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We consider a multivariate heavy-tailed stochastic volatility model and analyze the large-sample behavior
of its sample covariance matrix. We study the limiting behavior of its entries in the infinite-variance case
and derive results for the ordered eigenvalues and corresponding eigenvectors. Essentially, we consider
two different cases where the tail behavior either stems from the i.i.d. innovations of the process or from
its volatility sequence. In both cases, we make use of a large deviations technique for regularly varying
time series to derive multivariate α-stable limit distributions of the sample covariance matrix. For the case
of heavy-tailed innovations, we show that the limiting behavior resembles that of completely independent
observations. In contrast to this, for a heavy-tailed volatility sequence the possible limiting behavior is more
diverse and allows for dependencies in the limiting distributions which are determined by the structure of
the underlying volatility sequence.

Keywords: dependent entries; eigenvectors; largest eigenvalues; regular variation; sample covariance
matrix; stochastic volatility

1. Introduction

1.1. Background and motivation

The study of sample covariance matrices is fundamental for the analysis of dependence in mul-
tivariate time series. Besides from providing estimators for variances and covariances of the
observations (in case of their existence), the sample covariance matrices are a starting point for
dimension reduction methods like principal component analysis. Accordingly, the special struc-
ture of sample covariance matrices and their largest eigenvalues has been intensively studied in
random matrix theory, starting with i.i.d. Gaussian observations and more recently extending re-
sults to more general light-tailed distributions which satisfy some moment assumptions like in
the four moment theorem of Tao and Vu [47].

However, with respect to the analysis of financial time series, such a moment assumption is
often not suitable. Instead, in this work, we will analyze the large sample behavior of sample
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covariance matrices under the assumption that the marginal distributions of our observations are
regularly varying with index α < 4 which implies that fourth moments do not exist and the behav-
ior of the largest eigenvectors differs significantly from the light-tailed case; see, for example, [3]
and [25]. In this case, we would expect the largest eigenvalues of the sample covariance matrix
to inherit heavy-tailed behavior as well; see, for example, Ben Arous and Guionnet [8], Belinschi
et al. [6], Bordenave and Guionnet [10], Auffinger et al. [2], Soshnikov [45,46], Davis et al. [17],
Heiny and Mikosch [31] for the case of i.i.d. entries. Furthermore, in the context of financial time
series we have to allow for dependencies both over time and between different components and
indeed it is often the aim of the analysis to discover and test for these dependencies. The sample
covariance matrix is an important tool for this and has for example been analyzed in Plerou et al.
[41] and Davis et al. [23,24]. The detection of dependencies among assets also plays a crucial
role in portfolio optimization based on multi-factor pricing models, where principal component
analysis is one way to derive the main driving factors of a portfolio; cf. Campbell et al. [12] and
recent work by Lam and Yao [37].

The literature on the asymptotic behavior of sample covariance matrices derived from depen-
dent heavy-tailed data is, however, relatively sparse up till now. Starting with the analysis of the
sample autocorrelation of univariate linear heavy-tailed time series in Davis and Resnick [15,16],
the theory has recently been extended to multivariate heavy-tailed time series with linear struc-
ture in Davis et al. [23,24], cf. also the recent survey article by Davis et al. [17]. But most of the
standard models for financial time series such as GARCH and stochastic volatility models are
non-linear. In this paper, we will therefore focus on a class of multivariate stochastic volatility
models of the form

Xit = σitZit , t ∈ Z,1 ≤ i ≤ p, (1.1)

where (Zit ) is an i.i.d. random field independent of a strictly stationary ergodic field (σit ) of non-
negative random variables; see Section 2 for further details. Stochastic volatility models have
been studied in detail in the financial time series literature; see, for example, Andersen et al.
[1], Part II. They are among the simplest models allowing for conditional heteroscedasticity of
a time series. In view of independence between the Z- and σ -fields, dependence conditions on
(Xit ) are imposed only via the stochastic volatility (σit ). Often it is assumed that (logσit ) has a
linear structure, which provides a tractable and flexible class of models while ensuring positivity
of the volatility process; see Davis and Mikosch [21]. This modelling goes back to Taylor [48],
who first introduced the so-called log-normal stochastic volatility model where the log-volatility
process is assumed to be a Gaussian AR(1) process.

In this paper, we are interested in the case when the marginal and finite-dimensional distribu-
tions of (Xit ) have power-law tails. Due to independence between (σit ) and (Zit ), heavy tails
of (Xit ) can be due to the Z- or the σ -field. Here we will consider two cases: (1) the tails of Z

dominate the right tail of σ and (2) the right tail of σ dominates the tail of Z. The third case
when both σ and Z have heavy tails and are tail-equivalent will not be considered in this paper.
Case (1) is typically more simple to handle; see Davis and Mikosch [19–21] for extreme value
theory, point process convergence and central limit theory with infinite variance stable limits.
Case (2) is more subtle as regards the tails of the finite-dimensional distributions. The literature
on stochastic volatility models with a heavy-tailed volatility sequence is so far sparse but the
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interest in these models has been growing recently; see Mikosch and Rezapour [38], Kulik and
Soulier [36] and Janßen and Drees [34]. In particular, it has been shown that these models offer
a lot of flexibility with regard to the extremal dependence structure of the time series, ranging
from asymptotic dependence of consecutive observations (cf. [38]) to asymptotic independence
of varying degrees (cf. [36] and [34]).

1.2. Aims, main results and structure

After introducing the general model in Section 2, we first deal with the case of heavy-tailed
innovations and a light-tailed volatility sequence in Section 3. The first step in our analysis is
to describe the extremal structure of the corresponding process by deriving its so-called tail
process; see Section 2.3 and Proposition 3.1. This allows one to apply an infinite variance stable
central limit theorem from Mikosch and Wintenberger [39] (see Appendix A) to derive the joint
limiting behavior of the entries of the sample covariance matrix of this model. This leads to the
main results in the first case: Theorems 3.3 and 3.6. They say, roughly speaking, that all values
on the off-diagonals of the sample covariance matrix are negligible compared to the values on
the diagonals. Furthermore, the values on the diagonal converge, under suitable normalization,
to independent α-stable random variables, so the limiting behavior of this class of stochastic
volatility models is quite similar to the case of i.i.d. heavy-tailed random variables. This fairly
tractable structure allows us also to derive explicit results about the asymptotic behavior of the
ordered eigenvalues and corresponding eigenvectors which can be found in Sections 3.3 and 3.4.
In particular, we will see that in this model the eigenvectors are basically the unit canonical basis
vectors which describe a very weak form of extremal dependence. With a view towards portfolio
analysis, our assumptions imply that large movements of the market are mainly driven by one
single asset, where each asset is equally likely to be this extreme driving force.

In the second case of a heavy-tailed volatility sequence combined with light-tailed innova-
tions, which we analyze in Section 4, we see that the range of possible limiting behaviors of the
entries of the sample covariance matrix is more diverse and depends on the specific structure of
the underlying volatility process. We make the common assumption that our volatility process
is log-linear, where we distinguish between two different cases for the corresponding innovation
distribution of this process. Again, for both cases, we first derive the specific form of the corre-
sponding tail process (see Proposition 4.4) which then allows us to derive the limiting behavior
of the sample covariance matrix entries, leading to the main results in the second case: Theo-
rems 4.6 and 4.10. We show that the sample covariance matrix can feature non-negligible off-
diagonal components, therefore clearly distinguishing from the i.i.d. case, if we assume that the
innovations of the log-linear volatility process are convolution equivalent. We discuss concrete
examples for both model specifications and the corresponding implications for the asymptotic
behavior of ordered eigenvalues and corresponding eigenvectors at the end of Section 4.

Section 5 contains a small simulation study which illustrates our results for both cases and
also includes a real-life data example for comparison. From the foreign exchange rate data that
we use, it is notable that the corresponding sample covariance matrix features a relatively large
gap between the largest and the second largest eigenvalue and that the eigenvector corresponding
to the largest eigenvalue is fairly spread out, that is, all its components are of a similar order of
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magnitude. This implies that the model discussed in Section 3 may not be that suitable to catch
the extremal dependence of this data, and that there is not one single component that is most
affected by extreme movements but instead all assets are affected in a similar way. We perform
simulations for three different specifications of models from Sections 3 and 4. They illustrate that
the models analyzed in Section 4 are capable of exhibiting more diverse asymptotic behaviors of
the sample covariance matrix and in particular non-localized dominant eigenvectors.

Some useful results for the (joint) tail and extremal behavior of random products are gathered
in Appendix B. These results may be of independent interest when studying the extremes of
multivariate stochastic volatility models with possibly distinct tail indices. We mention in passing
that there is great interest in non-linear models for log-returns of speculative prices when the
number of assets p increases with the sample size n. We understand our analysis as a first step
in this direction.

2. The model

We consider a stochastic volatility model

Xit = σitZit , i, t ∈ Z, (2.1)

where (Zit ) is an i.i.d. field independent of a strictly stationary ergodic field (σit ) of non-negative
random variables. We write Z, σ , X for generic elements of the Z-, σ - and X-fields such that σ

and Z are independent. A special case appears when σ > 0 is a constant: then (Xit ) constitutes
an i.i.d. field.

For the stochastic volatility model as in (1.1), we construct the multivariate time series

Xt = (X1t , . . . ,Xpt )
′, t ∈ Z, (2.2)

for a given dimension p ≥ 1. For n ≥ 1 we write Xn = vec((Xt )t=1,...,n) = (Xit )i=1,...p,t=1,...,n

∈ R
p×n and consider the non-normalized sample covariance matrix

Xn
(
Xn
)′ = (Sij )i,j=1,...,p, Sij =

n∑
t=1

XitXjt , Si = Sii . (2.3)

2.1. Case (1): Z dominates the tail

We assume that Z is regularly varying with index α > 0, that is,

P(Z > x) ∼ p+
L(x)

xα
and P(Z < −x) ∼ p−

L(x)

xα
, x → ∞, (2.4)

where p+ and p− are non-negative numbers with p+ + p− = 1 and L is a slowly varying
function (for two positive functions f (x), g(x) the notation f (x) ∼ g(x), x → ∞, means that
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limx→∞ f (x)/g(x) = 1). If we assume E[σα+δ] < ∞ for some δ > 0 then, in view of a result
by Breiman [11] (see also Lemma B.1), it follows that

P(X > x) ∼ E
[
σα
]
P(Z > x) and P(X < −x) ∼ E

[
σα
]
P(Z < −x), x → ∞, (2.5)

that is, X is regularly varying with index α. Moreover, we know from a result by Embrechts
and Goldie [28] that for independent copies Z1 and Z2 of Z, Z1Z2 is again regularly varying
with index α; cf. Lemma B.1. Therefore, using again Breiman’s result under the condition that
E[(σi0σj0)

α+δ1(i 	= j) + σα+δ
i0 ] < ∞ for some δ > 0, we have

P(±XitXjt > x) ∼
{
E
[
(σitσjt )

α
]
P(±ZiZj > x), i 	= j,

E
[
σα
]
P
(
Z2 > x

)
, i = j,

x → ∞. (2.6)

2.2. Case (2): σ dominates the tail

We assume that σ ≥ 0 is regularly varying with some index α > 0: for some slowly varying
function �,

P(σ > x) = x−α�(x),

and E[|Z|α+δ] < ∞ for some δ > 0. Now the Breiman result yields

P(X > x) ∼ E
[
Zα+
]
P(σ > x) and P(X < −x) ∼ E

[
Zα−
]
P(σ > x), x → ∞.

Since we are also interested in the tail behavior of the products XitXjt we need to be more
precise about the joint distribution of the sequences (σit ). We assume

σit = exp

( ∞∑
k,l=−∞

ψklηi−k,t−l

)
, i, t ∈ Z, (2.7)

where (ψkl) is a field of non-negative numbers (at least one of them being positive) such that
(without loss of generality) maxkl ψkl = 1 and (ηit ) is an i.i.d. random field such that a generic
element η satisfies

P
(
eη > x

)= x−αL(x), (2.8)

for some α > 0 and a slowly varying function L. We also assume
∑

k,l ψkl < ∞ to ensure ab-
solute summability of logσit . A distribution of η that fits into this scheme is, for example, the
exponential distribution; cf. also Rootzén [44] for further examples and extreme value theory for
linear processes of the form

∑∞
l=−∞ ψlηt−l .
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2.3. Regularly varying sequences

In Sections 3.1 and 4.1, we will elaborate on the joint tail behavior of the sequences (σit ), (Xit ),
(σitσjt ), and (XitXjt ). We will show that, under suitable conditions, these sequences are regu-
larly varying with positive indices.

