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We consider an American contingent claim on a financial market where the buyer has additional informa-
tion. Both agents (seller and buyer) observe the same prices, while the information available to them may
differ due to some extra exogenous knowledge the buyer has. The buyer’s information flow is modeled by
an initial enlargement of the reference filtration. It seems natural to investigate the value of the American
contingent claim with asymmetric information. We provide a representation for the cost of the additional
information relying on some results on reflected backward stochastic differential equations (RBSDE). This
is done by using an interpretation of prices of American contingent claims with extra information for the
buyer by solutions of appropriate RBSDE.

Keywords: American contingent claims; asymmetric information; cost of information; initial enlargement
of filtrations; reflected BSDE

1. Introduction

A European contingent claim is a contract on a financial market whose payoff depends on the
market state at maturity or exercise time. The problem of valuation and hedging of contingent
claims on complete markets, first studied by Black and Scholes [5], Merton [27,28], Harrison and
Kreps [18], Harrison and Pliska [19], Duffie [8], and Karatzas [24], among others, can be for-
mulated in terms of backward stochastic differential equations (BSDE). Pricing and hedging on
incomplete markets has been investigated by many authors for some decades. We only mention
pioneering papers by Follmer and Schweizer [13], Miiller [29], Follmer and Sondermann [14],
Schweizer [35], Schil [34], Bouchaud and Sornette [6] and El Karoui and Quenez [10] who were
among the first to link this problem to BSDE. BSDE were introduced, on a Brownian filtration,
by Bismut [4]. Pardoux and Peng [32] proved existence and uniqueness of adapted solutions un-
der suitable square-integrability assumptions for coefficients and terminal condition. For some
decades, BSDE represent a vibrant field of research, due to its close ties with stochastic control
and mathematical finance.

In contrast to their European counterparts, American contingent claims (ACC), such as Amer-
ican call or put options, can be exercised at any time before maturity. Ignoring interest rates, it is
well known that the value of the process of an American contingent claim is related to the Snell
envelope of the payoff process, that is, the smallest supermartingale dominating it. The optimal
exercise time is given by the hitting time of the payoff process by the Snell envelope. This key ob-
servation links optimal stopping problems to reflected backward stochastic differential equations
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(RBSDE), that is, BSDE constrained to stay above a given barrier which in the case of the ACC
is given by the payoff function. RBSDE in continuous time, the variant related to ACC, were
first investigated in El Karoui et al. [9]. In this context, the solution process is kept above the
reflecting barrier by means of an additional process. As in the classical Skorokhod problem, this
process is non-decreasing. The support of the associated positive random measure is included in
the set of times at which the solution process touches the barrier.

In this paper, we consider American contingent claims in a scenario in which the buyer has
better information than the seller. While the decisions of the latter are based on the public infor-
mation flow F = (F;)/¢[0,7], the buyer possesses additional information modeled by some ran-
dom variable G which is already available initially. So his information evolution is described by
the enlarged filtration G = (G;);¢f0,77 With G; = F; vV o (G). We study the effect of this additional
information on the value and the optimal exercise time of an American contingent claim. The sit-
uation is similar to an insider’s optimal investment problem in the simplest possible model, where
he aims to maximize expected utility from the terminal value of his portfolio, and his investment
decisions are based on the associated larger flow of information. Pikovsky and Karatzas [33] first
studied this problem in the framework of an initially enlarged filtration. Variants of the model
were investigated among others by Elliott ez al. [11], Grorud and Pontier [16,17], Amendinger et
al. [2], or Ankirchner et al. [3].

Building on results about initial enlargements of filtrations by Jacod [23], in the first part of
the paper we reduce the problem to a standard optimal stopping problem on an enlarged prob-
ability space in case G possesses conditional laws with respect to the smaller filtration that are
smooth enough (density hypothesis). Under the density hypothesis, we write the value function
of an American contingent claim obtained with additional information as the value function of a
modified American contingent claim on the enlarged space. To define it as the product of the un-
derlying probability space and the (real) space of possible values of G, we give a factorization of
G-stopping times in terms of parametrized F-stopping times. This is a rational choice, since the
initial enlargement is related to a measure change on this product space; see for instance Jacod
[23] or Amendinger et al. [2].

In the second part, following the well known link between optimal stopping problems and
RBSDE in El Karoui et al. [9], on a Brownian basis we define a corresponding RBSDE on
the product space associated to the initial enlargement of the filtration. BSDE for (initially or
progressively) enlarged filtrations have been studied by Eyraud-Loisel [12] or Kharroubi et al.
[25]. The approach used in [12] is based on measure changes, which is one, but not the main,
tool for our approach. Our treatment of the RBSDE is based on Ito calculus and the canonical
decomposition of semimartingales in G. Extending results in El Karoui et al. [9], we rewrite
the value function of the American contingent claim with asymmetric information in terms of
the solution of the RBSDE on the product space. This provides a solution of the RBSDE with
respect to the larger filtration. Possessing additional information, the buyer has a larger value of
the expected payoff than the seller. We study the advantage of the buyer in terms of the solutions
of two different RBSDE.

The outline of the paper is the following. After presenting notations and assumptions in Sec-
tion 2, we introduce the financial market model with asymmetric information. In Section 3, we
factorize G-stopping times as parametrized F-stopping times, and give a formula for the value of
an ACC with asymmetric information. We also study the value function for conditional expecta-
tions with respect to the small filtration — an optimal projection problem. Section 4 is concerned
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with the link between optimal stopping problems and RBSDE. We recall some results from El
Karoui et al. [9] and extend them to parametrized RBSDE. We define an RBSDE that corresponds
to the optimal stopping problem on the product space. By changing variables in the solution of
this RBSDE, we obtain an alternative expression for the value function with additional informa-
tion in terms of the solution of the RBSDE in the initially enlarged filtration. In Section 5, we
define the cost of additional information by utility indifference. We obtain a formula for the cost
in terms of a difference of solutions of two RBSDE on different spaces. Finally, we compute it
in a simple case.

2. Setup and preliminaries

Let 7 > O represent a finite time. We consider a filtered probability space (€2, F, F, P), where
F = (F1)ieqo0,77 18 the reference filtration satisfying the usual conditions of right-continuity and
completeness. Moreover, we assume that Fq is trivial. Equations resp. inequalities involving
random variables are usually understood in the almost sure sense. We consider a random variable
G : Q — R. Let G be the initial enlargement of F by G, that is, G = (G;)se0,7] Where G, =
Fivao(G),tel0,T].

We denote by PS the law of G and for 7 € [0, T] by P,G (w, du) the regular version of the
conditional law of G given F;. Throughout this paper, we will assume that Jacod’s density hy-
pothesis ([22,23]) stated in the following assumption is satisfied.

Assumption 2.1. For ¢ € [0, T], the regular conditional law of G given F; is equivalent with the
law of G for P-almost all w € €2 that is,

PG e |F1~P(Ge-), Pas.

According to [23], for each ¢ € [0, T'] there exists an F ® B(R)-measurable version of

G
o) (w) = d;;)c(’:;;)) which is strictly positive. And for each u € R, {a;(u)}ief0,7] is a mar-

tingale w.r.t. F. We recall that it is shown in [1], Proposition 1.10, that the strict positivity of o
implies the right continuity of the filtration G. Let t € R™ and H a filtration in . We denote by
Tr.7 (H) the set of H-stopping times with values in [z, T'].

Definition 2.2. Consider the following payoff process

R =Ll +&1(1), (D

where L is an F-adapted real-valued cadlag process and & an JFr-measurable random variable,
satisfying the integrability condition

E[ sup |Li|+1¢]] <oc. @
te(0,7T]

Fort €[0,T], v € 7, 7 (F), the value function of an American contingent claim is defined by

V; = esssup IE[R(I)|.7-",], 3)
€T ()
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where 7 is the buyer’s stopping time and plays the role of a control tool. We suppose throughout
this paper that 0 < Lt <§ < +o00.

We consider an American contingent claim where, in contrast to the seller, the buyer possesses
additional information. This extra information may be based for instance on a good analyst or
better software. The additional information is described by the random variable we denote by G.
A natural question one may ask is “what is the value of an American contingent claim with extra
information?” Another one addresses the following problem. As the buyer has more information,
he has access to a larger set of available stopping times leading to a higher expected payoft. This
immediately leads to the question “what is the cost of this extra information?”

