1

n
Tr

(
R−1

θ

∂

∂θi

Rθ

)

− 1

n
ytR−1

θ

(
∂

∂θi

Rθ

)
R−1

θ y

∣∣∣∣
)

(Lemma A.17 and Cauchy–Schwarz:) ≤ E

(
sup
θ∈�

√∣∣R−1
θ

∣∣2

√∣∣∣∣ ∂

∂θi

Rθ

∣∣∣∣
2)

+ 1

n
E

(
sup
θ∈�

∥∥R−1
θ y

∥∥∥∥∥∥
(

∂

∂θi

Rθ

)
R−1

θ y

∥∥∥∥
)

≤ E

(
sup
θ∈�

√∣∣R−1
θ

∣∣2

√∣∣∣∣ ∂

∂θi

Rθ

∣∣∣∣
2)

+ 1

n
E

([
sup
θ∈�

∥∥R−1
θ y

∥∥][
sup
θ∈�

∥∥∥∥
(

∂

∂θi

Rθ

)
R−1

θ y

∥∥∥∥
])

(Cauchy–Schwarz:) ≤ E

(
sup
θ∈�

√∣∣R−1
θ

∣∣2

√∣∣∣∣ ∂

∂θi

Rθ

∣∣∣∣
2)

(9)

+
√

1

n
E

(
sup
θ∈�

∥∥R−1
θ y

∥∥2
)

(10)

×
√

1

n
E

(
sup
θ∈�

∥∥∥∥
(

∂

∂θi

Rθ

)
R−1

θ y

∥∥∥∥
2)

. (11)

Now, |R−1
θ |2 ≤ ‖R−1

θ ‖2 because of (2.19) in [20] and ‖R−1
θ ‖2 is bounded uniformly in θ

because of Lemma A.22. Also, E(supθ∈� |[∂/∂θi]Rθ |2) is bounded because of Condition 3.2

and of a simple case of Lemma A.21. So the right-hand side of (9) is bounded because of Jensen

inequality. It remains to show that the product of the terms (10) and (11) is bounded. To show

this, note first that

1

n
E

(
sup
θ∈�

∥∥R−1
θ y

∥∥2
)

≤ 1

n
E

(
sup
θ∈�

‖y‖2
∥∥R−1

θ

∥∥2
)

(Lemma A.22:) ≤ Csup

n
E

(‖y‖2)
= Csup

(
K0(0) + δ0

)
,
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is bounded. Thus, it remains to show that 1
n
E(supθ∈� ‖([∂/∂θi]Rθ)R

−1
θ y‖2) is bounded. For this,

we have

1

n
E

(
sup
θ∈�

∥∥∥∥
(

∂

∂θi

Rθ

)
R−1

θ y

∥∥∥∥
2)

= 1

n
E

(
sup
θ∈�

ytR−1
θ

(
∂

∂θi

Rθ

)2

R−1
θ y

)

≤ Csup

∑
i1+···+ip≤p

∫
�

1

n
E

(∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

[
ytR−1

θ

(
∂

∂θi

Rθ

)2

R−1
θ y

]∣∣∣∣
)

dθ (Lemma A.19).

Thus, it suffices to show that, for fixed i1, . . . , ip ∈N so that i1 + · · · + ip ≤ p,

1

n
sup
θ∈�

E

(∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

[
ytR−1

θ

(
∂

∂θi

Rθ

)2

R−1
θ y

]∣∣∣∣
)

is bounded. The above display is smaller than a fixed sum of terms of the form (1/n) ×
supθ∈� E(|ytMθy|), where the number of terms is independent of n and Mθ is of the
form N1,θM1,θ · · ·Mk,θNk+1,θ with Ni,θ = In or Ni,θ = R−1

θ and with Mi,θ of the form
[∂c1/∂θ

c1
1 ] · · · [∂cp/∂θ

cp
p ]Rθ with c1, . . . , cp ∈ N and c1 + · · · + cp ≤ p + 1. Hence, it is enough

to show that any term of the form supθ∈�(1/n)E(|ytMθy|) above is bounded. We have

sup
θ∈�

1

n
E

(∣∣ytMθy
∣∣)

≤ sup
θ∈�

1

n
E

(∣∣ytMθy −E
(
ytMθy|X)∣∣) + sup

θ∈�

1

n
E

(∣∣E(
ytMθy|X)∣∣)

≤ sup
θ∈�

√
E

(
var

[
1

n
ytMθy

∣∣∣X])
+ sup

θ∈�

1

n
E

(∣∣E(
ytMθy|X)∣∣) (Jensen inequality)

= sup
θ∈�

√
E

(
1

2n2
Tr

[
R0

{
Mθ + Mt

θ

}
R0

{
Mθ + Mt

θ

}]) + sup
θ∈�

1

n
E

(∣∣Tr[R0Mθ ]
∣∣)

(using Lemma A.16)

≤ sup
θ∈�

√
1

2n
E

(∣∣R0
{
Mθ + Mt

θ

}∣∣2) + sup
θ∈�

√
E

(|R0|2
)
E

(|Mθ |2
)

(Lemma A.17)

≤ sup
θ∈�

√
1

n
E

(|R0Mθ |2 + ∣∣R0M
t
θ

∣∣2) + sup
θ∈�

√
E

(|R0|2
)
E

(|Mθ |2
)
.

In the display above, the first term goes to 0 because of Conditions 3.1 and 3.2 and Lemmas A.21
and A.22. The second term is bounded because of Lemmas A.21, A.22 and A.25. This completes
the proof. �
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Proof of Corollary A.3. The corollary is a consequence of Lemma A.2 and of the fact that, for
fixed n, we have (∂/∂θi)E(Lθ |X) = E((∂/∂θi)Lθ |X) and of supθ |E(·)| ≤ E(supθ | · |). �

A.4. Outline of proof for Theorem 3.4

We have,

E
n,θ̂CV

− En,θ = CV
θ̂CV

+ E
n,θ̂CV

− CV
θ̂CV

− CVθ − En,θ + CVθ

= CV
θ̂CV

+ E
n,θ̂CV

− CV
θ̂CV

+ δ0 − CVθ − En,θ − δ0 + CVθ

≤ CV
θ̂CV

− CVθ + 2 sup
θ∈�

|CVθ − δ0 − En,θ |

≤ 2 sup
θ∈�

|CVθ − δ0 − En,θ |,

where the last inequality holds since θ̂CV minimizes CVθ .
In order to prove Theorem 3.4, it is thus sufficient to show that

sup
θ∈�

|CVθ − δ0 − En,θ | = op(1).

We first show in Lemma A.4 (proved in Section A.5) that, for fixed θ , the random variable
inside the supremum above has almost zero mean value.

Lemma A.4. Consider a fixed θ ∈ �. Then

E(CVθ ) −E(En,θ ) − δ0

goes to 0 as n → ∞.