The notion of a univariate regularly varying sequence was introduced by Davis and Hsing
[18]. Its extension to the multivariate case does not represent difficulties; see Davis and Mikosch
[22]. An R

d -valued strictly stationary sequence (Yt ) is regularly varying with index γ > 0 if
each of the vectors (Yt )t=0,...,h, h ≥ 0, is regularly varying with index γ , that is, there exist
non-null Radon measures μh on [−∞,∞]d(h+1)\{0} which are homogeneous of order −γ (i.e.,
μh(λA) = λ−γ μh(A) for all Borel sets A and λ > 0) such that

P(x−1(Yt )t=0,...,h ∈ ·)
P(‖Y0‖ > x)

v→ μh(·). (2.9)

Here
v→ denotes vague convergence on the Borel σ -field of [−∞,∞]d(h+1)\{0} and ‖ · ‖ de-

notes any given norm; see Resnick’s books [42,43] as general references to multivariate regular
variation.

Following Basrak and Segers [5], an R
d -valued strictly stationary sequence (Yt ) is regularly

varying with index γ > 0 if and only if there exists a sequence of Rd -valued random vectors
(�h) independent of a Pareto(γ ) random variable Y , i.e., P(Y > x) = x−γ , x > 1, such that for
any k ≥ 0,

P
(
x−1(Y0, . . . ,Yk) ∈ · | ‖Y0‖ > x

) w→ P
(
Y(�0, . . . ,�k) ∈ ·), x → ∞. (2.10)

We call (�h) the spectral tail process of (Yt ) and (Y�h) the tail process. We will use both
defining properties (i.e., (2.9) and (2.10)) of a regularly varying sequence.

3. Case (1): Z dominates the tail

3.1. Regular variation of the stochastic volatility model and its product
processes

Proposition 3.1. We assume the stochastic volatility model (2.1) and that Z is regularly varying
with index α > 0 in the sense of (2.4).

1. If E[σα+ε] < ∞ for some ε > 0, the sequence (Xit )t∈Z is regularly varying with index α

and the corresponding spectral tail process (�i
h)h≥1 vanishes.

2. For any i 	= j , if E[(σi0σj0)
α+ε] < ∞ for some ε > 0, then the sequence (XitXjt ) is regu-

larly varying with index α and the corresponding spectral tail process (�
ij
h )h≥1 vanishes.

Remark 3.2. If E[(σikσjl)
α+εik,j l ] < ∞ for some εik,j l > 0 and any (i, k) 	= (j, l), it is also

possible to show the joint regular variation of the processes (XitXjt ), i 	= j , with index α. The
description of the corresponding spectral tail process is slightly tedious. It is not needed for the
purposes of this paper and therefore omitted.
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Proof. Regular variation of the marginal distributions of (Xit ) and (XitXjt ) follows from
Breiman’s result; see (2.5) and (2.6). As regards the regular variation of the finite-dimensional
distributions of (Xit ), we have for h ≥ 1,

P
(|Xih| > x | |Xi0| > x

) = P(min(|Xi0|, |Xih|) > x)

P(|Xi0| > x)

≤ P(max(σi0, σih)min(|Zi0|, |Zih|) > x)

P(|Xi0| > x)
→ 0, x → ∞.

In the last step, we used Markov’s inequality together with the moment condition E[σα+ε] < ∞
and the fact that min(|Zi0|, |Zih|) is regularly varying with index 2α. This means that �i

h = 0
for h ≥ 1.

Similarly, for i 	= j , h ≥ 1,

P
(|XihXjh| > x | |Xi0Xj0| > x

)
≤ P(max(σi0σj0, σihσjh)min(|Zi0Zj0|, |ZihZjh|) > x)

P(|Xi0Xj0| > x)
→ 0.

In the last step, we again used Markov’s inequality, the fact that Zi0Zj0 is regularly varying
with index α (see Embrechts and Goldie [28]; cf. Lemma B.1(1) below), hence min(|Zi0Zj0|,
|ZihZjh|) is regularly varying with index 2α, and the moment condition E[(σi0σj0)

α+ε] < ∞.

Hence �
ij
h = 0 for i 	= j , h ≥ 1. �

3.2. Infinite variance stable limit theory for the stochastic volatility model
and its product processes

Theorem 3.3. Consider the stochastic volatility model (2.1) and assume the following condi-
tions:

1. Z is regularly varying with index α ∈ (0,4) \ {2}.
2. ((σit )t=1,2,...)i=1,...,p is strongly mixing with rate function (αh) such that for some δ > 0,

∞∑
h=0

α
δ/(2+δ)
h < ∞. (3.1)

3. The moment condition

E
[
σ 2 max(2+δ,α+ε)

]
< ∞ (3.2)

holds for the same δ > 0 as in (3.1) and some ε > 0.

Then

a−2
n (S1 − cn, . . . , Sp − cn)

d→ (ξ1,α/2, . . . , ξp,α/2), (3.3)
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where the Si, i = 1, . . . , p, are as in (2.3) and the (ξi,α/2) are i.i.d. α/2-stable random variables
which are totally skewed to the right,

cn =
{

0, α ∈ (0,2),

nE
[
X2], α ∈ (2,4),

(3.4)

and (an) satisfies nP(|X| > an) → 1 as n → ∞.

Remark 3.4. From classical limit theory (see Feller [30], Petrov [40]), we know that (3.3) holds
for an i.i.d. random field (Xit ) with regularly varying X with index α ∈ (0,4). In the case α = 2
one needs the special centering cn = nE[X21(|X| ≤ an)] which often leads to some additional
technical difficulties. For this reason we typically exclude this case in the sequel.

Remark 3.5. It follows from standard theory that α-mixing of (σit ) with rate function (αh)

implies α-mixing of (Xit ) with rate function (4αh); see Davis and Mikosch [21].

Proof. Recall the definition of (Xt ) from (2.2). We will verify the conditions of Theorem A.1
for X2

t = (X2
it )i=1,...,p , t = 0,1,2, . . . .

(1) We start by verifying the regular variation condition for (Xt ); see (2.10). We will deter-
mine the sequence (�h) corresponding to (Xt ). We have for t ≥ 1, with the max-norm ‖ · ‖,

P
(‖Xt‖ > x | ‖X0‖ > x

) ≤ P(‖Xt‖ > x,
⋃p

i=1{|Xi0| > x})
P(‖X0‖ > x)

≤
p∑

i=1

P(‖Xt‖ > x, |Xi0| > x)

P(‖X0‖ > x)

≤
p∑

i=1

p∑
j=1

P(|Xjt | > x, |Xi0| > x)

P(|X| > x)

≤
p∑

i=1

p∑
j=1

P(max(σjt , σi0)min(|Zjt |, |Zi0|) > x)

P(σ |Z| > x)
.

We observe that by Breiman’s result and in view of the moment condition (3.2), for t ≥ 1 and
some positive constant c,

P(max(σjt , σi0)min(|Zjt |, |Zi0|) > x)

P(σ |Z| > x)
∼ c

P(min(|Zjt |, |Zi0|) > x)

P(|Z| > x)
,

and the right-hand side converges to zero as x → ∞. We conclude that �h = 0 for h ≥ 1. We
also have for i 	= j ,

P(|Xi0| > x, |Xj0| > x)

P(|X| > x)
≤ P(max(σi0, σj0)min(|Zi0|, |Zj0|) > x)

P(σ |Z| > x)
→ 0, x → ∞.
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Then, in a similar way, one can show

P
(
X0/‖X0‖ ∈ · | ‖X0‖ > x

) w→ P(�0 ∈ ·) = 1

p

p∑
i=1

(
p+εei

(·) + p−ε−ei
(·)), (3.5)

where ei are the canonical basis vectors in R
p , εx is Dirac measure at x and p± are the tail

balance factors in (2.4).
We conclude that the spectral tail process (�

(2)
h ) of (X2

t ) is given by �
(2)
h = 0 for h ≥ 1 and

from (3.5) we also have

P
(
�

(2)
0 ∈ ·)= 1

p

p∑
i=1

εei
(·). (3.6)

In particular, the condition
∑∞

i=1 E[‖�(2)
i ‖] < ∞ in Theorem A.1(4) is trivially satisfied.

(2) Next, we want to prove the mixing condition (A.1) for the sequence (X2
t ). We start by

observing that there are integer sequences (ln) and (mn) such that knαln → 0, ln = o(mn) and
mn = o(n). Then we also have for any γ > 0,

knP

(
ln∑

t=1

X2
t 1
(‖Xt‖ > εan

)
> γa2

n

)
≤ knlnP

(‖Xt‖ > εan

)≤ cln/mn = o(1). (3.7)

Relation (A.1) turns into

Eeis′a−2
n

∑n
t=1 X2

t 1(‖Xt‖>εan) − (Eeis′a−2
n

∑mn
t=1 X2

t 1(‖Xt‖>εan)
)kn → 0, s ∈R

p.

In view of (3.7), it is not difficult to see that we can replace the sum in the former characteristic
function by the sum over the index set Jn = {1, . . . ,mn − ln,mn + 1, . . . ,2mn − ln, . . . , } ⊂
{1, . . . , n} and in the latter characteristic function by the sum over the index set {1, . . . ,mn − ln}.
Without loss of generality, we may assume that n/mn is an integer. Thus, it remains to show that
the following difference converges to zero for every s ∈ R

p:∣∣E[eis′a−2
n

∑
t∈Jn

X2
t 1(‖Xt‖>εan)

]− (E[eis′a−2
n

∑mn−ln
t=1 X2

t 1(‖Xt‖>εan)
])kn
∣∣

=
∣∣∣∣∣

kn∑
v=1

E

[
v−1∏
j=1

eis′a−2
n

∑jmn−ln
t=(j−1)mn+1 X2

t 1(‖Xt‖>εan)

× (eis′a−2
n

∑vmn−ln
t=(v−1)mn+1 X2

t 1(‖Xt‖>εan) −E
[
eis′a−2

n

∑vmn−ln
t=(v−1)mn+1 X2

t 1(‖Xt‖>εan)])]

×
kn∏

j=v+1

E
[
eis′a−2

n

∑jmn−ln
t=(j−1)mn+1 X2

t 1(‖Xt‖>εan)]∣∣∣∣∣.
In view of a standard inequality for covariances of strongly mixing sequences of bounded random
variables (see Doukhan [26], page 3) the right-hand side is bounded by cknαln which converges
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to zero by construction. Here and in what follows, c stands for any positive constant whose value
is not of interest. Its value may change from line to line. This finishes the proof of the mixing
condition.

(3) Next, we check the anti-clustering condition (A.2) for (Xt ) with normalization (an), im-
plying the corresponding condition for (X2

t ) with normalization (a2
n). By similar methods as for

part (1) of the proof, assuming that ‖ · ‖ is the max-norm, we have

P

(
max

t=l,...,mn

‖Xt‖ > γan | ‖X0‖ > γan

)
≤

mn∑
t=l

P
(‖Xt‖ > γan | ‖X0‖ > γan

)
≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P(|Xit | > γan, |Xj0| > γan)

P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P(max(σit , σj0)min(|Zit |, |Zj0|) > γ an)

P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P(σit min(|Zit |, |Zj0|) > γ an)

P(|Z| > γan)
.

By stationarity, the probabilities on the right-hand side do not depend on t ≥ l. Therefore and by
Breiman’s result, the right-hand side is bounded by

cmn

P(min(|Zit |, |Zj0|) > γ an)

P(|Z| > γan)
= O
(
(mn/n)

[
nP
(|Z| > an

)])= o(1).

This proves (A.2) for (Xt ).
(4) Next, we check the vanishing small values condition (A.3) for the partial sums of (X2

t )

and α ∈ (2,4). It is not difficult to see that it suffices to prove the corresponding result for the
component processes:

lim
ε↓0

lim sup
n→∞

P

(∣∣∣∣∣
n∑

t=1

(
X2

it1
(|Xit | ≤ εan

)−E
[
X2

it1
(|Xit | ≤ εan

)])∣∣∣∣∣> γa2
n

)
= 0,

(3.8)
γ > 0, i = 1, . . . , p.

We have

a−2
n

n∑
t=1

σ 2
itE
[
Z2

it1
(|Xit | ≤ εan

) | σit

]− a−2
n nE

[
X2

it1
(|Xit | ≤ εan

)]
= a−2

n

n∑
t=1

(
σ 2

it −E
[
σ 2

it

])
E
[
Z2]
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− a−2
n

n∑
t=1

(
σ 2

itE
[
Z2

it1
(|Xit | > εan

) | σit

]−E
[
X2

it1
(|Xit | > εan

)])
= I1 + I2.

