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In this paper, we study the asymptotic behavior of the normalized cadlag functions generated by the discrete
Fourier transforms of a stationary centered square-integrable process, started at a point.

We prove that the quenched invariance principle holds for averaged frequencies under no assumption
other than ergodicity, and that this result holds also for almost every fixed frequency under a certain gen-
eralization of the Hannan condition and a certain rotated form of the Maxwell and Woodroofe condition
which, under a condition of weak dependence that we specify, is guaranteed for a.e. frequency. If the process
is in particular weakly mixing, our results describe the asymptotic distributions of the normalized discrete
Fourier transforms at every frequency other than 0 and π under the generalized Hannan condition.

We prove also that under a certain regularity hypothesis the conditional centering is irrelevant for av-
eraged frequencies, and that the same holds for a given fixed frequency under the rotated Maxwell and
Woodroofe condition but not necessarily under the generalized Hannan condition. In particular, this implies
that the hypothesis of regularity is not sufficient for functional convergence without random centering at
a.e. fixed frequency.

The proofs are based on martingale approximations and combine results from Ergodic theory of recent
and classical origin with approximation results by contemporary authors and with some facts from Har-
monic Analysis and Functional Analysis.

Keywords: central limit theorem; discrete Fourier transform; invariance principle; martingale
approximation; quenched convergence

1. Introduction

A recent result by Barrera and Peligrad ([5], Theorem 1) shows that the quenched central limit
theorem holds for the normalized components of the Fourier transforms of a stationary process
in L2 orthogonal to the subspace of functions that are measurable with respect to the initial
sigma algebra. This quenched limit theorem corresponds to previous, annealed limit theorems
developed first by Wu in [23] and improved later by Peligrad and Wu in [20].

The paper [20] contains also an invariance principle ([20], Proposition 2.1) for the Fourier
Transforms. In [5], on the other side, the problem of quenched convergence for the sample paths
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generated by the discrete Fourier transforms is not studied, which in particular leaves untouched
the problem of extending to the quenched setting the aforementioned invariance principle by
Peligrad and Wu.

In this paper, we will address this problem. We will prove an “averaged frequency” quenched
limit theorem (Theorem 2) corresponding to the invariance principle by Peligrad and Wu. We
will also see that the asymptotic behavior of the normalized sample paths started at a point can be
described for almost every fixed frequency under a certain “weak form” of the Hannan condition
(see (37)) and under a certain “fixed frequency form” of the Maxwell and Woodroofe condition
(see (39)).

More specifically, we will see that, under the weakened Hannan condition (37), martingale
approximations are possible for every frequency other than (perhaps) zero, and we will deduce
and describe asymptotic distributions for the normalized sample paths at every frequency other
than those corresponding to the “square root” of the point spectrum of the Koopman operator
associated to the process. We will also see that the same conclusion holds for a fixed frequency
in this set provided that (39) holds, with the additional conclusion that, in this case, the random
centering is not needed. We will give a sufficient condition, (42), for the fulfillment of (39) at a.e.
frequency.

We emphasize that no assumption of regularity (see (29)) is needed for this, though some of
the proofs are reached by first reducing to the regular case. We also emphasize that our proofs
take advantage of some recently developed techniques in the realm of the calculus of asymp-
totic distributions. See, for instance, Lemma 5.6 and its proof, and the results by Cuny and
Volný in [10]. We point out as well that the forthcoming results are valid for complex-valued
processes: the estimates needed for the martingale approximations do not require the special
properties (for instance, total ordering) of the real numbers in an essential way,1 and the martin-
gale limit theorems are valid as far as the square root of the point spectrum is avoided for the
rotations.

Our presentation is organized as follows: in Section 2, we will introduce some general facts
and notions related to the quenched convergence of stochastic processes. Then we will introduce,
in Section 3, the setting in which our discussions will take place. Section 4 presents briefly the
essentials of convergence in distribution for complex-valued cadlag functions. In Section 5, we
will present without proof our main results, Theorems 2, 3 and 4, preceded by a brief series of
martingale approximation lemmas needed for their proofs. Section 6 is devoted to the martingale
case, and Sections 7 and 8 are devoted, respectively, to the proofs of Theorems 2 and 3 together
with 4. Finally, the Appendix presents some results that are used along the previous proofs and
that deserve special mention due to their general or classical nature.

Notation. Throughout this paper, N = {0,1,2, . . . } denotes the natural numbers starting at
zero, we also use the notation N∗ := N \ {0}. Unless otherwise specified, an expression of the
form “limn” (or “lim supn” or “lim infn”) and “→n” must be read as “limn→∞” (and similarly
for “lim supn” and “lim infn”) and “→n→∞”.

1The same observation applies to many of the results referenced in this paper, which are often stated under the unneces-
sary assumption that the processes under consideration are real-valued.
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2. Quenched convergence

Let (Yn)n be a measurable sequence on some metric space (S, d). This is, for every n (n ∈ N
or N∗ or Z), Yn : (�,F) → (S,S) is an F/S-measurable function where (�,F) is a (fixed)
measurable space and S is the Borel sigma algebra of S. Let P be a given probability measure
on (�,F), so that (�,F,P) is a probability space, and denote by “⇒P” the convergence in
distribution with respect to P.

The Portmanteau theorem ([7], Theorem 2.2) states, among other equivalences, that if Y :
(�′,F ′,P′) → (S,S) is a random element of S, then Yn ⇒P Y (as n → ∞) if and only if for
every continuous and bounded function f : S → R∫

�

f ◦ Yn(ω)dP(ω) →n

∫
�′

f ◦ Y(z) dP′(z), (1)

or, in the usual probabilistic notation, if and only if

lim
n

Ef (Yn) = Ef (Y ), (2)

where E is the expectation (Lebesgue integral) with respect to the corresponding probability
measures2 and f (Z) := f ◦ Z (whenever this makes sense).

A stronger kind of convergence, quenched convergence, can be defined in the following way:
fix a sub-sigma algebra F0 ⊂ F representing, in a heuristic language, the “initial information”
about (or the “initial conditions of”) the process (Yn)n, and denote by E0 the conditional expec-
tation with respect to F0. Then we will say that Yn converges to Y in the quenched sense with
respect to F0 if for every continuous and bounded function f : S → R

E0
[
f (Yn)

] →n Ef (Y ), P-a.s. (3)

Note that since this is pointwise convergence of uniformly bounded functions (to a con-
stant value), the dominated convergence theorem guarantees that limn Ef (Yn) = Ef (Y ), thus
quenched convergence implies convergence in distribution.

Remark 2.1. The same argument, in combination with Theorem 34.2(v) in [6], shows that if
G0 ⊂ F0 is any sigma algebra, then the assumption of quenched convergence with respect to
F0 implies that limn E[f (Yn)|G0] = Ef (Y ), P-a.s. In other words, quenched convergence with
respect to a given sigma algebra F0 implies quenched convergence with respect to any sub-
sigma algebra of F0. Note also that one can interpret convergence in distribution (or “annealed”
convergence) as quenched convergence with respect to the trivial sigma algebra {∅,�}.

An example showing that the notion of quenched convergence is strictly stronger than conver-
gence in distribution can be constructed by starting from any sequence (Yn)n of F0-measurable
functions and noticing that quenched convergence of Yn to Y in this case is the same as

2When necessary, we will indicate the underlying measures in some specified way, writing for instance, “EP ” instead
of “E ” for the expectation with respect to P.
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f (Yn) → Ef (Y ), P-a.s., for all continuous and bounded functions f , which is not possible if,
for instance, (Yn)n takes the values 1 and 0 infinitely often, P-a.s.3

More specifically, consider a sequence (Yn)n that converges in distribution but gives P-a.s. a
sequence with infinitely many 0s and 1s, and define F0 := σ({Yn}n). For instance, take the unit
interval [0,1] with the Lebesgue measure on its Borel sigma algebra as the underlying probability
space and let Yn : [0,1] → {0,1} be the characteristic function of [0,1/2) or the characteristic
function of [1/2,1] according to whether n is, respectively, even or odd. For another example,
closely related to the content of this paper, the reader is referred to [3].

Now assume that E0 is a regular conditional expectation: there exists a family of probability
measures {Pω}ω∈� such that for every integrable X : (�,F,P) →R

ω 
→
∫

�

X(z)dPω(z) (4)

defines an F0-measurable version of E0X.4 The existence of such a family is guaranteed if, for
instance, (�,F) is a Borel space, regardless of what F0 is. See Theorem 5.14 in [15].

From now on, we will just say that Yn converges to Y in the quenched sense to mean that the
quenched convergence is with respect to a fixed sigma algebra F0, returning to the full description
only if necessary to avoid ambiguity. Our first result on quenched convergence is the following:

Proposition 2.2. Assume that S is separable. If E0 is regular and Yn converges to Y in the
quenched sense (Y is defined on some probability space (�′,F ′,P′)), there exists a set �0 ⊂ �

with P�0 = 1 such that for all f : S → R continuous and bounded and all ω ∈ �0∫
�

f ◦ Yn(z) dPω(z) →n

∫
�′

f ◦ Y(z) dP′(z). (5)

In particular, Yn converges to Y in the quenched sense if and only if for P-a.e. ω, Yn ⇒Pω
Y as

n → ∞.

Thus, we can choose the set of a.s. convergence in the definition of quenched convergence
uniform over Cb(S): the space of bounded, continuous functions S → R. The set �0 depends,
nonetheless, on (Yn)n.

3Notice that, in this case (f (Yn))n has no limit whatsoever, P-a.s., for any f with f (0) �= f (1).
4More precisely we require, for a fixed version of X, the existence of an F0-measurable set �X with P�X = 1 such that
(4) makes sense for every ω ∈ �X , and such that the function given by (4) if ω ∈ �X , and zero otherwise, defines an
F0-measurable version of E0X, i.e., an F0-measurable function X̃ satisfying∫

A
X̃(ω)dP(ω) =

∫
A

X(ω)dP(ω)

for every A ∈ F0. It is possible to prove the existence of such �X just by requiring that the function defined by (4) if
X ∈ L1

Pω
and by zero otherwise defines an F0-measurable version of E0X for every X ∈ L1

P
. See, for instance, [4],

Remark 11.2. The approximation argument for this statement, which is similar to the one used to prove Lemma A.11 in
the Appendix, actually shows that it is enough to require that for every A ∈ F , ω 
→ Pω(A) defines an F0-measurable
version of P(A|F0).
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Proof of Proposition 2.2. Denote by Eω the integration with respect to Pω, and consider func-
tions Uk,ε as in the statement 2. of Lemma A.1 in the Appendix. By the definition of regularity
there exists, for all k ∈ N and all ε ∈Q∩ (0,∞), a set �k,ε ⊂ � with P�k,ε = 1 such that

�k,ε ⊂ {
ω ∈ � : EωUk,ε(Yn) →n EUk,ε(Y )

}
.

Now take �0 := ⋂
k,ε �k,ε and use Lemma A.1. �

The importance of Proposition 2.2 resides, for us, in the following fact: to prove results on
quenched convergence we will apply some classical theorems to the processes involved in our
arguments seen as stochastic processes under the measures Pω . Without this result the uniformity
of �0, which is eventually necessary, would require a case-by-case approach, making the proofs
much longer and less transparent.

Remark 2.3. We also point out the following: a set has A ∈ F satisfies PA = 1 if and only if
PωA = 1 for P-a.e. ω. To see this, use the equality

PA =
∫

�

PωAdP(ω).

3. General setting

3.1. Assumptions

Our general setting, fixed from now on along this paper, will be the following: first, denote by λ

the normalized Lebesgue measure in the Borel sigma algebra B of [0,2π). This is,

λ(A) = 1

2π
L(A) (6)

for every A ∈ B, where L is the Lebesgue measure on B.
By a random variable we mean a complex-valued measurable function Y : � →C defined on

some probability space (�,F,P).
Next, let (Xk)k∈Z be a strictly stationary, ergodic sequence of random variables defined on a

probability space (�,F,P). This is: Xk = X0 ◦ T k , where T : � → � is an ergodic, invertible,
and bimeasurable transformation.

We will assume that X0 ∈ L2
P
(F0) where F0 ⊂ F is a sigma algebra satisfying F0 ⊂ T −1F0

(i.e. T −1 is F0-measurable), and we define Fn := T −nF0 for all n ∈ Z, F−∞ := ⋂
n∈ZFn, and

F∞ := σ(
⋃

n∈ZFn). Thus (Fk)
∞
k=−∞ is an increasing T -filtration: Fk ⊂ Fk+1 and T −lFk =

Fk+l .
For any n ∈ {−∞} ∪ Z, denote by En the conditional expectation with respect to Fn, thus

EnZ := E[Z|Fn] for every P-integrable Z, and let the projection Pn be given by

PnY := EnY − En−1Y.