A filtration usually encodes a flow of information. So it is natural to model extra information by
an enlargement of a filtration. We will consider an initial enlargement of the reference filtration.
This means that we add all the extra information at initial time to the reference filtration. As
introduced above, G = (G;)¢[o, 77 is the initial enlargement of IF by G. Formally, incorporating
extra information leads to working on the following product spaces whose second component is
the space of possible values of the addltlonal information given by a real valued random variable.
So we consider the probability space «Q, F.F, IP’) where

o~

Q:=Q xR,
Fi=((F®B®). te0,T],
s>t “4)
F:= (]?t)te[o,r], F=F®B®),
/@P7:=IE”®17,

where 7 is a probability measure on (R, B(R)) playing the role of the law of the additional
information. Without loss of generality, we may assume that Q, F, IP’) is complete and that Fo
contains all P-null sets of F. We denote by E the expectation w.r.t. P. Taking expectations with
respect to P takes into account averaging over the possible values the additional information can
assume, with respect to its law governing the second component in the product space. In other
words, for a random variable X defined on Q we have

B(x) =JE< /H; X<u>dn<u)>, )

where X (1) = X (-, u),u e R.
Due to the definition of the value function of an American contingent claim (3), our first step
on the way to answer the above questions is to study

esssup E[R(7)|H,], (6)
€T:,7(G)

where H; = G;. We also study the case H; = F; which will be seen to be understood as an op-
timal projection problem. Our main idea is to look for a suitable representation of G-stopping
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times as “parametrized” F-stopping times, and then reduce the problem to a corresponding prob-
lem in a product filtration which contains the reference filtration. We will answer the first question
in this section, while the second one is treated in Section 5. We denote by

VY .= esssup E[R(1)|Go]
t€70,7(G)

the value of the American contingent claim with extra information. We will use the density
hypothesis to write this value as the value of an American contingent claim in the product filtra-
tion FF. For this purpose, we need some properties of the filtration G. We begin with the following
remark.

Remark 2.3. Gy = o (G). This holds true by the fact that F is right-continuous and Fy is trivial.
Itis clear that V¢ isa Go-measurable random variable. Hence by factorization it is of the form

f(G) where f is a real-valued measurable function.

3. American contingent claims in an initially enlarged filtration

In this section, we present a characterization of G-stopping times. We then derive a formula rep-
resenting the value function of an American contingent claim with extra information. Throughout
this section, we work on the probability space (€2, F, F, P) from (4) where n = PC.

3.1. Factorization of G-stopping times
We start with the following proposition.

Proposition 3.1. Let X : Q xRt — R be an ﬁF\‘-adapted process. Then for the random variable
G, the process X (G) : @ x RT — R is G-adapted.

Proof. We define
G:Q— Q,
w > (a), G(a))).
Then for fixed t € [0, T'], we have for each B € B(R)

Xi(0, G@) ' (B)=X,(G) (B -
=G (x;71(B).

Since Xfl(B) € f,, it is sufficient to prove that G~ (C x D) € G; for C € F; and D € B(R).
Indeed, we have

G (CxD)y=CNGY(B)e F,vo(G)=G,. |
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Remark 3.2. With similar arguments, one can show that if X : Q xRT > R is an
F-progresswely measurable (resp. predictable) process, then X(G) : @ x Rt — R is G-
progressively measurable (resp. predictable).

The following proposition characterizes G-stopping times in terms of fF\—stopping times.

Proposition 3.3. Let T Q - R* be a random time. t' is a G-stopping time if and only if there
exists an B- -stopping time T : Q — R such that "(w) = t(w, G(w)) for P-a.e. w € Q.

Proof. Suppose first that 7 is an ﬁ-stopping time. For ¢ € [0, T] we have to show that
{r(a), G(a))) < t} € G;.
We have with G as defined in the previous proposition
{t(w,G) <t} =(x0G) " (~00,1] .
=Gt (~00,1]) € G, ®

where the last equality follows from the proof of this proposition.
Now to prove the inverse claim, we first show that for every G-predictable set H there exists
an - -predictable process {J; (w, u)}sc[0,7] Which is measurable in (¢, w, u) such that

1y (s, 0) = Jy(0, G(®)),  P-as,se[0,T].
We have
G=FVvaG)=c({FNG'(B): FeF,BeBM®)}), te[0,Tl
From the definition of a predictable o-algebra, we get
PG)=a({(t,00) x (FNG™'(B)): Fe F;, Be BR),t€[0,T]}
U{{0} x (FFNG'(B)) : Fy € Fo, B e BR)}).

We start with a set in the generator of P(G). So lett € [0, T], F € F;, B € B(R) and suppose
that H = (¢, 00) x (F N G~1(B)). Define

Js(w,u) ;=1 c0)x FxB (S, ®, 1), s€[0,T].

Then Js(w, u) is F-measurable and ﬁ—predictable because (¢,00) X F x B is an ﬁ—predictable
set. Moreover, for (s, w) € [0, T] x 2 we have

1H (s, @) = L,o0)x F (5, @) * 11,00 xB (5, G(@)) = Js (0, G(@)).
For H = {0} x (Fp N G~!(B)) with Fy € Fy, B € B(R) we argue similarly. Now define

A:={HeP(@G)|3J : F-predictable such that 1 (1, w) = J; (0. G(w)), P-as., fort € [0, T1}.
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We know that the generator set of P(G) is a subset of A. Furthermore A is a A-system, so that
according to Dynkin’s 7 — A theorem, we have P(G) € A. Now suppose that 7’ is a G-stopping
time. Then [0, '] € P(G). So by what has been shown, there exists an F-predictable process
J which is measurable in (w, u) such that 19 .1(t, w) = Ji(w, G(w)), P-a.s.,t € [0, T]. Now
define

T(w,u) = inf{t >0:J(w,u)= O}.

The process J is ﬁ—predictable S0 it is ﬁ—progressively measurable. Hence by the Début theo-
rem, T is an [F-stopping time. Moreover, for P-a.e. w € Q we have 1'(w) = 7(w, G(w)). This
completes the proof. ]

Corollary 3.4. Let 7 : Q—> Rt bean @-stopping time. Then for every u € R, t(u) =t(-,u) is
an F-stopping time.

Proof. Letug e Rand ¢ € [0, T]. Then

{o]T(@.u0) <t} x {uo} = {(@,u0) | T(w.up) <t} € F; =) (5 ® BR)).

s>t

Hence {o | 7(w, up) <t} €\, Fs = Fr. Since ug is arbitrary the proof is complete. U

3.2. Value function in an initially enlarged filtration
We recall a “parametrized” version of the conditional expectation.
Lemma 3.5. Let (U,U) be a measurable space and X : 2 x U — R be an F Q U-measurable

random variable satisfying one of the conditions

(1) X is positive,
(2) Yu e U,E[|X (-, u)|] < o0.

Then there exists a G @ U-measurable random variable Y : Q x U — R, such that for all
uelU

Y(',u)zE[X(‘,u)|g], P-a.s.
Proof. See [36], page 115. (]

Remark 3.6. We denote a random variable X : Q@ — R, by X (-) to emphasize its dependence on
a parameter. Obviously we mean X (u) = X (w, u), w € Q.

For our next steps we need to introduce the following notation. Recall the payoff process R,
and set

R:Q xRt - R,
(w,t) = Loy (u)ljo,7((t) +Ear )11y (1).

€))
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We denote this new payoff function on the product space with R again. Note that, opposed to the
first one, it now acts on two variables.

Remark 3.7. Note that for an @—stopping time 7 : Q — R, R(,7(")): Q—>Risa positive F-
measurable random variable. Since it is a payoff function, Lemma 3.5 guarantees the existence
of an F; ® B(R)-measurable version of E[R(u, t(u))|F;] foru e R,t € [0, T].

Proposition 3.8. Lett € [0, T']. Then the following equation holds
E[R(u. t)|F ], _ =E[R(.TO)F],  Peas.

Proof. We will show that for every bounded F; ® B(R)-measurable random variable K : Q x
R — R we have

E[E[R(«. 7)) |F],_ K (@] =E[E[R(-. t())|IF] K (G)]. (10)

Since both E[R (u, T (1))|F:],—c and E[R(~, r(-))|j~"\t]G are G;-measurable random variables,
the assertion then follows from (10) and monotone class arguments.