As in the proof of Theorem 3.3, we aim at obtaining a uniform-in-θ convergence by control-
ling the derivatives w.r.t. θ of E(CVθ ) − E(En,θ ) − δ0. All the results concerning the control
of derivatives w.r.t. θ , that will be used throughout the proof of Theorem 3.4, are gathered in
Lemma A.5 and Corollaries A.6 and A.7 below (these results are proved in Section A.5).

Lemma A.5. For i = 1, . . . , p,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

CVθ

∣∣∣∣
)

is bounded w.r.t. n.

Corollary A.6. For any i = 1, . . . , p,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

E(CVθ |X)

∣∣∣∣
)

and sup
θ∈�

∣∣∣∣ ∂

∂θi

E(CVθ )

∣∣∣∣
are bounded w.r.t. n.
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Corollary A.7. For any i = 1, . . . , p,

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

En,θ

∣∣∣∣
)

, E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

E(En,θ |X)

∣∣∣∣
)

and sup
θ∈�

∣∣∣∣ ∂

∂θi

E(En,θ )

∣∣∣∣
are bounded w.r.t. n.

Using Lemma A.4 and Corollaries A.6 and A.7, together with the fact that simple convergence
of a sequence of functions with uniformly bounded Lipschitz norms on a compact set implies
uniform convergence, we have

sup
θ∈�

∣∣E(CVθ ) −E(En,θ ) − δ0
∣∣ = o(1).

Hence, we have

sup
θ∈�

|CVθ − δ0 − En,θ | = sup
θ∈�

∣∣CVθ − δ0 − En,θ − (
E(CVθ ) − δ0 −E(En,θ )

)∣∣ + o(1)

≤ sup
θ∈�

∣∣CVθ −E(CVθ )
∣∣ + sup

θ∈�

∣∣En,θ −E(En,θ )
∣∣ + o(1).

Hence, in order to prove Theorem 3.4, it is now sufficient to prove

sup
θ∈�

∣∣CVθ −E(CVθ )
∣∣ = op(1) (12)

and

sup
θ∈�

∣∣En,θ −E(En,θ )
∣∣ = op(1). (13)

We first address (12). For a fixed θ , the quantity CVθ has, so to speak, two sources of ran-
domness: X and Y, ε. It proves useful to address these two sources of randomness separately, by
writing

sup
θ∈�

∣∣CVθ −E(CVθ )
∣∣ ≤ sup

θ∈�

∣∣CVθ −E(CVθ |X)
∣∣ + sup

θ∈�

∣∣E(CVθ |X) −E(CVθ )
∣∣. (14)

The first supremum in the right-hand side in (14) is treated by Lemma A.8 (proved in Sec-
tion A.5).

Lemma A.8. For any fixed θ ∈ �, we have

E
(∣∣CVθ −E(CVθ |X)

∣∣) →
n→∞ 0.

Using Lemma A.8, Lemma A.5 and Corollary A.6, together with Lemma A.15, we obtain

sup
θ∈�

∣∣CVθ −E(CVθ |X)
∣∣ = op(1). (15)
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We now aim at showing that, for any fixed θ ∈ �, E(CVθ |X)−E(CVθ ) = op(1). In other words,
we aim at controlling the fluctuations of the random variable E(CVθ |X). In order to control
these fluctuations, we show that E(CVθ |X) can be well approximated by a quantity of the form
E(C̃Vθ |X), which itself is more amenable to an asymptotic analysis. The precise definition of
E(C̃Vθ |X) is given in Definition A.14 in Section A.5.

To summarize, in Definition A.14, for each n ∈ N, we define n2 subsets C1, . . . ,Cn2 that
constitute a partition of [0, n1/d ]d (n2 depends on n but we do not write the dependence explicitly
for concision). Then, for θ ∈ �, we define the non-stationary covariance function K̃θ (t1, t2) by
K̃θ (t1, t2) = Kθ(t1, t2) is t1 and t2 belong to the same subset Cj for some j = 1, . . . , n2, and by
K̃θ (t1, t2) = 0 if t1 ∈ Cj and t2 ∈ Ck with j �= K . This new covariance function K̃θ enables to
define C̃Vθ and Ẽn,θ , in the same way as CVθ and En,θ are defined from Kθ .

The benefit of the covariance function K̃θ is that it yields a block-diagonal covariance matrix
R̃θ = (K̃θ (Xi − Xj))i,j=1,...,n (the blocks correspond to observation points in the same subset
Cj ). Thus, the matrix R̃−1

θ (diag(R̃−1
θ ))−2R̃−1

θ , corresponding for C̃Vθ to the matrix in (3) is
block diagonal, so that C̃Vθ can be written as 1

n2

∑
i=1,...,n2

Vi , where the n2 random variables

E(V1|X), . . . ,E(Vn2 |X) can be shown to be weakly dependent. This writing of E(C̃Vθ |X) as
an average helps us showing that E(C̃Vθ |X) is concentrated around its mean. Note that this
construction of K̃θ is similar to that used in the proof of Proposition D.7 in [7]. We primary use
Definition A.14 to prove Lemmas A.10, A.12 and A.13 below.

We first show that C̃Vθ provides a good approximation of CVθ in Lemma A.9 (proved in
Section A.5).

Lemma A.9. Consider a fixed θ ∈ �. In the context of Definition A.14, if n2 = o(n),

E
(|CVθ − C̃Vθ |

) →
n→∞ 0.

Lemma A.9 directly implies that also E(|E(CVθ |X) − E(C̃Vθ |X)|)→n→∞ 0. We use this
fact to prove Lemma A.10, where the proof, provided in Section A.5, is based on showing that
var[E(C̃Vθ |X)]→n→∞ 0.

Lemma A.10. For any fixed θ ∈ �,

E
(∣∣E(CVθ ) −E[CVθ |X]∣∣)

goes to 0 as n → ∞.

Using Lemma A.10 and Corollary A.6, together with Lemma A.15, we obtain

sup
θ∈�

∣∣E(CVθ |X) −E(CVθ )
∣∣ = op(1).

Hence, by recalling (14) and (15), we prove (12).
We now address (13). Similarly as for CVθ , we write

sup
θ∈�

∣∣En,θ −E(En,θ )
∣∣ ≤ sup

θ∈�

∣∣En,θ −E(En,θ |X)
∣∣ + sup

θ∈�

∣∣E(En,θ |X) −E(En,θ )
∣∣ (16)
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and treat the two terms in the right-hand side of (16) separately. We first recall that the definition
of K̃θ (see Definition A.14) provides a corresponding integrated square prediction error Ẽn,θ .
We first show in Lemma A.11 (proved in Section A.5) that Ẽn,θ provides a good approximation
of En,θ .

Lemma A.11. Let, with the notation of Definition A.14, Ẽn,θ be defined as En,θ , with Kθ re-
placed by K̃θ . Fix θ ∈ �. Then, if n2 = o(n),

E
(|En,θ − Ẽn,θ |

) →
n→∞ 0.

Lemma A.11 enables to prove Lemma A.12 below; the proof of Lemma A.12 is given in
Section A.5, and is based on showing that E(var(Ẽn,θ |X))→n→∞ 0.