1312 D. Barrera

Note that for Y ∈ L2
P

, PnY ∈ L2
P
(Fn) � L2

P
(Fn−1). This is, PnY is Fn-measurable and

En−1PnY = 0.
Assume also that E0 is a regular conditional expectation: as explained in Section 2, there exists

a family of probability measures {Pω}ω∈� such that for every integrable function X,

ω 
→
∫

�

X(z)dPω(z) (7)

defines an F0-measurable version of E0X (see also the footnote following (1310)).
We will finally assume that F0 and F are countably generated or, alternatively, that F0 is

countably generated and F =F∞ (so F is also countably generated). This alternative is possible
because we will deal only with F∞-measurable functions.

Remark 3.1. If we also denote by T : L1
P

→ L1
P

the Koopman operator associated to T , namely
T Y := Y ◦ T then, clearly, Xn = T nX0 for all n, and it is not hard to see, using stationarity, that

T rEs = Es+rT
r (8)

(as operators in L1
P

) for all integers r , s. Similarly, an application of the reverse martingale
convergence theorem (see for instance Theorem 5.6.1 and Exercise 5.6.1 in [14]) shows that, for
every n ∈ Z,

T nE−∞ = E−∞T n. (9)

It is important to point out also that, again by the reverse martingale convergence theorem, the
following holds: for every X ∈ L

p

P
(p ≥ 1)

E−∞X = lim
n

E−nX, (10)

P-a.s. and in L
p

P
.

Remark 3.2. We also recall the following fact about the Koopman operator T : under ergodicity,
the eigenvalues of T form a subgroup of T, the unit circle seen as a (Lie) group under the
operation of multiplication of complex numbers (see [16], Proposition 7.17). We will denote this
group by Specp(T ), the point spectrum of T . Note that since L2

P
admits a countable orthonormal

basis (F is countably generated) and the eigenspaces of T are mutually orthogonal (T is measure
preserving), Specp(T ) is countable. In particular,

λ
({

θ ∈ [0,2π) : eiθ ∈ Specp(T )
}) = 0. (11)

3.2. Quenched convergence in the product space

There is a special form of quenched convergence that will be of interest to us: let G0 := B0 ⊗F0 ⊂
B ⊗ F where B0 ⊂ B is a given sigma algebra (we will choose B0 = B or B0 = {∅, [0,2π)}
according to the problem under consideration).
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Assuming that E[·|B0] (conditional expectation with respect to λ) is regular with regular mea-
sures {λθ }θ∈[0,2π), an application of Corollary A.12 in the Appendix shows that, for any B ⊗F -
integrable function Y = Y(θ,ω), a version of E[Y |G0] is given by

E[Y |G0](θ,ω) =
∫

[0,2π)

Eω
[
Y(x, ·)]dλθ (x),

where ω 
→ EωY(x, ·) is the version of E0[Y(x, ·)] given by (7). From now on, we will denote by
Ẽ0 the conditional expectation E[·|G0] (again, we will carry on discussions under the two choices
B0 = {∅, [0,2π)} and B0 = B). Whenever needed, we will work under the regular version of Ẽ0,
so that for any integrable Y = Y(θ,ω)

Ẽ0[Y ](θ,ω) =
∫

[0,2π)

∫
�

Y(x, z) dPω(z) dλθ (x). (12)

Remark 3.3. Note that if B0 = {∅, [0,2π)} is the trivial sigma algebra, then λθ := λ for all
θ ∈ [0,2π) defines a family of regular measures for E[·|B0]. And that in this case Ẽ0Y , be-
ing constant in θ (for a fixed ω), defines an F0-measurable function. In particular, Ẽ0Y can be
regarded, in this case, as a random variable defined on (�,F,P).

4. The space D[[0,∞),C]
This paper deals with convergence in distribution, under several measures, of random elements
of D[[0,∞),C]: the space of functions f : [0,∞) → C that are continuous from the right-
and have left-hand limits at every point (complex-valued cadlag functions). This space is an
algebra with the operation of multiplication and addition given by the usual pointwise operations
between complex-valued functions, and it is a (C or R-)vector space with the usual operation of
multiplication by constants regarded as constant functions.

Let D[0,∞) denote the space of real-valued cadlag functions f : [0,∞) → R (as presented
for instance in [7], Section 16). If we denote by (Re(f ), Im(f )) the vector of real and imaginary
parts of a function f ∈ D[[0,∞),C], the bijection D[[0,∞),C] → D[0,∞) × D[0,∞) given
by

f 
→ (
Re(f ), Im(f )

)
allows us to regard D[[0,∞),C] as a topological space whose topology is the topology generated
by the product Skorohod topology of D[0,∞).5 In particular D[[0,∞),C] is separable and
metrizable. If we use the product metric

d(f,g) := ((
d
(
Re(f ),Re(g)

))2 + (
d
(
Im(f ), Im(g)

))2)1/2
,

where d (at the right) is the Skorohod distance defined by [7], (12.16) then D[[0,∞),C] is
complete. A similar construction shows the corresponding facts for the space D[[0,m],C] of
functions that are restrictions of elements in D[[0,∞),C] to the interval [0,m].
5But remember that this is not a topological vector space. See exercise 12.2 in [7].
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Denote by D∞,C the Borel sigma algebra of D[[0,∞),C]. The following observations will
suffice to clarify the proofs of convergence in distribution given here:

1. First, if Y : (�,F,P) → D[[0,∞),C] is a random function (this is, an F/D∞,C mea-
surable function, where (�,F,P) is a probability space), then the inequalities

P[Yn /∈ K1 × K2] ≤ P
[
Re(Yn) /∈ K1

] + P
[
Im(Yn) /∈ K2

] ≤ 2P[Yn /∈ K1 × K2]
show that a sequence of random elements (Yn)n in D[[0,∞),C] is tight if and only if (Re(Yn))n
and (Im(Yn))n are tight.

2. By an adaptation of the arguments in [7], it is possible to show that the finite dimensional
distributions are a separating class in D[[0,∞),C]: if for every t we denote by πt the coordinate
function πt (x) := x(t), then two probability measures P1 and P2 in D[[0,∞),C] coincide if
and only if there exists a dense subset J ⊂ [0,∞) such that for every 0 ≤ t1 ≤ · · · ≤ tn in J

the nth dimensional distributions (Pjπ
−1
t1

, . . . ,Pjπ
−1
tn

) (j = 1,2) on Cn = R2n are the same. In
particular, one can prove that Pn ⇒n P (“⇒” denotes weak convergence of measures) by proving
tightness and convergence of the finite-dimensional distributions, and if m > 0 is such that

P
{
x : lim

t→m− x(t) �= x(m)
}

= 0 (13)

and rm : D[[0,∞),C] → D[[0,m],C] is the restriction operator6 (rmx(t) = x(t)), then Pn ⇒ P
in D[[0,∞),C] implies that Pnr

−1
m ⇒ Pr−1

m in D[[0,m],C]. Conversely, if (mk)k is a sequence
increasing to infinity such that (13) holds for all m = mk , then Pnr

−1
mk

⇒ Pr−1
mk

(on D[[0,mk],C])
for all k implies that Pn ⇒n P.

Let us finally mention that, by our definition of the topology of D[[0,∞),C], to prove that a
function Y : � → D[[0,∞),C] defined on a measurable space (�,F) is F/D∞,C measurable it
suffices to see the measurability of the real and imaginary parts of Y . This observation, combined
with the argument in [7], p. 84, and with Theorem 16.6 in that book shows that Y is F/D∞,C-
measurable if for every t ∈ [0,∞), ω 
→ Y(ω)(t) is F -measurable.

5. Results and comments

In this section, we will present the main results of this paper. Some of the proofs are not difficult
and can be given after the statements. More technically demanding facts will be deferred to later
sections.

Let us start by introducing the notion of discrete Fourier transforms.

Definition 5.1. Let T : � → � be an invertible, bimeasurable, measure-preserving transforma-
tion on a probability space (�,F,P), let Y0 : � → C be a random variable, and let Yk := T kY0

6The space D[[0,m],C] is defined via the product metric as above starting from the space D[0,m] of real-valued cadlag
functions f : [0,m] → R. See (again) Section 16 in [7] or Section 7 in [4] for more details on the last space.
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(k ∈ N or Z). For every θ ∈ [0,2π) and n ∈ N∗, the nth discrete Fourier Transform of (Yk)k at
the frequency θ is defined by

Sn(Y0, T , θ,ω) :=
n−1∑
k=0

eikθYk(ω). (14)

When Y0 and T are fixed and θ ∈ (0,2π) is given, we will denote by Sn(θ) (or Sn(θ, ·)) the
random variable Sn(Y0, T , θ, ·). If in addition θ = 0, we denote by Sn the random variable
Sn(Y0, T ,0, ·). So Sn(ω) := ∑n−1

k=0 Yk(ω).

Remark 5.2. We strengthen the fact that, at this point, (�,F,P) and T in this definition are not
necessarily the objects fixed in Section 3.1, though we will not go “too far away” from them,7

hence the specification of T in the notation.
Nonetheless, throughout the rest of this section, we will work under the assumptions specified

in Section 3.1. In particular, we will not specify T in the notation for discrete Fourier transforms.

We will address the problem of quenched convergence for the cadlag random functions gener-
ated by the discrete Fourier transforms of (Xk)k . Let us start by recalling the following theorem,
proved in [5]:

Theorem 1. There exists a set I ⊂ (0,2π) with λ(I) = 1 such that, for all θ ∈ I , the random
variables

1√
n

(
Sn(θ) − E0Sn(θ)

)
(15)

converge in the quenched sense, as n → ∞, to a complex Gaussian random variable with inde-
pendent real and imaginary parts, each with mean zero and variance σ 2(θ)/2, where

σ 2(θ) = lim
n

E0|Sn(θ) − E0Sn(θ)|2
n

= lim
n

E|Sn(θ) − E0Sn(θ)|2
n

, (16)

P-a.s. (thus the limit exists with probability one, and it is nonrandom).

We will refer to this as the quenched central limit theorem for the discrete Fourier transforms
of a stationary process. Our main goal in this paper is to explore possible extensions of this
theorem to corresponding quenched invariance principles.

Remark 5.3. The function θ 
→ σ 2(θ) defines a version of the spectral density, with respect
to λ, of the process (Xk − E−∞Xk)k . For details on this, see the proof of Theorem 15.1 in [4]
(or combine Remark 5.8 and (84) below with the proof of Theorem 3 in [19]).

7Indeed, we will need to work with product spaces and product maps along some of the proofs and this makes convenient
to relax these objects in Definition 5.1.
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In order to discuss the issue of quenched functional convergence, let us define the following
random variables, which will appear again later along the proofs:

Dr,0(θ) :=
r∑

k=0

P0Xke
ikθ , (17)

and

Mr,n(θ) :=
n−1∑
k=0

T kDr,0(θ)eikθ . (18)

Where 0 ≤ r < ∞ and we allow the value r = ∞ when D∞,0(θ) makes sense as the limit
(r → ∞) P-a.s. and in L2

P
of Dr,0(θ). Denote also by Vr,n(θ) the random function

Vr,n(θ)(t) := 1√
n
Mr,�nt�(θ), (19)

and by Wn(θ) the random function

Wn(θ)(t) := S�nt�(θ) − E0S�nt�(θ)√
n

. (20)

We will also consider the non-centered version of Wn(θ)

Un(θ)(t) := Wn(θ)(t) + E0S�nt�(θ)√
n

= S�nt�(θ)√
n

. (21)

Remark 5.4. When necessary, especially when discussing quenched convergence in the product
space ([0,2π)×�,B⊗F), we will specify the dependence on θ ∈ [0,2π) and ω ∈ � by seeing
these random elements as processes with two parameters (see Theorem 2 for example). So for
instance,

Dr,0(θ,ω) =
r∑

k=0

P0Xk(ω)eikθ ,

and so on.

5.1. Approximation lemmas

Recall the definition of the set I specified in Theorem 1, see [5]; p. 289, 290: θ ∈ I if and only
if

1. e−2iθ /∈ Specp(T ) (equivalently, e2iθ /∈ Specp(T )),
2. E[supr |P0Sr(θ)|2] < ∞, and
3. D∞,0(θ) := limn P0Sn(θ) exists P-a.s.
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Notice that, for θ ∈ I , D∞,0(θ) is (also) the limit in L2
P

of Dr,0(θ): first, D∞,0(θ) ∈ L2
P

by the
dominated convergence theorem and 2., and since Dr,0(θ)−D∞,0(θ) → 0, P-a.s. and |Dr,0(θ)−
D∞,0(θ)|2 ≤ 2(supr |Dr,0(θ)|2 +|D∞,0(θ)|2) the dominated convergence theorem again implies
that Dr,0(θ) →r D∞,0(θ) in L2

P
.