The sequence (σ 2
it ) satisfies the central limit theorem with normalization

√
n. This follows from

Ibragimov’s central limit theorem for strongly mixing sequence whose rate function (αh) satisfies
(3.1) and has moment E[σ 2(2+δ))] < ∞ (see (3.2)); cf. Doukhan [26], page 45. We know that√

n/a2
n → 0 for α ∈ (2,4). Therefore, I1

P→ 0. We also have

E
[
I 2

2

] ≤ n

a4
n

E
[
σ 4(

E
[
Z21
(|X| > εan

) | σ ])2]
+ 2

n

a4
n

n∑
h=1

∣∣cov
(
σ 2

i0E
[
Z2

i01
(∣∣X2

i0

∣∣> εan

) | σi0
]
, σ 2

ihE
[
Z2

ih1
(∣∣X2

ih

∣∣> εan

) | σih

])∣∣
= I3 + I4.

In view of the moment conditions on σ and since E[Z2] < ∞, I3 ≤ c(n/a4
n) → 0. In view of

Doukhan [26], Theorem 3 on page 9, we have

I4 ≤ c
n

a4
n

n∑
h=1

α
δ/(2+δ)
h

(
E|σ |2(2+δ)

)2/(2+δ) → 0.

Thus, it suffices for (3.8) to prove

lim
ε↓0

lim sup
n→∞

P

(∣∣∣∣∣
n∑

t=1

(
σ 2

itE
[
Z2

it1
(|Xit | ≤ εan

) | σit

]− X2
it1
(|Xit | ≤ εan

))∣∣∣∣∣> γa2
n

)
= 0,

γ > 0.

The summands are independent and centered, conditional on the σ -field generated by
(σit )t=1,...,n. An application of Čebyshev’s inequality conditional on this σ -field and Karamata’s
theorem yield, as n → ∞,

E

[
P

(∣∣∣∣∣
n∑

t=1

(
σ 2

itE
[
Z2

it1
(|Xit | ≤ εan

) | σit

]− X2
it1
(|Xit | ≤ εan

))∣∣∣∣∣> γa2
n|(σis)

)]

≤ ca−4
n E

[
n∑

t=1

var
(
X2

it1
(|Xit | ≤ εan

) | σit

) | (σis)

]

≤ cnε4
E
[∣∣X/(εan)

∣∣41
(|X| ≤ εan

)]→ cε4−α.

The right-hand side converges to zero as ε ↓ 0.
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This proves that all assumptions of Theorem A.1 are satisfied. Therefore, the random vari-
ables on the left-hand side of (3.3) converge to an α-stable random vector with log-characteristic
function∫ ∞

0
E
[
eiyt′

∑∞
j=0 �

(2)
j − eiyt′

∑∞
j=1 �

(2)
j − iyt′1(1,2)(α/2)

]
d
(−yα/2)

=
p∑

j=1

1

p

∫ ∞

0
E
[
eiytj − iytj 1(1,2)(α/2)

]
d
(−yα/2), t = (t1, . . . , tp)′ ∈R

p,

where we used (3.6) and that �
(2)
h = 0 for h ≥ 1. One easily checks that all summands in this

expression are homogeneous functions in tj of degree α/2. Therefore, the limiting random vector
in (3.3) has the same distribution as the sum

∑p

j=1 ej ξj,α/2 for i.i.d. ξj,α/2 which are α/2-stable
and totally skewed to the right (because all the summands in Sj are non-negative). �

3.3. Eigenvalues of the sample covariance matrix

We have the following approximations:

Theorem 3.6. Assume that one of the following conditions holds:

1. (Xit ) is an i.i.d. field of regularly varying random variables with index α ∈ (0,4). If
E[|X|] < ∞ we also assume E[X] = 0.

2. (Xit ) is a stochastic volatility model (2.1) satisfying the regular variation, mixing and mo-
ment conditions of Theorem 3.3. If E[|Z|] < ∞ we also assume E[Z] = 0.

Then, with Xn as in (2.3),

a−2
n

∥∥Xn
(
Xn
)′ − diag

(
Xn
(
Xn
)′)∥∥

2
P→ 0,

where ‖ · ‖2 is the spectral norm and (an) is a sequence such that nP(|X| > an) → 1.

Proof. Part (1). Recall that for a p × p matrix A we have ‖A‖2 ≤ ‖A‖F , where ‖ · ‖F denotes
the Frobenius norm. Hence,

a−4
n

∥∥Xn
(
Xn
)′ − diag

(
Xn
(
Xn
)′)∥∥2

2 ≤ a−4
n

∥∥Xn
(
Xn
)′ − diag

(
Xn
(
Xn
)′)∥∥2

F
(3.9)

=
∑

1≤i 	=j≤p

(
a−2
n Sij

)2
.

In view of the assumptions, (XitXjt )t=1,2,..., i 	= j , is an i.i.d. sequence of regularly varying
random variables with index α which is also centered if E[|X|] < ∞. We consider two different
cases.

The case α ∈ (0,2). According to classical limit theory (see Feller [30], Petrov [40]) we have

for i 	= j , b−1
n Sij

d→ ξα , (see (2.3) for the definition of Sij ) where ξα is an α-stable random
variable and (bn) is chosen such that nP(|X1X2| > bn) → 1 for independent copies X1,X2 of X.
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Since (bn) and (a2
n) are regularly varying with indices 1/α and 2/α, respectively, the right-hand

side in (3.9) converges to zero in probability.
The case α ∈ [2,4). In this case, the distribution of X1X2 is in the domain of attraction of

the normal law. Since X1X2 has mean zero we can apply classical limit theory (see Feller [30],

Petrov [40]) to conclude that b−1
n Sij

d→ N , where (bn) is regularly varying with index 1/2 and
N is centered Gaussian. Since bn/a

2
n → 0 we again conclude that the right-hand side of (3.9)

converges to zero in probability.
Part (2). We again appeal to (3.9). Let γ < min(2, α). Then we have for i 	= j , using the

independence of (XitXjt ) conditional on ((σit , σjt )) and that the distribution of Z is centered if
its first absolute moments exists, that

a
−2γ
n E

[|Sij |γ | ((σit , σjt )
)] ≤ c

n

a
2γ
n

1

n

n∑
t=1

(σitσjt )
γ
(
E|Z|γ )2,

cf. von Bahr and Esséen [49] and Petrov [40], 2.6.20 on page 82. In view of the moment condition
(3.2), we have E[(σiσj )

γ ] < ∞ and n/a
2γ
n → 0 if we choose γ sufficiently close to min(2, α).

Then the right-hand side converges to zero in view of the ergodic theorem. An application of the

conditional Markov inequality of order γ yields a−2
n Sij

P→ 0. This proves the theorem. �

Corollary 3.7. Assume that (Xit ) is either:

1. an i.i.d. field of regularly varying random variables with index α ∈ (0,4) and E[X] = 0 if
E[|X|] < ∞, or

2. a stochastic volatility model of regularly varying random variables with index α ∈ (0,4) \
{2} satisfying the conditions of Theorem 3.6(2).

Then

a−2
n max

i=1,...,p
|λ(i) − S(i)| P→ 0,

where (λi) are the eigenvalues of Xn(Xn)′, λ(1) ≥ · · · ≥ λ(p) are their ordered values and S(1) ≥
· · · ≥ S(p) are the ordered values of S1, . . . , Sp defined in (2.3). In particular, we have

a−2
n (λ(1) − cn, . . . , λ(p) − cn)

d→ (ξ(1),α/2, . . . , ξ(p),α/2), (3.10)

where (cn) is defined in (3.4) for α 	= 2 and in Remark 3.4 for α = 2, (ξi,α/2) are i.i.d. α/2-stable
random variables given in Theorem 3.3 for the stochastic volatility model and in Remark 3.4 for
the i.i.d. field, and ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2 are their ordered values.

Proof. We have by Weyl’s inequality (see Bhatia [9]) and Theorem 3.6,

a−2
n max

i=1,...,p
|λ(i) − S(i)| ≤ a−2

n

∥∥Xn
(
Xn
)′ − diag

(
Xn
(
Xn
)′)∥∥

2
P→ 0. (3.11)

If (Xit ) is an i.i.d. random field (see Remark 3.4) or a stochastic volatility model satisfying the
conditions of Theorem 3.6(2), we have (3.3). Then (3.11) implies (3.10). �
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Remark 3.8. If α ∈ (2,4), we have E[X2] < ∞. Therefore, (3.10) reads as

n

a2
n

(
λ(i)

n
−E
[
X2])

i=1,...,p

d→ (ξ(i),α/2)i=1,...,p. (3.12)

We notice that n/a2
n → ∞ for α ∈ (2,4) since (n/a2

n) is regularly varying with index 1 − 2/α.
In particular, if tr(Xn(Xn)′) denotes the trace of Xn(Xn)′ we have for i ≤ p,

λ(i)

tr(Xn(Xn)′)
= λ(i)/n

(λ1 + · · · + λp)/n

P→ 1

p
. (3.13)

The joint asymptotic distribution of the ordered eigenvalues (λ(i)) is easily calculated from the
distribution of a totally skewed α/2-stable random variable ξ1,α/2; in particular, the limit of
(a−2

n (λ(1) − cn)) has the distribution of max(ξ1,α/2, . . . , ξp,α/2).
For applications, it is more natural to replace the random variables Xit by their mean-centered

versions Xit − Xi , where Xi = (1/n)
∑n

t=1 Xit , instead of assuming that they have mean zero.
The previous results remain valid for the sample-mean centered random variables Xit , also in the
case when X has infinite first moment.

3.4. Some applications: Limit results for ordered eigenvalues and
eigenvectors of the sample covariance matrix

In what follows, we assume the conditions of Corollary 3.7.

3.4.1. Spacings

Using the joint convergenceof the normalized ordered eigenvalues (λ(i)) we can calculate the
limit of the spectral gaps:(

λ(i) − λ(i+1)

a2
n

)
i=1,...,p−1

d→ (ξ(i),α/2 − ξ(i+1),α/2)i=1,...,p−1. (3.14)

We notice that the ordered values ξ(i),α/2 and linear functionals thereof (such as ξ(i),α/2 −
ξ(i+1),α/2) are again jointly regularly varying with index α/2. This is due to the continuous
mapping theorem for regularly varying vectors; see Hult and Lindskog [32,33], cf. Jessen and
Mikosch [35].

3.4.2. Trace

For the trace of Xn(Xn)′ we have

a−2
n

(
tr
(
Xn
(
Xn
)′)− pcn

) = a−2
n

p∑
i=1

(Si − cn)

= a−2
n

p∑
i=1

(λi − cn)
d→ ξ1,α/2 + · · · + ξp,α/2

d= p2/αξ1,α/2.
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Moreover, we have the joint convergenceof the normalized and centered (λ(i)) and tr(Xn(Xn)′) =
λ1 + · · · + λp . In particular, we have the self-normalized limit relations(

λ(i) − cn

tr(Xn(Xn)′) − pcn

)
i=1,...,p

d→
(

ξ(i),α/2

ξ1,α/2 + · · · + ξp,α/2

)
i=1,...,p

,

and for α ∈ (2,4), by the strong law of large numbers,

np

a2
n

(
λ(i) − cn

tr(Xn(Xn)′)

)
i=1,...,p

d→ ξ(i),α/2

E[X2] .

3.4.3. Determinant

Since λi − cn are the eigenvalues of Xn(Xn)′ − cnIp , where Ip is the p × p identity matrix, we
obtain for the determinant

det
(
a−2
n

(
Xn
(
Xn
)′ − cnIp

)) =
p∏

i=1

a−2
n (λ(i) − cn)

d→ ξ(1),α/2 · · · ξ(p),α/2 = ξ1,α/2 · · · ξp,α/2.

For α ∈ (2,4), we also have

1

a2
nc

p−1
n

(
det
(
Xn
(
Xn
)′)− c

p
n

) =
p∑

i=1

a−2
n (λ(i) − cn)

i−1∏
j=1

λ(j)

cn

d→
p∑

i=1

ξ(i),α/2 =
p∑

i=1

ξi,α/2
d= p2/αξ1,α/2,

where we used (3.12).

3.4.4. Eigenvectors

It is also possible to localize the eigenvectors of the matrix a−2
n Xn(Xn)′. Since this matrix is

approximated by its diagonal in spectral norm, one may expect that the unit eigenvectors of the
original matrix are close to the canonical basis vectors. We can write

a−2
n Xn

(
Xn
)′eLj

= a−2
n S(j)eLj

+ εnW,

where W is a unit vector orthogonal to eLj
, Lj is the index of S(j) = SLj

and

εn = a−2
n

∥∥(Xn
(
Xn
)′ − S(j)

)
eLj

∥∥
�2

P→ 0,
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from Theorem 3.6 and by equivalence of all matrix norms. According to Proposition A.1 in
Benaych-Georges and Peché [7], there is an eigenvalue a−2

n λ(j) of a−2
n Xn(Xn)′ in some εn-

neighborhood of a−2
n S(j). Define

�n = {a−2
n |λ(j) − λ(l)| > dn, l 	= j

}
,

for dn = kεn for any fixed k > 1. Then limn→∞ P(�n) = 1 because of (3.14) and dn
P→ 0. Hence,

for large n, a−2
n λ(j) and a−2

n λ(l) have distance at least dn with high probability. Another applica-
tion of Proposition A.1 in [7] yields that the unit eigenvector V associated with a−2

n λ(j) satisfies
the relation

lim sup
n→∞

P
(‖V − VLj

eLj
‖�2 > δ

) ≤ lim sup
n→∞

P
({‖V − VLj

eLj
‖�2 > δ

}∩ �n

)+ lim sup
n→∞

P
(
�c

n

)
≤ lim sup

n→∞
P
({

2εn/(dn − εn) > δ
}∩ �n

)
= 1{2/(k−1)>δ}.