Lemma A.12. For any fixed θ ∈ � we have

E
(∣∣En,θ −E(En,θ |X)

∣∣) →
n→∞ 0.

Similarly, we prove Lemma A.13 by using Lemma A.11 and by showing that var(E(Ẽn,θ |
X))→n→∞ 0 (see the proof in Section A.5).

Lemma A.13. For any fixed θ ∈ �,

E
(∣∣E(En,θ ) −E[En,θ |X]∣∣)

goes to 0 as n → ∞.

From Lemmas A.12 and A.13, from Corollary A.7, and from Lemma A.15, we have that the
two terms in the right-hand side of (16) go to zero in probability as n → ∞. Hence (13) is proved,
and since (12) is also proved, the proof of Theorem 3.4 is complete.

A.5. Complement of proof for Theorem 3.4

Proof of Lemma A.4. Recall the expression

En,θ = 1

n

∫
[0,n1/d ]d

(
ŷθ (t) − Y(t)

)2
dt.

The variable t in the integral above is formally equivalent to a new observation point Xn+1, so
that X1, . . . ,Xn+1 are independent and uniformly distributed on [0, n1/d ]d . Thus,

E(En,θ ) = E
([

Y(Xn+1) − ŷθ (Xn+1)
]2)

,

where we remind that ŷθ (Xn+1) = rt
θ (Xn+1)R

−1
θ y, with rθ (Xn+1) = (Kθ (X1,Xn+1), . . . ,

Kθ (Xn,Xn+1))
t .
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Let us also consider a Gaussian variable εn+1 with mean 0 and variance δ0, and so that
Xn+1 and εn+1 are independent of X, Y and ε. By symmetry of the roles of X1, . . . ,Xn+1 and
ε1, . . . εn+1, we have

E(CVθ ) = E
([

Y(Xn+1) − ŷn−1,θ (Xn+1)
]2) + δ0,

with ŷn−1,θ (Xn+1) = ř t
n−1,θ Ř

−1
n−1,θ y, with řn−1,θ = (K(X1,Xn+1), . . . ,K(Xn−1,Xn+1),0)t

and

Řn−1,θ =
((

Kθ(Xi,Xj )
)
i,j=1,...,(n−1)

+ δθ In−1 0
0 1

)
.

Hence,∣∣E(CVθ ) −E(En,θ ) − δ0
∣∣

= ∣∣E([
Y(Xn+1) − ŷn−1,θ (Xn+1)

]2 − [
Y(Xn+1) − ŷθ (Xn+1)

]2)∣∣
= ∣∣E([

ŷθ (Xn+1) − ŷn−1,θ (Xn+1)
][

2Y(Xn+1) − ŷn−1,θ (Xn+1) − ŷθ (Xn+1)
])∣∣

≤
√
E

([
rt
θ (Xn+1)R

−1
θ y − ř t

n−1,θ Ř
−1
n−1,θ y

]2) (17)

×
√
E

([
2Y(Xn+1) − ř t

n−1,θ Ř
−1
n−1,θ y − rt

θ (Xn+1)R
−1
θ y

]2)
,

where the last inequality is obtained by applying the Cauchy–Schwarz inequality. Using (a +
b + c)2 ≤ 3(a2 + b2 + c2), the mean value inside the second square root in (17) is smaller than

3
(
E

([
2Y(Xn+1)

]2) +E
([

ř t
n−1,θ Ř

−1
n−1,θ y

]2) +E
([

rt
θ (Xn+1)R

−1
θ y

]2))
.

In the above display, E([2Y(Xn+1)]2) = 4K0(0) is bounded, and the two other summands can
be shown to be bounded with techniques similar to but simpler than in the proof of Lemma A.5
below (see the proof of Lemma A.5 from the sequence of equations in (18) to the end).

Finally, we can show that the first square root in (17) goes to zero with techniques similar to,
but simpler than, those used to prove (19) in the proof of Lemma A.9 below. This completes the
proof. �

Proof of Lemma A.5. We have

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

CVθ

∣∣∣∣
)

≤ E

(
1

n

n∑
k=1

sup
θ∈�

∣∣∣∣ ∂

∂θi

(yk − ŷk,θ )
2
∣∣∣∣
)

(symmetry of X1, . . . ,Xn:) = E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

(y1 − ŷ1,θ )
2
∣∣∣∣
)

(Lemma A.19:) ≤ Csup

∑
i1+···+ip≤p

∫
�

E

(∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

∂

∂θi

(y1 − ŷ1,θ )
2
∣∣∣∣
)

dθ.
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Let us consider a specific i1, . . . , ip . Then [∂i1/∂θ
i1
1 ] · · · [∂ip/∂θ

ip
p ][∂/∂θi](y1 − ŷ1,θ )

2 is a
weighted sum (weights and number of terms depending only on i1, . . . , ip), so that the terms
are of the two following forms:

(y1 − ŷ1,θ )

(
∂k1

∂θ
k1
1

· · · ∂kp

∂θ
kp
p

∂

∂θi

ŷ1,θ

)
or

(
∂k1

∂θ
k1
1

· · · ∂kp

∂θ
kp
p

∂

∂θi

ŷ1,θ

)(
∂l1

∂θ
l1
1

· · · ∂lp

∂θ
lp
p

∂

∂θi

ŷ1,θ

)
.

Thus, we just have to show that the mean values of the absolute values of the terms of the form
above (for k1 + · · · + kp ≤ p and l1 + · · · + lp ≤ p) are bounded uniformly in θ ∈ �. By using
Cauchy–Schwarz inequality, these means of absolute values are smaller than either

√
E

(
(y1 − ŷ1,θ )2

)√√√√E

((
∂k1

∂θ
k1
1

· · · ∂kp

∂θ
kp
p

∂

∂θi

ŷ1,θ

)2)

or √√√√E

((
∂k1

∂θ
k1
1

· · · ∂kp

∂θ
kp
p

∂

∂θi

ŷ1,θ

)2)√√√√E

((
∂l1

∂θ
l1
1

· · · ∂lp

∂θ
lp
p

∂

∂θi

ŷ1,θ

)2)
.