Lemma 5.5. Let Re(B), Im(B) : �′ → D[[0,∞)] be independent standard Brownian motions8

defined on some probability space (�′,F ′,P′), and consider the set of frequencies θ specified by
condition 1. above. Then for all such θ and all 0 ≤ r < ∞, Vr,n(θ) given by (19) converges in the
quenched sense, as n → ∞, to

Br(θ) := (
E

∣∣Dr,0(θ)
∣∣2

/2
)1/2(Re(B) + i Im(B)

)
. (22)

If θ ∈ I (I is the set specified by 1.–3. above), then V∞,n(θ) converges in the quenched sense to

B(θ) := (
E

∣∣D∞,0(θ)
∣∣2

/2
)1/2(Re(B) + i Im(B)

)
. (23)

Proof. This is an immediate consequence of Theorem 5 in Section 6. �

Our results will make use as well of the following “hypothetical” quenched invariance princi-
ple:

Lemma 5.6. If for a given θ ∈ [0,2π), (19) converges in the quenched sense (with respect to
F0) as n → ∞ to a random function Br(θ) for all but finitely many r’s and

lim
r

lim sup
n

E0

[
1

n
max

1≤k≤n

∣∣Sk(θ) − E0Sk(θ) − Mr,k(θ)
∣∣2

]
= 0 (24)

P-a.s., then there exists a random function B(θ) such that Br(θ) converges in distribution to
B(θ) as r → ∞, and (20) converges to B(θ) as n → ∞ in the quenched sense.

If, in particular, e2iθ /∈ Specp(T ), then there exists a nonnegative number σ(θ) characterized
by

σ 2(θ) := lim
r

E
∣∣Dr,0(θ)

∣∣2
, (25)

and

B(θ) = σ(θ)√
2

(
Re(B) + i Im(B)

)
(26)

(in distribution).

Note that if one agrees to call “standard” a d-dimensional Brownian motion B = (B1, . . . ,Bd)

for which the entries are (independent and) identically distributed (centered) Brownian motions
and such that E|B(1)|2 = 1 where | · | is the Euclidean norm, the limit function (26) is just a
standard 2-dimensional Brownian motion rescaled by σ(θ).

8The notation may be a little shocking. It is inspired in the fact that B := Re(B) + i Im(B) is a 2-dimensional Brownian
motion.
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Remark 5.7. If we assume a priori the existence of B(θ) with Br(θ) ⇒ B(θ) as r → ∞, then
the parts of the proof of this and analogous results that rely in Theorem A.2 in the Appendix can
still be carried over using instead [7], Theorem 3.2.

This is possible for the values of θ that we will treat along the proofs of the results in this
paper: we will be restricted to cases in which D∞,0(θ) is well defined, but since our statement
covers an (at least formally) more general case and the proofs via the result in [7] would be just
the same (with the estimates used here), we proceed via Theorem A.2.

Remark 5.8. It is important to remark also the following: in the context of Lemma 5.6, (24)
implies that, necessarily,

σ 2(θ) = lim
n

E0
1

n

∣∣Sn(θ) − E0Sn(θ)
∣∣2 (27)

P-a.s.
Indeed, Lemma A.6 in the Appendix implies, by orthogonality, that

E
[∣∣Dr,0(θ)

∣∣2] = lim
n

E0
1

n

∣∣Mr,n(θ)
∣∣2

, (28)

P-a.s. And (27) follows from (25) and (28) because, under (24)

0 ≤ lim sup
n

∣∣∣∣(E0
1

n

∣∣Sn(θ) − E0Sn(θ)
∣∣2

)1/2

− σ(θ)

∣∣∣∣
≤ lim sup

r
lim sup

n

∣∣∣∣(E0
1

n

∣∣Sn(θ) − E0Sn(θ)
∣∣2

)1/2

− (
E

∣∣Dr,0(θ)
∣∣2)1/2

∣∣∣∣
≤ lim sup

r
lim sup

n

(∣∣∣∣(E0
1

n

∣∣Sn(θ) − E0Sn(θ)
∣∣2

)1/2

−
(

E0
1

n

∣∣Mr,n(θ)
∣∣2

)1/2∣∣∣∣
+

∣∣∣∣(E0
1

n

∣∣Mr,n(θ)
∣∣2

)1/2

− (
E

∣∣Dr,0(θ)
∣∣2)1/2

∣∣∣∣)

= lim sup
r

lim sup
n

(∣∣∣∣(E0
1

n

∣∣Sn(θ) − E0Sn(θ)
∣∣2

)1/2

−
(

E0
1

n

∣∣Mr,n(θ)
∣∣2

)1/2∣∣∣∣)

≤ lim sup
r

lim sup
n

(
E0

1

n

∣∣Sn(θ) − E0Sn(θ) − Mr,n(θ)
∣∣2

)1/2

= 0,

P-a.s.

Proof of Lemma 5.6. For m ≥ 1, the Skorohod metric dm on D[[0,m],C] is dominated by the
uniform (product) metric. So

dm

(
rmWn(θ), rmVn(θ)

) ≤
√

m√
n′ max

1≤k≤n′
∣∣Sk(θ) − E0Sk(θ) − Mr,k(θ)

∣∣,
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where n′ := mn and “rm” is the restriction operator D[[0,∞),C] → D[[0,m],C]. It follows
from (24) that

lim
r

lim sup
n

∥∥dm

(
rmWn(θ), rmVr,n(θ)

)∥∥
Pω,2 = 0

for P-almost every ω. Thus by an application of Corollary A.3 in the Appendix, there exist
random functions Bm

r (θ) and Bm∞(θ) in D[[0,m],C] such that the conclusion of Lemma 5.6 is
satisfied with Bm

r (θ) in place of Br(θ) and with Bm∞(θ) in place of B(θ). The first conclusion
follows from a suitable adaptation of [7], p. 173, Lemma 3 (or likewise adapting the comments
in 2. on Section 4).

To prove the second assertion, we argue as follows: first, for such θ ’s, Br(θ) is given by (22),
and we have seen that the (quenched) limit of (20) as n → ∞ is the same as that of Br(θ) as
r → ∞.

Now, by convergence of Types theorems (see, for instance, [6], p. 193 or [3], Proposition 4),
Br(θ) admits a limit in distribution if and only if there exists

σ 2(θ) := lim
r

E
∣∣Dr,0(θ)

∣∣2
,

which leads us to conclude that (20) converges in the quenched sense to

σ(θ)√
2

(
Re(B) + i Im(B)

)
as claimed. �

Remark 5.9. Note that the convergence of (19) in the quenched sense as n → ∞ is guaranteed
for all θ ∈ I and all 0 ≤ r ≤ ∞, where I is the set specified by Theorem 1. Whether the hy-
pothesis (24) is true as well for λ-a.e. such θ is a question yet to be answered (it is without the
“max1≤k≤n”, as can be seen from [5], p. 289, 290). Theorem 3 below gives particular cases of
this statement.

It is important also to point out that (Xk − E−∞Xk) is a regular process, according to the
following definition:

Definition 5.10 (Regularity). Let (Yk)k∈Z = (T kY0)k∈Z be a (Fk)k∈Z-adapted stationary p-
integrable process (p ≥ 1). The process (Yk)k∈Z is called regular if E[Y0|F−k] converges to 0 in
L

p

P
. This is, if

lim
k

E|E−kY0|p = lim
k

E|E0Yk|p = 0. (29)

Equivalently, (Yk)k∈Z is regular if for every k ∈ Z

E[Yk|F−∞] = 0. (30)

Remark 5.11. As with the case of quenched convergence, the notion of regularity depends on
the choice of the T -filtration (Fk)k∈Z, but it is easy to show that if (Yk)k∈Z is regular with respect



1320 D. Barrera

to some T -filtration (F ′
k)k∈Z with σ(Y0) ⊂ F ′

0, then it is regular with respect to its minimal T -
filtration (Mk)k∈Z = (T −kM0)k∈Z, where

M0 =
⋂
α

Gα,

with the intersection running over the sigma algebras Gα in � for which σ(Y ) ⊂ Gα ⊂ T −1Gα .
In this sense, the notion of regularity can be made independent of the choice of F0.

To prove the equivalence stated in Definition 5.10 note that, by (8), (9), (10) and the L
p

P
-

continuity of the Koopman operator T , the following equalities hold both P-a.s. and in L
p

P
(with

p ≥ 1): if Y ∈ L
p

P

T kE−∞Y = T k lim
j

E−j+kY = lim
j

T kE−j+kY = lim
j

E−j T
kY = E−∞T kY. (31)

Let us give now a result that, in the context of the present discussion, will allow us to give a
further characterization of the regularity condition (29) (see Corollary 5.14) and is of interest by
itself. We will use also this result later to prove part of the statement of Theorem 2 below.

Proposition 5.12. The equality

lim
n

1

n

n−1∑
k=0

|E0Xk|2 = lim
n

‖E0Xn‖2
P,2 (32)

holds P-a.s.

Proof. E0T is a positive Dunford–Scwhartz operator and therefore it is pointwise and mean
ergodic ([16], Theorem 8.24 and pp. 217–218): for every Y ∈ L

p

P
(p ≥ 1),

1

n

n−1∑
k=0

E0T
kY = E0E[Y |T ] = EY, (33)

P-a.s. and in L
p

P
, where T is the invariant sigma algebra of T and the second equality follows

from the assumption that T is ergodic (we can identify the limit function using the continuity of
the operator E0 in L

p

P
and the mean ergodic theorem for Koopman operators).

Now notice that, since for every Z ∈ L2
P

and (n, j) ∈ N×N, |E0T
n+jZ|2 = |(E0T )n+jZ|2 ≤

E0T
n|E0T

jZ|2, P-a.s., the process (Fn)n∈N specified by

Fn :=
n−1∑
k=0

E0T
k|X0|2 −

n−1∑
k=0

∣∣E0T
kX0

∣∣2 (34)

is nonnegative and superadditive ([18], p. 146., or [1]).
An application of [18], Theorem 5.3, together with the Dunford-Schwartz pointwise ergodic

theorem, implies that there exists a (nonnegative) function Y ∈ L1
P

such that
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1. EY = limn EFn/n,
2. For every n ∈N

Fn ≤ Gn :=
n−1∑
k=0

E0T
kY,

P-a.s., and
3. limn Fn/Gn = 1, P-a.s. on

⋃
k∈N[E0T

kY > 0] (either this set or its complement has prob-
ability one in this case, but this is not assumed for what follows along this proof).

It follows from these observations (note also that Fn = 0, P-a.s., on
⋂

k∈N[E0T
kY = 0]) and

another application of the Dunford-Schwartz ergodic theorem that

lim
n

1

n

n−1∑
k=0

∣∣E0T
kX0

∣∣2 = E
[|X0|2 − Y

]
, (35)

P-a.s.9

To actually show that EY = ‖X0‖2
P,2 − limn ‖E0T

nX0‖2
P,2 we first notice that

EY = lim
n

EFn

n
= lim

n

(
‖X0‖2

P,2 − 1

n

n−1∑
k=0

∥∥E0T
kX0

∥∥2
P,2

)

P-a.s., and that by Jensen’s inequality∥∥E0T
k+1X0

∥∥2
P,2 := E

∣∣E0T
k+1X0

∣∣2 ≤ E
∣∣E0T

kX0
∣∣2 =: ∥∥E0T

kX0
∥∥2
P,2.

Thus the sequence (‖E0T
kX0‖2

P,2)k∈N is decreasing. It follows that

lim
n

1

n

n−1∑
k=0

∥∥E0T
kX0

∥∥2
P,2 = lim

n

∥∥E0T
nX0

∥∥2
P,2. �

Remark 5.13. Using exactly the same argument as in the proof of Proposition 5.12, one can
further prove the P-a.s. convergence

lim
n

1

n

n−1∑
k=0

∣∣E0T
kX0

∣∣β = lim
n

E|E0Xn|β

9An alternative argument is the following: by (33), the invariant sigma algebra of the operator E0T is trivial, and it
follows by an application of Corollary 1 in [1] with s′

k
= k that Fn/n →n EY , P-a.s. The pointwise ergodicity of E0T

(i.e., a novel application of (33)) gives (35).



1322 D. Barrera

for every 1 ≤ β ≤ p, provided that X0 ∈ L
p

P
. A similar argument proves the same conclusion

when 0 ≤ β < 1 ≤ p (in this case the process (
∑n−1

k=0 |E0T
kX0|β)n∈N∗ is superadditive).10

More generally, an easy adaptation of the first part of the arguments in this proof (using the
same results from [18]) proves that if L is a positive Dunford-Schwartz operator (or any conser-
vative positive contraction that is also pointwise ergodic) and ϕ : [0,∞) → [0,∞) is a nonneg-
ative measurable function for which ϕ ◦ LX ≤ L(ϕ ◦ X), P-a.s. for a given nonnegative X ∈ L

p

P

(p ≥ 1), then

1

n

n−1∑
k=0

ϕ
(
LkX

)
converges P-a.s.

The following is an obvious consequence of Proposition 5.12.