To show (10), note that K () and «;(-) are F; ® B(R)-measurable, hence K (1) and «;(u) are
JF;-measurable for u € R. We obtain

E[E[R (1, T )| Fi],_o K (G)] = E[E[E[R (4, ()| F/],_o K (G)IF]]

— 5

:E[

E[E[E[R(-, 7())IF:] oK (G)IF]]

E[R(u, r(u))uf,]K(u)a,(u)dPG(u)}

R(u, r(u))K(u)oc,(u)dPG(u):|.

On the other hand,

E[E[R(-.7()IF]GK(G)]

E RE[R(., T())|F], K ety (u) dPG(M)}

&)

E[E[R(. () KO ()1 F]]

E /R(u,t(u))K(u)a,(u)dPG(u)i|.
R

The last two equations are satisfied by the definition of Ein ). ]

Remark 3.9. Letr €[0, T], u € R and G = u be constant IP-a.s. Then from Remark 3.7 we have

E[R(u, t))|F ] = E[R(- t())IF] P-as.

u’
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The following result gives a useful clue to calculate conditional expectations with respect to
the larger filtration.

Lemma 3.10. Suppose that X : Q xRt > Ris a process, t € [0, T] and G : Q2 — R a random
variable such that X;(G) is G;-measurable and P-integrable. Then for s <t

E[X,(G)IG;] = E[X; () (u)| Fy ]

Proof. See [7], page 5. O

Theorem 3.11. Let t € [0, T]. Under Assumption 2.1 on G and the integrability condition (2)
on R we have fort € [0, T]

Ve = esssup E[R(7))IG] = esssup B[R(-t(O)IE]) .
t veTir (@) [ ( ) t] a: (G) t()eT 7@ [ ( ) t]>G

Proof. Let t’ € 7; 7 (G). From Proposition 3.3 and Lemma 3.10, we have

E[R(<')IG:] =E[R(z(G))IG:] = E[R(z)ar )| F],_g:

L
o (G)

where 7(-) € ;.7 (F).
From Corollary 3.4, for u € R, 7(u) is an F-stopping time. So by using iterated conditional
expectations and the martingale property of (o, (u)):c[o, 7] W.r.t. IF, we get

E[R(rw))or )| F;] = E[E[(Lew lo.r1(t @) + & Ly (T )))or )| Frw |1 F]
= E[ L yew @) 10,71 (@) + & Ly (T(w))orr ()| Fr ]
= E[R(u, r(u))|.E].

Thus, we have

esssup E[R(7')|Gi] = esssup E[R((G))|G:]
'eTi 7 (G) t(eTir®

= esssup

E|R Fi
t(.)e’ﬁ_r(/@F\) Oll(G) [ (T(u))OZT(u)| f]u:G

esssup (E[R(u, T)IF]),_¢

(G ()T, ;@

ess sup (E[R( ‘L'(-))|j‘:;])c.

(G L ()T, r @
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The last equality comes from Proposition 3.8. Moreover, ]E[R( (- ))|}'[] is measurable in
(w, u), and the essential supremum of a measurable family {IE[R( T(- ))|]-',] () e, T(F)} is
again measurable in (w, u). Therefore, we have

ess sup E[R(~,t(~))|.7-:t]u= ess sup E[R(~,r(~))|ft]) , P-as.
1()eTr.r (@) t()eTrr @) "

and this still holds P-a.s. if we replace u by G(-).
All in all, we obtain as claimed

1 R R
esssup E[R(7))|G/| = esssup (E[R(-, T())|F;
T r(G) [R()i6] o (G) z(-)em(@( L WD
1 . R
= esssup E|R(-, 7(-))|F;
(G) (r(~)€Tf.T(ﬂf) L& ) t])G -

From Neveu [30], it is known that the essential supremum of a family A of non negative
random variables is a well defined almost surely unique random variable. Moreover, if A is
directed above, i.e. a v a’ € Afora and a’ € A, then there exists a sequence (ay),eN in A such
that a, 1 (esssup.A) as n — oo. See Proposition (VI-1.1) in [30] for a complete proof.

Proposition 3.12. There exists a sequence of stopping times (tp)yeN With t, in T;, 7 forn € N
such that the sequence (E[R(t,,)|F:neN is increasing and such that

V; = lim 1 E[R(t,)|F]., P-a.s.
n—0oo

Proof. It is sufficient to show that the set {E[R(t)|F;]; T € T;,r} is directed above. Then the
result follows from known results on the essential supremum by Neveu [30]. See Kobylanski
and Quenez [26] for details of the proof and a complete discussion for the general case where a
deterministic time ¢ is replaced by a stopping time in 7o 7. (]

Theorem 3.13. Let t € [0, T]. Under Assumption 2.1 on G and the integrability condition (2)
on R, we have fort € [0, T]

esssup E[R(t’)|]—",]=/( ess sup E[R(~,r(-))|ﬁ]) dPC ).
v'eTir(G) R M (0)eTrr® !

Proof. Let v’ € T; 7(G). By Proposition 3.3, there exists an E‘\-stopping time 7 (-) such that 7/ =
7(G), P-a.s. We therefore have

E[R(e)I7] =E[R(z(@)IF].
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By using the conditional law of G given F; we get
E[R(<(G))|F:] = E[E[R(t(G))|Fr]IF:]
EU R(t())ar (u)dPC )| F,

]

/ R(t))ar )| F]dPC W)
f R(v )t ()| Frgy |17 d P ()
- fR E[ L uyte oy (0) 0,71 (7 1)) + Ear () 1y (v )15 | d PO ()

:/E[R(u,t(u))l]:t]dPG(M)-
R

Here we use the martingale property of (o (u))sef0,7] W.r.t. IF.
From Remark 3.9, we further deduce

ess sup ]E[R(r’)l]:;]= €sssup E[R(T(G))LE]
v'eTi 7 (G) r()eT, 1 (®)

esssup /E[R(u,r(u))|f,]dPG(u)
tOeTir @ /R

= esssup fE[R(-,t(~))|ﬁ]udPG(u)
()T r F) /R

=/ ess sup E[R(-,t(~))|ﬁ]udPG(u), P-as.
Re()eT r(®

To show the last equation, we need to prove

/ ess sup E[ (-, r())|.7-",] dPS%u) < esssup_ /A[R(~,r(-))|]?f]udPG(u), P-as.,
Re()eTr@® ()T r (@)

the reverse inequality being standard. The measurability of the family {IE[R( T(- ))|}"t]
() eT; T(]F)} in (w, u) implies

esssup I/EE[R( r(-))|]?,]u =| esssup_ E[R( r(~))|ft]) .
t()eTir(F) t()eTir () !

From Proposition 3.12, there exists 7, () € ﬂ,T(ﬁ) such that P-a.e. we have

esssup_ E[R( r(~))|f,] = lim E[R( Tn('))|]?t]-
1T @ S



American options with asymmetric information and reflected BSDE 1405

Therefore by dominated convergence

/ esssup E[R(-.7())IF],dPCw) = lim | E[R(..7a())IF],dPC W)
Re()eTir® "o UR

= esssup /E[R(-,r(-))l]’:\t]udPG(u), P-as.
()T r®) /R

This finally allows us to deduce

esssup E[R(7)|F] =/ esssup E[R(~,r(~))|f,]udPG(u)
veTi1(G) Rr()eTrr@)

=/ ess sup E[R(-,t(-))Lf,]) dPS ().
R u

t(OeTrr @ O

For both H; = F; or G;, we could calculate the optimal expected payoff (6) based on a value
function of a new optimal stopping problem in the product space. Since optimal stopping prob-
lems and reflected BSDE are known to be connected via the Snell envelope, it seems natu-
ral to look for the corresponding RBSDE in the product space. This will lead us to consider
parametrized RBSDE, where the parameter is given by the possible values of a random variable
G initially enlarging an underlying filtration. It will be of independent interest to investigate such
parametrized RBSDE. This is the goal of the following section. Since the martingale representa-
tion property plays an important role for RBSDE, we need to suppose that the reference filtration
F is the natural filtration of a Brownian motion.

4. RBSDE in an initially enlarged filtration

4.1. Basic notions

Reflected BSDE (RBSDE) were studied by El Karoui ef al. [9] on a Brownian basis. Solution
processes of such equations are constrained to keep above a given process called obstacle or
barrier. Our work generalizes [9] to the setting of parametrized RBSDE where the reference
filtration is the natural filtration of a Brownian motion.

