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In this article, we revisit the problem of estimating the unknown zero-symmetric distribution in a two-
component location mixture model, considered in previous works, now under the assumption that the zero-
symmetric distribution has a log-concave density. When consistent estimators for the shift locations and
mixing probability are used, we show that the nonparametric log-concave Maximum Likelihood estimator
(MLE) of both the mixed density and that of the unknown zero-symmetric component are consistent in the
Hellinger distance. In case the estimators for the shift locations and mixing probability are

√
n-consistent,

we establish that these MLE’s converge to the truth at the rate n−2/5 in the L1 distance. To estimate the
shift locations and mixing probability, we use the estimators proposed by (Ann. Statist. 35 (2007) 224–251).
The unknown zero-symmetric density is efficiently computed using the R package logcondens.mode.

Keywords: bracketing entropy; consistency; empirical processes; global rate; Hellinger metric;
log-concave; mixture; symmetric

1. Introduction

Let us assume that X1, . . . ,Xn are independent and identically distributed (i.i.d.) draws from a
mixture distribution, with cumulative distribution function (c.d.f.) G0 given by

G0(x) =
k∑

i=1

π0
i F 0

i (x), x ∈R, (1)

for some integer k ≥ 2, where F 0
i are c.d.f.s, π0

i ≥ 0, and
∑k

i=1 π0
i = 1. Such mixture distri-

butions are very common in statistical modeling, in part because a variety of data generating
frameworks lead to mixture models; for instance, one common approach to clustering problems
leads to estimation of a mixture density [24]. Another reason for this popularity is that they are
very flexible and many distributions can be well approximated by some mixture model (see, e.g.,
[23,38], or [29]).

In this paper, we revisit the semi-parametric mixture model already studied by [6] and [26]. In
this model, it is assumed that the mixing distributions Fi,1 ≤ i ≤ k in (1) are such that

Fi(x) = F 0(x − u0
i

)
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for u0
i ∈ R, i = 1, . . . , k, and F 0 is a distribution function restricted to be symmetric about 0,

that is, F 0(−x) = 1 − F 0(x−). This model was also studied more recently by [7]. All of these
authors have actually focused on the case k = 2:

G0(x) = π0F 0(x − u0
1

) + (
1 − π0)F 0(x − u0

2

)
, x ∈ R. (2)

This is still, in fact, a flexible model which is useful in many scenarios (see our data appli-
cations in Section 6). As the main goal is to estimate the mixing parameters and the mixing
component F 0, it is crucial to be assured that there exists a unique solution (π0, u0

1, u
0
2,F

0) for
a given G0 determined by (2). Bordes, Mottelet and Vandekerkhove [6] and Hunter, Wang and
Hettmansperger [26] were able to establish that identifiability holds under some suitable con-
ditions on the mixing parameters. Their result states that if u0

1 < u0
2 and π0 /∈ {0,1/2,1}, then

G0 given (2) is identifiable for any zero-symmetric distributions F 0. Furthermore, the condition
is necessary and sufficient since any distribution G0 that is symmetric about its median clearly
cannot be 2-identifiable; see Theorem 2 of [26].

After having shown identifiability, [26] put their focus on estimating (π0, u0
1, u

0
2,F

0). They
have shown that their estimator of the parametric component (π0, u0

1, u
0
2) is consistent and

asymptotically normal. However, the obtained estimator of F 0 is not even guaranteed to have
the properties of a genuine c.d.f. (i.e., it is not necessarily nondecreasing). On the other hand,
[6,7], and [9] use a KDE approach to estimation of F 0. The resulting estimators are proper dis-
tribution functions, but the procedures involve a model-selection procedure (cross-validation or
Akaike or Bayesian information criterion) to choose the tuning parameter. The estimators of [26]
and [7] for the mixture parameters are shown to converge weakly to a multivariate Gaussian at
the parametric rate n−1/2 under some regularity conditions on F 0 which are related to smooth-
ness in the case of [7]. Bordes, Mottelet and Vandekerkhove [6] obtain also a convergence rate
under smoothness assumptions, but their rate of convergence is much slower (of order n−1/4+α ,
for any α > 0). Bordes, Mottelet and Vandekerkhove [6] show that the same rates of convergence
are inherited by their kernel estimator of F 0 in the supremum norm, under the assumption that
the location parameters u0

1 and u0
2 are unknown. If F 0 is assumed to admit a density f 0, then

[6] provide only almost sure consistency in the supremum norm. For their kernel estimator, [7]
obtain, for pointwise convergence, a rate of order n−(2β−1)/(4β) in the quadratic risk assuming
smoothness of level β > 1/2 and assuming that the bandwidth is chosen optimally (the authors
suggest using cross validation).

Hence, the proposed estimators of F 0 in the aforementioned works suffer various practical
difficulties, including slow rates of convergence (or as-of-yet unknown rates) for it or its density,
the estimator not being a proper c.d.f., or the need for model-selection procedures to choose a
tuning parameter. Our goal in this paper is to circumvent those issues by constructing an estimator
of the density f 0 which

• converges to the truth with a provably good convergence rate,
• can be efficiently computed,
• does not require a tuning parameter, and furthermore,
• is unimodal.

Unimodality is a natural constraint to enforce; when using a mixture model, it is somewhat unnat-
ural to imagine a multimodal mixture component density. However, using unimodality involves
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some technical difficulties: enforcing unimodality on f 0 is not directly feasible, because the class
of unimodal densities is too large and the MLE of a unimodal density fails to exist even in the
simple one-dimensional setting (with no mixing). We propose instead to assume that f 0 satisfies
the shape constraint of log-concavity (i.e., logf 0 is concave).