For any fixed δ > 0, the right-hand side is zero for sufficiently large k. Since both V and eLj
are

unit eigenvectors this means that ‖V − eLj
‖�2

P→ 0.

3.4.5. Sample correlation matrix

In Remark 3.8, we mentioned that we can replace the variables Xit by their sample-mean cen-
tered versions Xit −Xi without changing the asymptotic theory. Similarly, one may be interested
in transforming the Xit as follows:

X̃it = Xit − Xi

σ̂i

, σ̂ 2
i =

n∑
t=1

(Xit − Xi)
2.

Then the matrix

X̃n
(
X̃n
)′ = ( n∑

t=1

X̃it X̃j t

)
i,j=1,...,p

,

is the sample correlation matrix. We write λ̃i , i = 1, . . . , p, for the eigenvalues of X̃n(X̃n)′ and
λ̃(1) ≥ · · · ≥ λ̃(p) for their ordered values.

We notice that the entries of this matrix are all bounded in modulus by one. In particular, the
diagonal consists of ones. We do not have a complete limit theory for the eigenvalues λ̃i . We
restrict ourselves to i.i.d. (Xit ) to explain the differences.

Lemma 3.9. Assume that (Xit ) is an i.i.d. field of random variables.

1. If E[X2] < ∞, then
√

n max
i=1,...,p

|̃λi − 1| = OP(1).
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2. If X is regularly varying with index α ∈ (0,2), then

a2
n

bn

max
i=1,...,p

|̃λi − 1| = OP(1),

where (an) and (bn) are chosen such that P(|X| > an) ∼ P(|X1X2| > bn) ∼ n−1 for i.i.d.
copies X1,X2 of X.

Remark 3.10. Notice that the lemma implies λ̃i
P→ 1 for i = 1, . . . , p, and the analog of relation

(3.13) remains valid.

Proof. Part (1) We assume without loss of generality that 1 = E[X2]. Then by classical limit
theory,

√
n
(
X̃n
(
X̃n
)′ − diag

(
X̃n
(
X̃n
)′)) = √

n
(
X̃n
(
X̃n
)′ − Ip

)
=
(

1(i 	= j)
n−1/2∑n

t=1(Xit − Xi)(Xjt − Xj)

(̂σi/
√

n)(̂σj /
√

n)

)
d→ (

Nij 1(i 	= j)
)
,

where Nij , 1 ≤ i < j ≤ n, are i.i.d. N(0,1) and Nij = Nji . By Weyl’s inequality,

√
n max

i=1,...,p
|̃λ(i) − 1| ≤ √

n
∥∥X̃n
(
X̃n
)′ − Ip

∥∥
2 = OP(1).

Part (2) If X is regularly varying with index α ∈ (0,2), we have that (a−2
n σ̂ 2

i ) converges to a
vector of i.i.d. positive α/2-stable random variables (ξi), while for every i 	= j , b−1

n

∑n
t=1(Xit −

Xi)(Xjt − Xj)
d→ ξij and the limit ξij is α-stable. Then by Weyl’s inequality

a2
n

bn

max
i=1,...,p

|̃λ(i) − 1| ≤ a2
n

bn

∥∥X̃n
(
X̃n
)′ − Ip

∥∥
2 = OP(1). �

4. Case (2): σ dominates the tail

In this section, we assume the conditions of Case (2); see Section 2.2. Our goal is to derive results
analogous to Case (1): regular variation of (Xit ), infinite variance limits for Sij and limit theory
for the eigenvalues of the corresponding sample covariance matrices. It turns out that this case
offers a wider spectrum of possible limit behaviors and that we have to further distinguish our
assumptions about the distribution of the innovations (ηi) with generic element η in the log-linear
model for σ ; see (2.7). So, in addition to (2.8) we assume that either

E
[
eηα
]= ∞ (4.1)



1368 Janssen, Mikosch, Rezapour and Xie

or

lim
x→∞

P(η1 + η2 > x)

P(η1 > x)
= c ∈ (0,∞) ⇔ lim

x→∞
P(eη1 · eη2 > x)

P(eη1 > x)
= c ∈ (0,∞) (4.2)

hold, where η1 and η2 are independent copies of η.

Remark 4.1. Following Cline [14], we call the distribution of a random variable η convolution
equivalent if eη is regularly varying and relation (4.2) holds. The assumptions (4.1) and (4.2) are
mutually exclusive, since the only possible finite limit c in (4.2) is given by c = 2E[eηα]; see
Davis and Resnick [16]. There are, however, regularly varying distributions of eη which satisfy
E[eηα] < ∞ but not (4.2). An example is given in Cline [14], page 538; see also Lemma B.1(3)
for a necessary and sufficient condition ensuring (4.2).

As we will see later, relations (4.1) and (4.2) cause rather distinct limit behavior of the sam-
ple covariance matrix. In particular, (4.2) allows for non-vanishing off-diagonal elements of the
normalized sample covariance matrices, in contrast to Case (1).

For notational simplicity, define

ψ = max
k,l

ψkl and � = {(k, l) : ψkl = ψ
}
.

Recall that for convenience we assume that ψ = 1; if the latter condition does not hold we can
replace (without loss of generality) the random variables ηkl by ψηkl and the coefficients ψkl by
ψkl/ψ . For given (i, j), we define

ψij = max
k,l

(ψkl + ψk+i−j,l). (4.3)

Notice that 1 ≤ ψij ≤ 2. For d ≥ 1, we write i = (i1, . . . , id ), j = (j1, . . . , jd) for elements of Zd .
For given i and j we also define

ψ i,j = max
1≤l≤d

ψil,jl .

4.1. Regular variation

We start by showing that the volatility sequences are regularly varying.

Proposition 4.2. Under the aforementioned conditions and conventions (including that either
(4.1) or (4.2) hold):

1. each of the sequences (σit )t∈Z, i = 1,2, . . . , is regularly varying with index α,
2. each of the sequences (σitσjt )t∈Z, i, j = 1,2, . . . , is regularly varying with corresponding

index α/ψij ,
3. for d ≥ 1 and i, j ∈ Z, the d-variate sequence ((σik,t σjk,t )1≤k≤d)t∈Z is regularly varying

with index α/ψ i,j.
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Remark 4.3. Part (3) of the proposition possibly includes degenerate cases in the sense that for
some choices of (ik, jk), (σik,t σjk,t ) is regularly varying with index α/ψik,jk > α/ψ i,j.

Part (3) implies (2) in the case d = 1. Part (2) implies (1) by setting i = j and observing that,
by non-negativity of σ , regular variation of (σ 2

it ) with index α/2 is equivalent to regular variation
of (σit ) with index α.

Proof. To give some intuition we start with the proof of the marginal regular variation of σ ,
although it is just a special case of (1). We have

σit = e
∑

(k,l)∈� ηi−k,t−l e
∑

(k,l)/∈� ψklηi−k,t−l =: σit,�σit,�c . (4.4)

We first verify that σ = σ�σ�c is regularly varying with index α. Since |�| < ∞ by our assump-
tions, and in view of Embrechts and Goldie [28], Corollary on page 245, cf. also Lemma B.1(1)
below, the product σ� is regularly varying with index α. The random variable σ�c is independent
of σ�. Similarly to Mikosch and Rezapour [38] (see also the end of this proof for a similar ar-
gumentation) one can show that σ�c has moment of order α + ε for sufficiently small positive ε.
Therefore, by Breiman’s lemma [11],

P(σ > x) ∼ E
[
σα

�c

]
P(σ� > x), x → ∞.

This proves regular variation with index α of the marginal distributions of (σit ).
In the remainder of the proof, we focus on (3). For a given choice of i, j, t ∈ Z

d , we write

�i,j,t = {(m,n) : ψil−m,tl−n + ψjl−m,tl−n = ψ i,j for some 1 ≤ l ≤ d
}
. (4.5)

We will show that the random vector (σi1,t1σj1,t1, . . . , σid ,td σjd ,td ) =: σ ′ is regularly varying with
index α/ψ i,j which proves (3). Note that

σi,tσj,t =
∏
(k,l)

exp(ψklηi−k,t−l)
∏

(k′,l′)
exp(ψk′l′ηj−k′,t−l′)

=
∏

(m,n)

exp
(
(ψi−m,t−n + ψj−m,t−n)ηm,n

)
and write

σ = diag

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝

∏
(m,n)∈�c

i,j,t

eηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈�c

i,j,t

eηm,n(ψid−m,td−n+ψjd−m,td−n)

⎞⎟⎟⎟⎟⎟⎟⎠

′⎞⎟⎟⎟⎟⎟⎟⎟⎠
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×

⎛⎜⎜⎜⎜⎜⎜⎝

∏
(m,n)∈�i,j,t

eηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈�i,j,t

eηm,n(ψid−m,td−n+ψjd−m,td−n)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.6)

=: AZ,

where diag((a1, . . . , ak)) is any diagonal matrix with diagonal elements a1, . . . , ak . We notice
that A and Z are independent.

Consider i.i.d. copies (Yj ) of eη. There exist suitable numbers (aij )1≤i≤d,1≤j≤p with p =
|�i,j,t| such that the components of Z have representation in distribution

∏p

j=1 Y
aij

j , 1 ≤ i ≤ d .
By assumption, Yj is regularly varying with index α and satisfies either assumption (B.3) or
E[Yα

j ] = ∞. Furthermore, for each j there exists one 1 ≤ i ≤ d such that aij = amax = ψ i,j by
the definition of �i,j,t. An application of Proposition B.3 shows that Z is regularly varying with
index α/ψ i,j and limit measure μZ which is given as μ in Proposition B.3(ii) (if (4.1) holds) or
Proposition B.3(i) (if (4.2) holds). Now, choose ε, δ > 0 such that

ψil−m,tl−n + ψjl−m,tl−n

ψ i,j (1 + δ) < 1 − ε, (m,n) ∈ �c
i,j,t,1 ≤ l ≤ d,

which is possible by the definition of �i,j,t and the summability constraint on the coefficients.
Then we have

E
[‖A‖α(1+δ)/ψ i,j

op

]
≤

d∑
l=1

∏
(m,n)∈�c

i,j,t

E
[
eηm,nα(1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/ψ i,j]

≤
d∑

l=1

∏
(m,n)∈�c

i,j,t

E
[
eηm,nα(1−ε)

](1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/((1−ε)ψ i,j)
< ∞,

where we used Jensen’s inequality for the penultimate step and the summability condition of the
coefficients for the final one. Thus, we have verified all conditions of the multivariate Breiman
lemma in Basrak et al. [4], implying that σ inherits regular variation from Z with corresponding
index α/ψ i,j and limit measure μσ (·) = E[μZ(A−1·)]. �

Proposition 4.4. Assume that the aforementioned conditions (including either (4.1) or (4.2))
hold and that in addition E[|Z|α+δ] < ∞ for some δ > 0. Then the following statements hold:

1. Each of the sequences (Xit )t∈Z, i ∈ Z, is regularly varying with index α.
If (4.1) holds, then the corresponding spectral tail process satisfies �i

t = 0 a.s., t ≥ 1,
and P(�i

0 = ±1) = E[Zα±]/E[|Z|α].
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If (4.2) holds, then for any Borel set B = B0 × · · · × Bn ⊂R
n+1,

P
((

�i
t

)
t=0,...,n

∈ B
)

(4.7)

=
∑

(u,v)∈�
(0)
i

1

|�(0)
i |

E[1((1((u, v) ∈ �
(t)
i )

Xit|Xi0| )t=0,...,n ∈ B)|Xi0|α]
E[|Xi0|α] ,

where �
(t)
i = {(u, v) : ψi−u,t−v = 1}, t = 0, . . . , n.

