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Hörmander-type theorem for Itô processes
and related backward SPDEs
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A Hörmander-type theorem is established for Itô processes and related backward stochastic partial differen-
tial equations (BSPDEs). A short self-contained proof is also provided for the L2-theory of linear, possibly
degenerate BSPDEs, in which new gradient estimates are obtained.
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1. Introduction

Let (�, F̄ , {F̄t }t≥0,P) be a complete filtered probability space, on which two independent d1-
dimensional Wiener processes W = (Wt)t≥0 and B = (Bt )t≥0 are well defined. The filtration
generated by W , together with all P null sets, is denoted by {Ft }t≥0. The σ -algebra of the
predictable sets on � × [0,+∞) associated with {Ft }t≥0 is denoted by P , and F :=⋃t≥0 Ft .

An Itô process (see [19]) starting from time s and position x is of the form

X
s,x
t = x +

∫ t

s

b
(
r,Xs,x

r

)
dr +

∫ t

s

σ k
(
r,Xs,x

r

)
dBk

r

(1)

+
∫ t

s

θk
(
r,Xs,x

r

)
dWk

r , 0 ≤ s ≤ t.

Here and throughout this paper, the summation over repeated indices is enforced by convention
unless stated otherwise. Fix T ∈ (0,∞) and define

u(t, x) = EF̄t

[∫ T

t

f
(
r,Xt,x

r

)
dr + G

(
X

t,x
T

)]
, (t, x) ∈ [0, T ] ×R

d . (2)

For the sake of convenience, we assume that:

(A0) b, σ , θ and f are P ×B(Rd)-measurable and G is FT ×B(Rd)-measurable.

Under certain conditions (see Proposition 4.4 and Remark 4.1), the random field u turns out
to be P ×B(Rd)-measurable and together with some endogenous random field v, it satisfies the
following BSPDE⎧⎪⎨⎪⎩

−du(t, x) = [ 1
2

(
L2

k + M2
k

)
u(t, x) + Mkv

k(t, x) + b̃j (t, x)Dju(t, x) + f (t, x)
]
dt

− vr(t, x) dWr
t , (t, x) ∈ [0, T ] ×R

d ;
u(T , x) = G(x), x ∈ R

d,

(3)
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where it is written in the Hörmander form, D = (D1, . . . ,Dd) is the gradient operator, Lk =
σ jkDj , Mk = θjkDj , for k = 1, . . . , d1, and b̃j = bj − 1

2 (σ ikDiσ
jk + θikDiθ

jk), for j =
1, . . . , d . BSPDE like (3) is said to be degenerate when it fails to satisfy the following super-
parabolicity: There exists λ ∈ (0,∞) such that

σ ikσ jk(t, x)ξ iξ j ≥ λ|ξ |2 a.s., ∀(t, x, ξ) ∈ [0, T ] ×R
d ×R

d .

Borrowing notions from the optimal stochastic control theory, we say the framework is Marko-
vian if and only if all the coefficients b, σ , θ , f and G are deterministic functions. In the Marko-
vian case, X is a diffusion (Markovian) process, u is deterministic, v ≡ 0, and BSPDE (3) turns
out to be a classical parabolic PDE. In Hörmander’s seminal work [7], it is proved with the ana-
lytical method that given smooth coefficients b, σ , θ and f , under the hypo-ellipticity condition
allowing for degenerateness (like condition (H) below), u is smooth on [0, T ) ×R

d , even when
the terminal value G is just a generalized (irregular) function. Hörmander’s theorem shows in
fact the smoothness of transition probabilities of hypo-elliptic diffusions, for which the proba-
bilistic approach was formulated on the basis of Malliavin calculus (see [14]), and along this line,
see [3,15] and references therein for the generalizations.

In this paper, we are concerned with a Hörmander-type theorem for Itô processes, which allows
random, possibly degenerate coefficients and goes beyond the scope of Markovian framework
and thus of diffusion processes. In fact, for Itô processes, the smoothing property depends not
only on the (hypo-)ellipticity of the diffusion coefficients but also on the extent to which the
framework is Markovian. In other words, not just the degenerateness but also the randomness of
coefficients may damage the smoothing property. Let us consider the following example.