Log-concave functions are always unimodal, and have been used to great success in nonpara-
metric modeling. Unlike the class of unimodal densities, the log-concave class admits an MLE
[39]. Many papers have studied the log-concave MLE on R or Rd and much is already known
about its large sample properties, both local and global; see, for example, [5,10,13,14,16,18,20,
31,35], and [27]. Balabdaoui et al. [4] studied asymptotics and confidence intervals of the dis-
crete log-concave MLE of a probability mass function in the well- and misspecified settings.
Dümbgen, Hüsler and Rufibach [17], Rufibach [33] and Dümbgen and Rufibach [19] study algo-
rithms for computation of the MLE, allowing unequal weights to be assigned to the observations,
an important feature of which we will take advantage.

In the present context, we need to consider the class of zero-symmetric log-concave densities
on R, which has not been considered before. To do so, we note that if f is zero-symmetric and
log-concave on R, then f +(t) := 2f (t)It∈[0,∞) is log-concave with mode at 0. Thus, through
a simple transformation of the data, it can be shown that the original estimation problem is
equivalent to maximizing the log-likelihood over the class of log-concave densities on [0,∞)

with mode at 0. We can then compute the maximum of the log-likelihood easily by alternating
between the EM algorithm [15] and the active set algorithm provided in the R package log-
condens.mode which computes the log-concave MLE with a fixed mode. We use the fact that
the active set algorithm allows for unequal weights to be assigned to the data points: here, the
weights assigned are proportional to the posterior probabilities from the EM algorithm.

We are able to show that the zero-symmetric log-concave MLE converges in probability to
the true zero-symmetric log-concave component density in the Hellinger distance and in the
supremum norm on sets of continuity of the true density. Furthermore, it can be shown that our
estimator converges to the truth at the rate n−2/5 in the L1-distance. Although the risk measure
we use here is different from the one considered by [7], it seems that the rate of convergence
of our MLE, when the true mixture component is log-concave, is faster than that given in their
Theorem 4 for their KDE when the smoothness parameter β satisfies β ∈ (1/2,5/2). Note for
an estimator ĝn of g0 in the direct density estimation problem based on i.i.d. observations from
g0 (as opposed to the mixture setting) when g0 has smoothness β the optimal pointwise rate of
convergence of |̂gn(x0) − g0(x0)| at a fixed point x0 is n−β/(2β+1) [37]. Note also that [18] find

a rate of convergence of (logn)
β

2β+1 n
− β

2β+1 in the uniform norm on compact sets for the log-
concave MLE, in the direct density estimation problem, when the true density g0 is log-concave
and also lies in a Hölder class with smoothness β , that is,∣∣g0(x) − g0(y)

∣∣ ≤ L|x − y|, if β = 1,∣∣g′
0(x) − g′

0(y)
∣∣ ≤ L|x − y|β−1, if β > 1

for some L > 0. This rate is optimal for nonparametric estimation with smoothness β (the log
factor being due to the supremum norm [25]), and no bandwidth needs to be chosen.

We note that, although we refer to our estimator as the log-concave MLE, we do not use a
“pure” maximum likelihood approach since we feed in other estimators of (π0, u0

1, u
0
2) to our
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likelihood, which we maximize to estimate f 0 and thus g0, the density of the mixed distribution
G0. An alternative approach is to estimate both the parametric and nonparametric components
simultaneously by maximum likelihood. However, there are many additional difficulties in that
approach, due to the complicated non-concave nature of the log-likelihood function; see Sec-
tion 2.

We also note that we are not the first to use log-concavity in mixture modeling; [8] and [22]
consider univariate mixtures of log-concave densities, and [14] consider multivariate mixtures
of log-concave densities. However, in none of those settings was symmetry imposed, perhaps
because the authors were not worried about the (often fundamental) question of identifiability.
Thus, their work does not directly apply in our setting.

The paper will be structured as follows. In Section 2, we establish existence of the MLE
and provide a necessary condition for a candidate to be equal to the estimator. In Section 3,
we establish consistency in the Hellinger distance. This implies other forms of consistency by
the results of [13]. The techniques we used are re-adapted from [13,31] and [35] to deal with
the additional difficulties of a mixture model. In Section 4, we find that the MLEs of f 0 and
g0 converge to the truth at a rate of order n−2/5. In Section 5, we develop a likelihood ratio
procedure based on our estimator in the problem of testing absence of mixing. We also consider
the problem of clustering where we use the estimators of the posterior probabilities obtained
via our log-concave MLE. In both problems, we compare our method to alternative or existing
approaches. In Section 6, we present two data applications. Section 7 gathers some conclusions.
Proofs and technical details can be found in the supplementary material [3].