2. Each of the sequences (XitXjt )t∈Z, i, j ∈ Z, is regularly varying with index α/ψij .

If (4.1) holds, then the corresponding spectral tail process satisfies �
ij
t = 0 a.s., t ≥ 1,

and P(�
ij

0 = ±1) = E[(ZiZj )
α/ψij

± ]/E[|ZiZj |α/ψij ].
If (4.2) holds, then for any Borel set B = B0 × · · · × Bn ⊂R

n+1,

P
((

�
ij
t

)
t=0,...,n

∈ B
)

(4.8)

=
∑

(u,v)∈�
(0)
i,j

1

|�(0)
i,j |

E[1((1((u, v) ∈ �
(t)
i,j )

XitXjt

|Xi0Xj0| )t=0,...,n ∈ B)|Xi0Xj0|α/ψij ]
E[|Xi0Xj0|α/ψij ] ,

where �
(t)
i,j = {(u, v) : ψi−u,t−v + ψj−u,t−v = ψij }, t = 0, . . . , n.

3. For d ≥ 1 and i, j ∈ Z
d , the d-variate sequence ((XiktXjkt )1≤k≤d)t∈Z is jointly regularly

varying with index α/ψ i,j.

Remark 4.5. 1. Equation (4.7) shows that in this case the distribution of (�i
t )t≥0 is a mixture

of |�(0)
i | distributions, where each distribution gets the weight 1/|�(0)

i |. Heuristically speaking,

a distribution in this mixture that corresponds to a specific (u, v) ∈ �
(0)
i has interpretation as the

distribution of (Xit /|Xi0|)t≥0, given that we have seen an extreme observation of |Xi0| caused
by an extreme realization of eηu,v . The variables eηu,v , (u, v) ∈ �

(0)
i , are those which have a max-

imum exponent (equal to 1) in the product
∏

(u,v) exp(ψi−u,−vηu,v) = σi0. They are therefore
the factors which are most likely to make σi0, hence Xi0, extreme.

An analogous interpretation can be derived from (4.8) for the distribution of (�
ij
t )t≥0.

2. Note that for fixed i, j , the inner indicator functions in (4.7) and (4.8) are positive only
for finitely many t . Hence, there are only finitely many t ≥ 1 such that P(�i

t 	= 0) > 0 and

P(�
(ij)
t 	= 0) > 0.

3. Using similar techniques as in the proof of cases (1) and (2) below, one can also give an
explicit expression for the resulting d-dimensional spectral tail process of ((XiktXjkt )1≤k≤d)t∈Z
in (3). However, due to its complexity, we refrain from stating it here.

Proof. We start by showing that all mentioned sequences are regularly varying. Exemplarily, we
show this for case (2). Very similar arguments can be used for the two other cases. For n ≥ 0
write

(XitXjt )
′
t=0,...,n = diag

(
(ZitZjt )

′
t=0,...,n

) · (σitσjt )
′
t=0,...,n.
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Since ψij ≥ 1 our moment assumption on Z implies that E[|Z|α/ψij +δ] < ∞ for some δ > 0.
Then Proposition 4.2 allows us to apply the aforementioned multivariate Breiman lemma, yield-
ing the regular variation of the vector (XitXjt )t=0,...,n with index α/ψij . From the first definition
given in Section 2.3, this implies the regular variation of the sequence.

As for the derivation of the explicit form of the spectral tail process in (1) and (2), we restrict
ourselves to derive the distribution of the spectral tail process (�

ij
t )t≥0 in part (2); part (1) is

similar.
If μσ ij

n denotes the vague limit measure of (σi,0σj,0, . . . , σi,nσj,n)
′ the multivariate Breiman

lemma yields the vague limit measure μXij

n of (Xi,0Xj,0, . . . ,Xi,nXj,n)
′ given by

μXij

n (B) = cE

[
μσ ij

n

(
n×

t=0

(
Bt/(ZitZjt )

))]
(4.9)

= cE

[
μ̃σ ij

n

(
n×

t=0

(
Bt/

(
ZitZjt

∏
(u,v)∈�c

i,j,n

eηu,v(ψi−u,t−v+ψj−u,t−v)

)))]

for any μXij

n -continuity Borel set B =×n
t=0 Bt ∈ [−∞,∞]n+1 \ {0} bounded away from 0,

�i,j,n is equal to �i,j,t as defined in (4.5) with i = (i, . . . , i), j = (j, . . . , j), t = (0, . . . , n), and

μ̃σ ij

n is the limit measure of the regularly varying vector( ∏
(u,v)∈�i,j,n

eηu,v(ψi−u,t−v+ψj−u,t−v)

)
t=0,...,n

, (4.10)

see the proof of Proposition 4.2. The distribution of the tail process of (XitXjt ) (cf. Section 2.3)
is then determined by

P
((

Y�
ij
t

)
t=0,...,n

∈ B
) = lim

x→∞
P((XitXjt/x)t=0,...,n ∈ B, |Xi0Xj0|/x > 1)

P(|Xi0Xj0|/x > 1)
(4.11)

= μXij

n (B ∩ ([−∞,∞]\[−1,1] × [−∞,∞]n))
μXij

n ([−∞,∞]\[−1,1] × [−∞,∞]n) .

The concrete forms of μ̃σ ij

n , hence of μXij

n , now depend on whether (4.1) or (4.2) holds.

We first assume (4.1). Note that �i,j,n = ⋃n
t=0 �

(t)
i,j , where �

(t)
i,j = {(u, v) : ψi−u,t−v +

ψj−u,t−v = ψij }. Indeed, we easily see that �
(t)
i,j = �

(0)
i,j + (0, t), t = 1, . . . , n. We apply Propo-

sition B.3(ii) to derive the specific form of the limit measure μ̃σ ij

n of (4.10). Each compo-

nent of this vector contains |�(0)
i,j | factors with maximal exponent ψij . For the t th component,

those are the factors exp(ηu,v(ψi−u,t−v + ψj−u,t−v)), (u, v) ∈ �
(t)
ij . Hence, peff = |�(0)

i,j | and

Peff = {�(0)
i,j + (0, t), t = 0, . . . , n}. By (B.8), the measure μ̃σ ij

n , up to a constant multiple, is
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given by

μ̃σ ij

n (B) = c

n∑
s=0

∫ ∞

0
P

((
1
(
ψi−u,t−v + ψj−u,t−v = ψij ∀(u, v) ∈ �

(s)
i,j

)
zψij

×
∏

(u,v)∈�i,j,n\�(s)
i,j

eηu,v(ψi−u,t−v+ψj−u,t−v)

)
0≤t≤n

∈ B

)
να(dz)

= c

n∑
s=0

∫ ∞

0
P

((
1(t = s)zψij ∏

(u,v)∈�i,j,n\�(s)
i,j

eηu,v(ψi−u,t−v+ψj−u,t−v)

)
0≤t≤n

∈ B

)

× να(dz),

where να(dx) = αx−α−1 dx. The sth measure in the sum above is concentrated on the sth axis.
Therefore the limit measure μ̃σ ij

n is concentrated on the axes. By (4.9), this implies that μXij

n

is concentrated on the axes as well. Therefore μXij

n (B ∩ ([−∞,∞]\[−1,1]) × [−∞,∞]n) = 0
as soon as one Bi,1 ≤ i ≤ n, in B =×n

i=0 Bi is bounded away from 0. With (4.11) this gives

Y�
ij
t = 0 a.s. for t ≥ 1 and therefore �

ij
t = 0 a.s. for t ≥ 1. The law of �

ij

0 follows from the
univariate Breiman lemma.

Next assume (4.2). By Proposition B.3(i), the vague limit measure μ̃σ ij

n is up to a constant
given by

μ̃σ ij

n (B) =
∑

(u,v)∈�i,j,n

∫ ∞

0
P

((
1
(
(u, v) ∈ �

(t)
i,j

)
zψij

×
∏

(ũ,ṽ)∈�i,j,n

(ũ,ṽ)	=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ )ηũ,ṽ

)
t=0,...,n

∈ B

)
να(dz).

For sets B such that B ∩ ({0} × [−∞,∞]n) = ∅ it suffices thereby to sum only over (u, v) ∈
�

(0)
i,j instead over all (u, v) ∈ �i,j,n =⋃n

t=0 �
(t)
i,j . For these sets, we have by Breiman’s lemma

(cf. (4.9)),

μXij

n (B)/c =
∑

(u,v)∈�
(0)
i,j

∫ ∞

0
P

((
1
(
(u, v) ∈ �

(t)
i,j

)
zψij

×
∏

(ũ,ṽ)	=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ )ηũ,ṽZitZjt

)
t=0,...,n

∈ B

)
να(dz)

=
∑

(u,v)∈�
(0)
i,j

∫ ∞

0
P
((

1
(
(u, v) ∈ �

(t)
i,j

)
zψij

XitXjte
−ψij ηu,v

)
t=0,...,n

∈ B
)
να(dz),
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where we used that if (u, v) ∈ �
(t)
i,j , then

∏
(ũ,ṽ)	=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ )ηũ,ṽ = σitσjt

e(ψi−u,t−v+ψj−u,t−v)ηu,v
= σitσjt

eψij ηu,v
.

Fubini’s theorem and a substitution finally simplify this expression to

∑
(u,v)∈�

(0)
i,j

E

[∫ ∞

0
1
((

1
(
(u, v) ∈ �

(t)
i,j

)
zψij

XitXjte
−ψij ηu,v

)
t=0,...,n

∈ B
)
να(dz)

]

=
∑

(u,v)∈�
(0)
i,j

E

[∫ ∞

0
1
((

1
(
(u, v) ∈ �

(t)
i,j

)
y

XitXjt

|Xi0Xj0|
)

t=0,...,n

∈ B

)

× |Xi0Xj0|α/ψij

e−αηu,v ν α

ψij
(dy)

]
.

Note that the range of the inner integral in the last expression can be changed from (0,∞) to
(1,∞), if B ∩ [−1,1] × [−∞,∞]n =∅. Therefore, by writing

B̃0 = B0 \ [−1,1], B̃t = Bt , t ≥ 1, B̃ =
n×

t=0
B̃t ,

we get from (4.11) that

P
((

Y�
ij
t

)
t=0,...,n

∈ B
)

= μXij

n (B̃)

μXij

n (([−∞,∞]\[−1,1]) × [−∞,∞]n)

=
∑

(u,v)∈�
(0)
i,j

E[∫∞
1 1((1((u, v) ∈ �

(t)
i,j )y

XitXjt

|Xi0Xj0| )t=0,...,n ∈ B)|Xi0Xj0|α/ψij
e−αηu,v ν α

ψij
(dy)]∑

(u,v)∈�
(0)
i,j

E[|Xi0Xj0|α/ψij e−αηu,v ]

=
∑

(u,v)∈�
(0)
i,j

1

|�(0)
i,j |

E[1((1((u, v) ∈ �
(t)
i,j )Y

XitXjt

|Xi0Xj0| )t=0,...,n ∈ B)|Xi0Xj0|α/ψij ]
E[|Xi0Xj0|α/ψij ] ,

where Y is a Pareto(α/ψij ) random variable, independent of all other random variables in the
expression. For the last equation, we expanded both numerator and denominator by multiplying
with E(eαηu,v ), noting that for (u, v) ∈ �

(0)
i,j the random variable eαηu,v is independent both of the

indicator function and of |Xi0Xj0|α/ψij
e−αηu,v . From the law of the tail process (Y�

ij
t ), we can

now see that the law of the spectral tail process (�
ij
t ) satisfies (4.8). �
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4.2. Infinite variance stable limit theory for the stochastic volatility model
and its product processes

In the following result, we provide central limit theory with infinite variance stable limits for the
sums Sij ; see (2.3).

Theorem 4.6. We consider the stochastic volatility model (2.1) and assume the special form of
(σit ) given in (2.7) with ψ = 1. For given (i, j), define a sequence (bn) such that nP(|Xi0Xj0| >
bn) → 1 as n → ∞. Assume the following conditions:

1. The conditions of Proposition 4.4 hold, ensuring that E[|Z|α/ψij +ε] < ∞ for some ε > 0
and (XitXjt ) is regularly varying with index α/ψij and spectral tail process (�

ij
h ).

2. (σitσjt ) is α-mixing with rate function (αh) and there exists δ > 0 such that αn = o(n−δ).
3. Either:

(i) α/ψij < 1, or
(ii) i 	= j , α/ψij ∈ [1,2) and Z is symmetric, or

(iii) i = j , α/ψii = α/2 ∈ (1,2) and the mixing rate in (2) satisfies supn n
∑∞

h=rn
αh <

∞ for some integer sequence (rn) such that nrn/b
2
n → 0 as n → ∞.

Then

b−1
n (Sij − cn)

d→ ξij,α/ψij , (4.12)

where ξij,α/ψij is a totally skewed to the right α/ψij -stable random variable and

cn =
{

nE
[
X2], i = j and α ∈ (2,4),

0, i 	= j or α/ψij < 1.