Example 1.1. Let d = d1 = 1, σ ≡ 0, f ≡ 0, θ ≡ 1, b(t,ω) = b̄(t,Ht (ω)) and G(x) = U(x −
HT )MT with b̄ and U being deterministic functions, Ht = X

0,η
t and Mt = exp{αWt − α2t

2 } for
t ∈ [0, T ], η,α ∈ R. (In the field of mathematical finance, X can be seen as a wealth process, the
terminal value G(x) = U(x − HT )MT is the utility from terminal wealth which is subject to the
delivery of liability HT , and MT denotes the transformation of probability measures.)

It is easy to check that u(t, x) = U(x −Ht)Mt along with v(t, x) := αU(x −Ht)Mt −U ′(x −
Ht)Mt solves BSPDE (3). Moreover, we see that u does not have more spacial regularity than
its terminal value G. Taking a close look at the non-Markovian framework, we consider the two
particular cases:

(i) when η = 0 and b ≡ 0, X
s,x
t = x + Wt − Ws is Markovian and the framework is not

Markovian due to the randomness of G(x) = U(x − WT )MT ;
(ii) when α = 0 and H is chosen to be the Brownian bridge with HT = 0, then X is equipped

with a random drift and thus is not a Markov process while the terminal value G(x) = U(x) is
deterministic.

In view of assumption (A0), we see that the randomness of all the coefficients b, σ , θ , f

and G is only subject to the sub-filtration {Ft }t≥0 that is generated by Wiener process W and
one may conjecture that the term associated with Wiener process B , seen as the Markovian
part, may serve to the smoothing property. The answer is affirmative. Under a hypo-ellipticity
assumption on the coefficients {σk}, k = 1, . . . , d1 (see (H) below), we prove that the random
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field u(t, x) is almost surely infinitely differentiable with respect to x and each of its derivatives
is continuous in (t, x) on [0, T ) × R

d . Compared with the time-smoothness assumption in the
classical Hörmander theorem, the coefficients herein is only required to be measurable with
respect to the time variable, and the time-differentiability of u(t, x) is not investigated due to the
appearance of the stochastic integral in BSPDE (3). For the related linear, possibly degenerate
BSPDEs, a short self-contained proof is presented for the L2-theory, and in particular, we obtain
some new gradient estimates from which we start the proof of the Hörmander-type theorem.

Inspired by the filtering theory of partially observable diffusion processes, Krylov [11] has just
obtained a Hörmander-type theorem for forward SPDEs. However, there is an essential difference
between forward SPDEs and BSPDEs, that is, the noise term in the former is exogenous, while
in the latter it comes from the martingale representation and is governed by the coefficients, and
thus it is endogenous. On the other hand, we would also emphasise that the method of Krylov
[11] relies on the generalized Itô–Wentzell formula and associated results on deterministic PDEs,
while we use directly elaborate estimates on solutions of degenerate BSPDEs.

The study of linear BSPDEs can date back to about thirty years ago (see [2]). They arise in
many applications of probability theory and stochastic processes, for instance, in the nonlinear
filtering and stochastic control theory for processes with incomplete information, as an adjoint
equation of the Duncan–Mortensen–Zakai filtration equation (for instance, see [2,9]). Naturally
in the dynamic programming theory, a class of nonlinear BSPDEs as the so-called stochastic
Hamilton–Jacobi–Bellman equations, are introduced in the study of non-Markovian control prob-
lems (see [16]). In addition, the representation relationship between forward-backward stochas-
tic differential equations and BSPDEs yields the stochastic Feynman–Kac formula (see [9]). The
BSPDEs have already received extensive attention; see [1,6,10,17,18,20] and references therein
for the recent developments.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and
state the main result (Theorem 2.2). Section 3 is devoted to an L2-theory for linear degenerate
BSPDEs. In Section 4, we prove the Hörmander-type theorem.

2. Preliminaries and main results

For each l ∈ N
+ and domain 
 ⊂ R

l , denote by C∞
c (
) the space of infinitely differentiable

functions with compact supports in 
. L2(Rd) (L2 for short) is the usual Lebesgue integrable
space with usual scalar product 〈·, ·〉 and norm ‖ · ‖. For n ∈ (−∞,∞), we denote by Hn the
space of Bessel potentials, that is Hn := (1 − �)−n/2L2 with the Sobolev norm

‖φ‖n := ∥∥(1 − �)n/2φ
∥∥

L2 , φ ∈ Hn.

For the sake of convenience, we shall also use 〈·, ·〉 to denote the duality between (Hn)k and
(H−n)k (k ∈ N

+, n ∈ R) as well as that between the Schwarz function space D and C∞
c (Rd).