Now, E((y1 − ŷ1,θ )
2) ≤ 2E(y2

1) + 2E(ŷ2
1,θ ). The term E(y2

1) is bounded uniformly in θ . Thus,
finally, it remains to show that for any a1 + · · · + ap ≤ p + 1, supθ∈� E(([∂a1/∂θ

a1
1 ] · · · [∂ap/

∂θ
ap
p ]ŷ1,θ )

2) is bounded. For that, we have ŷ1,θ = rt
1,θR

−1
1,θ y−1. Thus, using Lemma A.18,

[∂a1/∂θ
a1
1 ] · · · [∂ap/∂θ

ap
p ]ŷ1,θ is a fixed sum of weighted terms of the form wt

θMθy−1, where

wθ is of the form [∂b1/∂θ
b1
1 ] · · · [∂bp/∂θ

bp
p ]r1,θ (b1 + · · · + bp ≤ p + 1) and Mθ is of the form

R−1
1,θM1,θ · · ·R−1

1,θMk,θR
−1
1,θ . Finally, k is smaller than a finite constant Csup (function of p) and

Mi,θ is of the form [∂c1/∂θ
c1
1 ] · · · [∂cp/∂θ

cp
p ]R1,θ , with c1 +· · ·+cp ≤ p+1. Thus, it is sufficient

to show that a generic supθ∈� E((wt
θMθy−1)

2), as previously defined, is bounded.
Then,

sup
θ∈�

E
((

wt
θMθy−1

)2) = sup
θ∈�

EXEy|X
(
yt
−1M

t
θwθw

t
θMθy−1

)
= sup

θ∈�

EX Tr
(
R1,0M

t
θwθw

t
θMθ

)
(18)

≤ sup
θ∈�

EX

[
n∑

i,j=2

∣∣(MθR1,0M
t
θ

)
i,j

∣∣∣∣(wθw
t
θ

)
i,j

∣∣]

= sup
θ∈�

[
n∑

i,j=2

EX2,...,Xn

(∣∣(MθR1,0M
t
θ

)
i,j

∣∣EX1|X2,...,Xn

∣∣(wθw
t
θ

)
i,j

∣∣)].
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Now, because of Conditions 2.4 and 3.2,

EX1|X2,...,Xn

∣∣(wθw
t
θ

)
i,j

∣∣ ≤ Csup

n

∫
[0,n1/d ]d

1

1 + |Xi − x1|d+1

1

1 + |Xj − x1|d+1
dx1

(Lemma A.20:) ≤ 1

n

Csup

1 + |Xi − Xj |d+1
.

So,

sup
θ∈�

E
((

wt
θMθy−1

)2) ≤ Csup
1

n
sup
θ∈�

[
n∑

i,j=2

EX2,...,Xn

(∣∣(MθR1,0M
t
θ

)
i,j

∣∣ 1

1 + |Xi − Xj |d+1

)]

(Cauchy–Schwarz:) ≤ sup
θ∈�

[√
E

{∣∣MθR1,0M
t
θ

∣∣2}√√√√E

{
1

n

n∑
i,j=2

(
1

1 + |Xi − Xj |d+1

)2
}]

.

The supremum over θ of the second term above is bounded because of Lemma A.21. The supre-
mum over θ of the first term above is bounded because of Lemmas A.21, A.22 and A.25. �

Proof of Corollary A.6. The corollary is a consequence of Lemma A.5, supθ |E(·)| ≤
E(supθ | · |) and of the fact that, for fixed n, we have (∂/∂θi)E(CVθ |X) = E((∂/∂θi)CVθ |X)

and (∂/∂θi)E(CVθ ) = E((∂/∂θi)CVθ ). �

Proof of Corollary A.7. We have

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

En,θ

∣∣∣∣
)

= E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

1

n

∫
[0,n1/d ]d

[
Y(t) − ŷθ (t)

]2
dt

∣∣∣∣
)

.

For fixed n we can exchange derivative and integration, so we obtain

E

(
sup
θ∈�

∣∣∣∣ ∂

∂θi

En,θ

∣∣∣∣
)

= E

(
sup
θ∈�

∣∣∣∣1

n

∫
[0,n1/d ]d

∂

∂θi

[
Y(t) − ŷθ (t)

]2
dt

∣∣∣∣
)

≤ E

(
1

n

∫
[0,n1/d ]d

sup
θ∈�

∣∣∣∣ ∂

∂θi

[
Y(t) − ŷθ (t)

]2
∣∣∣∣dt

)
.

Hence, by considering t as a new random observation point Xn+1 as in the proof of Lemma A.4,
we show the first bound of the lemma as in the proof of Lemma A.5, the only difference being
that there are n + 1 observation points instead of n. The second and third bounds are proved as
in the proof of Corollary A.6. �

Proof of Lemma A.8. From (3), we have CVθ = ytMθy, with Mθ = (1/n)R−1
θ diag(R−1

θ )−2 ×
R−1

θ . Because of Lemma A.22, the eigenvalues of Mθ are bounded uniformly in n,X, θ by a
finite constant Csup. Thus, the proof of the lemma is exactly the same as that of Lemma A.1, with
R−1

θ replaced by Mθ . �
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Definition A.14. Consider a fixed θ ∈ �. Consider two functions of n: n2(n) ∈ N
∗ and

�(n) ≥ 0, that we write n2 and � for simplicity, so that, for any n ∈ N
∗, n2 can be writ-

ten n2 = Nd
2 , with N2 ∈ N

∗, and so that n = n2�. Let, for i = 1, . . . ,N2 − 1, ci = [((i −
1)/N2)n

1/d , (i/N2)n
1/d ]. Let cN2 = [((N2 −1)/N2)n

1/d , n1/d ]. Let, for x ∈ [0, n1/d ], i(x) be the
unique i ∈ {1, . . . ,N2} so that x ∈ ci . Let, for t = (t1, . . . , td)t ∈ [0, n1/d ]d , C(t) = ∏d

j=1 ci(tj ).

Define the non-stationary covariance function K̃θ (t1, t2) = Kθ(t1, t2)1C(t1)=C(t2). Define R̃θ ,

R̃i,θ , r̃i,θ , ˜̂yi,θ , C̃Vθ similarly to Rθ , Ri,θ , ri,θ , ŷi,θ , CVθ but with Kθ replaced by K̃θ . Further-
more, let us write the n2 aforementioned sets of the form

∏d
j=1 cij , for i1, . . . , id ∈ {1, . . . ,N2},

as the sets C1, . . . ,Cn2 . [The specific one-to-one correspondence we use between {1, . . . ,N2}d
and {1, . . . , n2} is of no interest. Note that this one-to-one correspondence depends on n. The
sets C1, . . . ,Cn2 also depend of n, but we drop this dependence in the notation for simplicity.]

Let Ni be the random number of observation points in Ci and let Xi be the random Ni -tuple
obtained from X by keeping only the observation points that are in Ci and by preserving the order
of the indices in X. Let yi be the column vector of size Ni , composed by the components yj of
y for which Xj is in Ci (preserving the order of indices). Let R̄i,θ and R̄i,0 be the covariance
matrices, under (Kθ , δθ ) and (K0, δ0), of yi , given X.

Finally, for 1 ≤ i, j ≤ n2, let vi and wj be two Ni ×1 and Nj ×1 vectors and Mij be a Ni ×Nj

matrix. Then we use the convention that, when Ni = 0, |Mij | = ‖Mij‖ = 0, ‖vi‖ = |vi | = 0 and
vt
iM

ijwj = 0. Furthermore, if i = j and Mii is invertible when Ni ≥ 1, we use the convention
that vt

i (M
ii)−1wi = 0 when Ni = 0. [These conventions enable to write equalities or inequalities

involving matrices and vectors of size Ni , Nj or Ni × Nj , that hold regardless of whether Ni or
Nj are zero or not. As can be checked along the proofs involving Definition A.14, these relations
boil down to trivial relations (e.g. 0 = 0) when Ni = 0 or Nj = 0. This way of proceeding
considerably simplifies the exposition in these proofs.]