Let B = (B;)o<:<r be a one-dimensional Brownian motion defined on a probability space
(2, F,P) and IF = (F;)o<;<7 be the natural filtration of B, which satisfies the usual conditions
of completion and right continuity. Denote

L2 = {X : X Fr-measurable random variable, E(|X|2) < 00},
T
H = {X : X = (Xt)o</<1 continuous predictable process, ]E/ |X,|2 dt < oo},
0
S? = lX : X = (Xt)o</<T continuous predictable process, ]E( sup |X,|2) < oo},

0<t<T

Z = {K : K = (K;)o<i=r non-decreasing continuous process, Ko =0, K7 € Ez}.
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As in El Karoui et al. [9] consider a triplet of standard parameters (£, f, L) satisfying the
following conditions

(i) &L
(i) f:9Qx[0,T] x R x R — R is such that f(-,-,y,z) is predictable, E[f, f2(-1,
0,0)dt] < oo, and that it is globally Lipschitz continuous in (y, z) for fixed (w,?) €
Qx[0,T];
(iii) L e S2.
& is called terminal variable, f driver and L barrier process. We shall always assume that
Lt <&. A triplet (Y, Z,K) € 8% x H? x T is a solution of the reflected backward stochastic
differential equation (RBSDE) associated with (&, f, L) if it satisfies the following equations
resp. inequalities for any ¢ € [0, T']

T
Y, = §+/ f(S Ys, Zg)ds + Kr — K; — / ZsdB;,

’ (1
Y, > Ly, / Yy —LydK; =

K controls Y to stay above the barrier L. The condition fOT (Y; — L;)dK; = 0 which is known
as the Skorokhod condition guarantees that the process K acts in a minimal fashion.

If the standard triplet satisfies (i)—(iii), there exists a unique solution of (11) (see El Karoui et
al. [9]). In case the barrier L is just optional and right upper semicontinuous, the existence of a
unique solution of the RBSDE is shown in Grigorova et al. [15]. The component Y is cadlag in
this case.

Remark 4.1. If f does not depend on y and z, condition (ii) can be simplified to

(ii*) f:Q2 x [0, T] — R is a predictable process s.t. E[fOT tz dt] < oo.

4.2. RBSDE and optimal stopping problems

Snell envelopes provide the well-known link between value functions of optimal stopping prob-
lems and solutions of corresponding RBSDE (see, for example, El Karoui et al. in [9]). We shall
extend this link to the framework of parametrized RBSDE defined on the product space. We start
by recalling some basic facts from the classical theory.

Proposition 4.2. Let (Y, Z, K) be the solution of the RBSDE (11).Then

T
¥ = esssup 5] [ 106,V Z0ds + Lol (@) + 1|7 |
'L’E7;YT(]F) t

where T; 7 (F) is the set of all F-stopping times with values in [t, T].

Proof. See [9]. O



American options with asymmetric information and reflected BSDE 1407

Proposition 4.3. Suppose that f = (fi)o<i<r is an F-progressively measurable process that
does not depend on y and z. Under assumptions (i), (1i*), and (iii), the RBSDE (11) with driver
f has a unique solution {(Y;, Z;, K;); 0 <t <T}.

Proof. See [9]. ([l

It is clear from the preceding propositions that in case f does not depend on y, z, the link
between RBSDE and optimal stopping problems via Snell envelope becomes very explicit. This
is stated in the following proposition that is mentioned in [9].

Proposition 4.4. Suppose that f is an F-progressively measurable process that does not depend
on y and z. Under the assumptions (i), (ii*), and (iii), Y + fo fs ds is the value function of an
optimal stopping problem with payoff

/ fsds+ Ll 71+ & Liry,
0

where Y is the first component of the solution triplet of the RBSDE (11) with coefficient f.
Furthermore, for t € [0, T] the stopping time t™ =inf{s € [¢t,T]: Yy = Ly} A T is optimal, in
the sense

Y, =E[/ fyds + Lol i (7%) +¥1{T}(’*)‘f’}'
1

Remark 4.5. If f =0 then Y, the first component of the solution of RBSDE (11), is the value
function of the American contingent claim with payoft L;1[o,7((¢) + & 17)(¢) and t* is the opti-
mal stopping time for the buyer after time 7.

In the sequel, we suppose that (2, F, F,P) is the filtered probability space carrying a one-
dimensional Brownian motion B, and [F = (F;)o<;<7 is the Brownian standard filtration.

4.3. Parametrized RBSDE

Recall our product space (§, F , ﬂl*:, fPT) from (4). In order to obtain solutions of RBSDE in the
initially enlarged filtration in the following section, the statement of problems with initial en-
largements in the framework of product spaces now leads us to consider RBSDE in such product
spaces. As the main ingredient for obtaining solutions of RBSDE, we need a martingale repre-
sentation theorem in this setting. For this purpose, some preparations are needed.

Remark 4.6. If for a random variable X :  — R, we write X (-), the - stands for the parameter
ueR.

Proposition 4.7. Suppose that M : Q x [0,T] > R is an F-measurable Sfunction such that
for each u e R, {M;(u)}ie[0,1] is a martingale w.rt. F and fREHMt(u)Hdn(u) < +00. Then
{M;()}ief0,1) is a martingale w.r.t. IF.



1408 N. Esmaeeli and P. Imkeller
Proof. Fort € [0, T'] we have from Fubini’s theorem
E[|M,()]] = /REHM,(M)Hdn(u) < fo0.

Suppose that s <7, C € Fy, and D € B(R). From Fubini’s theorem and martingale property
of {M;(u)}sef0,77] w.r.t. F we have P-a.s.

[Mt()ICxD() [/ Mt(“)lch(H)dﬂ(u)]
/ [M; ()1 ]1p(u)dn(u)

/ [Msu)1e]1p () dn(u) (12)

E fM (M)lcll)(u)dn(u)]

=E[M;()1cxn()].
Now define
E:={AcF E[M()1a0)] =E[M;()14()], P-as.)
and
={Cx D;CeF,,DeB®)}

From (12), we have H C E. Moreover, H is a w-system and E is a A-system so by the Dynkin’s
7 — A theorem, we have

VAeF.,  E[MOIAO)]=E[M,()14()]. -

Corollary 4.8. We define B: Q x [0, T1— R by B;(w, u) := B;(w), where B = (B,)ej0.1) is a
Brownian motion w.r.t. F. Then from the above proposition, B(-) is a Brownian motion w.r.t. .

Proposition 4.9. Let X:Qx LQ T]—-> Rand X : 2 x [0, T] = R be two siochastic processes
such that for each t € [0, T], X;(w,u) = X;(w),u € R. Then we have o (X;(-),0 <s <t)=
0(X;,0<s<t)®@{o,R},t [0, T].

Proof. It is clear that o (X, 0 SSEH® {@, R} is contained in the natural filtration of X (-) on
[0, ]. On the other hand, since X is constant in the second variable, the natural filtration of X (-)

on [0, ¢] is also contained in 6 (X, 0<s5 <1) ® {T, R} O

Corollary 4.10. Proposition 4.9 implies that for B () defined in Corollary 4.8, we have

o(Bs(),0<s<t)=0(B;,0<s<0)®{2,R}, 1€[0,TI
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Furthermore, since F = (F;)o<:<r is the natural filtration generated by B, then

o(By(),0<s<t)=F ®{2,R)}, 1€l0,TI

The proposition above implies that the natural filtration generated by B () is a subset of the
product filtration F = (F;)o<;<7 given by F; =(),.,(Fs ® B(R)), r € [0, T]. So it is not clear a
priori that the martingale representation property can be extended to the product space. However,
a simple direct argument making use of the product structure will prove that the martingale
representation theorem from the first factor extends to the whole space. For more details, we
need the following preliminaries.