2. The model and estimation via maximum likelihood

Let X1, . . . ,Xn to be n independent observations assumed to come from the location mixture
with c.d.f. G0 which we now assume has a density, given by

g0(x) = π0f 0(x − u0
1

) + (
1 − π0)f 0(x − u0

2

)
, (3)

for some π0 ∈ (0,1) \ {1/2}, u0
1, u

0
2 ∈ R such that u0

1 �= u0
2. We assume that f 0 is a zero-

symmetric log-concave density, that is, f 0 ∈ SLC1 where

SLC1 := SLC ∩
{
f :

∫
R

f (u)du = 1

}
, and SLC := {

eψ : ψ ∈ SC
}
,

and SC is the class of concave functions on R that are upper semi-continuous (“closed”) and
proper [32], and satisfy ψ(x) = ψ(−x). The upper semi-continuity condition is made only for
the purpose of uniqueness. Then

L(π,u1, u2, f ) :=
n∑

j=1

log
(
πf (Xj − u1) + (1 − π)f (Xj − u2)

)
(4)

is the log-likelihood in this problem. In the case of estimation of a log-concave density on R,
the log-likelihood is a concave function [18,31,33]. However, [21] study a semiparametric model
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incorporating log-concavity and find a non-concave likelihood; see their Section 3.3 including
a plot on page 18. Unfortunately, our objective function L is also far from concave. Consider
order statistics X(1), . . . ,X(n), a fixed π ∈ (0,1) \ {1/2}, and (zero-symmetric log-concave) f

with support given by supp(f ) = [−s, s] and infx∈supp(f ) f (x) > 0. Assume u1 < u2 are such
that [u1 − s, u1 + s] ∪ [u2 − s, u2 + s] ⊃ [X(1),X(n)] so that L(π,u1, u2, f ) > −∞. Let j :=
min{i : X(i) > u2 − s} be the index of the smallest order statistic contained in the support of the
second component, and let δ̃ := X(j) − (u2 − s). Then not only does L(π,u1, ·, f ) fail to be
concave, but it is in fact discontinuous at u2 + δ̃.

We now describe our estimation approach. Let π̌n, ǔ1,n, ǔ2,n be estimators of π,u1, u2, where
we assume π̌n ∈ (0,1) \ {1/2} and ǔ1,n < ǔ2,n. We will generally think of these estimators as
being

√
n-consistent. We will then consider maximizing the log-likelihood

f �→
n∑

j=1

log
(
π̌nf (Xj − ǔ1,n) + (1 − π̌n)f (Xj − ǔ2,n)

)
(5)

over SLC1. Using the Lagrange penalty term introduced by [36], this is equivalent to maximizing
the criterion �n defined as

�n(ψ) = 1

n

n∑
j=1

log
[
π̌ne

ψ(Xi−ǔ1,n) + (1 − π̌n)e
ψ(Xi−ǔ2,n)

] −
∫
R

eψ(x) dx

over SC. We will abusively use the term MLE for our estimators of f 0 and g0 despite the fact
that the mixing parameters (π,u1, u2) are not a part of the space over which the likelihood is
maximized. In the next proposition, we establish existence of the MLE, and describe its nature.

Proposition 2.1. The criterion �n admits a maximizer ψ̂n. Furthermore, the following holds
true almost surely, letting f̂n = eψ̂n .

• f̂n is in SLC1.
• For i = 1, . . . , n, let

Z2i−1 = |Xi − ǔ1,n| and Z2i = |Xi − ǔ2,n|. (6)

Then, on [0,∞) the MLE ψ̂n changes slope only at points belonging to the set

{Z1,Z2, . . . ,Z2n−1,Z2n}.
Furthermore, ψ̂ ′

n(0) = 0, and ψ̂n(x) = −∞ if and only if x /∈ [−Z(2n),Z(2n)] where Z(2n)

is the largest order statistic of Z1,Z2, . . . ,Z2n−1,Z2n.

All proofs are deferred to the supplementary material [3]. The MLE of f will be denoted by f̂n

throughout, and that of g by ĝn. In the following, we give a necessary condition for a log-concave
function f = exp(ψ) to be the MLE.

Proposition 2.2 is interesting to compare with the characterization of [18] for the log-concave
MLE. The result is also useful in combination with the EM-algorithm described below as its
non-fulfillment indicates that convergence is not yet reached.
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Proposition 2.2. Let ψ be a zero-symmetric concave function on R such that ψ(x) = −∞ if
and only if x /∈ [−Z(2n),Z(2n)] where Z(2n) is defined in Proposition 2.1, and ψ ′(0) = 0. If
exp(ψ) = f̂n is the MLE, then for any real zero-symmetric function � such that ψ + ε� ∈ SC
for some ε > 0 we have that

1

n

n∑
i=1

{
p̂n(Xi)�(Xi − ǔ1,n) + (

1 − p̂n(Xi)
)
�(Xi − ǔ2,n)

} ≤
∫
R

f̂n(x)�(x)dx, (7)

where

p̂n(Xi) = π̌nf̂n(Xi − ǔ1,n)

π̌nf̂n(Xi − ǔ1,n) + (1 − π̌n)f̂n(Xi − ǔ2,n)
= π̌nf̂n(Xi − ǔ1,n)

ĝn(Xi)
, (8)

for i = 1, . . . , n.

Next, we give the condition in (7) under an alternative form. Dümbgen and Rufibach [18]
shows that the log-concave MLE is uniquely characterized by the fact that the first integral of
the c.d.f. of the MLE stays below the first integral of the empirical distribution, while touching
it exactly at the points where the logarithm of the MLE changes slope. To derive a related result,
let F̂n denote the c.d.f. of the discrete distribution putting mass p̂n(Xi)/n at Z2i−1 and (1 −
p̂n(Xi))/n at Z2i for i = 1, . . . , n, where p̂n(Xi) was defined in (8) and Zi was defined in (6).
That is,

F̂n = 1

n

n∑
i=1

(
p̂n(Xi)δZ2i−1 + (

1 − p̂n(Xi)
)
δZ2i

)
,

where δx(t) = 1{[x,∞)}(t). Let f̂ +
n (x) = 2f̂n(x)1x∈[0,∞), ψ̂+

n = log(f̂ +
n ) and let F̂+

n be the c.d.f.
of f̂ +

n .