Remark 4.7. 1. If (αh) decays at an exponential rate, one can choose rn = C logn for a
sufficiently large constant C. Then supn n

∑∞
h=rn

αh < ∞ and nrn/b
2
n → 0 hold. These con-

ditions are also satisfied if αh ≤ cn−(1+γ ) for some γ > 0, rn = Cnξ for some ξ > 0 and
1/γ ≤ ξ < 2ψij /α − 1.

2. The sequence (XitXjt ) inherits α-mixing from (σitσjt ); see Remark 3.5.
3. It is possible to prove joint convergence for 1 ≤ i, j ≤ p in (4.12). Due to different tail

behavior for distinct (i, j) the normalizing sequences (bn) = (b
ij
n ) typically increase to infinity

at different rates. Then it is only of interest to consider the joint convergence of those Sij whose
summands XitXjt have the same tail index α/ψij . More precisely, it suffices to consider those
Sij with the property that XitXjt is tail-equivalent to X2

it . The joint convergence follows in a
similar way as in the proof below, by observing that Theorem A.1 is a multivariate limit result.
The joint limit of Sij in (4.12) with equivalent tails of index α̃ (say) is jointly α̃-stable with
possible dependencies in the limit vector.

4. The strongest normalization is needed for Si = Sii . Recall that the summands X2
it of Si

are regularly varying with index α/2, that is, ψii = 2. Let (an) be such that nP(|X| > an) → 1.
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Under the conditions of Theorem 4.6, we have that a−2
n (Si − cn)

d→ ξi,α/2, i = 1, . . . , p for a

jointly α/2-stable limit. If α/2 < α/ψij for some i 	= j , then bn/a
2
n → 0, hence a−2

n Sij
P→ 0.

It is possible that XitXjt is regularly varying with index α/2 but nevertheless bn/a
2
n → 0; see

Example 4.8 which deals with the case E[eαη] = ∞.

Proof. We apply Theorem A.1 to the sequence (XitXjt ), cf. also Remark A.2.

(1) The regular variation condition on (XitXjt ) with index α/ψij is satisfied by assumption.
Moreover, �h = 0 for sufficiently large h; see Remark 4.5.

(2) The assumption about the mixing coefficients in condition (2) implies that for a sufficiently
small ε ∈ (0,1) and mn = n1−ε there exists an integer sequence ln = o(mn) such that knαln → 0.
For this choice of mn and ln, the proof of the mixing condition for the sums of the truncated
variables

Sij =
n∑

t=1

XitXjt1
(|XitXjt | > εbn

)
is now analogous to the proof of the corresponding property in Theorem 3.3.

(3) We want to show that

lim
l→∞ lim sup

n→∞
n

mn∑
t=l

P
(|XitXjt | > bn, |Xi0Xj0| > bn

)= 0 (4.13)

for mn = n1−ε as above. Write

σitσjt =
∏

(m,n)

exp
(
(ψi−m,t−n + ψj−m,t−n)ηm,n

)
and set �ε,t = {(m,n) : ψi−m,t−n + ψj−m,t−n ≥ 8−1ψij ε}, t ∈ Z. Without loss of generality, we
assume that l is so large that �ε,t ∩ �ε,0 is empty for all t ≥ l. Then write for t ≥ l,

σitσjt = σit,j t,�ε,t · σit,j t,�ε,0 · σit,j t,�c
ε,0,t

, σi0σj0 = σi0,j0,�ε,0 · σi0,j0,�ε,t · σi0,j0,�c
ε,0,t

,

where

σit1,j t1,�ε,t2
=

∏
(m,n)∈�ε,t2

exp
(
(ψi−m,t1−n + ψj−m,t1−n)ηm,n

)
.

We conclude that (σit,j t,�ε,t , σit,j t,�ε,0 , σi0,j0,�ε,0 , σi0,j0,�ε,t ) and (σit,j t,�c
ε,0,t

, σi0,j0,�c
ε,0,t

) are
independent. We have

P
(|XitXjt | > bn, |Xi0Xj0| > bn

)
≤ P
(
max
(|Zi0Zj0|, |ZitZjt |

)
max(σit,j t,�c

ε,0,t
, σi0,j0,�c

ε,0,t
)

× min(σi0,j0,�ε,0σi0,j0,�ε,t , σit,j t,�ε,t σit,j t,�ε,0) > bn

)
.
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The distribution of max(σit,j t,�c
ε,0,t

, σi0,j0,�c
ε,0,t

) is stochastically dominated uniformly for t ≥ l

by a distribution which has moment of order 8α/(ψij ε) > 2α/ψij . Furthermore,

min(σi0,j0,�ε,0σi0,j0,�ε,t , σit,j t,�ε,t σit,j t,�ε,0)

≤ min

( ∏
(m,n)∈�ε,0∪�ε,t

exp
(
(ψi−m,−n + ψj−m,−n)(ηm,n)+

)
,

∏
(m,n)∈�ε,0∪�ε,t

exp
(
(ψi−m,t−n + ψj−m,t−n)(ηm,n)+

))

≤ min

( ∏
(m,n)∈�ε,0

exp
(
ψij (ηm,n)+

) ∏
(m′,n′)∈�ε,t

exp
(
8−1ψij ε(ηm′,n′)+

)
,

∏
(m′,n′)∈�ε,t

exp
(
ψij (ηm′,n′)+

) ∏
(m,n)∈�ε,0

exp
(
8−1ψij ε(ηm,n)+

))

≤ min

( ∏
(m,n)∈�ε,0

exp
((

ψij + 8−1ψij ε
)
(ηm,n)+

)
,

∏
(m,n)∈�ε,t

exp
((

ψij + 8−1ψij ε
)
(ηm,n)+

))
.

The right-hand side is regularly varying with index 2α/(ψij (1+8−1ε)). A stochastic domination
argument and an application of Breiman’s lemma show that uniformly for l ≤ t ≤ mn,

mnnP
(|XitXjt | > bn, |Xi0Xj0| > bn

) = n2−εo
(
b

−2α/(ψij (1+4−1ε))
n

)
= n2−εo

(
n−2/(1+2−1ε)

)
= o(1)

which yields (4.13).
(4) We check the vanishing small values condition. For any fixed δ, we write

XitXjt = XitXjt1
(|XitXjt | ≤ δbn

)
, i 	= j,

X2
it = X2

it1
(
X2

it ≤ δbn

)−E
[
X2

it1
(
X2

it ≤ δbn

)]
,

Sij =
n∑

t=1

XitXjt , Si = Sii .
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Assume α/ψij ∈ [1,2), i 	= j . Then, by symmetry of the random variables Zit and Karamata’s
theorem for any γ > 0 as n → ∞, E[Sij ] = 0 and

P
(|Sij | > γbn

) ≤ (γ bn)
−2 var(Sij )

= n(γ bn)
−2

E
[
(XitXjt )

2]
∼ γ −2δ2−α,

and the right-hand side converges to zero as δ ↓ 0.
For i = j and α/ψii > 1 we need a different argument. We have by Čebyshev’s inequality,

P
(|Si | > γbn

) ≤ γ −2b−2
n var(Si)

= γ −2(n/b2
n

) ∑
|h|<n

(1 − h/n) cov
(
X2

i0,X
2
ih

)
.

For |h| ≤ h0 for any fixed h0, (n/b2
n)| cov(X2

i0,X
2
ih)| vanishes by letting first n → ∞ and then

δ ↓ 0. This follows by Karamata’s theorem. Standard bounds for the covariance function of an
α-mixing sequence (see Doukhan [26], page 3) yield(

n/b2
n

) ∑
rn≤|h|<n

∣∣cov
(
X2

i0,X
2
ih

)∣∣ ≤ cδ2n
∑

rn≤|h|<n

αh,

where rn → ∞ is chosen such that supn n
∑

rn≤|h|<∞ αh < ∞ and nrn/b
2
n → 0. The right-hand

side converges to zero by first letting n → ∞ and then δ ↓ 0. It remains to show that

In = (n/b2
n

) ∑
h0<|h|≤rn

(1 − h/n) cov
(
X2

i0,X
2
ih

)
is asymptotically negligible. We have

|In| ≤ (n/b2
n

) ∑
h0<|h|≤rn

E
[
X2

i0X
2
ih1
(
X2

i0 ≤ δbn,X
2
ih ≤ δbn

)]+ cnrn/b
2
n

≤ (n/b2
n

) ∑
h0<|h|≤rn

E
[
X2

i0X
2
ih

]+ o(1),

where we used that nrn/b
2
n → 0. We will show that the summands on the right-hand side are

uniformly bounded by a constant if h0 is sufficiently large. Then limn→∞ In = 0.
We observe that by Hölder’s inequality,

E
[
X2

i0X
2
ih

] = cE
[
σ 2

i0σ
2
ih

]
= cE

[
e

2
∑

(k,l)∈�ξ
ψkl(ηi−k,−l+ηi−k,h−l )e

2
∑

(k,l)/∈�ξ
ψkl(ηi−k,−l+ηi−k,h−l )]

≤ c
(
E
[
e

2r
∑

(k,l)∈�ξ
ψkl(ηi−k,−l+ηi−k,h−l )])1/r(

E
[
e

2s
∑

(k,l)/∈�ξ
ψkl(ηi−k,−l+ηi−k,h−l )])1/s

,
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where �ξ = {(k, l) : ψik > ξ} for some positive ξ, s, t such that 1/r +1/s = 1. Since σ 2
i0 has mo-

ments up to order α/ψii ∈ (1,2) and (ηi−k,−l )(k,l)∈�ξ
and (ηi−k,h−l )(k,l)∈�ξ

are independent for

sufficiently large h we can choose r > 1 close to one such that E[e2r
∑

(k,l)∈�ξ ψkl(ηi−k,−l+ηi−k,h−l )]
is finite. This implies that we choose s sufficiently large. On the other hand, for fixed s we can
make ξ so small that E[e2s

∑
(k,l)/∈�ξ ψkl(ηi−k,−l+ηi−k,h−l )] is finite and uniformly bounded for suffi-

ciently large h. Fine tuning ξ and s, we may conclude that limn→∞ In = 0 as desired.
By Theorem A.1 and Remark A.2 the result now follows; see also the end of the proof of

Theorem 3.3 for the form of the resulting limit law. �

Example 4.8. We assume that E[eαη] = ∞, hence e2η does not have a finite α/2th moment.
Using Lemma B.1(5), calculation shows that for i 	= j with ψij = 2,

lim
x→∞

P(|Xi0Xj0| > x)

P(X2 > x)
= 0. (4.14)

Define (an) such that nP(|X| > an) → 1. We may conclude from (4.14) and Theorem 4.6 that

for i 	= j we have a−2
n Sij

P→ 0 although both Xi0Xj0 and X2 are regularly varying with index
α/2.

By Theorem 4.6 and Remark 4.7, we conclude that

a−2
n (Si − cn)i=1,...,p

d→ (ξi,α/2)i=1,...,p, (4.15)

where the limit vector consists of α/2-stable components. The spectral tail process (�h)h≥1 of
the sequence Xt = (X1t , . . . ,Xpt )

′, t = 1,2, . . . , vanishes. This follows by an argument similar
to the proofs of Propositions 4.4 and B.3 under condition (4.1). A similar argument also yields
that

lim
x→∞

P(|Xi0| > x, |Xj0| > x)

P(|X| > x)
= 0, i 	= j.

Therefore the the distribution of �0 is concentrated on the axes and has the same form as �
(2)
0

in (3.6). As in the proof of Theorem 3.3 this implies that the limit random vector in (4.15) has
i.i.d. components.

We conclude that the limit theory for Sij , 1 ≤ i, j ≤ p, are very essentially the same in Case (1)
and in Case (2) when the additional condition E[eαη] = ∞ holds.

Example 4.9. Assume that (4.2) holds. We may conclude from Theorem 4.6 that a−2
n Sij

P→ 0
for i 	= j if ψij < 2. The crucial difference to the previous case appears when ψij = 2 for some
i 	= j . In this case, not only the (a−2

n (Si −cn)), i = 1,2, . . . , have totally skewed to the right α/2-

stable limits but we also have a−2
n Sij

d→ ξij,α/2 for non-degenerate α/2-stable ξij,α/2. From (4.3),
we conclude that if ψij = 2 appears then ψi′j ′ = 2 for all |i′ − j ′| = |i − j |. This means that
non-degenerate limits may appear not only on the diagonal of the matrix a−2

n (Sij − cn) but also
along full sub-diagonals.
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In this case, the distribution of �0 from the spectral tail process of the sequence Xt =
(X1t , . . . ,Xpt )

′ does not have to be concentrated on the axes – in contrast to Example 4.8. This
implies that the limiting α/2-stable random variables ξi,α/2, i = 1, . . . , p, are in general not in-
dependent. However, similar to the arguments at the end of the proof of Theorem 3.3, one can
show that the distribution of the limiting random vector (ξi,α/2)i=1,...,p is the convolution of dis-
tributions of α/2-stable random vectors which concentrate on hyperplanes of Rp of dimension
less or equal than |{(m,n) : ψmn = 1}|.