Corollary 4.11. Let X : Q x [0,T] — R be an Fe® B([0, T])-measurable function such that
fOT X, (u) dBy is defined for u € R, then

~/ (T 2 T
IE(/ Xs(-)st> =1E(/ Xf(-)ds)
0 0

Proof. It can be easily deduced from the definition of f[*i, Fubini’s theorem, and Ito’s isometry

that
R T 2 T 2
]E(/ XS(.)dBS> =1EU (/ Xs(u)st) dn(u)}
0 R 0
T 2
Z/E(f xs(u)st> ()
R 0
T
:/E([ Xf(u)ds) dn(u)
R 0
- X2()ds ).
([ 0s) :

We introduce some auxiliary spaces on (Q ]-'T, IP) Let L? be the space of ]-'T measurable
random variables X that are square integrable that is, E(lX |?) < 400. We denote by BL? the
subspace of L? consisting of bounded elements and by S B L? the subspace of BL? composed of
linear combinations of random variables of the form H (w) K (1) where H is Fr-measurable and
bounded and K is B(R)-measurable and bounded.

Theorem 4.12. Let M : Q — R be an .FT measurable random variable such that ]E(|M (- )| ) <
~+00. Then there exists a umque F-measurable function Z:Qx [0, T] — R, which is predictable
w.rt. T such that E(fo 1Zs ()2 ds) < +o0 and

T
M) = Mo() + / Z.()dB,,  Puae.
0

where My(-) € j:o.
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Proof. First we suppose that M(-) € BL?. Since SBL? is dense in BL?, for each M(-) € BL?
there exists a sequence {M" (-)},en € SBL? such that M"(-) — M(-) in L?. Thus, by linearity

it suffices to prove the theorem for M(w,u) = H(w)K (1) € SBL?. Since H € L*(Q, Fr,P)
and I is a Brownian filtration, from the martingale representation theorem, there exists a unique

JF-measurable process Z = (Z;);c[0,77 Which is predictable w.r.t. F and IE(fOT |Zs|*ds) < +oo
such that

T
H=H0+/ ZsdBy, P-a.s.,
0
where Hp € Fy. By multiplying by K, we get for n-a.e. u € R
T —~~
Mu) = Mo(u) + / Zs(u)dBs, P-as., (13)
0

where My(u) := HyK (1) and Z s(u) = Z, K(u)
It can be easily seen that My(-) € ]-'0 and Z () is F- -predictable. Furthermore, from bounded-
ness of K, we have

T T
ﬂﬁ(f |Z(-)|2ds) =E</ |Zs|2ds) ([ Kz(u)dn(u)> < +oo.
0 0 R

Since the null sets are independent of u, we have
T R
MO=M0+ [ ZdB.  Pae.
0

Now for M(-) € BL%, M"(-) = M(-) in L? where {M"(-)},eny € SBL?. Thus, {M"(-)}nex is
Cauchy in L?. On the other hand, we have
)

)
2>’
)) = E(/OT 20 - 2;"(')|st>

and fOT |2§’ ()— 2;” (-)| d By is a martingale w.r.t. T with zero expectation. Therefore, {M{(-)}nen
is Cauchy in L?, and from Corollary 4.11 {Z"(-)},en is Cauchy in L2(§ x [0, T]). Thus, the

o~ o~ ~ T o~ o~
B~ o) = B - o) +5(| [ (@10 -z 0)a,

T
+ 2E(|M6’<-> - Mg ()] (‘ fo (Zi() = Z()) dBy

From the boundedness of M (-) for n > 1, and Proposition 4.7 we get

T
E(|M"() = M")) =B(|My ) - M§ O +E(‘ /O (Z!() - Z" () dB,

since

T
IE(|M3(') - M{{’C)}(‘/O (Z}()—Z!(-)) dBy
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sequences converge to Mo(-) resp. 2() A subsequence of {M{(-)} converges to Mo(-) for
P-ae. (w,u) € Q Therefore, Mo(-) is Fo-measurable. Similarly, by extracting a subsequence
we obtain that Z (-)is F- -predictable after an eventual modification on a set of measure zero in
product space. By using Corollary 4.11 and uniqueness of limits in L2, the proof of existence of
a representation is complete for M(-) € BL?.

Finally for M(-) € L2, we define M"(-) := M(-) - Lqm(y<ny>n € N. Then {M"(-)},en s a
sequence of bounded random variables. Since E(|M(')|2) < 00, we have M"(-) — M(-) in L2
On the other hand, since M"(-) € BL? n e N, for each individual n we get a representation of
the form

T
M ()= M) + / 2()dB,,  Pae,
0

where My () € Foand Z" (-)isan @-predictable process. Using Corollary 4.11 again, in a similar
way as in the preceding part of the proof we obtain the assertion for M (-) EALZ. R

To prove uniqueness, suppose that there are two predictable processes Z'(-) and Z2(-) such
that

T T
M) = Mo(-) +f Z!(-)dBy = Mo() +/ Z}(-)dB. P-ae.
0 0

Then from Corollary 4.11 we get

T 2 T
0=7E7</ (Z(-)—%«))d&) =7E7</ (2}(->—2§<~>)2ds).
0 0

This implies that for a.a. (@, u, s) €  x [0, T] we have Z! (0, u) = Z2(w, u). O

Theorem 4.13. Let M : Q x [0, Tl —> R be an F ® B([0, T1)-measurable function such that
{M,(- )}te[O T is a martingale w.r.t. F and E(|M,( )| ) < +o0, for t € [0, T]. Then there exists

a unzque F-measurable function Z :Q x [0,T] — R, which is predictable w.rt. F such that
E(fo |Zs ()2 ds) < +oo and fort € [0, T1,

t
M;(-) = Moy(-) +/ Zs(-)dBs, P-a.e.,
0

where My(-) is fo-measumble‘.

Proof. From the martingale property, since M7 (-) € L? we have for € [0, T']
M () =E(Mr()IF;),  Pae.

Thus from the prev10us theorem, there exists a unique IFO measurable My(-) € L? and a unique
F- -predictable process Z (+) such that

T
Mz () = Mo() + / 7.()dB..  Pae
0
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Therefore for ¢ € [0, T]
t
MO =B O1F) = o)+ [ ZirdB. Pae, .
0

Since our study will be based on the connection between RBSDE and optimal stopping prob-
lems, we shall restrict our attention to the case in which a generator f of an RBSDE is just an
F-progressively measurable process. Now by employing the representation property for martin-
gales depending on a parameter of the preceding theorem, we can define and solve parametrized
reflected BSDE in the product space. For a probability measure Q on Q. F, JF) we consider the
following spaces

X () : X(-) Fr-measurable random variable, ]EQ(|X( )| 0o},

):X()= Xl( ))0<t<T continuous predictable process, ]EQ< sup ]Xl( )| ) < oo},

T
{X( ):X() = X,( ))O<t<T continuous predictable process, ]EQ/ ’Xt(-)lzdt < oo},
{ 0<t<T

K(-): K(-) = (K/(-)) o,y non-decreasing continuous process,
Ko() =0, Kr(-) € L}}.

]EQ stands for the expectation w.r.t. the measure Q. If O = IP’ we simply write E and also
S HALT

Now consider the filtered probability space (Q, F,F,P). From Corollary 4.8, B is still a Brow-
nian motion w.r.t. this probability space. Now let a triplet (§(-), f(-), L(-)) be given satisfying

(i) &() e L? R
(ii") f(-) is a predictable process s.t. E[fOT fl2(~) dt] <
(i) L(-) € &2
We call a triplet (Y (+), Z(-), K(-)) € 82 x H2 x T a solution of the parametrized RBSDE with
driver f(-), terminal variable £(-), and barrier L(-), if

T T
Yz(-)=$(-)+/ fs(')dS+KT(')_Kt(')_/ Zs(-) d By, O<r=<T,
t

t

(14)
T
V()= L), O0<t=T, /0 (1) — Lo()) dK, () =0,
Remark 4.14. For n-a.e.u € R,
T T
Yz(u)=é(u)+/ Fu)ds + Ko@) — Ko () —/ Z,)dB,  0<i<T,
t t
(15)

T
Nzl 0=r=T. [ (N - Lw)dKw =0
0
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is an RBSDE w.r.t. (2, F,F,P). This is the reason we call the RBSDE (14) a parametrized
RBSDE.

Similarly to the usual case, we shall always assume that L7(-) < &(-). Equipped with these
concepts, we can extend the classical existence and uniqueness theorem for solutions of RBSDE
to the parametrized RBSDE (14), and then rewrite Proposition 4.4 for the product space in the
following remark.

Theorem 4.15. Under assumptions (i), (ii"), and (iii’), the RBSDE (14) has a unique solution
Y (), Z(), K()).