Moreover, We always omit the index associated to the dimension when there is no confusion.
Given Banach space (B, ‖ · ‖B), S2(B) is the set of all the B-valued, (Ft )-adapted and contin-

uous processes (Xt )t∈[0,T ] such that

‖X‖S2(B) :=
∥∥∥ sup

t∈[0,T ]
‖Xt‖B

∥∥∥
L2(�)

< ∞.



Hörmander-type theorem for Itô processes and BSPDEs 959

For p ∈ [1,∞], denote by Lp(B) the totality of all the B-valued, (Ft )-adapted processes
(Xt )t∈[0,T ] such that

‖X‖Lp(V ) := ∥∥‖Xt‖B
∥∥

Lp(�×[0,T ]) < ∞.

Obviously, both (S2(B),‖ · ‖S2(B)) and (Lp(B),‖ · ‖Lp(B)) are Banach spaces.
Denote by Cb the space of bounded continuous functions on R

d equipped with the usual
uniform norm ‖ · ‖∞. Let C∞

b be the set of infinitely differentiable functions with bounded
derivatives of any order. Denote by L∞(C∞

b ) the set of functions h on �×[0, T ]×R
d such that

h(t, x) is infinitely differentiable with respect to x and all the derivatives of any order belong to
L∞(Cb).

Throughout this work, we denote In = (1 − �)n/2 for n ∈ R. Then In belongs to 
n that is
the class of pseudo-differential operators of order n. By the pseudo-differential operator theory
(see [8] for instance), the m-th order differential operator belongs to 
m for m ∈ N

+, the mul-
tiplication by elements of C∞

b lies in 
0, and for the reader’s convenience, some useful basic
results are collected below.

Lemma 2.1. (i) If J1 ∈ 
n1 and J2 ∈ 
n2 with n1, n2 ∈ R, then J1J2 ∈ 
n1+n2 and the Lie
bracket [J1, J2] := J1J2 − J2J1 ∈ 
n1+n2−1.

(ii) For m ∈ (0,∞), let ζ belong to the continuous function space Cm
b which is defined as

usual. Then for any n ∈ (−m,m) there exists constant C such that

‖ζφ‖n ≤ C‖ζ‖Cm‖φ‖n ∀φ ∈ Hn.

Set

V0 = {L1, . . . ,Ld1} and Vn+1 =Vn ∪ {[Lk,V ] : V ∈ Vn, k = 1, . . . , d1
}
.

Denote by Ln the set of linear combinations of elements of Vn with coefficients of L∞(C∞
b ).

We then introduce the following Hörmander-type condition.

(H) There exists n0 ∈ N0 such that {Di : i = 1, . . . , d} ⊂ Ln0 .

Throughout this paper, we denote η = 2−n0 .
Instead of BSPDE (3), we consider the following one of the general form⎧⎨⎩

−du(t, x) = [( 1
2L2

k + 1
2M2

k

)
u + Mkv

k + bjDju + cu + γ lvl + f + Lkg
k
]
(t, x) dt

− vr(t, x) dWr
t , (t, x) ∈ Q;

u(T , x) = G(x), x ∈ R
d .

(4)

We define the following assumption.

(A1) For i = 1, . . . , d , k = 1, . . . , d1, σ ik, θ ik, bi, γ k, c ∈ L∞(C∞
b ).

Definition 2.1. A pair of processes (u, v) is called a solution to BSPDE (4) if (u, v) ∈ S2(Hm)×
L2(Hm−1) for some m ∈ R and BSPDE (3) holds in the distributional sense, i.e., for any ζ ∈
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C∞
c (R) ⊗ C∞

c (Rd) there holds almost surely

〈
ζ(t), u(t)

〉− 〈ζ(T ),G
〉+ ∫ T

t

〈
∂sζ(s), u(s)

〉
ds +

∫ T

t

〈
ζ(s), vr (s)

〉
dWr

s

=
∫ T

t

〈
ζ,

1

2

(
L2

k + M2
k

)
u + Mkv

k + bjDju + cu + γ lvl + f + Lkg
k

〉
(s) ds

∀t ∈ [0, T ].

We now state our main result. The following theorem is a summary of Theorem 3.3, Corol-
lary 4.3 and Theorem 4.1.