4.3. The eigenvalues of the sample covariance matrix of a multivariate
stochastic volatility model

In this section, we provide some results for the eigenvalues of the sample covariance matrix
Xn(Xn)′ under the conditions of Theorem 4.6. We introduce the sets

�p = {(i, j) : 1 ≤ i, j ≤ p such that ψij = 2
}
, �c

p = {(i, j) : 1 ≤ i, j ≤ p
}\�p

and let (an) be such that nP(|X| > an) → 1.

Theorem 4.10. Assume that the conditions of Theorem 4.6 hold for (Xit ,Xjt ), 1 ≤ i, j ≤ p, and
α ∈ (0,4). Then

a−2
n

∥∥Xn
(
Xn
)′ − X̃n

∥∥
2

P→ 0, n → ∞,

where X̃n is a p × p matrix with entries

X̃ij =
n∑

t=1

XitXjt1
(
(i, j) ∈ �p

)
, 1 ≤ i, j ≤ p.

Moreover, if E[eαη] = ∞ we also have

a−2
n

∥∥Xn
(
Xn
)′ − diag

(
Xn
(
Xn
)′)∥∥

2
P→ 0, n → ∞.

Proof. We have

a−4
n

∥∥Xn
(
Xn
)′ − X̃n

∥∥2
2 ≤

∑
(i,j)∈�c

p

(
a−2
n Sij

)2
.

For (i, j) ∈ �c
p we have i 	= j and the sequence (XitXjt ) is regularly varying with index α/ψij >

α/2. In view of Theorem 4.6 the right-hand side converges to zero in probability.

In the case when E[eαη] = ∞, we learned in Example 4.8 that a−2
n Sij

P→ 0 whenever i 	= j .
This concludes the proof. �

For any p × p non-negative definite matrix A write λi(A), i = 1, . . . , p, for its eigenvalues
and λ(1)(A) ≥ · · · ≥ λ(p)(A) for their ordered values. For the eigenvalues of Xn(Xn)′, we keep
the previous notation (λi).
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Corollary 4.11. Assume the conditions of Theorem 4.10 and α ∈ (0,4)\{2}. Then

a−2
n max

i=1,...,p

∣∣λ(i) − λ(i)

(
X̃n
)∣∣ P→ 0 (4.16)

and

a−2
n

(
λ(i) − nE

[
X2]1(α ∈ (2,4)

))
i=1,...,p

(4.17)
d→ (

λ(i)

((
ξkl,α/21

(
(k, l) ∈ �p

))
1≤k,l≤p

))
i=1,...,p

,

where (ξij,α/2)(i,j)∈�p are jointly α/2-stable (possibly degenerate for i 	= j ) random variables.
Moreover, in the case when E[eαη] = ∞ we have

a−2
n

(
λ(i) − nE

[
X2]1(α ∈ (2,4)

))
i=1,...,p

d→ (ξ(i),α/2)i=1,...,p, (4.18)

where (ξi,α/2)i=1,...,p are i.i.d. totally skewed to the right α/2-stable random variables with order
statistics ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2.

Proof. Relation (4.16) is an immediate consequence of Theorem 4.10 and Weyl’s inequality; see
Bhatia [9]. We conclude from Theorem 4.6 and Remark 4.7(3) that

a−2
n

(
Sij − nE

[
X2]1(α ∈ (2,4)

))
(i,j)∈�p

d→ (ξij,α/2)(i,j)∈�p . (4.19)

Then (4.17) follows. Relation (4.18) is a special case of (4.17). If E[eαη] = ∞ then, in view of Ex-
ample 4.8, only the diagonal elements in (4.19) have non-degenerate i.i.d. α/2-stable limits. �

Some conclusions

By virtue of this corollary and in view of Section 3.3 the results for the eigenvalues in Case (1)
and in Case (2) when E[eαη] = ∞ are very much the same. Moreover, the results in Section 3.4
remain valid in the latter case.

If (4.2) holds, Case (2) is quite different from Case (1); see Example 4.9. In this case, not
only the diagonal of the matrix Xn(Xn)′ determines the asymptotic behavior of its eigenvalues
and eigenvectors. Indeed, if ψij = 2 for some i 	= j , then at least two sub-diagonals of Xn(Xn)′
have non-degenerate α/2-limits and these sub-diagonals together with the diagonal determine
the asymptotic behavior of the eigenspectrum. The limiting diagonal elements are dependent in
contrast to Case (1). This fact and the presence of sub-diagonals are challenges if one wants to
calculate the limit distributions of the eigenvalues and eigenvectors.

5. Simulations and data example

In this section, we illustrate the behavior of sample covariance matrices for moderate sample sizes
for the models discussed in Sections 3 and 4 and we compare them with a real-life data example.
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Figure 1. Estimated tail indices of cross products for the FX rates of 18 currencies against SEK. The
indices are derived by Hill estimators with threshold equal to the 97%-quantile of n = 1567 observations.

These data consist of 1567 daily log-returns of foreign exchange (FX) rates from 18 currencies
against the Swedish Kroner (SEK) from January 4th 2010 to April 1st 2016, as made available by
the Swedish National Bank. To start with, the Hill estimators of the tail indices αij ,1 ≤ i, j,≤ 18,
of the cross products XitXjt ,1 ≤ i, j,≤ 18, are visualized in Figure 1. In particular, the Hill
estimators on the diagonal (corresponding to the series X2

it ,1 ≤ i ≤ 18) of the values αi/2, where
αi is the tail index of the ith currency, are of similar size although not identical. Even if all
series had the same tail index the Hill estimator exhibits high statistical uncertainty which even
increases for serially dependent data, cf. Drees [27]. A way to make the data more homogeneous
in their tails is to rank-transform their marginals to the same distribution. We do, however, refrain
from such a transformation to keep the correlation structure of the original data unchanged.

It is clearly visible that some off-diagonal components of the matrix have an estimated tail
index which is comparable to the on-diagonal elements. This implies that the tails of the cor-
responding off-diagonal entries Sij , i 	= j , of the sample covariance matrix may be of a similar
magnitude as the on-diagonal entries Si . This is in stark contrast to the asymptotic behavior of
the models analyzed in Section 3.

Figure 2(a) shows the ordered eigenvalues of the sample covariance matrix (normalized by
its trace) and the eigenvector of the FX rate data corresponding to the largest eigenvalue. There
exists a notable spectral gap between the largest and second largest eigenvalues and the unit
eigenvector corresponding to the largest eigenvector has all positive and non-vanishing compo-
nents. For comparison and to illustrate the variety of the models discussed above, we also plot
corresponding realizations of three model specifications from Sections 3 and 4. In all cases, we
choose p = 18 and n = 1567 in accordance with the data example. We assume throughout a
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(a)

(b)

Figure 2. Normalized and ordered eigenvalues (left) and eigenvector corresponding to largest eigenvalue
(right) of real and simulated data, with n = 1567,p = 18. (a) Based on FX rate data of 18 foreign currencies
against SEK. (b) Based on a stochastic volatility model with heavy-tailed innovation sequence. (c) Based on
a stochastic volatility model with heavy-tailed volatility sequence that satisfies assumptions of Example 4.8.
(d) Based on a stochastic volatility model with heavy-tailed volatility sequence that satisfies assumptions of
Example 4.9.

moving average structure in the log-volatility process logσit in (2.1). More specifically,

σit = exp

(
18∑

k=1

ηi−k,t

)
, 1 ≤ i ≤ 18, t ∈ Z. (5.1)

In accordance with the model properties discussed in Section 3, we first assume i.i.d. standard
Gaussian ηi,t and i.i.d. Zit with a Student-t distribution with t = 3 degrees of freedom. Fig-
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(c)

(d)

Figure 2. (Continued.)

ure 2(b) shows the normalized eigenvalues and the first unit eigenvector from a realization of
this model. We notice a relatively large gap between the first and second eigenvalue and, in ac-
cordance with Section 3.4.4, we see that the first unit eigenvector is relatively close to a unit
basis vector. Figure 2(c) shows the corresponding realizations for the model (5.1) with a spec-
ification according to Example 4.8, that is, Exponential(3)-distributed i.i.d. ηi,t (meaning that
P(ηi,t > x) = exp(−3x), x ≥ 0, which implies α = 3 and E[e3η] = ∞) and i.i.d. standard Gaus-
sian Zit . Compared to the first simulated model, we see a slower decay in the magnitude of the
ordered eigenvalues and a more spread out first unit eigenvector. This observation illustrates that
although the limit behavior of this model and the one analyzed before should be very similar (cf.
Example 4.8), convergence to the prescribed limit appears slower for the heavy-tailed volatility
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sequence than for the heavy-tailed innovations. Finally, Figure 2(d) shows a simulation drawn
from (5.1) where the ηi,t are i.i.d. such that P(ηi,t > x) ∼ x−2 exp(−3x), x → ∞, and the Zit are
i.i.d. standard Gaussian. Again, α = 3, but direct calculations show that the distribution of ηi,t is
convolution equivalent, that is, it satisfies (4.2) instead of (4.1). The graphs are in line with the
analysis in Example 4.9 and illustrate a very spread out dominant eigenvector. We note that while
none of the three very simple models analyzed in the simulations above is able to fully describe
the behavior of the analyzed data, the two models with heavy-tailed volatility and light-tailed
innovations are able to explain a non-concentrated first unit eigenvector of the sample covariance
matrix and therefore non-negligible dependence between components as seen in the data.

Appendix A: Some α-stable limit theory

In this paper, we make frequently use of Theorem 4.3 in Mikosch and Wintenberger [39] which
we quote for convenience:

Theorem A.1. Let (Yt ) be an R
p-valued strictly stationary sequence, Sn = Y1 + · · · + Yn and

(an) be such that nP(‖Y‖ > an) → 1. Also write for ε > 0, Yt = Yt1(‖Yt‖ ≤ εan), Yt = Yt −Yt

and

Sl,n =
l∑

t=1

Yt , Sl,n =
l∑

t=1

Yt .

Assume the following conditions:

1. (Yt ) is regularly varying with index α ∈ (0,2) \ {1} and spectral tail process (�j ).
2. A mixing condition holds: there exists an integer sequence mn → ∞ such that kn =

[n/mn] → ∞ and

Eeit′Sn/an − (Eeit′Smn,n/an
)kn → 0, n → ∞, t ∈R

p. (A.1)

3. An anti-clustering condition holds:

lim
l→∞ lim sup

n→∞
P

(
max

t=l,...,mn

‖Yt‖ > δan | ‖Y0‖ > δan

)
= 0, δ > 0 (A.2)

for the same sequence (mn) as in (2).
4. If α ∈ (1,2), in addition E[Y] = 0 and the vanishing small values condition holds:

lim
ε↓0

lim sup
n→∞

P
(
a−1
n

∥∥Sn −E[Sn]
∥∥> δ

)= 0, δ > 0 (A.3)

and
∑∞

i=1 E[‖�i‖] < ∞.

Then a−1
n Sn

d→ ξα for an α-stable R
p-valued vector ξα with log-characteristic function∫ ∞

0
E
[
eiyt′

∑∞
j=0 �j − eiyt′

∑∞
j=1 �j − iyt′1(1,2)(α)

]
d
(−yα

)
, t ∈ R

p. (A.4)
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Remark A.2. If we additionally assume that Y is symmetric, which implies E[Y] = 0, then the
statement of the theorem also holds for α = 1.

Appendix B: (Joint) Tail behavior for products of regularly
varying random variables

In this paper, we make frequently use of the tail behavior of products of non-negative independent
random variables X and Y . In particular, we are interested in conditions for the existence of the
limit

lim
x→∞

P(XY > x)

P(X > x)
= q (B.1)

for some q ∈ [0,∞]. We quote some of these results for convenience.

Lemma B.1. Let X and Y be independent random variables.

1. If X and Y are regularly varying with index α > 0, then XY is regularly varying with the
same index.

2. If X is regularly varying with index α > 0 and E[Yα+ε] < ∞ for some ε > 0, then (B.1)
holds with q = E[Yα].

3. If X and Y are i.i.d. regularly varying with index α > 0 and E[Yα] < ∞, then (B.1) holds
with q = 2E[|Y |α] iff

lim
M→∞ lim sup

x→∞
P(XY > x,M < Y ≤ x/M)

P(X > x)
= 0. (B.2)

4. If X and Y are regularly varying with index α > 0, E[Yα + Xα] < ∞, limx→∞ P(Y >

x)/P(X > x) = 0 and (B.2) holds, then (B.1) holds with q = E[|Y |α].
5. Assume that E[|Y |α] = ∞. Then (B.1) holds with q = ∞.