Proof of Lemma A.9. Assume that n2 = o(n), or equivalently that �→n→∞ ∞. We have

E
(|CVθ − C̃Vθ |

) ≤ 1

n

n∑
i=1

E
(∣∣(yi − ŷi,θ )

2 − (yi − ˜̂yi,θ )
2
∣∣)

(symmetry:) = E
(∣∣(y1 − ŷ1,θ )

2 − (y1 − ˜̂y1,θ )
2
∣∣)

= E
(∣∣(y1 − rt

1,θR
−1
1,θ y−1

)2 − (
y1 − r̃ t

1,θ R̃
−1
1,θ y−1

)2∣∣)
= E

(∣∣r̃ t
1,θ R̃

−1
1,θ y−1 − rt

1,θR
−1
1,θ y−1

∣∣∣∣2y1 − rt
1,θR

−1
1,θ y−1 − r̃ t

1,θ R̃
−1
1,θ y−1

∣∣)
(Cauchy–Schwarz:) ≤

√
E

((
r̃ t

1,θ R̃
−1
1,θ y−1 − rt

1,θR
−1
1,θ y−1

)2)
×

√
E

((
2y1 − rt

1,θR
−1
1,θ y−1 − r̃ t

1,θ R̃
−1
1,θ y−1

)2)
.

Now, the second square root in the above display is bounded, because of (a +b+c)2 ≤ 3(a2 +
b2 + c2) and of arguments similar to but simpler than those given in the proof of Lemma A.5.
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Thus, it only remains to show that

E
((

r̃ t
1,θ R̃

−1
1,θ y−1 − rt

1,θR
−1
1,θ y−1

)2) →
n→∞ 0. (19)

For this,

E
((

r̃ t
1,θ R̃

−1
1,θ y−1 − rt

1,θR
−1
1,θ y−1

)2) ≤ 2E
((

r̃ t
1,θ

(
R̃−1

1,θ − R−1
1,θ

)
y−1

)2)
(20)

+ 2E
((

(r̃1,θ − r1,θ )
tR−1

1,θ y−1
)2)

.

We show separately that both terms in the right-hand side of (20) converge to 0. For the first
term,

E
((

r̃ t
1,θ

(
R̃−1

1,θ − R−1
1,θ

)
y−1

)2) = E
(
Tr

[
R1,0

(
R̃−1

1,θ − R−1
1,θ

)
r̃1,θ r̃

t
1,θ

(
R̃−1

1,θ − R−1
1,θ

)])
≤

n∑
i,j=2

E
(∣∣(R̃−1

1,θ − R−1
1,θ

)
R1,0

(
R̃−1

1,θ − R−1
1,θ

)∣∣
i,j

∣∣r̃1,θ r̃
t
1,θ

∣∣
i,j

)
.

Hence, by the same arguments as after (18) in the proof of Lemma A.5, we obtain

[
E

((
r̃ t

1,θ

(
R̃−1

1,θ − R−1
1,θ

)
y−1

)2)]2 ≤ CsupE
(∣∣(R̃−1

1,θ − R−1
1,θ

)
R1,0

(
R̃−1

1,θ − R−1
1,θ

)∣∣2)
≤ CsupE

({∥∥R̃−1
1,θ

∥∥ + ∥∥R−1
1,θ

∥∥}∣∣R1,0
(
R̃−1

1,θ − R−1
1,θ

)∣∣2)
(Lemmas A.22 and A.23:) ≤ Csup

n
E

(
Tr

[(
R̃−1

1,θ − R−1
1,θ

)
R2

1,0

(
R̃−1

1,θ − R−1
1,θ

)])
(Lemma A.17:) ≤ Csup

√
E

(∣∣(R̃−1
1,θ − R−1

1,θ

)2∣∣2)√
E

(∣∣R2
1,0

∣∣2)
.

From Lemma A.21, E(|R2
1,0|2) is bounded, so it remains to show that E(|(R̃−1

1,θ − R−1
1,θ )

2|2)
converges to 0. For this,

E
(∣∣(R̃−1

1,θ − R−1
1,θ

)2∣∣2) = E
(∣∣(R̃−1

1,θ (R1,θ − R̃1,θ )R
−1
1,θ

)2∣∣2)
(Lemma A.22:) ≤ CsupE

(∣∣(R1,θ − R̃1,θ )R
−1
1,θ R̃

−1
1,θ (R1,θ − R̃1,θ )

∣∣2)
= Csup

1

n
E

(
Tr

[
(R1,θ − R̃1,θ )

2R−1
1,θ R̃

−1
1,θ (R1,θ − R̃1,θ )

2R̃−1
1,θR

−1
1,θ

])
(Lemma A.17:) ≤ Csup

√
E

(∣∣(R1,θ − R̃1,θ )2R−1
1,θ R̃

−1
1,θ

∣∣2)√
E

(∣∣(R1,θ − R̃1,θ )2R̃−1
1,θR

−1
1,θ

∣∣2)
.

Hence, with Lemmas A.22, A.23 and A.26, we conclude that the first term of the right-hand side
of (20) goes to 0. Let us now show that the second term of the right-hand side of (20) goes to 0.
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We have,

E
((

(r̃1,θ − r1,θ )
tR−1

1,θ y−1
)2)

= E
(
Tr

(
R−1

1,θR1,0R
−1
1,θ (r̃1,θ − r1,θ )(r̃1,θ − r1,θ )

t
))

≤
n∑

i,j=2

E

(∣∣[R−1
1,θR1,0R

−1
1,θ

]
i,j

∣∣

× 1

n

∫
[0,n1/d ]d

1

1 + |Xi − x1|d+1

1

1 + |Xj − x1|d+1
1C(Xi)�=C(x1)1C(Xj )�=C(x1) dx1

)
,

where the last line is obtained similarly to after (18) in the proof of Lemma A.5. Thus we have,
with the notation and result of Lemma A.27,

E
((

(r̃1,θ − r1,θ )
tR−1

1,θ y−1
)2) ≤ Csup

1

n

n∑
i,j=2

E

(∣∣[R−1
1,θR1,0R

−1
1,θ

]
i,j

∣∣

× 1

1 + |Xi − Xj |d+1
f

(
D�(Xi,Xj )

))

(Cauchy–Schwarz:) ≤
√
E

(∣∣R−1
1,θR1,0R

−1
1,θ

∣∣2)

×
√√√√1

n

n∑
i,j=2

E

[(
1

1 + |Xi − Xj |d+1

)2

f 2
(
D�(Xi,Xj )

)]
.