Theorem 2.2. Let assumption (A1) hold. Assume (f, g,G) ∈ L2(Hm) × L2((Hm)d1) ×
L2(�,FT ;Hm), for some m ∈R. There hold the following three assertions:

(i) BSPDE (4) admits a unique solution (u, v) ∈ S2(Hm) × L2(Hm−1) with (Lku, vk +
Mku) ∈ L2(Hm) ×L2(Hm), k = 1, . . . , d1, and

E sup
t∈[0,T ]

∥∥u(t)
∥∥2

m
+ E

∫ T

0

(
d1∑

k=1

∥∥Lku(t)
∥∥2

m
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m

)
dt

(5)

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
,

with C depending on T ,m and quantities related to coefficients σ, θ, b, c and γ .
(ii) If the Hörmander-type condition (H) holds, for the above solution (u, v), we have further

E

∫ T

0

∥∥u(t)
∥∥2

m+η
dt ≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
, (6)

with C depending on T ,m,n0, σ, θ, b, c and γ .
(iii) If both (f, g) ∈⋂n∈R(L2(Hn) × L2((Hn)d1)) and assumption (H) hold, we have for

each ε ∈ (0, T ),

(u, v) ∈
⋂
n∈R

L2(�;C([0, T − ε];Hn
))× L2(�;L2(0, T − ε;Hn−1)),

and for any n ∈R

E sup
t∈[0,T −ε]

∥∥u(t)
∥∥2

n
+ E

∫ T −ε

0

(∥∥u(t)
∥∥2

n+η
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
n

)
dt

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

n
+ ∥∥g(s)

∥∥2
n

)
ds

}
,
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with the constant C depending on ε,T ,n,m,n0, σ, θ, γ, b and c. In particular, the random field
u(t, x) is infinitely differentiable with respect to x on [0, T ) × R

d and each derivative is a con-
tinuous function on [0, T ) ×R

d .

Remark 2.1. An L2-theory on degenerate BSPDEs was initiated by Zhou [21], and it was
developed recently by [5,9,13]. Along this line, to get a solution of BSPDE (4) in space
S2(Hm) × L2(Hm−1) requires that Lkg

k lies in L2(Hm) for some m ∈ N
+, but in (i) of Theo-

rem 2.2, gk is allowed to be in L2(Hm) and thus Lkg
k ∈ L2(Hm−1), and there holds the addi-

tional gradient estimate Lku ∈ L2(Hm), for k = 1, . . . , d1. Moreover, compared with the existing
L2-theory on degenerate BSPDEs, m herein can be any real number instead of being restricted to
positive integers, and under the Hörmander-type condition (H), one further has u ∈ L2(Hm+η)

in (ii). Hence, the L2-theory presented in (i) and (ii) of Theorem 2.2 seems to be of independent
interest.

Starting from the estimate of Lku, we prove the Hörmander-type theorem ((iii) of Theo-
rem 2.2) by increasing the regularity of u step by step. In this paper, it is indeed necessary to
allow m to be real number in the L2-theory, as for each step the regularity is increased from m

to m + ε for a possibly real number ε ∈ (0,1] (see Section 4 below for more details).

3. An L2 theory of linear BSPDEs

We consider the following BSPDE⎧⎨⎩
−du(t, x) = [ 1

2

(
L2

k + M2
k

)
u + Mkv

k + bjDju + cu + γ lvl + f + Lkg
k
]
(t, x) dt

+ δ�u(t, x) dt − vr(t, x) dWr
t , (t, x) ∈ Q;

u(T , x) = G(x), x ∈ R
d,

(7)

with δ ≥ 0.
Note that we do not need the Hörmander-type condition (H) in this section. We would first

give an a priori estimate on the solution for BSPDE (7).

Proposition 3.1. Let assumption (A1) hold. For (f, g,G) ∈ L2(Hm) × L2((Hm)d1) × L2(�,

FT ;Hm) with m ∈ R, if (u, v) ∈ (S2(Hm+1) ∩ L2(Hm+2)) × L2((Hm+1)d1) is a solution of
BSPDE (7), then one has

E sup
t∈[0,T ]

∥∥u(t)
∥∥2

m
+ E

∫ T

0

(
δ
∥∥Du(t)

∥∥2
m

+
d1∑

k=1

∥∥Lku(t)
∥∥2

m
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m

)
dt

(8)

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
,

with C depends only on T ,m,σ, θ, γ, b and c.