Corollary 5.14. The process (Xk)k∈Z is regular (Definition 5.10) if and only if

lim
n

1

n

n−1∑
k=0

|E0Xk|2 = 0,

P-a.s.

Let us now introduce is the “averaged-frequency” version of Lemma 5.5, which will be the
building block for the proof of Theorem 2.

Lemma 5.15. If B0 = {∅, [0,2π)} is the trivial sigma algebra and 0 ≤ r ≤ ∞ is fixed, the
random function (θ,ω) 
→ Vr,n(θ,ω) defined by (19) (where V∞,n(θ,ω) := 0 if θ /∈ I ) converges
in the quenched sense with respect to B0 ⊗ F0 (see Section 3.2), as n → ∞, to the function
(θ,ω′) 
→ Br(θ,ω′) defined by (22) (where B(θ,ω′) = 0 if θ /∈ I ). Equivalently, there exists
�0 ⊂ � with P�0 = 1 such that for every ω ∈ �0, Vr,n ⇒n Br under λ × Pω .

Proof. This follows at once from Corollary 6.2 in Section 6. �

We will use Lemma 5.15 in order to prove Theorem 2 below. We will also need the following
lemma, which is essentially the same as Lemma 5.6 except that, just as in Lemma 5.15, the
processes involved are seen as random elements whose domain is the product space [0,2π)×�,
and the notion of quenched convergence is understood with respect to B0 ⊗ F0. The proof is
exactly as that of Lemma 5.6.

10There is an additional detail in this case: to prove that the increasing, Cesàro-convergent sequence (E|E0T nX|β)n∈N
is bounded (i.e., convergent) note for instance that, by Hölder’s inequality and Jensen’s inequality∥∥E0T nX

∥∥
P,β

≤ ∥∥E0T nX
∥∥
P,p

≤ ‖X‖P,p

for all n ∈N (it is actually a short exercise to prove that an unbounded and increasing sequence is not Cesàro convergent:
its Cesàro averages also diverge to ∞).
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Lemma 5.16. With the notation introduced in Section 3.2 and in (17)-(21) (see also Remark 3.3),
and taking B0 := {∅, [0,2π)}, assume that

lim
r

lim sup
n

Ẽ0

[
1

n
max

1≤k≤n

∣∣Sk(θ,ω) − E0Sk(θ,ω) − Mr,k(θ,ω)
∣∣2

]
= 0 (36)

P-a.s. Then the random function (θ,ω) 
→ Wn(θ,ω) specified by (20) converges in the quenched
sense as n → ∞, with respect to B0 ⊗ F0, to the random function (θ,ω′) 
→ B(θ,ω′) specified
by (23) (B(θ,ω) = 0 if θ /∈ I ). Equivalently, there exists �0 ⊂ � with P�0 = 1 such that for
every ω ∈ �0, Wn ⇒n B under λ × Pω .

5.2. Main results

We will prove that the hypotheses in Lemma 5.16 hold under the general setting established in
Section 3. Let us state the respective result in terms of the regular conditional measures associated
to E0:

Theorem 2. There exists �0 ⊂ � with P�0 = 1 such that for every ω0 ∈ �0 the random func-
tions

Wn : ([0,2π) × �,B ⊗F, λ × Pω0

) → D
[[0,∞),C

]
specified by (20) (see also Remark 5.4) converge in distribution, as n → ∞, to the random
function

B : ([0,2π) × �′,B ⊗F ′, λ × P′) → D
[[0,∞),C

]
specified by (23) (with B(θ,ω) = 0 if θ /∈ I ). If (29) holds, then the non-centered cadlag functions
(21) satisfy the same conclusion.

Note that, by the argument preceding Remark 2.1, this theorem implies Proposition 2.1 in [20].
This theorem will be proved in Section 7.

We will now present the cases in which the estimate (24) is proved along this paper, the nota-
tion introduced in the lemmas above is kept here.

To present our results start by considering the following conditions of weak dependence

(a) The generalized Hannan condition, given by

∑
n≥0

∥∥P0(Xn+1 − Xn)
∥∥
P,2 < ∞, (37)
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which is clearly a “weak” version of the Hannan condition11∑
n

‖P0Xn‖P,2 < ∞. (38)

Note, on the other side, that (37) is the same as (38) for the (stationary) process (Yn)n specified
by

Yn := Xn − Xn−1.

(b) The Maxwell and Woodroofe condition for a fixed frequency. Which states that, for θ ∈
[0,2π),

∞∑
k=1

‖E0Sk(θ)‖P,2

k3/2
< ∞. (39)

Condition (39) is a “rotated” version of the Maxwell and Woodroofe condition

∞∑
k=1

‖E0Sk‖P,2

k3/2
< ∞. (40)

Conditions (37) and (40) are logically independent, see [13],12 and they imply the existence
of martingale approximations allowing us to prove the following theorem:

Theorem 3. With the notation introduced in lemmas 5.5 and 5.6, and assuming (37) or (39), if
e2iθ /∈ Specp(T ), then (20) converges in the quenched sense, as n → ∞, to

ω′ 
→ σ(θ)√
2

(
Re(B)

(
ω′) + i Im(B)

(
ω′)). (41)

If (39) holds, (also) the non-centered cadlag functions (21) converge in the quenched sense, as
n → ∞, to (41).

It is important to point out the following distinction implicit in the statement of Theorem 3:
when condition (37) holds, Theorem 3 tells us that, for every θ with e2iθ /∈ Specp(T ), and in

11To see that (37) is strictly weaker than (38) consider the process

Xk :=
∑

j∈N∗

1

j
xk−j ,

where (xj )j∈Z are the coordinate functions in RZ , seen as an i.i.d. centered sequence in L2, T is the left shift, and
F0 = σ(xk)k≤0.
12More precisely, the results stated in [13] give that (37) is not sufficient for (40). To prove that (37) is not necessary
for (40) consider the process constructed in [13], and strengthen the assumption “Nk+1 > Nk” to “Nk+1 > Nk + 1”.
Following the arguments in that paper, it is easy to see that (37) and (38) are equivalent for the process under considera-
tion, and the proof of independence can be carried over by substituting, in the first counterexample on [13], “Nk = k” by
“Nk = 3k”.
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particular for λ-a.e. θ (see (11)), (20) converges in the quenched sense, whereas the conclusion
under the Maxwell and Woodroofe condition (39) is that for a given θ with e2iθ /∈ Specp(T ),
(20) and (21) converge in the quenched sense (to the same limit function) if (39) holds.

It is therefore desirable to give a criterion implying the fulfillment of (39) for λ-a.e. θ . This is
the content of the following result.

Theorem 4. If for some β > 1

∞∑
k=1

(logk)β
‖E0Xk‖2

P,2

k
< ∞, (42)

then (39) holds for λ-a.e. θ . In particular (42) implies that (21) (and (20)) converges in the
quenched sense, as n → ∞, for λ-a.e. θ , as specified in Theorem 3.

Remark 5.17. One may naturally ask if, just as in the case of Theorem 2, the verification of
(29) together with the quenched convergence of (20) for a given θ (or for λ-a.e. θ ) are sufficient
conditions for the quenched convergence of (21) as n → ∞.

The actual answer is no: consider one more time (xj )j∈Z, (Fj )j∈Z, T as in the footnote fol-
lowing (37) and note again that any (centered) linear process

Xk =
∑
j∈N

ajxk−j (43)

with (aj )j∈N ∈ l1(N) ((xj )j∈N i.i.d., Ex0 = 0, E|x0|2 = 1) satisfies (38) and therefore also (37).
Thus the conclusion of Theorem 3 holds for (20) when (Xk)k∈Z is given by (43), (aj )j∈N ∈ l1(N)

and θ ∈ (0,2π) \ {π} (see Corollary 5.19 below).
Such a process is necessarily regular because, by Kolmogorov’s zero-one law, E−∞Z = EZ,

P-a.s. for every Z ∈ L1
P

in this case but, as shown in [3], the coefficients (ak)k∈N can be chosen in
such a way that, for every θ ∈ [0,2π), Sn(θ)/

√
n admits no limit in distribution under Pω for P-

a.e. ω. This is of course an obstruction (consider t = 1) to the quenched convergence, as n → ∞,
of (21) to (41) or to any random function that is continuous at 1 with probability one, but we
can discard convergence to any other random function in D[[0,∞),C] considering the identity
Un(θ, t) = (�nt�/n)1/2U�nt�(θ,1) (Un is given by (21)) and the general arguments behind the
observation 2. in Section 4. See for instance [7], p. 138.

These considerations support the claim that (even) under the assumptions presented along this
paper, including the regularity condition (29), the quenched functional convergence with respect
to F0 of Sn(θ)/

√
n for λ-a.e. fixed θ as n → ∞ is a conclusion strictly stronger than that of

the quenched functional convergence with respect to {∅, [0,2π)} ⊗F0 of the same process seen
as a process parametrized by (θ,ω). More explicitly, if (Xk)k∈Z is the process constructed in
[3] then, by Theorem 2, (θ,ω) 
→ Un(θ,ω) converges in the quenched sense with respect to
{∅, [0,2π)}⊗F0 to (θ,ω′) 
→ B(θ,ω′), and we have just mentioned that (21) does not converge
(in D[[0,∞),C]) in the quenched sense with respect to F0 for any fixed θ ∈ [0,2π), so that we
cannot obtain the conclusion of Theorem 3 for (21) from the regularity condition (29) in spite that
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the (full) conclusion of Theorem 2 is true for a process satisfying this condition. The question of
whether this is also the case for (20) seems to be still open, as hinted already in Remark 5.9.

Finally, note that these kind of considerations show that one cannot deduce the fulfillment of
(39) for λ-a.e. θ , not even for any given fixed θ , from the fulfillment of (37) only.13 In particular,
(42) does not follow from (37).

Remark 5.18. It is also convenient to point out the relation between (42) and (29): first, it clearly
follows from (42) that

∞∑
k=1

‖E0Xk‖2
P,2

k
< ∞ (44)

and this, together with Kronecker’s lemma, implies that under (42)

lim
n

1

n

n−1∑
k=0

‖E0Xk‖2
P,2 = 0,

which is the same as (29) because (‖E0Xk‖2
P,2)k∈N is decreasing.

On the other side, (29) does not imply (42) because, as we have seen in Remark 5.17, there
exist processes satisfying (29) that do not satisfy the conclusion of Theorem 3. Thus, (42) is
strictly stronger than (29).

Collecting our results, the following question deserves to be pointed out: is there 0 ≤ β ≤ 1
such that (42) holds for a process that does not satisfy the conclusion of Theorem 3? (with and
without the statement of convergence for (21)). And if the answer is “no”, what conditions “in
between” (44) and (29) break down the conclusion of Theorem 3?

To finish this section, it is worth to further specify a case in which the set of frequencies where
the asymptotic distribution is as in (41) can be easily described. To motivate the following result,
recall that T is weakly mixing if and only if Specp(T ) = {1} (see [21], Section 8 for a review of
this and other related facts).

Now, as a subgroup of T, Specp(T ) is finite (actually: closed) if and only if there exists m ∈N∗
such that

Specp(T ) := {
e2πki/m

}m−1
k=0 . (45)

In other words, Specp(T ) is finite if and only it it consists of the points in the unit circle given
by the rational rotations by an angle of 2π/m or, what is the same, by the mth roots of unity.

Corollary 5.19. Assume that Specp(T ) is finite and its elements are the mth roots of unity. Under
the hypotheses in Theorem 3, (20) converges in the quenched sense as n → ∞ to (41) for all
θ ∈ [0,2π) such that e2imθ �= 1. If T is in particular weakly mixing, (41) describes the asymptotic
quenched limit of (20) for all θ �= 0,π . The same conclusions hold for (21) when (39) holds.

13Except perhaps, though one would not expect such thing, if e2iθ ∈ Specp(T ) and θ �= 0 are conditions imposed

on θ . The case θ = 0 being covered by [13] as specified above, and the case e2iθ /∈ Specp(T ) being covered by our
considerations.
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Proof. Immediate from (45), Theorem 3 and Theorem 4. �

Remark 5.20. Of course, the conclusion of Theorem 3 is also true for the weakly mixing case
under (42) (β > 1), but our proof in this case losses track of the (λ-measure one) set of frequen-
cies θ where (39) holds.

6. Martingale case

Since our proofs are based on martingale approximations we will study, in this section, the
asymptotic distributions of (19) for the case in which Dr,0(θ) is replaced by an abstract mar-
tingale difference D0(θ).

The result is Theorem 5. The martingale case on the product space (“averaged frequency”
case) follows from this one via some of the general results presented in this paper, and it is the
content of Corollary 6.2.