Proof. From (ii’), f is an @—progressively measurable process such that E[ fOT fl2(~) dt] < oo.
Thus the RBSDE (14) is a backward reflection problem (BRP) according to the terminology of
[9]. Now we can rewrite the proof of Proposition 5.1 in [9] for our BRP on the product space:
Most of the proof is similar. Hence, we only mention the main steps. To prove the existence of
the solution, we introduce the process Y (-) = (Y;(-))s¢[0,7] defined by

. () ~
Yi()= esssup_ E[/ s ds + Loy 1po,71(t() + 5(-)1{7}(t(~))‘}',], t [0, T].
(T r(@® !

Then with the argument given in [9], Y;(:) + fé fs(-)ds is the value function of an optimal
stopping problem with payoff

1
H; () =/0 Js(yds + Li()1jo,r(t) + EC) 1y (0).

By the theory of Snell envelopes, it is the smallest supermartingale which dominates H (-).
Y (-) is continuous because of the continuity of H(-) on the interval [0, T) and the assump-
tion L7(-) <&(-). This means that the jump of H(-) at time T is positive. So Y (-) € S? from the
following inequality

T
E( sup Ytz(-)) < cﬁ(éz(-) + fsz(~) ds + sup Lf(-)),
0

0<t<T 0<t<T

which is obtained by Burkholder’s inequality and the conditions (i), (ii’), and (iii"). Denote by
T*(-) the stopping time

() =inf{r <s <T:Y,() <L)} AT.

Then t*(-) is optimal, in the sense that

*

[ ¢ ~
Yz(-)=E[/ fs(ds + Loy (D10, 71(* () +5(')1{T}(T*('))‘]'—t:|~ (16)
t
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Now Doob-Meyer’s decomposition of the continuous supermartingale Y;(-) + fot fs(ds
yields an adapted continuous process K (-) = (K;(-))se[0,7] and a continuous uniformly inte-
grable martingale M (-) = (M;(-))s¢[0,7] such that

t
Yt(')=Mt(')_/0 fs(ds — K (),

where Ko(-) =0 and K; = K+(). The Skorohod condition and square integra‘tzi\lity of Kr(+)
follow from arguments similar to the ones of [9] in the product space. Hence, the F-martingale

T o~
M, () =E(Mr ()| F) = (E(~)+/0 fs(')dS_KT(')’]'—t>

is also square integrable, i.e. E(|M,(~) |2) < 00,1t €[0, T]. Thus, we can use Theorem 4.13 to find
the process Z () such that M, (-) = f(; Z(-)ds, where I/EE(fOT 1Zs ()2 ds) < +oo.

Uniqueness of the solution can be achieved from Corollary 3.7 in [9] which is satisfied on the
product space under assumptions (i'), (i), and (iii"). O

Remark 4.16. Under the assumptions (i), (ii’), and (iii’), Y, (-) + fé f5() ds is the value function
of an optimal stopping problem with the payoff

t
/o fsGyds + L), @) +&EC) 1y (),

where Y;(-) is the solution of the RBSDE (14). Furthermore the stopping time 7*(-) =
inf{s €[t,T]:Y;(-) = Ls(-)} AT is optimal, in the sense

* .

R () ~
Y, = E[ | 105+ LegOlen( o) +£01m (o) ‘E}
t

Especially in the case f =0, Y;(-), the solution of the RBSDE (14), is the value function of an
American contingent claim with the payoff L;(-)1[o,7((t) + £(-)1{7)(¢) and *(-) is the optimal
stopping time for the buyer.

Remark 4.17. An extension of Theorem 4.15 to the case in which f also depends on y and z
with global Lipschitz continuity in these two variables can be obtained by means of the proof of
Theorem 5.2 in [9].

4.4. RBSDE in an initially enlarged filtration

We will now show that under suitable conditions on the parametrized payoff function R in (9),
the corresponding value function is the solution of a parametrized RBSDE on the same product
space. For this purpose, consider the product space (Q, F.F, IP’) from (4) where P=P® PC
and PO is the law of the random variable G which carries the extra information. We consider the



American options with asymmetric information and reflected BSDE 1415

RBSDE (14) with f =0, L(-) = La(-), and £(-) = £ar(-), where L and £ are the barrier resp.
final variable of the usual RBSDE (11). Then we obtain the following parametrized RBSDE

—dY,()=dK,() — Z;()dBF,  0<r<T,

Yr()=é&ar(), a7

T
Yi() = Liay (), 0=<t=<T, /0 (Yt(') - LtOlt(')) dK;(-) =0.

Since we work with two different filtrations in this section, we denote by B;F a Brownian
motion w.r.t. F. From Theorem 4.15 and Remark 4.16 in the previous section, under conditions
(i) and (111 ) for §aer () and Loy (+), the RBSDES (17) has a unique solution (Y (-), Z(-), K(-)) €
82 x H? x T and Y;(-) is the value function of an optimal stopping problem with the payoff
Re() = Liay () Lo, 71(1) + §ar (V1 (ry (1), 1 € [0, T,

Theorem 3.11 motivates us to define ?(~) : Y () Recall that, due to our hypotheses on G,

a(-) is a positive continuous martingale, so that supsE 0.7] < 0o. This implies that our def-

2()
inition makes sense. We will prove that Y (G) is the solution of an RBSDE that corresponds to
the optimization problem in the enlarged filtration. Note that for each u € R, or(u) is a martingale
w.r.t. IF and for each t € [0, T'], it has an F-measurable Verswn Therefore from Proposition 4.7,
{o (-)}req0,7] 1S @ martingale w.r.t. F. If we suppose that it is P- square integrable, then the mar-
tingale representation Theorem 4.13 yields do; (- ) =pB/()d BY | where B(-) is an F- -predictable
process which is square integrable with respect to P.
By Ito’s formula, we get that ?(~) satisfies in the following RBSDE:

_dz<->=—[(’3’(')) Y, () — (ﬁz()]dt
o () o )

_|:Zz(') 'Bt()’\,():|dB;F, 0<r<T.
a(+) a(+)

Q)

(18)
Yr()=¢,

T
T()=L. O0<i<T /0 (F.() — Ly)ar () dKo () =0

The Skorokhod condition has the stated form because

r o T (Y:()
f (Yi() = L)y () dK () = / ( —L,>at(~)d1<t<')
0 0 o (+)

T
= /0 (Yt(') - L,at(~)) dK;(-) =0, P-a.e.

We now define 1?(-) = fo ﬁ dK,(-) and 2(-) =20 _ mY( -). Since «/(-) is continuous in ¢

al) ) K, ()
t

and positive, K (+) is an increasing continuous process such that K o=0andd K, () =5 o Fur-
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thermore, ?(-), K (-) and 7 (-) are @-predictable processes. This follows from the ﬂf‘-predictability
of Y(-), Z(-), K(-), a(-), and B(-). In addition, we have

T T N 2
/23(.)ds52/ (ZS()) ds+2/ (ﬁS()Y())
0 0 as(+) 0 ag(+)

T
<2 sup % zf(-)ds+2< sup Yf(.))< sup 4())/ B2() ds

sef0,71 25 () Jo s€[0,T] 5€[0,7]

< 00, P-ae.,
because Y (-) i is continuous in ¢, ¢(-) continuous and strictly p0s1t1ve and Z(-) and S(-) are square

integrable in Q x [0, T']. Thus the Ito integral process for Z with respect to BY is still defined
and is a local martingale (see [31], page 35). With similar arguments, it can be shown that

-~ 1 _
sup |YS(.)| < < 5 >( sup |Y ()| ) P-a.e.
s€l0,T] 510,71 95 () / \se0,7]

Furthermore, since K (-) € f, we have

I?%(-) < ( sup

K> () < o0, P-ae.
sefo,1] @2 (: )) !

Now we introduce the following spaces, corresponding to a filtration H = (#;);c[0,7] on an
arbitrary probability space:

T
H]%H = {X : X = (Xt)o<s<7 H-predictable process, / |X,|2dt < oo},
0

St = {X 1 X = (X/()) g, <7 continuous H-predictable process, sup |X;|* < oo},
0=<t<T

Iy = {K : K = (K;)o<:<r increasing continuous process,

Ko =0, K7 Hr-measurable, K7 < 00}.