Proposition 2.3. If f̂n is the MLE of the component f 0 ∈ SLC1 then

∫ z

0
F̂+

n (x) dx

⎧⎪⎪⎨⎪⎪⎩
≤

∫ z

0
F̂n(x) dx, for z ∈ [0,Z(2n)],

=
∫ z

0
F̂n(x) dx, if ψ̂+

n (z−) > ψ̂+
n (z+).

(9)

3. Consistency

The main result of this section is to establish consistency in the Hellinger distance of the MLEs
ĝn and f̂n as n → ∞, where the Hellinger distance is defined by

H(p,q) :=
√

(1/2)

∫ (√
p(x) − √

q(x)
)2

dx.
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We will also find consistency for f̂n in certain exponentially weighted metrics. Our approach
to the problem follows the idea of [31] and [18] but will require handling carefully the extra
complexity induced by the mixture. As in [13,31] and [35], we will first need to show that the
MLE of the mixed density and hence the MLE of the log-concave component are bounded.
Here, the claimed boundedness will be only in probability, which is weaker than the almost
sure boundedness proved in the aforementioned articles. Those articles, however, were able to
take advantage of the fact that the level sets of a bounded unimodal function are convex and
compact; such a statement does not hold if we consider a mixture of two unimodal functions
instead of a single unimodal function, even if the two components are log-concave. So, instead
of studying how the empirical distribution behaves over the class of compact intervals, we will
instead need to study its behavior over more complicated classes of functions. This is what is
done in Propositions A.2 and A.3.

Theorem 3.1. Let g0 be as in (3) and ĝn be the MLE of g0. Then we have that

H
(
ĝn, g

0) = op(1).

Consistency of the log-concave component, f̂n, follows now from Theorem 3.1.

Corollary 3.1. Let f 0 denote again the true log-concave zero-symmetric density. Then,

H
(
f̂n, f

0) = op(1),

and for any a ∈ (0, a0) such that f 0(x) ≤ exp(−a0x + b) for some b ∈R, then∫
R

eat
∣∣f̂n(t) − f 0(t)

∣∣ = op(1),

and

sup
t∈[−A,A]

eat
∣∣f̂n(t) − f 0(t)

∣∣ = op(1)

on any continuity set [−A,A] of f 0, where A may be ∞ if f 0 is continuous on all of R.

4. Rates of convergence

In this section, we aim at refining the convergence result obtained in the previous section to attain
a rate of convergence for both f̂n and ĝn in the L1 distance. To this goal, we need first to recall
some definitions from empirical processes theory. Given a class of functions F , the bracketing
number of F under some distance ‖ · ‖ is defined as

N[ ]
(
ε,F,‖ · ‖) = min

{
k : ∃f

1
, f̄1, . . . , f k

, f̄k s.t. ‖f
i
− f̄j‖ ≤ ε,F ⊂

k⋃
i=1

[f
i
, f̄i]

}
,



1060 F. Balabdaoui and C.R. Doss

where [l, u] = {f :∈ F : l ≤ f ≤ u}. In this section, we refine the consistency result above by
deriving the rate of convergence of the MLE’s ĝn and f̂n of the mixed density and the zero-
symmetric log-concave component, respectively.

For fixed M > 0, a0 < b0 and δ ∈ (0, (b0 − a0)/2), consider the class of functions

G = {
λf (· − a) + (1 − λ)f (· − b), f ∈ SLC, f (0) ∈ [1/M,M], λ ∈ [0,1],

(a, b) ∈ [a0 − δ, a0 + δ] × [b0 − δ, b0 + δ]}.
Here, the parameters a0 and b0 play the role of the true location shifts u0

1 and u0
2. Consistency

of the estimates ǔ1,n and ǔ2,n ensures that they are stay within distance 2δ from the truth with
increasing probability. Also, uniform consistency of the log-concave MLE, f̂n, on continuity sets
of f 0 implies consistency at the point 0 (the common mode of f 0 and f̂n). Thus, we can find
M > 0 such that f̂n(0) ∈ [1/M,M] with increasing probability. The following proposition gives
a bound on the bracketing entropy for the class G.

Proposition 4.1. For ε ∈ (0, ε0], we have that

logN[ ](ε,G,H) � 1√
ε
,

where ε0 and � depend only on a0, b0, δ and M .

Now, we are ready to state our main theorem. We find a rate of convergence of at least n−2/5

in the L1 norm, both for f̂n and ĝn. Although we consider L1 and [7] consider L2 distance,
the rate of Theorem 4.1 is an improvement over the corresponding L2 rate n−(2β−1)/(4β) of [7]
whenever β < 5/2. (Note that (log-)concave functions are Lebesgue-almost-everywhere twice
differentiable by Alexandrov’s theorem [30], so roughly correspond to β being 2 or larger.)

Theorem 4.1. Let f̂n and ĝn be again the MLE’s of the zero-symmetric log-concave compo-
nent and mixed density, respectively. If

√
n(ǔ1,n − u0

1) = Op(1),
√

n(ǔ2,n − u0
1) = Op(1), and√

n(π̌n − π0) = Op(1), then

L1
(
f̂n, f

0) = Op

(
n−2/5), and L1

(
ĝn, g

0) = Op

(
n−2/5),

where L1(d1, d2) = ∫
R

|d1(x) − d2(x)|dx.