Theorem 5. Under the setting in Section 3.1, and with the notation in Lemma 5.5, given θ ∈
[0,2π) such that e2iθ /∈ Specp(T ), assume that D0(θ) ∈ L2

P
(F0)� L2

P
(F−1) is given, and define

the (Fk−1)k∈N∗ -adapted martingale (Mk(θ))k∈N by

Mn(θ) :=
n−1∑
k=0

T kD0(θ)eikθ (46)

for all n ∈ N. Then the sequence (Vk(θ))k∈N∗ of random elements of D[[0,∞),C] defined by

Vn(θ)(t) := M�nt�(θ)/
√

n (47)

for every n ∈ N∗, converges in the quenched sense with respect to F0 to the random function
B(θ) : �′ → D[[0,∞),C] given by

B(θ)
(
ω′) = [

E
∣∣D0(θ)

∣∣2
/2

]1/2(Re(B)
(
ω′) + i Im(B)

(
ω′)). (48)

Remark 6.1. Before proceeding to the proof it is worth noticing the following: the conclusion
of Theorem 1, specialized to this case, is a statement about the asymptotic distribution of the
random variables Vn(θ)(1). By Lemma A.6 in the Appendix and the orthogonality under E0 of
(T kD0(θ))k∈N,14

E
[∣∣D0(θ)

∣∣2] = lim
n

1

n

n−1∑
k=1

E0T
k
∣∣D0(θ)

∣∣2 = lim
n

1

n
E0

∣∣Mn(θ) − E0Mn(θ)
∣∣2

,

and therefore the equality (16) is certainly verified in this case.

14Note that if (k, r) ∈ N×N∗ is given then, since T rD0(θ) ∈ L2
P
(Fr ) � L2

P
(Fr−1),

E0
[
T kD0(θ)T k+rD0(θ)

] = E0
[
T kD0(θ)EkT k+rD0(θ)

] = E0T k
[
D0(θ)E0T rD0(θ)

] = 0,

P-a.s.



1328 D. Barrera

Proof of Theorem 5. Let us start by sketching the argument of the proof: we will see that for θ

as specified, there exists �θ ⊂ � with P�θ = 1 such that for every ω ∈ �θ the following holds:

(a) The sequence of random functions (Vn(θ))n in D[[0,∞),C] is tight with respect to Pω. To
prove this, we will actually prove the convergence in distribution of both the real and imaginary
parts of (Vn(θ))n to a Brownian motion via Theorem A.14.

(b) The finite dimensional asymptotic distributions under Pω of (Vn(θ))n converge to those
of two independent standard motions with the rescaling E[(D0(θ))2]1/2/

√
2. For this, we will

proceed via the Cramér–Wold theorem, using some of the results already presented.

We go now to the details: first, we will assume, making it explicit only when necessary, that
E0 is the version of E[·|F0] given by integration with respect to the decomposing probability
measures {Pω}ω∈�.

Now denote, for every k ∈N

Dk(θ) := T kD0(θ). (49)

Let �′
θ,1 be the set of probability one guaranteed by Lemma A.9 for the case Y = D0(θ). By

Remark 2.3, there exists a set �θ,1 with P�θ,1 = 1 such that for every ω ∈ �θ,1

lim
n

1

n

n−1∑
k=0

Ek−1
(
z · (Dk(θ)eikθ

))2 = |z|2
2

E
∣∣D0(θ)

∣∣2

Pω-a.s. for all z ∈C.
For such ω’s the first hypothesis of Theorem A.14 is verified by the triangular arrays

(Re(Mk(θ)/
√

n))1≤k≤n and (Im(Mk(θ)/
√

n))1≤k≤n (n ∈ N∗) with respect to Pω, because they
arise from the particular choices z = 1 and z = i, respectively.

To verify the second hypothesis in Theorem A.14, we start from the P-a.s. inequality

E0

[
1

n

n−1∑
k=0

((
Re

(
Dk(θ)eikθ

))2
I[|Re(Dk(θ)eikθ )|≥ε

√
n] + (

Im
(
Dk(θ)eikθ

))2
I[| Im(Dk(θ)eikθ )|≥ε

√
n]

)]
(50)

≤ E0

[
1

n

n−1∑
k=0

∣∣Dk(θ)
∣∣2

I[|Dk(θ)|≥ε
√

n]

]
.

Now, given η > 0 there exists N ≥ 0 such that μN := E[|D0(θ)|2I[|D0(θ)|2≥ε2N ]] < η, and there-
fore

lim sup
n

1

n

n−1∑
k=0

E0T
k
[∣∣D0(θ)

∣∣2
I[|D0(θ)|2≥ε2n]

]

≤ lim sup
n

1

n

n−1∑
k=0

E0T
k
[∣∣D0(θ)

∣∣2
I[|D0(θ)|2≥ε2N ]

] = μN ≤ η

(51)

over a set �θ,ε,η with P�θ,ε,η = 1, where we made use of Corollary A.6. Without loss of gener-
ality, (50) holds for all ω ∈ �θ,ε,η.
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Denote by Zε
n the random variable at the left-hand side of the inequality (50) and note that, if

we define

�θ,2 =
⋂

ε>0,η>0

�θ,ε,η (52)

where the intersection runs over rational ε, η, then P�θ,2 = 1, and for every ε > 0 and every
ω ∈ �θ,2

lim
n

Zε
n(ω) = 0.

or, what is the same, for all ω ∈ �θ,2

1

n

n−1∑
k=0

((
Re

(
Dk(θ)eikθ

))2
I[|Re(Dk(θ)eikθ )|≥ε

√
n] + (

Im
(
Dk(θ)eikθ

))2
I[| Im(Dk(θ)eikθ )|≥ε

√
n]

)
goes to 0 in L1

Pω
as n → ∞.

Thus, if �θ,3 is a set of probability one such that (Re(Mk(θ)))k∈N∗ and (Im(Mk(θ)))k∈N∗ is a
(Fk−1)k∈N∗ -adapted martingale in L2

Pω
for all ω ∈ �θ,3 (Lemma A.4), the hypotheses 1. and 2.

in Theorem A.14 are verified for all ω in the set �θ defined by

�θ :=
3⋂

k=1

�θ,k. (53)

Since P�θ = 1 this finishes the proof of (a).
To prove (b) we will show that for any given n ∈N, any ω ∈ �θ , and any 0 ≤ t1 ≤ · · · ≤ tn, the

Cn =R2n-valued process(
Vn(θ)(t1),Vn(θ)(t2) − Vn(θ)(t1), . . . , Vn(θ)(tn) − Vn(θ)(tn−1)

)
has the same asymptotic distribution as

Bθ (t1, . . . , tn)

:= [
E

∣∣D0(θ)
∣∣2

/2
]1/2(


0 Re(B),
0 Im(B),
1 Re(B),
1 Im(B), . . . ,
n−1 Im(B)
)

under Pω where 
kF := F(tk+1) − F(tk) and t0 = 0 and therefore, by the mapping theorem
([7], Theorem 2.7), the finite dimensional asymptotic distributions of Vn(θ) under Pω and those
of (48) under P′ are the same.

For simplicity, we will assume n = 2. The argument generalizes easily to an arbitrary n ∈N.
Our goal is thus to prove that for all ω ∈ �θ and all 0 ≤ s ≤ t the asymptotic distribution of

Vθ
n(s, t) := (

Vn(θ)(s),Vn(θ)(t) − Vn(θ)(s)
)

(54)
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(a C2 =R4-valued process) is the same under Pω as that of

Bθ (s, t) := [
E

∣∣D0(θ)
∣∣2

/2
]1/2

× (
Re(B)(s), Im(B)(s),Re(B)(t) − Re(B)(s), Im(B)(t) − Im(B)(s)

) (55)

under P′.
To prove the convergence in distribution of (54) to (55), we will use the Cramér–Wold theorem.

This is, we will see that for any ω ∈ �θ , any 0 ≤ s ≤ t , and any

u = (a1, a2, b1, b2) ∈ R4 (56)

the asymptotic distribution under Pω of the stochastic process (Un)n∈N∗ defined by

Un := u · Vθ
n(s, t) (57)

is that of a normal random variable with variance

σ 2
u,s,t (θ) := E[|D0(θ)|2]

2

((
a2

1 + a2
2

)
s + (

b2
1 + b2

2

)
(t − s)

)
. (58)

To do so, we will verify the hypotheses of Theorem A.13. Fix u as above and note that

Un =
�ns�∑
k=0

ηnk(a1, a2) +
�nt�∑

k=�ns�+1

ηnk(b1, b2)

where

ηnk(x1, x2) = 1√
n
(x1, x2) · eikθT kD0(θ). (59)

By the construction of �θ , for every 0 ≤ r , every x1, x2 and every ω ∈ �θ , (ηnk(x1,

x2))0≤k≤�nr� is a triangular array of (Fk)k-adapted (real-valued) martingale differences under
Pω , and by Lemma A.9 combined with Remark 2.3 we can assume that∑

k≤ns

Ek−1
[
η2

nk(a1, a2)
] +

∑
ns<k≤nt

Ek−1
[
η2

nk(b1, b2)
] →n σ 2

u,s,t (θ) (60)

Pω-a.s.15 This verifies the first hypothesis in Theorem A.13 under Pω for all ω ∈ �θ for the
triangular array defining Un.

It remains to prove that if ω ∈ �θ then∑
k≤ns

E0
[
η2

nk(a1, a2)I[|ηnk(a1,a2)|>ε]
]
(ω) → 0. (61)

15More precisely: redefine �θ above by intersecting it with the set �′
θ of elements ω for which the convergence in

Lemma A.9 happens Pω-a.s.
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This is, that for all ω ∈ �θ ∑
k≤ns

η2
nk(a1, a2)I[|ηnk(a1,a2)|>ε] → 0

in L1
Pω

.
To do so we depart from the Cauchy–Schwarz inequality to get that

η2
nk(x1, x2) ≤ 1

n

(
x2

1 + x2
2

)
T k

∣∣D0(θ)
∣∣2

,

so that the sum in (61) is bounded by

1

n

∑
k≤ns

E0T
k
[(

a2
1 + a2

2

)∣∣D0(θ)
∣∣2

I[(a2
1+a2

2)|D0(θ)|2≥ε2n]
]
.

This obviously goes to zero when a1 = a2 = 0. Otherwise it is the same as

(
a2

1 + a2
2

)1

n

∑
k≤ns

E0T
k
[∣∣D0(θ)

∣∣2
I[|D0(θ)|2≥ε2n/(a2

1+a2
2)]

]
,

which, again, goes to zero as n → ∞ for every ω ∈ �θ . �

Corollary 6.2. With the notation introduced in Theorem 5 (see also Remark 5.4), assume that
the function

(θ,ω) 
→ D0(θ,ω)

is B ⊗ F -measurable. Then there exists �0 ⊂ � with P�0 = 1 such that for all ω0 ∈ �0 the
asymptotic distribution of the D[[0,∞),C]-valued function (θ,ω) 
→ Vn(θ,ω) corresponds, un-
der λ × Pω0 , to that of (θ,ω′) 
→ B(θ,ω′) under λ × P′.

Proof. The function (θ,ω) 
→ Vn(θ,ω) is measurable with respect to B ⊗ F (see Section 4),
and therefore by an application of Lemma A.11 in the Appendix and Proposition 2.2 above,
the statement in Theorem 5 can be read in the following way: for any continuous and bounded
function f : D[[0,∞),C] → R

lim
n

E[f ◦ Vn|B ⊗F0](θ,ω) = E
[
f

(
B(θ)

)]
λ × P-a.s., where the expectation at the right denotes integration with respect to P′. This is an
equality of B×F0 measurable functions, the B-measurable function at the right being considered
as constant in � for fixed θ . An application of Theorem 34.2(v) in [6] gives that, for any given
B0 ⊂ B

lim
n

E[f ◦ Vn|B0 ⊗F0] = E
[
E

[
f

(
B(θ)

)]|B0 ⊗F0
]

(62)
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λ × P-a.s. If B0 = {∅, [0,2π)} is the trivial sigma algebra then, as explained before, λθ := λ for
all θ ∈ [0,2π) defines the regular measures corresponding to E[·|B0]. It follows, under the light
of Corollary A.12 in the Appendix and Proposition 2.2, that (62) is nothing but the statement of
convergence Vn ⇒ B under λ × Pω for P-a.e. ω. This is the desired conclusion. �

7. Proof of Theorem 2

We will present in this and the next section the proofs still pending from the results announced
in Section 5. We continue working under the setting introduced in Section 3.

To begin with, let us prove the following “decomposition” lemma:

Lemma 7.1. For all (n, r, θ) ∈N×N∗ × [0,2π) the following equality holds:

Sn(θ) − E0Sn(θ) − Mr,n(θ) = −ei(n−1)θ

(
r∑

k=1

(
T n−1E0Xk − E0T

n−1E0Xk

)
eikθ

)

+ eirθ
n−1∑
k=2

(
T kE−1Xr − E0T

kE−1Xr

)
eikθ (63)

− Dr,0(θ).