Therefore, (Y;(-), Z;(-), K; ())o<i<T € 82 x T2 x T solves the RBSDE

—dﬁ(-)—ﬁ’i;zmdz+dK,<)—zt<>dBF, 0<tr<T,
t
Yr()=¢, (19)

T
hO=L. 0<i<T /(2(-)—L,)d1?,(->=0,
0
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The Skorokhod condition follows from (18), since

T . . T .
/0 (F:() = L) dR, () = fo () - L,)

1
7 )Olt(') dK;(-)

o

1 T
= <,:[‘3PT a—()> f (%) = L), () dKy () =0,

The last inequality holds by ?(~) > L, and since «(-) is positive and continuous. The following
proposition recalls the canonical decomposition of a local martingale in the smaller filtration with
respect to the larger one.

Proposition 4.18. Any F-local martingale M is a G-semimartingale with canonical decompo-

sition
"d(iM,a. (G
M,=M,G+f (M, @ (G))y.
0 as*(G)

where M© is a G-local martingale.
Proof. See Theorem 2.5.c in [23]. Also [2] and [7]. O

The preceding proposition and the continuity of «(-) imply

" d(BF,a.(G (G
BF:B;G+/0 LaLICH) . Oéc(;) s _po 4 iEG; ds. (20)

Now consider (Y,(G) Zt(G) Kt(G))o<,<T By Remark 3.2, it is a triplet of G-predlctable
processes. Evaluatmg (19) at G and replacing B]F from the above proposition, (Y(G) Z(G),
K(G)) € 82 X HG x Zg will satisfy in the followmg RBSDE in (22, F, G, P):

~dY,(G) =dK(G) — Z,(G)dBF,  0<t<T,

T
7G> L, 0<i=<T, /(Y,(G)—Lt)dKAG):o.
0

RBSDE (21) is an RBSDE in the initially enlarged filtration G with generator f =0. As we
will see in the following section, it relates to our optimal stopping problem in the initially en-
larged filtration. We will comment on the square-integrability of the solution components below.

RBSDE (19) possesses a non-trivial driver independent of y. Similarly to SDE, we can apply

Girsanov’s theorem to get rid of it. To do this, we set for ¢ € [0, T] ¢;(-) := exp(fot 538 dBF

5 fo (fj : E_;)zds). Then Girsanov’s theorem implies that if B 8 satisfies Novikov’s condition

which means
T N2
B(ew( ) 5(00) @) == @)
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then g7 () is a likelihood ratio which defines a new probability measure on (ﬁ, F ) by Q (A) =

E(qT(~)1{A}(-)), AeF , under which E(-) = BtF — (; % ds is a Brownian motion. We now

suppose that (22) is satisfied. Under the probability measure Q on the space (ﬁ, F , ﬁIF) we rewrite
(19) to get the following RBSDE with standard parameters (£, 0, L) w.r.t. the Brownian motion

B(),
—dY,()=dK,() = Z/()dB,(), 0<t<T,

—~~ T —~~ —~~
RozL. ost=1. [ (@o-L)aRo=o
0
Note that B (G) = B® from (20). We know from [9] that if
(i*)§ € L3,
and
(ii*) L € 8%,

then (23) has a unique solution (?(-), 2(~), I?(-)) € % X ﬁz@ X f@. Moreover, since a(-) is

strictly positive, we have

()
ﬂ’( )a,(-)dB,F.

o (-

day(-) =B () dB! =

Thus, Ito’s formula gives

_ BO e L (BON N
a<~>-exp( [ Bl a; 2/0 (as(_)> ds)—qo,

and «(-) acts as a likelihood ratio between P and @ .

Remark 4.19. From the definition of Q , it can be easily seen that the asgl\lmptions (i*) and (iii*)
are equivalent with (i") and (iii") for £(-) and La(-), if a(-) is bounded P-a.e.

Therefore we may state that an initial enlargement of a filtration in optimal stopping problems
corresponds to a change of a measure in a parametrized RBSDE on the product of the underlying
probability space and the state space in which the additional information G takes its values. See
[21] for a complete discussion. Novikov’s condition is satisfied for example if g ’8 is P-a.e.
bounded. This condition has been studied in [12]. But it is restrictive, and it will be seen below
that it does not hold in simple examples.

Let us finally discuss conditions under which RBSDE (17) has a unique solution. Since we

need to refer to these conditions later, let us collect them in the following assumption.
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Assumption 4.20.

(1) el
) LesS% R
B) a:Q x[0,T] — RT is bounded P-a.c.

Theorem 4.21. Under Assumption 4.20, there exists a unique solution for RBSDE (17). It coin-
cides with the value function of an American contingent claim with the payoff Lo (-) 1[0, (¢) +
Ear () 1yry(t) and v*(-) =inf{s € [t, T]: Ys(-) = Lyas(-)} A T is the optimal stopping time for
the buyer. Furthermore if Novikov’s condition (22) is satisfied, then RBSDE (23) has a unique
solution.

Proof. Under Assumption 4.20, the integrability conditions (i’) and (iii") from Section 4.3 are
fulfilled by £(-) =&a7(-) and L(-) = La(-). Thus by Theorem 4.15 and Remark 4.16, there exists
a unique solution for RBSDE (17), and it coincides with the value of the corresponding optimal
stopping problem on the product space. Existence and uniqueness of the solutions of RBSDE
(23) follow from Remark 4.19. O

The following example illustrates that for r > 0 boundedness of % may be easily missed,
though «; is bounded.

Example 4.22. Let G = By + X, where B7 is the endpoint of a one-dimensional F-Brownian
motion with By = 0 and X a random variable with centered normal distribution with variance
& > 0 which is independent of F. In this case the buyer has noisy information about Br. Due to
independence, we know that G has a normal law with mean zero and variance T + ¢. Therefore
we have for all t € [0, T']

P(Br + X € du|F;) =P(Br + X — B, + B, € du|F)
= ]P(BT + X - Bt edu — y)lyth
1 (u — By)?

S exp(_i) du
V2 (T —t+¢) 2(T —t+¢)
=o;(u)P(Br + X €du),
where o, (u) = (}T_ﬁl) exp(—z((”T__If’Jzi) + 2(}‘;)), u € R. So here the conditional law of G
given F; is absolutely continuous with respect to the law of G for all ¢ € [0, T']. Note that for all
u e R, ap(u) =1, that « is continuous in (¢, u) € (0, T] x R, and that by ¢ > 0 we have

lim o;(u) =0, P-a.s.
u—+00

Therefore, for all ¢ € [0, T], a;(-) is bounded P-ae. It is known from [20] that B,(-) is the

Malliavin trace of o;(-). So we have Bi() D;In(o;(+)), t € [0, T]. Therefore we obtain,

o (-) =
gi% = (T——lt—i-s)(u — B;) which is not bounded.
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4.5. American contingent claims with asymmetric information and
parametrized RBSDE

In this subsection, we will rigorously establish the link between optimal solutions for American
contingent claims for which the buyer has privileged information and solutions of RBSDE w.r.t.
enlarged filtrations.

Lemma 4.23. Under the assumptions (') and (iii") from Section 4.3 we have for t € [0, T']

VE = esssup E[R(7)IG/] = 1@ _ Y:(G),

€T, 1(G) o (G)

whe}:ei Y (-) is the solution of the RBSDE (17) and ?(G) satisfies RBSDE (21). Furthermore,
*: Q — R defined by

™ (G) =inf{s € [t, T]: ¥;(G) = Lyas(G)} AT =inf{s € [t, T]: Y (G) = LI AT
is the optimal stopping time for the buyer after time t.

Proof. Theorem 3.11 gives

VO = esssup E[R(r))|G;|= ——/( esssup E[R(-1())IF;
t veTir(©) [ ( ) Z] a:(G) t()eT 7 @) [ ( ) IDG

Remark 4.16 implies

Y;()= esssup_ E[R(-, ‘L’(-))|j':;].
() eTs, 1 (F)

Furthermore,

' () =inf{s€[t,T]: Y;()=Lsas()} AT

is the optimal stopping time. The proof is completed by recalling ?(G) = % from the defini-

tion in the previous section. ]

Corollary 4.24. The previous lemma implies in particular that

VY= esssup E[R(r’)lgo] =Y(G) = Yo(G),
'€T0,7(G)

since ag = 1. Therefore, the value of the American contingent claim with extra information is
given by the initial solution of the parametrized RBSDE (17) evaluated at G.