Proof. Set ξ = v + Duθ . Putting L′
k := Di(σ

ik·) and M ′
k = Di(θ

ik·), we have Lk = L′
k + ck

and Mk = M ′
k + αk with ck = −(Diσ

ik)· and αk = −(Diθ
ik)·, for k = 1, . . . , d1. Applying Itô
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formula for the square norm (see, e.g., [12], Theorem 3.1), one has almost surely for t ∈ [0, T ],
∥∥Imu(t)

∥∥2 +
∫ T

t

(
2δ
∥∥ImDu(s)

∥∥2 + ∥∥Im(ξ − Duθ)(s)
∥∥2)

ds

= ∥∥ImG
∥∥2 +

∫ T

t

〈
Imu(s), Im

((
L2

k + M2
k

)
u + 2Mk

(
ξk − Diuθik

))
(s)
〉
ds

(9)

+
∫ T

t

2
〈
Imu(s), Im

(
bjDju + γ l

(
ξ l − Diuθil

)+ cu + f + Lkg
)
(s)
〉
ds

−
∫ T

t

2
〈
Imu(s), Im(ξ − Duθ)(s) dWs

〉
.

First, basic calculations yield〈
Imu, Im

(
L2

ku
)〉

= 〈Imu, Im
(
L′

k + ck

)
Lku
〉

= −〈LkI
mu, ImLku

〉+ 〈Imu,
[
Im,L′

k

]
Lku + ImckLku

〉
(10)

= −∥∥ImLku
∥∥2 + 〈[Im,Lk

]
u, ImLku

〉+ 〈Imu,
[
Im,L′

k

]
Lku + ImckLku

〉
≤ −(1 − ε)

∥∥ImLku
∥∥2 + Cε

∥∥Imu
∥∥2

, ε ∈ (0,1),〈
Imu, Im

(
γ lξ l + cu + f + Lkg

k
)〉

= 〈Imu, Im
(
γ lξ l + cu + f

)〉+ 〈Imu,
(
LkI

m + [Im,Lk

])
gk
〉

= 〈Imu, Im
(
γ lξ l + cu + f

)〉− 〈ImLku + [Lk, I
m
]
u, Imgk

〉
(11)

+ 〈Imu,
(
αkI

m + [Im,Lk

])
gk
〉

≤ ε
(∥∥ImLku

∥∥2 + ∥∥Imξ l
∥∥2)+ Cε

(∥∥Imu
∥∥2 + ∥∥Imf

∥∥2 + ∥∥Imgk
∥∥2)

, ε ∈ (0,1)

and 〈
Imu, Im

(
M2

k u + 2Mk

(
ξk − Diuθik

))〉
= 〈Imu, Im

(−M2
k u + 2Mkξ

k
)〉

= 〈Imu,−M ′
kI

mMku + [M ′
k, I

m
]
Mku
〉+ 〈Imu, Im

(
2M ′

kξ
k + 2αkξ

k − αkMku
)〉

= 〈MkI
mu, ImMku

〉+ 〈Imu,
[
M ′

k, I
m
]
Mku
〉

− 2
〈
MkI

mu, Imξk
〉+ 2
〈
Imu,

[
Im,M ′

k

]
ξk
〉

+ 〈Imu, Im
(
2αkξ

k − αkMku
)〉

= ∥∥ImMku
∥∥2 − 2

〈
ImMku, Imξk

〉+ 〈[Mk, I
m
]
u, ImMku

〉+ 〈Imu,
[
M ′

k, I
m
]
Mku
〉
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− 2
〈[
Mk, I

m
]
u, Imξk

〉+ 2
〈
Imu,

[
Im,M ′

k

]
ξk
〉+ 〈Imu, Im

(
2αkξ

k − αkMku
)〉

= ∥∥ImMku
∥∥2 − 2

〈
ImMku, Imξk

〉− ∥∥[Mk, I
m
]
u
∥∥2 (12)