Proof. Fix (n, r, θ) ∈ N×N∗ × [0,2π). We depart from the following decomposition of X0 (the
array is intended to make visible the rearrangements):

X0 = E0X0 = (E0 − E−1)X0 + E−1X0

+ (E0 − E−1)X1e
iθ − (E0 − E−1)X1e

iθ

...

+ (E0 − E−1)Xre
irθ − (E0 − E−1)Xre

irθ

=
r∑

k=0

(P0Xk)e
ikθ −

r∑
k=1

(
E0Xke

ikθ − E−1Xk−1e
i(k−1)θ

)
+ E−1Xre

irθ .

(64)

Now, using the equality

n−1∑
j=0

eijθT j
r∑

k=1

(
E0Xke

ikθ − E−1Xk−1e
i(k−1)θ

)

= ei(n−1)θT n−1
r∑

k=1

E0Xke
ikθ −

r−1∑
k=0

E−1Xke
ikθ
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we get, from (64), that

Sn(θ) = Mr,n(θ) −
(

ei(n−1)θT n−1
r∑

k=1

E0Xke
ikθ −

r−1∑
k=0

E−1Xke
ikθ

)

+
n−1∑
j=0

eijθT jE−1Xre
irθ

(65)

and that

E0Sn(θ) = Dr,0(θ) −
(

E0e
i(n−1)θT n−1

r∑
k=1

E0Xke
ikθ −

r−1∑
k=0

E−1Xke
ikθ

)

+
n−1∑
j=0

eijθE0T
jE−1Xre

irθ .

(66)

Note that (63) follows from (65) and (66). �

Let us denote by

Ar,n = Ar,n(θ,ω) :=
r∑

k=1

(
T n−1E0Xk(ω) − E0T

n−1E0Xk(ω)
)
eikθ , (67)

Br,n = Br,n(θ,ω) :=
n−1∑
k=0

(
T kE−1Xr(ω) − E0T

kE−1Xr(ω)
)
eikθ . (68)

The following lemma is a key step for the proof of the validity of our martingale approxima-
tion.

Lemma 7.2. In the context of Lemma 7.1, and with the notation (67) and (68), there exists a
constant C > 0 such that, if E0 is given by the regular version E0X(ω) = EωX (X ∈ L1

P
) then

1. For all (n, r, θ) ∈ N×N∗ × [0,2π), α ∈R, and ω ∈ �

E0

[
max
k≤n

∣∣Ar,k(θ, ·)∣∣2
]
(ω) ≤ 4α2 + 8

n−1∑
j=0

E0T
j
∣∣(E0Sr(θ)

)
I[|E0Sr (θ)|>α]

∣∣2
(ω). (69)

2. For all ω ∈ �∫ 2π

0
E0

[
max
k≤n

∣∣Br,k(θ, ·)∣∣2
]
(ω)dλ(θ) ≤ C

n−1∑
j=2

E0|Ej−1Xj+r − E0Xj+r |2(ω). (70)
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Proof. We will prove (69) using a truncation argument: let Uα be the (non-linear) operator given
by UαY := YI|Y |≥α , and let us use the regular version of E0, thus E0X(ω) = EωX (X ∈ L1

P
).

Then for all ω ∈ �

max
k≤n

∣∣Ar,k(θ, ·)∣∣(ω) = max
k≤n

∣∣(Id − E0)
(
T k−1E0Sr(θ)

)∣∣2
(ω)

≤ 4α2 + 2 max
k≤n

∣∣(Id − E0)T
k−1Uα

(
E0Sr(θ)

)∣∣2
(ω)

≤ 4

(
α2 +

n−1∑
j=0

T j
∣∣Uα

(
E0Sr(θ)

)∣∣2
(ω) +

n−1∑
j=0

E0T
j
∣∣Uα

(
E0Sr(θ)

)∣∣2

)
(ω),

where we used Jensen’s inequality. This clearly implies (69).
Let us now prove (70): by Lemma A.7 there exists a constant C such that

∫ 2π

0
max
k≤n

∣∣Br,k(θ, z)
∣∣2

dλ(θ) ≤ C

∫ 2π

0

∣∣∣∣∣
n−1∑
j=2

(
T jE−1Xr(z) − E0T

jE−1Xr(z)
)
eijθ

∣∣∣∣∣
2

dλ(θ)

= C

n−1∑
j=2

∣∣Ej−1Xj+r (z) − E0Xj+r (z)
∣∣2

.

The conclusion follows at once by integrating with respect to Pω over these inequalities and
using Tonelli’s theorem. �

Proof of Theorem 2. Consider the notation introduced in Lemma 5.16. By an application of this
lemma and Corollary 6.2, it suffices to prove that

Ẽ0

[
1

n
max

1≤k≤n

∣∣Sk(θ,ω) − E0Sk(θ,ω) − Mr,k(θ,ω)
∣∣2

]
= or(1), P-a.s. (71)

Let us do so: by Lemma 7.1 and the definition of Ẽ0, it is sufficient to prove that there exists
�0 with P�0 = 1 such that if for (k, r, θ) ∈N×N∗ ×[0,2π) we replace Zr,k(θ,ω) := Ar,k(θ,ω)

or Zr,k(θ,ω) := Br,k(θ,ω), then

lim
r

lim sup
n

∫ 2π

0
E0

[
1

n
max

1≤k≤n

∣∣Zr,k(θ, ·)∣∣2
]
(ω)dλ(θ) = 0 (72)

for all ω ∈ �0.
Proof of (72) with Zr,k(θ,ω) := Ar,k(θ,ω): if we fix the version of E0 given by E0X(ω) =

EωX (X ∈ L1
P

) then it is clear that for any ω ∈ �

∣∣E0Sr(θ)I[|E0Sr (θ)|>α]
∣∣(ω) ≤

∣∣∣∣∣
(

r−1∑
j=0

E0|Xj |
)

I[∑r−1
j=0 E0|Xj |>α]

∣∣∣∣∣(ω), (73)
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and it follows by an application of (69), Birkhoff’s Ergodic theorem, and Lemma A.6 in the
Appendix (fixing first α > 0 so that the expectation of the random variable at the right hand side
in (73) is less than any given η > 0) that

lim
n

E0

[
1

n
max

1≤k≤n
|Ar,k(θ, ·)|2

]
= 0 P-a.s. (74)

where the (probability one) set �0,1 of convergence does not depend on θ and, even more, the
convergence is uniform in θ for any fixed ω ∈ �0,1. It follows that for every ω ∈ �0,1

lim sup
n

∫ 2π

0
E0

[
1

n
max

1≤k≤n

∣∣Ar,k(θ, ·)∣∣2
]
(ω)dλ(θ)

≤
∫ 2π

0
lim sup

n
E0

[
1

n
max

1≤k≤n

∣∣Ar,k(θ, ·)∣∣2
]
(ω)dλ(θ)

= 0

as desired.
Proof of (72) with Zr,n(θ, ·) := Br,n(θ, ·): again, fix the version of E0 given by E0X(ω) =

EωX. We depart from (70) and we note that, if for every j ∈ Z, X−∞,j := Xj − E−∞Xj then

n−1∑
k=2

E0
∣∣(Ek−1 − E0)Xk+r

∣∣2 =
n−1∑
k=2

E0
∣∣(Ek−1 − E0)X−∞,k+r

∣∣2

=
n−1∑
k=2

E0T
k−1

∣∣(E0 − E−k+1)X−∞,r+1
∣∣2

=
n−2∑
k=1

(
E0T

k|E0X−∞,r+1|2 − |E0X−∞,k+r+1|2
)

≤
n−2∑
k=1

E0T
k|E0X−∞,r+1|2,

P-a.s. It follows from (70) and Lemma A.6 that

lim sup
n

∫ 2π

0
E0

[
1

n
max

1≤k≤n

∣∣Br,k(θ, ·)∣∣2
]
(ω)dλ(θ) ≤ C‖E0X−∞,r+1‖2

P,2

= C‖E−(r+1)X−∞,0‖2
P,2

(75)

P-a.s. over a set �0,2,r independent of θ and therefore, by the regularity condition (29) (see also
(30))

lim
r

lim sup
n

1

n

∫ 2π

0
E0

[
max

1≤k≤n

∣∣Br,k(θ, ·)∣∣2
]
dλ(θ) = 0

for all ω ∈ �0,2 := ⋂
r∈N �0,2,r . To conclude this part take �0 := �0,1 ∩ �0,2.
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We are left at this point with the statement on the convergence in distribution of (21) as n → ∞
under the regularity condition (29).

To prove this claim, start by considering the inequalities (Sk = Sk(θ,ω) here, and similarly for
Mr,k)

Ẽ0
1

n
max

1≤k≤n
|Sk − E0Sk − Mr,k|2

≤ 2Ẽ0
1

n
max

1≤k≤n
|Sk − Mr,k|2 + 2

n
Ẽ0 max

1≤k≤n
|E0Sk|2

≤ 4Ẽ0
1

n
max

1≤k≤n
|Sk − E0Sk − Mr,k|2 + 6

n
Ẽ0 max

1≤k≤n
|E0Sk|2,

(76)

and notice that, by Lemma A.7 in the Appendix and F0-measurability, there exists a constant C

such that

1

n
Ẽ0 max

1≤k≤n
|E0Sk|2 ≤ C

1

n

n−1∑
k=0

|E0Xk|2,

P-a.s. It follows from these observations and Corollary 5.14 that, under regularity, (71) is equiv-
alent to

Ẽ0

[
1

n
max

1≤k≤n

∣∣Sk(θ,ω) − Mr,k(θ,ω)
∣∣2

]
= or(1), P-a.s. (77)

which gives the convergence of (21) under Ẽ0 by the argument already given and an easy adap-
tation of Lemma 5.16. �

8. Proof of Theorems 3 and 4

The first step towards the proof of Theorem 3 is the following martingale approximation lemma
(here Sk denotes non-rotated partial sums).

Lemma 8.1. In the context of Theorem 3

1. Assuming (38), there exists D0 ∈ L2
P
(F0) � L2

P
(F−1) such that, if Mn is given by Mn :=∑n−1

k=0 T kD0, then

lim
n

E0

[
1

n
max

1≤k≤n
|Sk − E0Sk − Mk|2

]
= 0, P-a.s. (78)

2. Assuming (40), there exists D0 ∈ L2
P
(F0) � L2

P
(F−1) such that, if Mn is given by Mn :=∑n−1

k=0 T kD0

lim
n

E0

[
1

n
max

1≤k≤n
|Sk − Mk|2

]
= 0, P-a.s. (79)
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Proof. The first statement is a part of Theorem 2.3 in [10]. The second statement is Theorem 2.7
in [8]. �

Remark 8.2. If (an)n, (bn)n are sequences of complex numbers with |bn| increasing to ∞ and
an/bn → 0, then

lim
n

max
1≤k≤n

|ak|
|bn| = 0

because

0 ≤ lim sup
n

max
1≤k≤n

|ak|
|bn| ≤ lim sup

N

lim sup
n

(
1

|bn|
N−1∑
k=1

|ak| + sup
k≥N

|ak|
|bk|

)
= lim

N
sup
k≥N

|ak|
|bk| = 0.

If we apply this observation to the inequalities (76) with Ẽ0 replaced by E0 we see that, under
the hypothesis

lim
n

E0Sn√
n

= 0 P-a.s., (80)

(78) and (79) are equivalent. We can actually verify (80) under (40) (see [8], Proposition 4.9) and
therefore, under the (non-rotated) Maxwell and Woodroofe condition (40), (78) and (79) imply
each other.

Remark 8.3. It is convenient, for the sake of clarity, to describe explicitly the martingale differ-
ences stated in Lemma 8.1: under (40), D0 can be described as the P-a.s. and in L2

P
-convergent

series

D0 :=
∑
n≥0

∑
k≥n

P0Xk

k + 1
, (81)

and under (38) D0 is given by the P-a.s. and in L2
P

-convergent series

D0 :=
∑
k≥0

P0Xk. (82)

Proof of Theorem 3. Start by considering the following observations: let (�,F,P) be the un-
derlying probability space (the domain of X0), and for every measurable function Y : � →C let
Ỹ be the extension to the product space Ỹ : [0,2π) × � → C defined by

Ỹ (u,ω) := eiuY (ω).

For θ ∈ [0,2π) fixed, define T̃θ : [0,2π) × � → [0,2π) × � by

T̃θ (u,ω) := (
(u + θ)mod(2π),T ω

)
(T̃θ is the product map between the rotation by an angle of θ and T ). It is easy to see that T̃θ is
invertible, that it preserves the product measure λ × P, and that it is B ⊗ F -bimeasurable. It is
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also easy to see that for every (measurable) Y : � → C and every k ∈ Z, T̃ k
θ Ỹ = ˜eikθT kY , and

that ‖Ỹ‖λ×P,2 = ‖Y‖P,2 if Y ∈ L2
P

.
Denote, for every k ∈ Z, F̃k := B⊗Fk , Ẽk := E[·|F̃k] (conditional expectation with respect to

λ×P), and P̃k := Ẽk − Ẽk−1 (avoid confusion with the meaning of this notation in Lemma 5.16:
here B0 = B). It is easy to see that (F̃k)k∈Z is a T̃θ -filtration.