Proof. (1) This is proved in Embrechts and Goldie [28].
(2) This is Breiman’s [11] result.
(3) This is Proposition 3.1 in Davis and Resnick [15].
(4) This part is proved similarly to (3); we borrow the ideas from [15]. For M > 0, we have

the following decomposition

P(XY > x)

P(X > x)
= P(XY > x,Y ≤ M)

P(X > x)
+ P(XY > x,M < Y ≤ x/M)

P(X > x)
+ P(XY > x,Y > x/M)

P(X > x)

∼ E
[
Yα1(Y ≤ M)

]+ P(XY > x,M < Y ≤ x/M)

P(X > x)
+E
[
(X ∧ M)α

]P(Y > x)

P(X > x)

= E
[
Yα1(Y ≤ M)

]+ P(XY > x,M < Y ≤ x/M)

P(X > x)
+ o(1).
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Here we applied Breiman’s result twice. The second term vanishes by virtue of (B.2). Thus
q = E[Yα].

(5) The same argument as for (4) yields as x → ∞,

P(XY > x)

P(X > x)
≥ P(XY > x,Y ≤ M)

P(X > x)
∼ E
[
Yα1(Y ≤ M)

]
.

Then (B.1) with q = ∞ is immediate. �

Lemma B.2. Let Y1, . . . , Yp ≥ 0 be i.i.d. regularly varying random variables with index α > 0.
Assume that

lim
t→∞

P(Y1 · Y2 > t)

P(Y1 > t)
= c ∈ (0,∞). (B.3)

Then for any a1, . . . , ap ≥ 0 such that amax := maxj=1,...,p aj > 0 and any v > 0 we have

lim
t→∞

P(
∏p

i=1 Y
ai

i > vt)

P(Y
amax
1 > t)

=
∑

j :aj =amax

lim
s→0

lim
t→∞

P(
∏p

i=1 Y
ai

i > vt, Y
amax
j > st)

P(Y
amax
1 > t)

(B.4)

and

lim
s→0

lim sup
t→∞

P(
∏p

i=1 Y
ai

i > vt,maxj=1,...,p Y
amax
j ≤ st)

P(Y
amax
1 > t)

= 0. (B.5)

Proof. In view of Davis and Resnick [16], the only possible value for c in (B.3) is 2E[Yα
1 ]

(which implies that E[Yα
1 ] < ∞). Furthermore, we note that the product

∏
j :aj =amax

Y
aj

j is reg-
ularly varying with index −α/amax; see Embrechts and Goldie [28], Corollary on page 245. By
Breiman’s lemma, this implies that

lim
t→∞

P(
∏p

i=1 Y
ai

i > vt)

P(Y
amax
1 > t)

= lim
t→∞

P(Y
amax
1 > vt)

P(Y
amax
1 > t)

P(
∏p

i=1 Y
ai

i > vt)

P(Y
amax
1 > vt)

= v−α/amax

( ∏
j :aj 	=amax

E
[
Y

αaj /amax
j

])
lim

t→∞
P(
∏

j :aj =amax
Y

amax
j > vt)

P(Y
amax
1 > vt)

.

By Lemma 2.5 in Embrechts and Goldie [29] (cf. also Chover, Ney and Wainger [13]) this equals

v−α/amax

( ∏
j :aj 	=amax

E
[
Y

αaj /amax
j

])∣∣{j : aj = amax}
∣∣E[Yα

1

]|{j :aj =amax}|−1
.
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On the other hand, we have

∑
j :aj =amax

lim
s→0

lim
t→∞

P(
∏p

i=1 Y
ai

i > vt, Y
amax
j > st)

P(Y
amax
1 > t)

=
∑

j :aj =amax

lim
s→0

lim
t→∞

P(Y
amax
j min(s−1, v−1∏

k 	=j Y
ak

k ) > t)

P(Y
amax
j > t)

=
∑

j :aj =amax

lim
s→0

E

[(
min

(
s−1, v−1

∏
k 	=j

Y
ak

k

))α/amax
]

= v−α/amax
∑

j :aj =amax

∏
k 	=j

E
[
Y

αak/amax
k

]
= v−α/amax

( ∏
j :aj 	=amax

E
[
Y

αaj /amax
j

])∣∣{j : aj = amax}
∣∣E[Yα

1

]|{j :aj =amax}|−1
,

where we applied Breiman’s lemma in the second step to the bounded random variable min(s−1,
v−1∏

k 	=j Y
ak

k ), and the monotone convergence theorem in the penultimate step. This proves
(B.4). To prove (B.5) note that for s > 0,

P(
∏p

i=1 Y
ai

i > vt)

P(Y
amax
1 > t)

≥ P(
∏p

i=1 Y
ai

i > vt,maxj=1,...,p Y
amax
j ≤ st)

P(Y
amax
1 > t)

+
∑

j :aj =amax

P(
∏p

i=1 Y
ai

i > vt, Y
amax
j > st)

P(Y
amax
1 > t)

− P(
∏p

i=1 Y
ai

i > vt, Y
amax
j1

> st,Y
amax
j2

> st for some j1 	= j2)

P(Y
amax
1 > t)

, s > 0.

The last summand on the right-hand side converges to 0 as t → ∞ by independence of the Y ′
j s.

Moreover, the left-hand term and the second term on the right-hand side become equal by first
t → ∞ and then s → 0, in view of (B.4). Therefore the first right-hand term vanishes by first
t → ∞ and then s → 0. This proves the statement. �

Proposition B.3. Let Y1, . . . , Yp ≥ 0 be i.i.d. regularly varying with index α and (aij ) ∈
[0,∞)n×p,n,p ≥ 1, be such that max1≤i≤n aik = amax := maxi,j aij > 0 for any 1 ≤ k ≤ p.

(i) Assume that (B.3) holds. Then the random vector

Y :=
(

p∏
j=1

Y
aij

j

)
1≤i≤n

(B.6)
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is regularly varying with index α/amax. Furthermore, up to a constant the limit measure μ of Y
is given by

∑p

j=1 μj , where for any Borel set B ∈ [0,∞]n bounded away from 0 and να(dz) =
αz−α−1 dz,

μj (B) =
∫ ∞

0
P

((
1(aij = amax)z

amax
∏
k 	=j

Y
aik

k

)
1≤i≤n

∈ B

)
να(dz). (B.7)

(ii) Assume that E[Yα
1 ] = ∞. Set

peff := max
i

∣∣{1 ≤ j ≤ p : aij = amax}
∣∣,

Peff := {A ⊂ {1, . . . , p} : |A| = peff ∧ ∃i : ∀j ∈ A : aij = amax
}
.

Then the random vector Y in (B.6) is regularly varying with index α/amax. Furthermore, up to a
constant the limit measure μ of Y is equal to

∑
A∈Peff

μA, where for any Borel set B ∈ [0,∞]n
bounded away from 0,

μA(B) =
∫ ∞

0
P

((
1(aij = amax ∀j ∈ A)zamax

∏
k /∈A

Y
aik

k

)
1≤i≤n

∈ B

)
να(dz). (B.8)

Proof. (i) Let B ∈ [0,∞]n be a Borel set bounded away from 0. For s > 0 we have

P(Y ∈ tB)

P(Y
amax
1 > t)

= P(Y ∈ tB,maxj=1,...,p Y
amax
j ≤ st)

P(Y
amax
1 > t)

+
p∑

j=1

P(Y ∈ tB,Y
amax
j > st)

P(Y
amax
1 > t)

(B.9)

− P(Y ∈ tB,Y
amax
j1

> st,Y
amax
j2

> st, for some j1 	= j2)

P(Y
amax
1 > t)

.

Since B is bounded away from 0, there exists v > 0 and 1 ≤ i ≤ n such that B ⊂ {(x1, . . . , xn) ∈
[0,∞]n : xi > v}. From Lemma B.2, (B.5) the first summand in (B.9) therefore tends to 0 by
first t → ∞ and then s → 0. Furthermore, the third summand converges to zero as t → ∞ by
independence of the Y ′

j s. We are thus left to show

lim
s↘0

lim
t→∞

P(Y ∈ tB,Y
amax
j > st)

P(Y
amax
1 > t)

= μj (B),1 ≤ j ≤ p,

with μj as in (B.7). For s > 0 write

lim
t→∞

P(Y ∈ tB,Y
amax
j > st)

P(Y
amax
1 > t)

= s−α/amax lim
t→∞P

(
Y ∈ tB | Yamax

j > st
)
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= s−α/amax lim
t→∞P

(((
Y

amax
j

st

) aij
amax

s
aij

amax t
aij

amax
−1
∏
k 	=j

Y
aik

k

)
1≤i≤n

∈ B

∣∣∣Yamax
j > st

)

= s−α/amax

∫ ∞

1
P

((
1(aij = amax)sy

∏
k 	=j

Y
aik

k

)
1≤i≤n

∈ B

)
να/amax(dy).

Substituting sy by z in the integral finally gives

lim
s↘0

lim
t→∞

P(Y ∈ tB,Y
amax
j > st)

P(Y
amax
1 > t)

=
∫ ∞

0
P

((
1(aij = amax)z

amax
∏
k 	=j

Y
aik

k

)
1≤i≤n

∈ B

)
να(dz).

(ii) Note first that under our assumptions for any 1 ≤ n1 < n2 ≤ p,

lim
t→∞

P(
∏n2

j=1 Yj > t)

P(
∏n1

j=1 Yj > t)
= lim

t→∞

∫ ∞

0

P(
∏n1

j=1 Yj > t/y)

P(
∏n1

j=1 Yj > t)
P

∏n2
j=n1+1 Yj (dy)

(B.10)

≥ E

[
n2∏

j=n1+1

Yα
j

]
= ∞

by Fatou’s lemma and the regular variation of
∏n1

j=1 Yj . Write now

Y =
∑

1≤i≤n
|{j :aij =amax}|=peff

p∏
j=1

Y
aij

j ei +
∑

1≤i≤n
|{j :aij =amax}|<peff

p∏
j=1

Y
aij

j ei , (B.11)

where ei stands for the ith unit vector. The first sum can also be written as∑
A∈Peff

diag

((
1(aij = amax ∀j ∈ A)

∏
k /∈A

Y
aik

k

)
1≤i≤n

)∏
j∈A

Y
amax
j =:

∑
A∈Peff

YA, (B.12)

where for each summand the random matrix and the random factor are independent and for the
non-zero entries of the matrix we have aik < amax since k /∈ A. Thus, by the multivariate version
of Breiman’s lemma each YA is a multivariate regularly varying vector with limit measure μA (up
to a constant multiplier) as in (B.8) and normalizing function P(

∏peff
i=1 Y

amax
i > x). Furthermore,

for A,A′ ∈ Peff with A 	= A′ and i, i′ such that aij = amax ∀j ∈ A and ai′j = amax ∀j ∈ A′ we
have

P(YA
i > x,YA′

i′ > x)

P(
∏peff

i=1 Y
amax
i > x)

(B.13)

= P((
∏

j∈A∩A′ Yj )
amax
∏

j∈(A∩A′)c Y
aij

j > x, (
∏

j∈A∩A′ Yj )
amax
∏

j∈(A∩A′)c Y
ai′j
j > x)

P(
∏peff

i=1 Y
amax
i > x)

.
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By Janßen and Drees [34], Theorem 4.2 (in connection with Remark 4.3(ii) and the minor change
that our random variables are regularly varying with index α instead of 1), the numerator be-
haves asymptotically like P((

∏
j∈A∩A′ Yj )

amax > x), since κ0 = a−1
max, κj = 0, j ∈ (A ∩ A′)c is

the unique non-negative optimal solution to

κ0 +
∑

j∈(A∩A′)c
κj → min!

under

κ0amax +
∑

j∈(A∩A′)c
κj aij ≥ 1, κ0amax +

∑
j∈(A∩A′)c

κj ai′j ≥ 1.

This is because min(aij , ai′j ) < amax and max(aij , ai′j ) ≤ amax for all j ∈ (A ∩ A′)c . Since
A 	= A′, we have |A∩A′| < peff and thus, by (B.10), the expression (B.13) converges to 0 as x →
∞. Therefore, each component of YA is asymptotically independent of each component of YA′

and thus the sum in (B.12) is multivariate regularly varying with limit measure
∑

A∈Peff
μA and

normalizing function P(
∏peff

i=1 Y
amax
i > x). Since the second sum in (B.11) consists by (B.10) only

of random vectors for which P(‖∏p

j=1 Y
aij

j ei‖ > x) = P(
∏p

j=1 Y
aij

j > x) = o(P(
∏peff

i=1 Y
amax
i >

x)), we have that Y is regularly varying with index α/amax and limit measure
∑

A∈Peff
μA by

Lemma 3.12 in Jessen and Mikosch [35]. �
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