From Lemmas A.21, A.22 and A.25, the first
√· in the above display is bounded. Thus it remains

to show that the second
√· goes to 0. For this, noting that f 2(t) ≤ Csupf (t) and distinguishing

the case i = j from the case i �= j ,

1

n

n∑
i,j=2

E

[(
1

1 + |Xi − Xj |d+1

)2

f
(
D�(Xi,Xj )

)]

≤ Csup

n

∫
[0,n1/d ]d

f
(
D�(x)

)
dx

+ Csup

n

∫
[0,n1/d ]d

dx1

∫
[0,n1/d ]d

dx2
1

1 + |x1 − x2|d+1
f

(
D�(x1, x2)

)

= Csup

n

∫
[0,n1/d ]d

f
(
D�(x)

)
dx + o(1) (Lemma A.28). (21)
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Now, for any ε > 0, there is a finite T so that f (T ) ≤ ε, and by defining En = {x ∈
[0, n1/d ]d ;D�(x) ≤ T }, we have |En| = o(n), as can be seen easily, and

1

n

∫
[0,n1/d ]d

f
(
D�(x)

)
dx ≤ f (0)

|En|
n

+ ε.

This finally shows that the second term of the right-hand side of (20) goes to 0 which finishes the
proof. �

Proof of Lemma A.10. Fix θ ∈ �. Because of Lemma A.9 and of |E(·)| ≤ E(| · |), it is sufficient
to show that there exists a sequence � → +∞ so that the lemma holds with CVθ replaced by
C̃Vθ . Then, because of (E(·))2 ≤ E((·)2), it is sufficient to show var(E[C̃Vθ |X])→n→∞ 0.

Let C1, . . . ,Cn2 be as in Definition A.14. Define, for k = 1, . . . , n2,

fk(X) = 1

�

∑
Xi∈Ck

E
([yi − ˜̂yi,θ ]2|X)

.

[Note that, following the discussion in Definition A.14, we have fk(X) = 0 if Nk = 0 and
fk(X) = K0(0) + δ0 if Nk = 1.] Then E(C̃Vθ |X) = (1/n2)

∑n2
k=1 fk(X). Let R̄k,θ and R̄k,0 be

as in Definition A.14. Because of the definition of K̃ and by (3), we have

fk(X) = 1

�
Tr

(
R̄k,0R̄

−1
k,θ diag

(
R̄−1

k,θ

)−2
R̄−1

k,θ

)
.

The functions fk(X) satisfy the conditions of Lemma A.29. Furthermore, by using the notation
Nk of Lemma A.29, we have

E
(
f 2

k (X)|Nk = N
) = 1

�2
E

([
Tr

(
R̄k,0R̄

−1
k,θ diag

(
R̄−1

k,θ

)−2
R̄−1

k,θ

)]2|Nk = N
)

(Lemma A.17:) ≤ 1

�2
E

(
N2|R̄k,0|2

∣∣R̄−1
k,θ diag

(
R̄−1

k,θ

)−2
R̄−1

k,θ

∣∣2|Nk = N
)

(Lemma A.24:) ≤ Csup
N2

�2
E

(|R̄k,0|2|Nk = N
)

(Condition 3.1 and Lemma A.29:)

≤ Csup
N2

�2

(
1 + N

�2

∫
[0,�1/d ]d

∫
[0,�1/d ]d

1

1 + |x1 − x2|d+1
dx1 dx2

)

≤ Csup

(
N2

�2
+ N3

�3

)

≤ Csup

(
1 + N4

�4

)
.

Thus, because of Lemma A.30, there exists a sequence �→n→∞ ∞ so that var(E[C̃Vθ |
X])→n→∞ 0, which completes the proof. �
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Proof of Lemma A.11. We have, by letting ˜̂yθ (t) be as ŷθ (t), with Kθ replaced by K̃θ .

E
(|En,θ − Ẽn,θ |

) = E

(∣∣∣∣1

n

∫
[0,n1/d ]d

[
Y(t) − ŷθ (t)

]2
dt − 1

n

∫
[0,n1/d ]d

[
Y(t) − ˜̂yθ (t)

]2
dt

∣∣∣∣
)

≤ E

(
1

n

∫
[0,n1/d ]d

∣∣[Y(t) − ŷθ (t)
]2 − [

Y(t) − ˜̂yθ (t)
]2∣∣dt

)
.

As for the proof of Lemma A.4, the variable t in the integral above is formally equivalent to a
new observation point Xn+1, so that X1, . . . ,Xn+1 are independent and uniformly distributed on
[0, n1/d ]d . Thus,

E
(|En,θ − Ẽn,θ |

) ≤ E
(∣∣(Y(Xn+1) − ŷθ (Xn+1)

)2 − (
Y(Xn+1) − ˜̂yθ (Xn+1)

)2∣∣).
The rest of the proof is carried out as in the proof of Lemma A.9, the only difference being that
there are n + 1 observation points instead of n. �

Proof of Lemma A.12. Because of Lemma A.11 and using |E(·)| ≤ E(| · |) and E
2(·) ≤ E((·)2),

it is sufficient to show that there exists a sequence �→n→∞ so that

E
(
var(Ẽn,θ |X)

)
goes to 0 as n → ∞.

Let us use the notation C1, . . . ,Cn2 of Definition A.14. Let, for t ∈ R
d and v = (v1, . . . , vm) ∈

(Rd)m, rθ (t, v) = (Kθ (t, v1), . . . ,Kθ (t, vm))t . We define r0(t, v) similarly. Let yi , R̄i,θ and R̄i,0
be as in Definition A.14. Let for i �= j , R0(X

i,Xj ) = [K0((X
i)k, (X

j )l)]k=1,...,Ni ;l=1,...,Nj
. Let

R0(X
i,Xi) = [K0((X

i)k, (X
i)l)]k,l=1,...,Ni

+ δ0INi
. Then,

Ẽn,θ = 1

n2

n2∑
i=1

1

�

∫
Ci

dti
[
Y(ti) − rt

θ

(
ti ,X

i
)
R̄−1

i,θ yi
]2

.

Hence, using the relation cov(A2,B2) = 2(cov(A,B))2, for two centered Gaussian variables A

and B , we obtain

var(Ẽn,θ |X)

= 2

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtj
2

cov
([

Y(ti) − rt
θ

(
ti ,X

i
)
R̄−1

i,θ yi
]
,

[
Y(tj ) − rt

θ

(
tj ,X

j
)
R̄−1

j,θ y
j
]|X)

= 1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtj
{
K0(ti , tj ) − rt

θ

(
ti ,X

i
)
R̄−1

i,θ r0
(
tj ,X

i
)

− rt
θ

(
tj ,X

j
)
R̄−1

j,θ r0
(
ti ,X

j
) + rt

θ

(
ti ,X

i
)
R̄−1

i,θ R0
(
Xi,Xj

)
R̄−1

j,θ rθ
(
tj ,X

j
)}2

.
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Now, we use (a1 + a2 + a3 + a4)
2 ≤ 4(a2

1 + a2
2 + a2

3 + a2
4). Hence we obtain

E
(
var(Ẽn,θ |X)

) ≤ Csup(T1 + T2 + T3 + T4), (22)

where T1, T2, T3, T4 are defined and treated below, and with T2 = T3 by symmetry.
For T1,

T1 = 1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtjK
2
0 (ti , tj )

(Condition 3.1:) ≤ Csup

n2

n2∑
i=1

1

n2

1

�2

∫
Ci

dti

∫
Rd

dt

(
1

1 + |ti − t |d+1

)2

(23)

≤ Csup
1

n2�
.