Recall also the notation introduced in Definition 5.1, and notice now that, if θ ∈ (0,2π) and
Y ∈ L1

P
is given then(

1 − eiθ
)
Sn(Y,T , θ, ·) = T −1Y + Sn

(
Y − T −1Y,T , θ, ·) − T n−1Yeinθ . (83)

Theorem 3 consists of two statements: the convergence of (20) under (37) or (39) and the
convergence of (21) under (39). For reasons inherent to the logic of our arguments, we will prove
first the convergence of (20) under (37), and then the convergence of (20) and (21) under (39).

Convergence of (20) under (37). First note that, without loss of generality, we can assume that
(Xk)k∈Z is regular (Definition 5.10). Indeed, with the notation introduced in Definition 5.1:

Sk(X0, T , θ, ·) − E0Sk(X0, T , θ, ·)
= Sk(X0 − E−∞X0, T , θ, ·) − E0Sk(X0 − E−∞X0, T , θ, ·), (84)

and therefore we can study the desired asymptotics replacing the stationary process (Xk)k∈Z by
the (stationary and) regular process (Xk − E−∞Xk)k∈Z. We will therefore assume in this part of
the proof that (Xk)k∈Z is, indeed, regular.

Martingale approximations. For the sake of clarity, let us depart from the following observa-
tion: if we assume that


0(θ) :=
∑
k≥0

P0(Xk − Xk−1)e
ikθ

converges P-a.s. and in L2
P

then, necessarily

D0(θ) :=
∑
k≥0

P0Xke
ikθ (85)

converges in L2
P

(under regularity). Even more,(
1 − eiθ

)
D0(θ) = 
0(θ), (86)

P-a.s. To see this apply (83) and the definition of P0 to obtain, for every r ∈N, that

(
1 − eiθ

) r∑
k=0

P0Xke
ikθ =

r∑
k=0

P0(Xk − Xk−1)e
ikθ −P0Xre

i(r+1)θ ,

and let r → ∞ taking into account the regularity of (Xk)k∈Z.
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Now note that (37) implies that∑
k≥0

∥∥P0(Xk − Xk−1)
∥∥
P,2 =

∑
k≥0

∥∥P̃0(X̃k − X̃k−1)
∥∥

λ×P,2 < ∞. (87)

Taking Y0 = X0 − X−1 and noticing that,∥∥P̃0T̃
k
θ Ỹ0

∥∥
λ×P,2 = ∥∥P0T

kY0
∥∥
P,2 = ∥∥P0(Xk − Xk−1)

∥∥
P,2

we see by Lemma 8.1 that we can find 
̃0 ∈ L2
λ×P

(F̃0) � L2
λ×P

(F̃−1) such that

lim
n

1

n
Ẽ0 max

1≤k≤n

∣∣Sk(X̃0 − X̃−1, T̃θ ,0, ·) − E0Sk(X̃0 − X̃−1, T̃θ ,0, ·) − Sk(
̃0, T̃θ ,0, ·)∣∣2

(88)
= 0,

λ × P-a.s. Even more, using Remark 8.3 we see that


̃0(u,ω) = eiu
∑
k≥0

P0(Xk − Xk−1)(ω)eikθ . (89)

This gives that if 
0(θ,ω) := e−iu
̃0(u,ω) then

lim
n

1

n
E0 max

1≤k≤n

∣∣Sk(X0 − X−1, T , θ, ·) − E0Sk(X0 − X−1, T , θ, ·) − Sk

(

0(θ), T , θ, ·)∣∣2

(90)
= 0,

P-a.s., which is the same, by (83), (86) and the convergence E0|(Id − E0)Xn|2 = o(n), P-a.s.
(use for instance the pointwise ergodic theorem for E0T , see also the first part of Remark 8.2),
as ∣∣1 − eiθ

∣∣2 lim
n

1

n
E0 max

1≤k≤n

∣∣(Sk(X0, T , θ, ·) − E0Sk(X0, T , θ, ·) − Sk

(
D0(θ), T , θ, ·))∣∣2

(91)
= 0,

P-a.s., where D0(θ) is given by (85). The result follows at once from Lemma 5.6 assuming that
e2iθ /∈ Specp(T ) (in particular eiθ �= 1).

Convergence of (20) and (21) under (39). With the notation already introduced, note that

∑
k≥1

‖E0Sk(X0, T , θ, ·)‖P,2

k3/2
=

∑
k≥1

‖Ẽ0Sk(X̃0, T̃θ ,0, ·)‖λ×P,2

k3/2
< ∞ (92)

and it follows, by applying Lemma 8.1 again, that if D̃0 is defined by

D̃0 :=
∑
n≥0

∑
k≥n

P̃0T̃
k
θ X̃0

k + 1
, (93)
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then

lim
n

1

n
Ẽ0 max

1≤k≤n

∣∣Sk(X̃0, T̃θ ,0, ·) − Sk(D̃0, T̃θ ,0, ·)∣∣2 = 0 (94)

λ × P-a.s. By arguments similar to those preceding (91), this is the same as saying that if

D0(θ) =
∑
n≥0

∑
k≥n

P0Xke
ikθ

k + 1
(95)

then

lim
n

1

n
E0 max

1≤k≤n

∣∣Sk(X0, T , θ, ·) − Sk

(
D0(θ), T , θ, ·)∣∣2 = 0, (96)

P-a.s. This implies the desired conclusion by (an easy adaptation of) Lemma 5.6. The conver-
gence of (20) follows by a similar argument after applying Remark 8.2 to (94). �

Proof of Theorem 4. We start from the following observation: if (ak)k∈N is a sequence of non-
negative numbers, (bk)k∈N is a sequence of (strictly) positive numbers, and n ∈ N∗ is given, an
application of Hölder’s inequality gives that

n∑
k=1

ak

k3/2
≤

(
n∑

k=1

1

kbk

)1/2( n∑
k=1

a2
kbk

k2

)1/2

,

and therefore the convergence of
∑

k ak/k3/2 (k ≥ 1) is equivalent to the existence of a positive
sequence (bk)k∈N such that both

∑
k 1/(kbk) and

∑
k a2

kbk/k2 are convergent (for the necessity
consider bk := k1/2/ak if ak > 0 and bk = k otherwise).

This observation applied to ak := ‖E0Sk(θ)‖P,2 (for θ ∈ [0,2π) fixed) gives that a sufficient
condition for the fulfillment of (39) is the existence of β > 1 such that

∑
k∈N∗

(logk)β
E|E0Sk(θ)|2

k2
< ∞. (97)

In order to provide a condition giving rise to the fulfillment of (97) for λ-a.e. θ , we fix n ∈ N∗
and start by noticing that, by orthogonality and Fubini’s theorem

∫ n∑
k=1

(logk)β
‖E0Sk(θ)‖2

P,2

k2
dλ(θ) =

n∑
k=1

k−1∑
j=0

(logk)β

k2
‖E0Xj‖2

P,2

=
n−1∑
j=0

||E0Xj ||2P,2

n∑
k=j+1

(logk)β

k2
,
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and that one can show (using for instance the integral test and integration by parts) that for every
β > 1, there exists C(β) > 0 such that

n∑
k=j+1

(logk)β

k2
≤ C(β)

(log(j))β

j
,

for every 1 ≤ j ≤ n given. This, together with Tonelli’s theorem, shows that∫ ∞∑
k=1

(logk)β
‖E0Sk(θ)‖2

P,2

k2
dλ(θ) ≤ C(β)

∞∑
k=1

(logk)β
‖E0Xk‖2

P,2

k
,

P-a.s. With this Theorem 4 follows from (42) and Theorem 3. �

Appendix

In this section, we provide some results used along the proofs of the statements previously given.
Some of these results belong to the existing literature and are included here for the sake of clarity,
the rest of them are either not very visible in the mainstream literature or new, and we include
them in this section due to their general scope.

We start by giving a further equivalence to the Portmanteau theorem, valid in the case of
separable metric spaces, and whose relevance for our arguments lies in the fact that it reduces the
“integral testing” for convergence in distribution to a countable set of functions.

To introduce this result, first remember the notion of a Urysohn function: given two closed,
disjoint sets F0, F1 in a perfectly normal topological space (for instance, any metric space) T ,

U = U(F0,F1) : T → [0,1]
is called a Urysohn function if it is continuous, U−1{0} = F0 and U−1{1} = F1.

Let us call a collection {Fj }j∈J of closed sets in T a co-base if {T \ Fj }j∈J is a base of T .
We will also use the following notation: if S is a metric space with distance function d , then for
any given x ∈ S and A ⊂ S (not necessarily in the topology of S) we define the distance from x

to A by

d(x,A) := inf
a∈A

d(x, a),

and we define the ε-neighborhood of A, Aε , as the (open) set

Aε := {
x ∈ S : d(x,A) < ε

}
.

Lemma A.1. Let S be a separable metric space. Denote by Cb(S) the space of bounded, contin-
uous real-valued functions on S. Let {Fn}n∈N be a co-base of S which is also a π -system, and let
Xn, X (n ∈N) be random elements of S (not necessarily defined on the same probability space).
Then the following two statements are equivalent
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1. For every f ∈ Cb(S),

lim
n

Ef (Xn) = Ef (X).

2. For every k ∈N, every rational ε > 0, and some Urysohn function Uk,ε = U(S \ Fε
k ,Fk)

lim
n

EUk,ε(Xn) = EUk,ε(X).

Proof. Denote by Pn the law of Xn and by P the law of X. Since 1. clearly implies 2. it suffices
to see, by the Portmanteau theorem ([7], Theorem 2.1), that if 2. is true then for any given closed
set F

lim sup
n

PnF ≤ PF.

If for some k, F = Fk , this is a consequence of the inequalities

IF ≤ Uk,ε ≤ IF ε ,

the hypothesis in 2. and the continuity from above of finite measures.
If F is an arbitrary closed set, say F = ⋂

j∈J Fj for some J ⊂ N, and if we define for all
k ∈N, Jk := J ∩ [0, k] and Ak := ⋂

j∈Jk
Fj then, since Ak ∈ {Fn}n,

lim sup
n

PnF ≤ lim sup
n

PnAk ≤ PAk

for all k. By letting k → ∞ we get the desired conclusion. �

We remark that the Portmanteau theorem can be extended to the context of abstract perfectly
normal spaces if one interprets convergence in distribution as the fulfillment of the hypothesis 1.
of Lemma A.1. This can be seen by following the arguments in [7] and using the fact that every
closed set is a Gδ set. In this context, Lemma A.1 corresponds to the second-countable case.

Our next result, Theorem A.2, is an improvement due to Dehling, Durieu and Volny, of The-
orem 3.1 in [7] for the case in which the target (state) space is a complete and separable metric
space. As in the previous pages, “⇒” denotes convergence in distribution.

Theorem A.2. Let (S, d) be a complete and separable metric space. Assume that for all r, n ≥ 0,
X(r,n) and Xn are random elements of S defined on the same probability space (�,F,μ), and
that X(r,n) ⇒n Zr . Then the hypothesis

lim
r

lim sup
n

μ
[
d(X(r,n),Xn) ≥ ε

] = 0, for all ε > 0 (A.1)

implies the existence of a random element X of S such that Zr ⇒r X and Xn ⇒n X.

Proof. This is Theorem 2 in [12]. �
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Corollary A.3. In the context of Theorem A.2 denote, for any given q > 0,

‖Z‖μ,q :=
(∫

�

|Z|q dμ(ω)

)1/q

.

If for some q > 0

lim
r

lim sup
n

∥∥d(X(r,n),Xn)
∥∥

μ,q
= 0

and X(r,n) ⇒n Zr , then there exists a random element X such that Xn ⇒n X.

Proof. Apply Markov’s inequality to verify the hypothesis of Theorem A.2. �

The following lemma is used without a proof along the references consulted by the author, thus
a demonstration is given. This result allows us to pass from the study of stationary martingales
to martingales under the conditional regular measures (see Section 3).

Lemma A.4. With the notation and definitions given in Section 3, and denoting further by Eω
k

the conditional expectation with respect to Fk and Pω, the following property holds: for every
k ∈N, every P-integrable Y , and every fixed version of EkY (also denoted by EkY ):

Eω
k Y = EkY (A.2)

Pω-a.s. for P-a.e. ω. In particular, if (Mn)n is an (Fn)n-adapted martingale in L
p

P
(p ≥ 1), then

(Mn)n≥0 is an (Fn)n-adapted martingale in L
p

Pω
for P-a.e. ω.