To illustrate the theory, a simulated example is given in Figure 1. The true zero-symmetric
component f 0 is taken to be the density of a standard Gaussian with mixing probability π0 = 1/3
and shift locations u0

1 = 0 and u0
2 = 4. The plot on the top (bottom) shows our MLE of g0 (f 0)

based on a sample of size n = 500. The bullets in the right plot depict the knot points of the zero-
symmetric log-concave MLE, that is, the points where the logarithm of the log-concave MLE
changes its slope.
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Figure 1. Top: plot of the true density of (1/3)N (0,1) + (2/3)N (4,1) (solid line) and its log-con-
cave estimator ĝn (dotted line). Bottom: plot of the density of N (0,1) and its zero-symmetric log–
concave MLE f̂n. The MLE was based on n = 500 independent data drawn from the mixture density
(1/3)N (0,1) + (2/3)N (4,1).

5. Testing and clustering

Bordes, Mottelet and Vandekerkhove [6], Hunter, Wang and Hettmansperger [26] and Butucea
and Vandekerkhove [7] propose three different ways of estimating the mixture parameters π0, u0

1
and u0

2. As we are interested here in
√

n-consistent estimators of these parameters, we prefer the
work by [26] and [7]. Also, due to some numerical instabilities encountered when computing
the estimators proposed by [7], we adopt the approach of [26] which has been already imple-
mented in R; one could either used the code posted at http://www.stat.psu.edu/~dhunter/code or
the function in the mixtools package. The latter option was kindly brought to the attention of the
first author by David Hunter in a private communication.

http://www.stat.psu.edu/~dhunter/code


1062 F. Balabdaoui and C.R. Doss

Once the estimates π̌n, ǔ1,n and ǔ2,n of π0, u0
1 and u0

2 are computed, we maximize

f + �→ 1

n

n∑
i=1

log
(
π̌nf

+(Z2i−1) + (1 − π̌n)f
+(Z2i )

)
,

where f + = 2f 1[0,∞), Z2i−1 = |Xi − ǔ1,n| and Z2i = |Xi − ǔ2,n| for i = 1, . . . , n. This is
equivalent to maximizing (5), which we have shown to admit a maximizer. Since the log-
likelihood is not concave and it is not clear how to maximize it directly, we will appeal to the
EM algorithm [15]. Although we are fixing the parameters π,u1, and u2 we may still intro-
duce the standard-in-mixture-models complete data of (Xi,�i), where �i ∼ Bernoulli(π) and
Xi |{�i = 1} ∼ f 0(· − ǔ1,n) and Xi |{�i = 0} ∼ f 0(· − ǔ2,n). An iteration of the EM algorithm
in this setup is then, given an estimate f̂

+,(r)
n , to compute

f̂ +,(r+1)
n := argmax

f +

n∑
i=1

{
p̂

(r)
n,i logf +(Z2i−1) + (

1 − p̂
(r)
n,i

)
logf +(Z2i )

}
, (10)

where the argmax is over log-concave densities on [0,∞) with mode at 0, and

p̂
(r)
n,i = π̌nf̂

+,(r)(Z2i−1)

π̌nf̂ +,(r)(Z2i−1) + (1 − π̌n)f̂ +,(r)(Z2i )

is the conditional expectation of �i given Xi . To initialize the EM algorithm, we start with the
density of a centered Gaussian distribution with variance equal to the estimate given in formula
(11) of [26] for the true variance of the zero-symmetric component, that is 1

n

∑n
i=1(Xi − X̄n)

2 −
π̌n(1 − π̌n)(ǔ2,n − ǔ1,n)

2, or 1 if this estimate is negative (this may occur for moderate sample
sizes). The argmax in (10) can be computed by the R package logcondens.mode.

5.1. Testing the absence of mixing

Recall that the mixing model we consider in this paper is given by

g0 = π0f 0(· − u0
1

) + (
1 − π0)f 0(· − u0

2

)
with f 0 a log-concave zero-symmetric density on R, π0 /∈ {0,1/2,1} and u0

1 < u0
2. We now

use our log-concave MLE to test for the absence of mixing, i.e. to test for the null hypothesis
that u0

1 = u0
2, against the alternative that u0

1 �= u0
2 and π0 �= 1/2 under the assumption that f 0 is

zero-symmetric and log-concave.
To test for mixing, we consider the likelihood ratio statistic. Under the null hypothesis, we

take the estimator of the true density to be equal to the log-concave MLE which is symmetric
around the median of the data. If ĝ0

n denotes this estimator, then our test statistic is given by

�n =
∏n

i=1 ĝn(Xi)∏n
i=1 ĝ0

n(Xi)
. (11)
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The null hypothesis is then rejected when �n is too large. We use the null hypothesis estimator
to find critical values; that is, we bootstrap from the symmetric log-concave estimator ĝ0

n. The
critical values of �n are then computed in the usual way: based on the bootstrapped samples
from ĝ0

n, we compute the estimators of the mixing probability and mixture locations and the
corresponding MLE ĝn. The order statistics of the bootstrapped values of the likelihood ratio are
then obtained to compute upper empirical quantiles of a given order. We also compare our test
for mixing (hereafter referred to as the LR test) to the following procedures:

• the naive symmetric bootstrap (NSBS): we re-sample with replacement n random variables
Z∗

1 , . . . ,Z∗
n from {±|X1 − m̂n|, . . . ,±|Xn − m̂n|} with m̂n the median of X1, . . . ,Xn and

set X∗
i = m̂n + Z∗

i , i = 1, . . . , n. Then, the bootstrapped estimators of the location mixture
of [26], u∗

1 and u∗
2, are computed based on Y ∗

i , i = 1, . . . , n. We repeat this procedure B

times and compute the empirical (1 − α)-quantile of the distribution of u∗
2 − u∗

1. The null
hypothesis is rejected if the observed ǔ2,n − ǔ1,n is larger than this quantile.

• the naive symmetric bootstrap based on symmetric kernel density estimation (NSBSKDE):
the method is similar to the one described above except that a standard kernel density esti-
mator is fitted to m̂n ± |Xi − m̂n| and X∗

1, . . . ,X∗
n are now drawn from the fitted estimator

at each bootstrap iteration.
• the likelihood ratio based on symmetric kernel density estimation (LRSKDE): two kernel

density estimators are computed, one under the full model, that is, based on X1, . . . ,Xn, and
one under the null model, that is, based on m̂n ± |Xi − m̂n|. The likelihood ratio of these
estimators is then computed. Bootstrap samples are obtained by simulation from the kernel
estimator under the null hypothesis and then the empirical (1−α)-quantile of the likelihood
ratio is thereby computed. The null hypothesis is rejected if the observed likelihood ratio is
larger that this quantile.

Note that the NSBS provides a comparison procedure not based on density estimation of
the components. In assessing the power, we take the true zero-symmetric component f 0 to
be one of the following distributions: (1) a standard Gaussian, (2) a double exponential, and
(3) a uniform on [−1,1], Also, we take the true parameters to be π0 ∈ {0.20,0.40} and
(u0

1, u
0
2) ∈ {(0,0), (0,1), (0,3)}. We give the estimated probability of rejecting the null hypoth-

esis based on R = 500 replications with B = 49 bootstrap samples in Table 1, for n = 250. The
simulation results show the LR and LRSKDE tests are both outperforming the NSBS and NSB-
SKDE with power nearly equal or equal to 1 for the well-separated mixtures. However, all the
considered tests seem to have a level larger than the specified level α = 0.1 for the uniform dis-
tribution. Further simulations, which we do not report here, show that this improves when the
sample size is increased to n = 500. Note that the mixtures with mixture probability π0 = 0.4
are more difficult to distinguish than those with π0 = 0.2. This is to be expected as the former
mixtures are close to being symmetric around the mid-point (u0

1 + u0
2)/2.

It would be interesting to know whether the level of our testing procedure based on the boot-
strapped likelihood ratio test equals the theoretical level. The problem is however far from being
trivial. Deriving the asymptotic level for example would require establishing the limit distribution
of our statistic under the null hypothesis and also showing that it admits a continuous cumulative
distribution function. Establishing such results requires a thorough study of the global asymp-
totics of the log-concave MLE. As this is outside the scope of this paper, the question remains
open.
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Table 1. Values of the bootstrapped power for LR, NSBS, NSBSKDE and LRSKDE tests when the true
density is π0f 0(· − u0

1) + (1 − π0)f 0(· − u0
2), where u0

1 = 0, u0
2 − u0

1 ∈ {0,1,3}, π0 ∈ {0.2,0.4}, and f 0

is one of the zero-symmetric log-concave densities shown in the first column. The nominal level is α = 0.1.
The sample size is n = 250, the number of bootstraps and the number of replications were taken to be
B = 49 and R = 500, respectively. The common value of the power under H0 is replaced by “∗”

u0
2 − u0

1

Distribution π0 Test 0 1 3

N (0,1) 0.2 LR 0.11 0.15 1.00
NSBS 0.06 0.07 0.34
NSBSKDE 0.07 0.08 0.40
LRSKDE 0.11 0.11 1.00

0.4 LR ∗ 0.14 0.86
NSBS ∗ 0.05 0.28
NSBSKDE ∗ 0.08 0.26
LRSKDE ∗ 0.11 0.87

L(1) 0.2 LR 0.11 0.22 0.99
NSBS 0.11 0.01 0.01
NSBSKDE 0.13 0.11 0.02
LRSKDE 0.12 0.19 0.98

0.4 LR ∗ 0.14 0.89
NSBS ∗ 0.08 0.12
NSBSKDE ∗ 0.08 0.03
LRSKDE ∗ 0.18 0.86

U [−1,1] 0.2 LR 0.19 0.92 1.00
NSBS 0.11 0.07 0.16
NSBSKDE 0.11 0.08 0.14
LRSKDE 0.25 0.99 1.00

0.4 LR ∗ 0.60 1.00
NSBS ∗ 0.09 0.78
NSBSKDE ∗ 0.07 0.75
LRSKDE ∗ 0.54 1.00

5.2. Gaussian versus symmetric log-concave clustering

We now consider the problem of clustering, that is, of assigning to each observation in a dataset
a label without being given any “training” labels. We will assume that the data can be clustered
into two groups, which we will do by fitting the two-component mixture (2) and assigning a label
to an observation X based on whether our estimate of the posterior probability

π0f 0(X − u0
1)