For T2, using Cauchy–Schwarz and Lemma A.24,

T2 = 1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtjE
[(

rt
θ

(
ti ,X

i
)
R̄−1

i,θ r0
(
tj ,X

i
))2]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtjE
[∥∥rθ

(
ti ,X

i
)∥∥2∥∥r0

(
tj ,X

i
)∥∥2]

.

Now, using the notation Ni of Lemma A.29 and Conditions 3.1 and 3.2,

T2 ≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtjE

[
N2

i

{
1

1 + d(Ci,Cj )d+1

}4]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

�2
{

1

1 + d(Ci,Cj )d+1

}
(Lemma A.31)

(24)

≤ Csup
�2

n2
max

i=1,...,n2

n2∑
j=1

{
1

1 + d(Ci,Cj )d+1

}

≤ Csup
�2

n2

(
Lemma A.32, and because we will set � →

n→∞∞
)
.

For T4 in (22), using Cauchy–Schwarz and Lemma A.24,

T4 = 1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtjE
[(

rt
θ

(
ti ,X

i
)
R̄−1

i,θ R0
(
Xi,Xj

)
R̄−1

j,θ rθ
(
tj ,X

j
))2]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtj

√
E

[∥∥rt
θ

(
ti ,Xi

)∥∥4]
(25)

×
√
E

[∥∥R0
(
Xi,Xj

)
R̄−1

j,θ rθ
(
tj ,Xj

)∥∥4]
.
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Using Condition 3.1, Lemma A.24 and Lemma A.33, we obtain

∥∥R0
(
Xi,Xj

)
R̄−1

j,θ rθ
(
tj ,X

j
)∥∥2 ≤ CsupNiNj

{
1

1 + d(Ci,Cj )d+1

}2∥∥R̄−1
j,θ rθ

(
tj ,X

j
)∥∥2

≤ CsupNiN
2
j

{
1

1 + d(Ci,Cj )d+1

}2

.

Hence, going back to (25),

T4 ≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtj

√
E

[
N2

i

]{ 1

1 + d(Ci,Cj )d+1

}2√
E

[
N2

i N4
j

]

≤ Csup
1

n2

n2∑
i=1

1

n2

n2∑
j=1

1

�2

∫
Ci

dti

∫
Cj

dtj

{
1

1 + d(Ci,Cj )d+1

}2

(26)

×
√
E

[
N2

i

]√√
E

[
N4

i

]√
E

[
N8

j

]

≤ Csup
�4

n2
(Lemmas A.31 and A.32).

Recall that by definition n = n2�. Hence, we can set � = n1/6, so that n2 = n5/6,
1/(n2�)→n→∞ 0, �2/n2 = n−3/6 →n→∞ 0 and �4/n2 = n−1/6 →n→∞ 0. Hence, from (23),
(24) and (26), the proof is completed. �

Proof of Lemma A.13. Fix θ ∈ �. Because of Lemma A.11 and of |E(·)| ≤ E(| · |), it is sufficient
to show that there exists a sequence � → +∞ so that the lemma holds with En,θ replaced by
Ẽn,θ . Then, because of (E(·))2 ≤ E((·)2), it is sufficient to show var(E[Ẽn,θ |X])→n→∞ 0.

Let C1, . . . ,Cn2 be as in Definition A.14 and let ˜̂yθ (t) be as in the proof of Lemma A.11.
Define, for k = 1, . . . , n2,

gk(X) = 1

�

∫
Ck

dtkE
([

Y(tk) − ˜̂yθ (tk)
]2|X)

.

[Note that, following the discussion in Definition A.14, we have gk(x) = K0(0) if Nk = 0.] Then
E(Ẽn,θ |X) = (1/n2)

∑n2
k=1 gk(X). Following the notation of Lemma A.12 we have,

gk(X) = 1

�

∫
Ck

dtkE
([

Y(tk) − rt
θ

(
tk,X

k
)
R̄−1

k,θ y
k
]2|X)

≤ 2
1

�

∫
Ck

dtk
(
K0(0) + rt

θ

(
tk,X

k
)
R̄−1

k,θ R̄k,0R̄
−1
k,θ rθ

(
tk,X

k
))

≤ Csup + 2
1

�

∫
Ck

dtk
∥∥rt

θ

(
tk,X

k
)∥∥∥∥R̄k,0R̄

−1
k,θ rθ

(
tk,X

k
)∥∥ (Lemma A.24)
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≤ Csup + Csup
1

�

∫
Ck

dtk
√

NkNk

∥∥R̄−1
k,θ rθ

(
tk,X

k
)∥∥

(Conditions 3.1 and 3.2 and Lemma A.33)

≤ Csup
(
1 + N2

k

)
(Lemma A.24).

Hence E(g2
k (X)|Nk = N) ≤ Csup(1 + N4), so that we can complete the proof with

Lemma A.30. �

A.6. Technical results

The following technical results are proved in the supplementary material [8].

Lemma A.15. Consider a function fθ (X,y) that is continuously differentiable w.r.t. θ

for any X,y. Assume that for all θ ∈ �, fθ (X,y) = op(1) and that, for i = 1, . . . , p,
supθ∈� |[∂/(∂θi)]fθ (X,y)| = Op(1). Then

sup
θ∈�

∣∣fθ (X,y)
∣∣ = op(1).

Lemma A.16. Let z be a k × 1 random vector with mean vector 0 and covariance matrix �. Let
A be a fixed k × k matrix. Then

(i) E(ztAz) = Tr(A�).
(ii) If, in addition, z is a Gaussian vector then we have var(ztAz) = 2 Tr(A�A�).

Lemma A.17. Let A and B be two m × m matrices. Then, we have

1

m

∣∣Tr(AB)
∣∣ ≤

√
|A|2

√
|B|2.

In addition, when the matrices A and B are random, we have

1

m
E

(∣∣Tr(AB)
∣∣) ≤

√
E

[|A|2]√E
[|B|2].

Lemma A.18. Let Mθ be a m × m matrix that is a differentiable function of θ ∈ � and that is
invertible for all θ ∈ �. Then we have, for i = 1, . . . , p,

∂

∂θi

[
log

(
det(Mθ)

)] = Tr

(
M−1

θ

[
∂

∂θi

Mθ

])

and

∂

∂θi

[
M−1

θ

] = −M−1
θ

[
∂

∂θi

Mθ

]
M−1

θ .
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Lemma A.19. Consider a fixed number n of observation points. Consider a function fθ (X,y)

that is p times continuously differentiable w.r.t. θ for any X,y and so that, for i1 + · · · + ip ≤ p,

sup
θ

∣∣(∂i1/∂θ
i1
1

) · · · (∂ip/∂θ
ip
p

)
fθ (X,y)

∣∣
has finite mean value w.r.t. X and y. Then, there exists a constant Csup (depending only of �) so
that

E

(
sup
θ∈�

∣∣fθ (X,y)
∣∣) ≤ Csup

∑
i1+···+ip≤p

∫
�

E

(∣∣∣∣ ∂i1

∂θ
i1
1

· · · ∂ip

∂θ
ip
p

fθ (X,y)

∣∣∣∣
)

dθ.