Lemma 4.25. Under assumptions (i") and (iii’) from Section 4.3 we have for t € [0, T]

ess sup ]E[R(r')lf;]=/ Y, (u)d PC (u), 24
€T r(G) R
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where Y (-) is the solution of the RBSDE (17) and t*(G) the optimal stopping time for the buyer
after time t.

Proof. The proof follows easily from Theorem 3.13 and Remark 4.16. (I

The following example exhibits a more explicit description of the value of an American call
option with additional information.

Example 4.26. Consider an American call option with payoff R(¢) = (S; — K)™, where K is
the strike price. The stock price process S satisfies for ¢ € [0, T']

dS[ = ,LLS[ dt ‘I‘US[ dBt,

where p is the drift, o > 0 the volatility. Suppose that G is a random variable such that « is
bounded P ® PC-a.e. From Theorem 3.11, we have for z € [0, T']

1 —_ -~
VG = ——( esssup_ E[(Sr(.)—K)+ozr(.)(~)|]-",]) .

@ (G) N (e 1) G
We define

Vi() = esssup_ E[(ST(.) — K)+af(.)(~)|.7":z]s te0,T].
()T r(F)

From known results about the Snell envelope, we have t*(-) = inf{s € [¢, T]: Vs(-) = Lsas ()} A
T is optimal in the sense

R ~
VtG - o (G) (E[(Sr*(-) - K)+O‘r*(-)(')|}-f])G'

Now from Proposition 3.8,

1
VZG - at(G)E[(Sr*(u) - K)+af*(“)(u)|‘7:’]

wG’ P-a.s.

The process § is a semimartingale. So from Tanaka’s formula the following decomposition for
VY is obtained for 7 € [0, T]:

T (u)
a4 (G)VE = (So — K)o (G) + ]E[ar*(u)(u)/ I{S; > K}dS -Fti|
0 u=G

! K
+ S Elore I )F] g Pas.

where 1K (S) is the local time of S at K. Since in particular o9 (G) = 1 and Fy is trivial, we have

*(u)
VG =(Sy— K)* +E|:otr*(u)(u)/0 I{S; > K}dSs]
u=G

1
+EE[aT*(u)(u)lf*(u)(S)]u:G, P-a.s.
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On the other hand S, = Soe? BrH=39"1 1 € [0, T]. Therefore L = (S — K)T, £ = (Sp — K)*+
and « satisfies Assumption 4.20 since e°? is a continuous function and E(e? 1) = e%tz”z < 00
foreach ¢ € [0, T]. Hence Lemma 4.23 provides a representation for the solution of RBSDE (21)

with barrier (S — K)™ and final value (St — K)™, where § is a geometric Brownian motion.

Remark 4.27. We have Y () = % so if we replace Y (-) by Y (-)a(:) in (24), we get

ess sup E[R(r/)u-‘,]:f Y (wa, () d PC (u) = E[Y,(G)|F],
'eT;,7(G) R

where ?(G) solves the RBSDE (21) in the initially enlarged filtration. The last equation is due
to the definition of «/(-).

Remark 4.28. Under Assumption 4.20, RBSDE (17) has a unique solution with first component
Y (-). Furthermore, RBSDE (21) has a unique solution whose first component coincides with VG,
On the other hand, from Lemma 4.23 we have V¢ = ?(G), P-a.s. Thus, ?(G) is the unique solu-
tion of RBSDE (21). However, square integrability of other components of the solution remains
open. They are not necessarily unique, being derived from the Doob—Meyer decomposition for
continuous supermartingales, as shown in [9].

5. Cost of additional information

For American contingent claims, the buyer has to select a stopping time t € 7o 7 at which he
exercises his option in such a way that the expected payoff R(7) is maximized. If he has priv-
ileged information, he has access to a larger set of exercise times leading to a higher expected
payoff. The value of the additional information can be interpreted as the price he should pay to
obtain it. From a utility indifference point of view, the price should be defined as the difference
of the maximal expected payoff the buyer receives with additional information and the maximal
expected payoff without.

5.1. Definition and primary results

To investigate this value in our framework. We denote the cost of the extra information with CEI,
and define more formally

Definition 5.1.

CEI(t) :== esssup E[R(r/)|g,] — esssup E[R(r)l]-"t], te[0,T],
€T r(G) €T r(F)

and

CEI := CEI(0) = esssup E[R(r’)kr(G)] — sup IE[R('L')].
€T0,7(G) t€To,r (F)
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The last equation follows from the triviality of Fy and Gy = 0 (G) (see Remark 2.3). We call
CEI(-) the value function of the additional information.

We have for ¢t € [0, T']

CEI(t) = ( esssup E[R(7)|G,] — esssup E[R(t/)|]-'[])
€T T (G) €T r(G)

+( esssup E[R(7)|F] — esssup E[R(T)U'—t])-
€T r(G) €T ()

The second expression is a non-negative random variable. We prove that the expectation of the
first expression is also positive and thus E[CEI(¢)] is a positive quantity. By the tower property
of conditional expectation, we have

esssup E[R(7)|F ] = esssup E[E[R(z")IG:]IF]
€T r(G) €T r(G)

< esssup ]E[V[G|f,]:E[V,G|}',], P-a.s.
' eT;,7(G)

Therefore we obtain that E[CEI(t)] > 0 for ¢t > 0.
If we suppose again that F is a Brownian filtration as in Section 4, we are able to link CEI(t)
to RBSDE as follows:

Corollary 5.2. Under Assumption 4.20, Lemma 4.23 and Remark 4.5 yield the equation

Y1 (G)
a(G)

CEI(t) = —Y,=Y,(G)—Y,, tel0,T], (25)

where Y (-) is the solution of (17), ?(G) the solution of (21), and Y is the solution of the RBSDE

—dY;, =dK; — Z,;dB, 0<t<T,

Yr=¢, (26)

T
Y1 > L, 0<t=<T, / (Y — L) dK,; =0.
0

Since in particular ag(G) = 1, we can express CEI as the difference of the initial values of
solutions of two RBSDE, namely

CEI = Yy (G) — Yo = Yo(G) — Y. (27)

Remark 5.3. From the remarks preceding the above corollary, we conclude that E[f/\t (G)] =
E[Y;] for ¢ > 0. In other words, the average of the solution of the initially enlarged RBSDE is
bigger than the average of the solution of the initial RBSDE.
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Let us briefly comment on CEI(T), the value of extra information at exercise time 7" from the
perspective of the RBSDE. By definition we have

CEI(T):= esssup E[R(t')|Gr] — esssup E[R(1)|Fr]
v'eTr,1(G) weTr,r(F)

=E[R(D)|Gr] —E[R(T)|Fr]=§ —£=0.
Looking at this value with the underlying RBSDE, we get (see 25)

Yr(G)

CEI(T) = G Yr = Y7 (G) — Yr.

But gﬁg; = éjTT((GG)) =&, and Y7 = Y7(G) = £, which confirms CEI(T) = 0. This is what we
expect, since additional information at exercise time does not help the buyer to do better by
a better strategy. It would be interesting to find a more precise description of the price of the
additional information. As it stands, it is given by the difference of the first components ¥ of
two solution processes of RBSDE with identical terminal conditions, drivers, and obstacles, but
on two spaces of different complexity. We conjecture that Y is an increasing function of the

complexity of the spaces, but at the moment cannot substantiate this claim.

5.2. A special case

We briefly discuss a simple case for which CEI can be explicitly calculated. Assume that F =
(Ft)ref0,7] is a Brownian standard filtration and G is independent of F; for all ¢ € [0, T']. In this
case, we have forr € [0, T],u € R

dPS(u,)

a(u) = dPow " P-as.,

so from formula (27) CEI = 0. This is because we face the RBSDE

—dY,(-)=dK,() - Z()dBF, 0<t<T,

Yr(-)=E&ar() =§,

Y;(:) > Lias(-) = Ly, 0<t<T, (28)
T

T
/O(Yl(.)_Ltat(‘))dKl(.)z/o (Yt(')_Lt)th('):()-

By uniqueness of the solution of the RBSDE, Y(-) =Y.

In addition, VY, the value of the American contingent claim with additional information co-
incides with the value of the same American contingent claim without this information. This
follows from Remark 4.24 stating VG = Yy(G), where Y (-) is the solution of (28), and unique-
ness of its solution giving Y (G) =Y.
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