π0f 0(X − u0
1) + (1 − π0)f (X − u0

2)
(12)

is greater than 1/2 or not.
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Table 2. Comparison of the four different clustering methods given by the column labels, see text for more
details. The reported numbers are the average number of misclassifications out of n = 500 samples over
R = 5000 replications under each of the three log-concave densities in the left column. Here u0

2 − u0
1 = 1

and π0 = 0.2. The numbers in parentheses are the corresponding standard errors

G HG SLC KDE

N (0,1) 163 (0.44) 170 (0.30) 170 (0.30) 182 (0.88)
L(1) 223 (0.64) 173 (0.32) 174 (0.28) 154 (0.82)
U(−1,1) 144 (0.15) 66 (0.11) 55 (0.10) 105 (0.28)

We fit the mixture three different ways. In the first basic approach, labeled “G,” we maximize
the likelihood (5) under the assumption that the component f is a normal density. We use the
EM algorithm to maximize the likelihood. Our next two approaches both use the method of [26]
to estimate the mixture components u0

1, u
0
2, and π0. Then we either fit the components using a

Gaussian density (denoted “HG”), with variance estimate also given by [26], or we use the sym-
metric log-concave density estimator (denoted “SLC”) for the components. The fourth approach
is based on the estimators of [26] and the kernel density estimator based on the inversion formula
given in (9) by [6] where we truncate the infinite sum at some large integer K > 0. Precisely, let
ḡn be a standard density estimator of the mixed density g0. Then, the KDE of f 0 we use is given
by max(1/2(f̄n(x) + f̄ (−x)),0) where

f̄n(x) =
K∑

k=0

( −π̌n

1 − π̌n

)k

ḡn

(
x + ǔ2,n + k(ǔ2,n − ǔ1,n)

)
.

We should note that this formula is only valid, when π̌n < 1/2. Hence, 1 − π̌n and (ǔ2,n, ǔ1,n)

should replace π̌n and (ǔ1,n, ǔ2,n) when π̌n ≥ 1/2.
We record the average missclassification count when the true density is one of the densities in

the left column of Table 2. In all cases, the number of replications is R = 5000, the sample size
is n = 500, u0

2 − u0
1 = 1 and π0 = 0.2.

The performances of the four approaches were then compared, and the results are reported in
Table 2. The KDE approach does clearly worse than the three other methods. The SLC outper-
forms HG by 16% when the true density is U [−1,1]. In the other cases, they perform similarly.
All four methods define the two cluster regions by dividing the real line into two half-lines. The
HG and SLC methods have the same mixture components so the shape of the component density
estimates have to be dramatically different (e.g., uniform instead of normal) in order to noticeably
change the results; note this somewhat deceiving outcome is not totally in contradiction with the
finding of [14] about the performance of their two-dimensional log-concave classifier applied to
the Breast cancer data of Wisconsin; see [14] for details. The authors found that the log-concave
MLE reduces the percentage of misclassification from 10.36% obtained for the Gaussian esti-
mate to only 8.43% for that particular data set. The posterior probabilities of cluster membership,
which can be used as a measurement of uncertainty, can also differ noticeably between the HG
method and our SLC method.
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Figure 2. Time between eruptions of Old Faithful Geyser (min). The “SLC” and “HG” estimates both use
the method of [26] to estimate the mixture parameters u0

1, u0
2, and π0. “SLC” then fits with symmetric

log-concave components and “HG” fits with Gaussian components. The “G” estimate is the maximum
likelihood estimate of a mixture model with two Gaussian components with equal variances. The “KDE” is
a standard kernel density estimator with an optimal bandwidth.

6. Data application

In this section, we apply our new estimation approach to two different datasets.

6.1. Old faithful data

The data to which we first apply our estimation procedure are the times, in minutes, between
eruptions of the Old Faithful geyser in Yellowstone National park. There are many forms of the
Old Faithful data. As far as we know, the oldest version of the data was collected by S. Weisberg
from R. Hutchinson in August 1978. The data we analyze were collected between August 1 and
August 15, 1985 continuously, and are from [1]. The following explanation from [40] motivates
interest in the data:

Old Faithful Geyser is an important tourist attraction, with up to several thousand people watching it erupt on
pleasant summer days. The park service uses data like these to obtain a prediction equation for the time to the
next eruption.

In Figure 2, we have two plots related to the Old Faithful data. The plot on the left depicts a
descriptive histogram of the data with around 30 bins (which is too many for optimal estimation)
along with the plots of four mixture density estimates. The “SLC” (symmetric log-concave)
estimate is the mixture model where u0

1, u
0
2 and π0 are estimated using the method of [26],

and then the components are estimated using our symmetric log-concave estimator. The “HG”
(Hunter et al. and Gaussian components) estimate is given by again using the method of [26] to
find estimates of the mixture parameters whereas the nonparametric components are taken to be
Gaussian components (the same Gaussian density for both mixture components). The estimates
for u0

1, u
0
2, and π0 given by [26] are 55.5, 80.5, and 0.33, respectively. The “G” (Gaussian)

estimate in the plot is based on simply using a Gaussian mixture model with two components
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with equal variances. Assuming equal variances forces the two components to be identical, which
makes the model analogous to the others. In this case, we estimated u0

1, u
0
2, and π0 by the EM

algorithm [15], with estimated values of 55.3, 81.0, and 0.339. The normal components are
slightly more peaked than the log-concave ones, but the overall fit is fairly similar; in large part
this is because the locations and weights are very similar. Finally, the “KDE” is a standard kernel
density estimator with an optimal bandwidth.