+ 〈[Mk, I
m
]
u,MkI

mu
〉+ 〈Imu,

[
M ′

k, I
m
]
Mku
〉− 〈Imu,αkMkI

mu
〉

− 2
〈[
Mk, I

m
]
u, Imξk

〉+ 2
〈
Imu,

[
Im,M ′

k

]
ξk
〉+ 〈Imu, Im

(
2αkξ

k
)+ [αkMk, I

m
]
u
〉

= ∥∥ImMku
∥∥2 − 2

〈
ImMku, Imξk

〉− ∥∥[Mk, I
m
]
u
∥∥2

+ 〈Imu,αk

[
Mk, I

m
]
u − [αk, I

m
]
Mku
〉

− 〈Imu,αkMkI
mu
〉+ 〈Imu,

[[
Mk, I

m
]
,Mk

]
u
〉

− 2
〈[
Mk, I

m
]
u, Imξk

〉+ 2
〈
Imu,

[
Im,Mk

]
ξk
〉+ 〈Imu,2αkI

mξk + [αkMk, I
m
]
u
〉

≤ ∥∥ImMku
∥∥2 − 2

〈
ImMku, Imξk

〉− ∥∥[Mk, I
m
]
u
∥∥2

+ ε
∥∥Imξ

∥∥2 + Cε

∥∥Imu
∥∥2

, ε ∈ (0,1),

where we have used the relation〈
Imu,αkMkI

mu
〉= − 1

2

〈
Imu,Di

(
αkθ

ik
)
Imu
〉
. (13)

Noticing relations like (13) and that for i = 1, . . . , d , k = 1, . . . , d1,∥∥Im
(
ξk − Mku

)∥∥2 = ∥∥Imξk
∥∥2 − 2

〈
Imξk, ImMku

〉+ ∥∥ImMku
∥∥2

,〈
Imu, Im

(
γ kDiuθik

)〉 = 1
2

〈
Imu,Di

(
γ kθ ik

)
Imu + 2

[
γ kθ ikDi, I

m
]
u
〉
,〈

Imu, Im
(
biDiu

)〉 = − 1
2

〈
Imu,Di

(
bi
)
Imu + 2

[
biDi, I

m
]
u
〉
,

putting (9), (10), (11) and (12) together, and taking expectations on both sides of (9), one gets by
Gronwall inequality

sup
t∈[0,T ]

E
∥∥u(t)

∥∥2
m

+ E

∫ T

0

(
δ
∥∥Du(t)

∥∥2
m

+
d1∑

k=1

∥∥Lku(t)
∥∥2

m
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m

)
dt

(14)

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
.

On the other hand, one has for each t ∈ [0, T )

E sup
τ∈[t,T ]

∣∣∣∣∫ T

τ

2
〈
Imu(s), Im(ξ − Duθ)(s) dWs

〉∣∣∣∣
≤ 2E sup

τ∈[t,T ]

∣∣∣∣∫ τ

t

2
〈
Imu(s), Im(ξ − Duθ)(s) dWs

〉∣∣∣∣
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≤ C

(
E

d1∑
k=1

∫ T

t

(∣∣〈Imu(s), Imξk(s)
〉∣∣2 + ∣∣〈Imu(s),

(
MkI

m + [Im,Mk

])
u(s)
〉∣∣2)ds

)1/2

≤ C

(
E

∫ T

t

(∥∥Imu(s)
∥∥2∥∥Imξ(s)

∥∥2 + ∥∥Imu(s)
∥∥4)

ds

)1/2

≤ εE sup
s∈[t,T ]

∥∥Imu(s)
∥∥2 + CεE

∫ T

t

(∥∥Imξ(s)
∥∥2 + ∥∥Imu(s)

∥∥2)
ds ∀ε ∈ (0,1),

which together with (9), (10), (12) and (14) implies (8). �

An immediate consequence of Proposition 3.1 is the following.

Corollary 3.2. Let assumption (A1) hold. For (f, g,G) ∈ L2(Hm) × L2((Hm)d1) × L2(�,

FT ;Hm) with m ∈R, the solution of BSPDE (7) is unique.

Theorem 3.3. Let assumption (A1) hold. Given (f, g,G) ∈ L2(Hm) × L2((Hm)d1) × L2(�,

FT ;Hm) with m ∈R, BSPDE (4) (equivalently, BSPDE (7) with δ = 0) admits a unique solution
(u, v) ∈ S2(Hm) ×L2(Hm−1) with (Lku, vk + Mku) ∈ L2(Hm) ×L2(Hm), k = 1, . . . , d1, and

E sup
t∈[0,T ]

∥∥u(t)
∥∥2

m
+ E

∫ T

0

(
d1∑

k=1

∥∥Lku(t)
∥∥2

m
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m

)
dt

(15)

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
,

with C depending on T ,m,σ, θ, γ, b and c.