Proof. Fix a version of Y ∈ L1
P

. We will prove that for any (Fk-measurable) version of EkY ,
there exists a set �Y ⊂ � with P�Y = 1 such that the following holds: for every ω ∈ �Y and
every A ∈ Fk ∫

A

Y(z) dPω(z) =
∫

A

EkY (z) dPω(z), (A.3)

this clearly implies the first conclusion.
Fix a (Fk-measurable) version of EkY and notice that for A fixed, a set �Y,A of probability

one such that (A.3) holds for all ω ∈ �Y,A exists by the property defining the family {Pω}ω∈�

and because

E0[YIA] = E0
[
(EkY )IA

]
,

P-a.s. Without loss of generality �Y,A ⊂ {ω ∈ � : |Y |+ |EkY | ∈ L1
Pω

} (the last set has P-measure

one because E|Z| = EE0|Z| for every Z ∈ L1
P

).
Now proceed as follows: let {An}n∈N ⊂Fk be a countable family generating Fk which is also

a π -system and includes � (such a family exists because F0 is assumed countably generated),
let �Y := ⋂

n≥1 �Y,An , and let Gk ⊂ Fk be the family of sets A ∈ Fk such that (A.3) holds for
all ω ∈ �Y . It is easy to see that Gk is a λ-system and therefore, since it includes {An}n∈N, the
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π − λ theorem implies that Gk = Fk . Note that P�Y = 1, and that for all ω ∈ �Y , (A.3) holds
for all A ∈Fk .

This gives the proof of the first conclusion. The second conclusion (the one about martingales)
follows easily from this, together with the fact that E|X|p = EE0|X|p and therefore if E|X|p <

∞ then Eω|X|p < ∞ for P-a.e. ω. �

Recall the following (Doob’s) maximal inequality ([22], p. 53): if p > 1 is given and (Mk)k is
a nonnegative submartingale in L

p
μ then

‖Mn‖p,μ ≤
∥∥∥ max

0≤k≤n
Mk

∥∥∥
p,μ

≤ p

p − 1
‖Mn‖p,μ. (A.4)

A combination of Doob’s maximal inequality (A.4) with Lemma A.4 gives the following lemma.

Lemma A.5. With the notation of Section 3, if (Mk)k is an (Fk)k-adapted complex martingale
in L2

P
then

E0

[
max

0≤k≤n
|Mk|

]2 ≤ 4E0|Mn|2, P-a.s. (A.5)

We also need in this paper the following ergodic theorem, which was demonstrated at the
beginning of the proof of Propostion 5.12.

Lemma A.6. With the notation introduced in Section 3, and assuming T is ergodic, for every
Y ∈ L1

P
,

lim
n

1

n

n−1∑
k=0

E0T
kY = EY, (A.6)

P-a.s. and in L1
P

.

Proof. See the proof of Proposition 5.12.16 �

The following lemma is a classical tool in Harmonic Analysis, we give here a concrete version
sufficient for our purposes.

Lemma A.7. There exists a constant C with the following property: for any given f ∈ L2
λ with

Fourier expansion

Sf (θ) =
∑
k≥0

ake
ikθ ,

16Or see Lemma 7.1 in [11] for a slightly different version of this result (which also inspired it).
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and denoting by Sf,n(θ) := ∑n−1
k=0 ake

ikθ the nth Fourier partial Fourier sum of f :∫
[0,2π)

sup
n

∣∣Sf,n(θ)
∣∣2

dλ(θ) ≤ C

∫
[0,2π)

∣∣f (θ)
∣∣2

dλ(θ).

Proof. [17]. �

The next lemma is useful to compute the finite-dimensional asymptotic distributions that iden-
tify our asymptotic (quenched) limits.

Lemma A.8. Let (�,F,P) be a probability space, let T : � → � be a measure preserving
transformation and let θ ∈R. If the only integrable (complex-valued) function Y satisfying T Y =
e−iθY is Y = 0 (i.e., if e−iθ /∈ Specp(T )), then for every X ∈ L1

P
(�,C)

lim
n

1

n

n−1∑
k=0

T kXeikθ = 0, P-a.s. and in L1
P
. (A.7)

Proof. [9], p. 20.17 �

The following lemma is a corollary of the previous one. Its proof is basically the same as that
of the equality (16) in [9].18

Lemma A.9. With the notations and definitions given in Section 3 and Section 5, assume that
θ ∈ [0,2π) is such that e−2iθ /∈ Specp(T ) and let Y0 ∈ L2

P
be given. Then for every x = (x1, x2)

lim
n

1

n

n−1∑
k=0

Ek−1
(
x · (T kY0e

ikθ
))2 = (x2

1 + x2
2)

2
E|Y0|2, P-a.s. and in L1

P
,

where the (probability one) set of pointwise convergence does not depend on x1, x2.

Proof. Notice that

Ek−1
(
x · (T kY0e

ikθ
))2 = T kE−1

(
x · (Y0e

ikθ
))2

and adapt the argument leading to (16) in [9] (alternatively, see the proof of Lemma 5 in [4]). �

17Actually, as proved for instance in [4], Theorem 3.2, if X ∈ L
p
P

for some p ≥ 1 and θ is arbitrary, the random variables

at the left in (A.7) converge P-a.s. and in L
p
P

, as n → ∞, to the orthogonal projection of X on the (in the ergodic case, at

most one-dimensional) space of functions Y ∈ L
p
P

with T Y = e−iθ Y .
18There is a typo in [9]: according to the notation there (avoid confusion with our notation) the correct statement is the

following: if e−2it is not an eigenvalue of θ , (16) is valid P-a.s. (not P̃-a.s.) for every fixed u. An analysis of the proof
shows that the convergence is valid also in the L1

P
-sense, which is not explicitly stated there.
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Remark A.10. The set of probability one in Lemma A.9 can be described as the set where the
pointwise convergences

1

n

n−1∑
k=0

T kE−1
[(

Re(Y0)
)2]

ei2kθ →n 0,
1

n

n−1∑
k=0

T kE−1
[(

Im(Y0)
)2]

ei2kθ →n 0,

1

n

n−1∑
k=0

T kE−1
[
Re(Y0) Im(Y0)

]
ei2kθ →n 0,

1

n

n−1∑
k=0

T kE−1|Y0|2 →n E|Y0|2

hold (for fixed versions of the functions involved). The details are left to the reader (alternatively,
see the proof of Lemma 5 in [4]).

The following lemma has a very classical flavor but it is not visible in the literature. We use
it in Section 3 to understand systematically the nature of the quenched results obtained in the
paper, and for the proof of Corollary 6.2.

Lemma A.11. Let (�,B, λ) and (�,F,P) be probability spaces and let F0 ⊂ F be a sigma
algebra such that E[·|F0] admits a regular version in the sense explained in Section 3: there
exists a family of probability measures {Pω}ω∈� such that for every (version of) Y ∈ L1

P
,

ω 
→
∫

�

Y(z) dPω(z)

defines an F0-measurable version of E[Y |F0]. Define, for any (version of) f ∈ L1
λ×P

,

f̃ (θ,ω) :=
∫

�

f (θ, z) dPω(z),

provided that the integral exists, and zero otherwise. Then f̃ is a version of E[f |B ⊗F0].

Proof. Note that, by Fubini’s theorem, f (θ, ·) ∈ L1
P

for λ-a.e. θ , and that for such θ , f̃ (θ, ·) is a
version of E0[f (θ, ·)]. If we succeed proving that f̃ is B⊗F0-measurable it follows by Fubini’s
theorem again that given any rectangular set E = A × B ∈ B ⊗F0∫

E

f (θ,ω)d(λ × P) =
∫

A

∫
B

f (θ,ω)dP(ω)dλ(θ) =
∫

A

∫
B

f̃ (θ,ω)dP(ω)dλ(θ),

so that, by an application of the π − λ theorem similar to the one at the end of this proof,∫
E

f (θ,ω)d(λ × P) =
∫

E

f̃ (θ,ω)d(λ × P)

for all E ∈ B ⊗F0. Thus it suffices to prove the B ⊗F0-measurability of f̃ .
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Note that if f + := f I[f ≥0] and f − := −f I[f <0] are, respectively, the nonnegative and nega-
tive parts of a real-valued f ∈ L1

λ×P
, we can recover the definition of f̃ via the formula

f̃ = ( ˜f + − ˜f −)
I[|̃f |>0]

(here |̃f | := g̃ with g := |f |), and we can create a (measurable) formula for an arbitrary f ∈
L1

λ×P
by applying this to its real and imaginary parts.

Thus it suffices to assume that f is nonnegative. We will do so for the rest of the proof.
It is well known that every nonnegative function f can be approximated by simple functions

fn with fn increasing to f ([6], Theorem 13.5, p. 185). Then, by the monotone convergence
theorem,

f̃ = lim
n

(f̃nIAf
)

where

Af :=
⋃
n∈N

⋂
k∈N

[f̃k ≤ n].

Thus, it suffices to see that for each simple function f , f̃ is B ⊗F0-measurable, and therefore it
suffices (by linearity) to prove this if f = IE for any E ∈ B ⊗F .

Let us do it: if E = A × B is a rectangular set, then

ĨE(θ,ω) = IA(θ)Pω(B),

which is clearly B ⊗ F0 measurable. It follows that ĨE is B ⊗ F0-measurable if E is any finite
union of disjoint rectangles in B ⊗F .

Now consider the family F̃ ′ of sets E ∈ B ⊗F such that ĨE is B ⊗F0-measurable. Since for
any family {En}n⊂F̃ ′ of mutually disjoint sets

Ĩ⋃
n En

=
∑
n

ĨEn

(apply the monotone convergence theorem) and � × � is an element of F̃ ′, F̃ ′ is a λ-system.
Since F̃ ′ includes the finite unions of disjoint rectangles it follows, by the π − λ theorem, that
F̃ ′ = B ⊗F . �

Corollary A.12. Under the conditions of Lemma A.11, if B0 ⊂ B is a sigma algebra such that
E[·|B0] is regular with regular measures {λθ }θ∈�, so that

θ 
→
∫

�

g(z) dλθ (z)

is B0-measurable and defines a version of E[g|B0] for any g ∈ L1
λ, then {λθ ×Pω}(θ,ω)∈�×� is a

family of regular measures for the conditional expectation E[·|B0 ⊗F0] with respect to B0 ⊗F0
and λ × P.
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Proof. Given any function f = f (θ,ω) ∈ L1
λ×P

E[f |B0 ⊗F0] = E
[
E[f |B ⊗F0]|B0 ⊗F0

] = E[f̃ |B0 ⊗F0],
where f̃ is the function specified by Lemma A.11. A second application of this lemma with
B ⊗F0 in the role of B ⊗F and with B0 in the role of F0 gives that

(θ,ω) 
→
∫

�

∫
�

f (x, z) dPω(z) dλθ (x)

defines a B0 ⊗F0-measurable version of E[f |B0 ⊗F0]. �

We finish this section by stating two widely known limit theorems, which are building blocks
of the results presented in this paper.

Theorem A.13 (The Lindeberg–Lévy theorem for martingales). For each n ∈ N∗, let

n1, . . . ,
nk, . . . be a sequence of real-valued martingale differences with respect to some
increasing filtration Fn

0 ⊂ · · · ⊂Fn
k ⊂ · · · .

Define, for every (n, k) ∈N∗ ×N, σ 2
nk := E[
2

nk‖Fn
k−1], and assume that

∑
k 
nk and

∑
k σ 2

nk

converge with probability one. If for some σ ≥ 0 the following two conditions hold

1.
∑

k≥1 σ 2
nk ⇒n σ 2,

2.
∑

k≥1 E[
2
nkI[
nk≥ε]] →n 0, for every ε > 0,

then Zn := ∑
k≥1 
nk ⇒n σN where N is a standard normal random variable.

Proof. [6], p. 477. �

Theorem A.14 (The functional form of Theorem A.13). For each n ∈N∗, let 
n1, . . . ,
nk, . . .

be a sequence of real-valued martingale differences with respect to some increasing filtration
Fn

0 ⊂ · · · ⊂Fn
k ⊂ · · · .

Define, for every (n, k) ∈ N∗ × N, σ 2
nk := E[
2

nk‖Fn
k−1]. If for some σ ≥ 0 the following two

conditions hold for every t ≥ 0, ε > 0

1.
∑

k≤nt σ
2
nk ⇒n σ 2t ,

2.
∑

k≤nt E[
2
nkI[
nk≥ε]] →n 0,

then the random functions Xn(t) := ∑
k≤nt 
nk converge in distribution, as n → ∞, to σW in

the sense of D[[0,∞)] where W is a standard Brownian motion.

Proof. This is a slight reformulation of Theorem 18.2 in [7], (pp. 194–195): the case σ > 0
follows by a simple renormalization, and to cover the case σ = 0, note that the convergence
(18.6) in [7] becomes a simple consequence of the definition given there of ζnk and the hypothesis
(corresponding to σ = 0) ∑

k≤nt

σ 2
nk ⇒n 0

for every t ≥ 0. �
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