The plot on the right is that of the zero-symmetric log-concave component, centered at 0,
used in the mixture density. As expected from the known theoretical properties of this estimator,
it has a flat interval about the origin, and is the exponential of a concave piecewise linear and
zero-symmetric function.

6.2. Height data

We next examine 1766 human height observations. We look at the heights of the population of
Campora, a village in the south of Italy. This population is studied by the “Genetic Park of Cilento
and Vallo di Dano Project” [11], which is interested in identifying geographically and genetically
isolated populations. Such populations are of particular interest because in addition to “genetic
homogeneity,” they have a “uniformity of diet, life style and environment.” These homogeneities
are valuable in the study of genetic risk factors for complex pathologies such as “hypertension,
diabetes, obesity, cancer, and neurodegenerative diseases,” by allowing for a “simplification of
the complexity of genetic models” involved, because of the population’s homogeneity [11].

Colonna et al. [12] provide evidence that this population is indeed genetically isolated. Be-
cause of this feature, the distribution of heights of this population is not necessarily the same as
that of the global population at large, so estimating its distribution is of interest. Height data are
often modeled as mixtures of two components, corresponding to the two sexes.

We present plots related to the height data in Figure 3. The height data do not exhibit multi-
modality, but two-component mixtures still fit the data well. The three approaches that we con-
sider fit similarly, but the log-concave components are able to capture a bit more asymmetry near
to the mode.

The plot on the right includes the mixture component density (labeled “All”), in black. The
data include the sex of each individual, so, using this extra information we can also estimate
the true component densities separately: the zero-symmetric log-concave density estimate can be
compared to the estimates of the density of the heights for either sex considered alone. Figure 4
shows the plots of the (descriptive) histograms of the heights for men and women and fitted
standard kernel density estimators. The assumption of symmetry of the distribution of the heights
for each of the genders seems to be reasonable to make. The observed proportion of women is
0.57, whereas the observed medians of the heights for women and men were found to be 156.0
and 168.7, respectively. Using the estimation method of [26], we found π̌n = 0.72, ǔ1,n = 157.5,
and ǔ2,n = 170.5. Here π̌n and ǔ1,n correspond to the component for women. The components
estimated by using the labels for men and women differ from that using the mixture model
without the labels especially towards the center. We believe that this is essentially due to the
difference between the estimates of the mixture parameters π0, μ0

1 and μ0
2 obtained by ignoring

or using the information available about the gender. In the latter case, the locations are estimated
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Figure 3. Height data of the population of Campora. The “SLC” and “HG” estimates both use the method
of [26] to estimate the mixture parameters u0

1, u0
2, and π0. “SLC” then fits with symmetric log-concave

components and “HG” fits with Gaussian components. The “G” estimate is the maximum likelihood esti-
mate of a mixture model with two Gaussian components with equal variances. The “KDE” is a standard
kernel density estimator with an optimal bandwidth.

by the respective medians. It does appear that the distributions of heights of men and women
are somewhat different near those centers, with women having a more peaked density and men
having a flatter one. Thus, in the mixture model, without using the labels, the component density
estimate is somewhere in between the two shapes.

7. Conclusions

The goal in this paper is to make use of the log-concavity constraint to estimate the unknown den-
sity component in a semi-parametric location mixture model assuming that this unknown density

Figure 4. Descriptive histograms of the height data for women (left) and men (right) after centering around
the median. The “SLC” is the log-concave MLE of the true density constrained to have mode at 0. The
“KDE” is a standard kernel density estimator with an optimal bandwidth.
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is symmetric around the origin. The first motivation for choosing this approach is that many den-
sities are log-concave. The second one is to build an estimation procedure that does not depend
on a tuning parameter. Our log-concave MLE is computed by maximizing the log-likelihood
function after estimating the mixture parameters using the approach of [26]. The computation
is easily implementable using the EM algorithm in combination with an active set algorithm
already implemented in the R package logcondens.mode.

As already mentioned, our method is not advocated for heavy-tailed densities. In such cases,
other shape constraints may be more appropriate, specifically, s-concavity, as studied in [28] and
[16]. Unfortunately, the theory of estimators of s-concave densities is less developed than that of
log-concave MLEs, which remains a barrier to using s-concavity in our current context.

Finally, [26] give sufficient conditions on the mixing probabilities and mixture locations for
the model to be 3-identifiable. In this case, the mixture parameters can still be computed using the
method of [26], and the log-concave MLE can be computed as described in this paper. However,
it is not immediate in that case whether the same proof approaches would still yield the same rate
of convergence. Recently, [2] proved that the number of components k, the mixture parameters
and the unknown density are identifiable provided that the density is Pólya frequency (of infinite
order) such that its expectation is equal to zero. For a precise definition of Pólya frequence
functions, we refer to [34]. The obtained identifiability result can be used of course in the case of
symmetry but it is certainly not a requirement. Note that imposing the log-concave constraint in
this setting is natural since the class of Pólya frequency functions is a subset of the log-concave
class as shown by [34]. One may argue that non-parametric classes such as symmetric densities
or Pólya frequency functions with expectation equal to zero are not large enough. However, it
seems that identifiability is hard to obtain if one allows for large classes.

Supplementary Material

Supplement to “Inference for a two-component mixture of symmetric distributions under
log-concavity” (DOI: 10.3150/16-BEJ864SUPP; .pdf). In the supplement, we provide the proofs
and other technical details that were omitted from the main paper.
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