Proof. We use the method of approximation. Choose {δl}l∈N+ ⊂ (0,1) and{
(fn, gn,Gn)

}
n∈N+ ⊂ L2(Hm+5)×L2((Hm+5)d1

)× L2(�,FT ;Hm+5)
such that δl converges down to 0 and (fn, gn,Gn) converges to (f, g,G) in L2(Hm) ×
L2((Hm)d1) × L2(�,FT ;Hm). By the Lp-theory of BSPDEs (see [4] for instance), BSPDE
(7) admits a unique solution (ul,n, vl,n) ∈ (S2(Hm+5) ∩ L2(Hm+6)) × L2(Hm+5) associated
with (δl, fn, gn,Gn).

For each n, it follows from Proposition 3.1 that {(ul,n,Lkul,n, vl,n +Dul,nθ)}l∈N+ is bounded
in S2(Hm+4) × L2(Hm+4) × L2((Hm+4)d1), k = 1, . . . , d1. Notice that δl�ul,n tends to zero
in L2(Hm+2) as l goes to infinity. Therefore, letting l tend to infinity, from Proposition 3.1 and
Corollary 3.2 we derive the unique solution (un, vn) for BSPDE (7) associated with (fn, gn,Gn)

and δ = 0 such that (un,Lkun, vn + Dunθ) ∈ S2(Hm+2) × L2(Hm+2) × L2((Hm+2)d1) for
k = 1, . . . , d1.

Furthermore, letting n go to infinity, again by Proposition 3.1 and Corollary 3.2, one obtains
the unique solution (u, v) and associated estimates. This completes the proof. �
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Remark 3.1. Like in [5,9], the random field v+Duθ ∈ L2((Hm)d1) is estimated as a unity which
appears in the corresponding BSDE (see (22) below for instance), and thus we only have v ∈
L2(Hm−1) (see Example 1.1). In fact, if we further have σσT ≥ θθT , then Duθ ∈ L2(Hm) and
thus v ∈ L2(Hm), as u,Lku ∈ L2(Hm), k = 1, . . . , d1. In addition, in view of (ii) of Lemma 2.1
and the proofs involved in this section, the required regularity for the coefficients b, c, σ , θ and
γ can be relaxed like in [5,9], but we would not seek such a generality in the present paper.

4. Hörmander-type theorem

Recall that η = 2−n0 . Basing on the L2-theory of SPDEs presented in the preceding section, we
derive the following Hörmander-type theorem.

Theorem 4.1. Let assumptions (A1) and (H) hold. Suppose that

(f, g) ∈
⋂
n∈R

(
L2(Hn

)×L2((Hn
)d1
))

and G ∈ L2(�,FT ;Hm
)

for some m ∈ R.

For the unique solution (u, v) of BSPDE (4) in Theorem 3.3, we have for any ε ∈ (0, T )

(u, v) ∈
⋂
n∈R

L2(�;C([0, T − ε];Hn
))× L2(�;L2(0, T − ε;Hn−1)),

and for any n ∈ R

E sup
t∈[0,T −ε]

∥∥u(t)
∥∥2

n
+ E

∫ T −ε

0

(∥∥u(t)
∥∥2

n+η
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
n

)
dt

(16)

≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

n
+ ∥∥g(s)

∥∥2
n

)
ds

}
,

with the constant C depending on ε,T ,n,m,n0, σ, θ, γ, b and c. In particular, the random field
u(t, x) is almost surely infinitely differentiable with respect to x on [0, T )×R

d and each deriva-
tive is a continuous function on [0, T ) ×R

d .

Because of the appearance of the stochastic integral in BSPDE (4), we do not investigate the
time-differentiability of u(t, x) and the coefficients herein is only required to be measurable with
respect to the time variable, while in the classical Hörmander theorem, the associated coefficients
are smooth and the function u(t, x) turns out to be deterministic and smooth with respect to the
time variable.

Before the proof of Theorem 4.1, we first give an estimate on the Lie bracket.