Lemma A.20. There exists a finite constant Csup so that, for any a, b ∈ R
d ,∫

Rd

1

1 + |a − c|d+1

1

1 + |b − c|d+1
dc ≤ Csup

1

1 + |a − b|d+1
.

Lemma A.21. Let 0 < Cinf ≤ Csup < ∞ be fixed independently of n. Let sn be a function of
n so that sn ∈ N

∗ and Cinfn ≤ sn ≤ Csupn. Consider sn observation points X̄1, . . . , X̄sn , in-
dependent and uniformly distributed on [0, n1/d ]d . Let A1, . . . ,Ak be k sequences of sn × sn
random matrices so that, for l = 1, . . . , k, (Al)i,j depends only on X̄i and X̄j and satisfies
|(Al)i,j | ≤ 1/(1 + |X̄i − X̄j |d+1). Then EX(|A1 · · ·Ak|2) is bounded w.r.t. n.

Lemma A.22. The supremum over n, θ and X of the eigenvalues of R−1
θ , R−1

1,θ , diag(R−1
θ ),

diag(R−1
1,θ ), diag(R−1

θ )−1 and diag(R−1
1,θ )

−1 is smaller than a constant Csup < +∞.

Lemma A.23. Lemma A.22 also holds when Kθ is replaced by K̃θ of Definition A.14.

Lemma A.24. Lemma A.22 also holds when Rθ is replaced by R̄k,θ of Definition A.14.

Lemma A.25. Let k ∈ N. Let A1,θ , . . . ,Ak,θ be k sequences of symmetric random matrices
(functions of X and θ ) so that, for any m ∈ N, a1, . . . , am ∈ {1, . . . , k}, supθ∈�EX|Aa1,θ · · ·
Aam,θ |2 is bounded (w.r.t. n). Let B1,θ , . . . ,Bk+1,θ be k + 1 sequences of random symmetric non-
negative matrices (functions of X and θ ) so that supθ ‖B1,θ‖, . . . , supθ ‖Bk+1,θ‖ are bounded
(w.r.t. n and X). Then

sup
θ∈�

EX|B1,θA1,θB2,θ · · ·Bk,θAk,θBk+1,θ |2

is bounded w.r.t. n.

Lemma A.26. Consider a fixed θ ∈ �. With the notation of Definition A.14, we have, when
n2 = o(n),

E
(∣∣(R1,θ − R̃1,θ )

2
∣∣2) →

n→∞ 0.
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Lemma A.27. Let C(t) be as in Definition A.14. Define, for T ≥ 0, f (T ) = ∫
Rd\[−T ,T ]d 1/(1 +

|t |d+1) dt . Define, for x ∈ [0, n1/d ]d , D�(x) = inft∈Rd\C(x) |x − t |. Define D�(x1, . . . , xm) =
mini=1,...,m D�(xi). Then, there exists a finite constant Csup so that, for any n, for any x1, x2 ∈
[0, n1/d ]d ,

∫
Rd

1

1 + |x1 − x|d+1

1

1 + |x2 − x|d+1
1C(x) �=C(x1)1C(x) �=C(x2) dx

≤ Csupf
(
D�(x1, x2)

) 1

1 + |x1 − x2|d+1
.

Lemma A.28. Use the notation n2,�, C(t), f (T ) and D�(x1, x2) of Definition A.14 and
Lemma A.27. Then, when n2 = o(n),

1

n

∫
[0,n1/d ]d

dx1

∫
[0,n1/d ]d

dx2
1

1 + |x1 − x2|d+1
f

(
D�(x1, x2)

) →
n→+∞ 0.

Lemma A.29. Use the notation n2, � and C1, . . . ,Cn2 of Definition A.14. Let, for i = 1, . . . , n2,
Xi

1, . . . ,X
i
Ni

be the Ni components of X that are in Ci (so that the order of their indices in X is
preserved). Then

(i) For i = 1, . . . , n2, Ni follows a binomial B(n,1/n2) distribution. For any i, j =
1, . . . , n2; i �= j , conditionally to Ni = ki , Nj follows a binomial B(n − ki,1/(n2 − 1)) dis-
tribution.

(ii) Conditionally to Ni = ki , Xi
1, . . . ,X

i
ki

are independent and uniformly distributed on Ci .
(iii) For 1 ≤ i �= j ≤ n2, conditionally to Ni = ki,Nj = kj , the sets of random variables

(Xi
1, . . . ,X

i
ki

) and (X
j

1 , . . . ,X
j
kj

) are independent, and their components are independent and
uniformly distributed on Ci and Cj , respectively.

Consider n2 real-valued functions f1, . . . , fn2 of X that can be written fi(X) = f̄ (Ni,X
i
1, . . . ,

Xi
Ni

), and so that, for any t ∈ R
d , x1, . . . , xN ∈ R

d , f̄ (N,x1 + t, . . . , xN + t) = f̄ (N,x1, . . . ,

xN). Then

(iv) The variables f1(X), . . . , fn2(X) have the same distribution. The couples (fi(X),fj (X)),
for 1 ≤ i �= j ≤ n2, have the same distribution.

Lemma A.30. Use the notation of Lemma A.29, and consider n2 functions f1, . . . , fn2 that
satisfy the conditions of Lemma A.29. Assume that there exist fixed even natural numbers q, l

and a finite constant Csup (independent of n and X) so that E(f 2
i (X)|Ni = k) ≤ Csup(1 + kq +

kq+l/�l). Then, if �→n→∞ +∞ and � = O(n1/(2q+5)),

var

(
1

n2

n2∑
i=1

fi(X)

)
→

n→∞ 0.
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Lemma A.31. Let N follow the binomial distribution B(n,1/n2), with n/n2 = �→n→∞ +∞.
Then, for any k ∈ N, there exists a finite constant Csup, independent of n, so that

E
(
Nk

) ≤ Csup�
k.

Lemma A.32. Let n2, � and C1, . . . ,Cn2 be as in Definition A.14. Assume that � is lower
bounded, as a function of n. Then, there exists a finite constant Csup so that for any n, i ∈
{1, . . . , n2},

n2∑
j=1

1

1 + d(Ci,Cj )d+1
≤ Csup.

Lemma A.33. Let A be a real m1 × m2 matrix and b be a m2-dimensional real column vector.
Then

‖Ab‖2 ≤ m1m2

(
max
i,j

A2
i,j

)
‖b‖2.
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Supplementary Material

Figures and proof of the technical results (DOI: 10.3150/16-BEJ906SUPP; .pdf). In the sup-
plementary material [8], we provide Figures 1 and 2, complementing the one-dimensional illus-
trative Monte Carlo simulation. We also give the proof of the lemmas stated in Section A.6.
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