Lemma 4.2. For {L̃,L} ⊂⋃l≥0 Vl , m ∈ R and ε ∈ [0,1], there exists a positive constant C such
that almost surely for any φ ∈ Hm with L̃φ ∈ Hm−1+ε and Lφ ∈ Hm,∥∥[L̃,L]φ∥∥

m−1+ε/2 ≤ C
(‖L̃φ‖m−1+ε + ‖Lφ‖m + ‖φ‖m

)
.
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Proof. Assume first φ ∈ Hm+1. Setting An = In−1[L̃,L], we have An ∈ 
n a.s., for each n ∈
R. As the joint operators of H and L, L̃∗ = −L̃ + c̃ and L∗ = −L + c̄ with c̃, c̄ ∈ L∞(C∞

b ),
respectively. By Lemma 2.1, one has〈

L̃Lφ, ImAm−1+εφ
〉

= 〈Lφ,
(
ImL̃∗ + [L̃∗, Im

])
Am−1+εφ

〉
= 〈ImLφ,

(
Am−1+εL̃∗ + [L̃∗,Am−1+ε

])
φ
〉+ 〈[Im, L̃

]
Lφ,Am−1+εφ

〉
≤ C
(‖Lφ‖2

m + ‖L̃φ‖2
m−1+ε + ‖φ‖2

m

)
and 〈

L̃φ, ImAm−1+εφ
〉

= 〈L̃φ,
(
Im−1+εL∗ + [L∗, Im−1+ε

])
Amφ
〉

= 〈Im−1+εL̃φ,
(
AmL∗ + [L∗,Am

])
φ
〉+ 〈Im−1+εL̃φ, I−(m−1+ε)

[
L∗, Im−1+ε

]
Amφ
〉

≤ C
(‖L̃φ‖2

m−1+ε + ‖Lφ‖2
m + ‖φ‖2

m

)
.

Hence,∥∥[L̃,L]φ∥∥
m−1+ε/2 = 〈[L̃,L]φ, ImAm−1+εφ

〉1/2 ≤ C
(‖L̃φ‖m−1+ε + ‖Lφ‖m + ‖φ‖m

)
.

Through standard density arguments, one verifies that the above estimate also holds for any
φ ∈ Hm with L̃φ ∈ Hm−1+ε and Lφ ∈ Hm. �

Starting from estimate (15) of Theorem 3.3, applying Lemma 4.2 iteratively to elements of
V0, . . . ,Vn0 , we have the following.

Corollary 4.3. Assume the same hypothesis as in Theorem 3.3. Let condition (H) hold. For the
unique solution (u, v) of BSPDE (4), one has further u ∈ L2(Hm+η) with

E

∫ T

0

∥∥u(t)
∥∥2

m+η
dt ≤ C

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

)
ds

}
, (17)

where the constant C depends on T ,m,n0, σ, θ, b, c and γ .

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.3, BSPDE (4) admits a unique solution (u, v) ∈
S2(Hm) ×L2(Hm−1) and the pair of random fields (ū, v̄)(t, x) := (T − t)(u, v)(t, x) turns out
to be the unique solution of BSPDE⎧⎪⎨⎪⎩

−dū(t, x) = [( 1
2L2

k + 1
2M2

k

)
ū + Mkv̄

k + bjDj ū

+ cū + γ lv̄l + (T − t)
(
f + Lkg

k
)+ u

]
(t, x) dt − v̄r (t, x) dWr

t ;
ū(T , x) = 0,

(18)
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with

E sup
t∈[0,T ]

∥∥ū(t)
∥∥2

m
+ E

∫ T

0

(
d1∑

k=1

∥∥Lkū(t)
∥∥2

m
+ ∥∥v̄(t) + Dū(t)θ(t)

∥∥2
m

)
dt

≤ C
(
T 2 + 1

)
E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

+ ∥∥u(s)
∥∥2

m

)
ds.

Starting from the above estimate and applying Lemma 4.2 iteratively to elements of V0, . . . ,Vn0 ,
we have ∫ T

0
‖Dū‖2

m−1+η ds

≤ C
(
T 2 + 1

)
E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

+ ∥∥u(s)
∥∥2

m

)
ds.

Fix any ε ∈ (0, T ∧ 1) and define εl =∑l
i=1

ε
2i . By interpolation and Theorem 3.3, one gets

E sup
t∈[0,T −ε1]

∥∥u(t)
∥∥2

m
+ E

∫ T −ε1

0

(∥∥u(t)
∥∥2

m+η
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m

)
dt

(19)

≤ C2(T 2 + 1)

ε
E

∫ T

0

(∥∥f (s)
∥∥2

m
+ ∥∥g(s)

∥∥2
m

+ ∥∥u(s)
∥∥2

m

)
ds.

Noticing that (f, g) ∈⋂n∈R(L2(Hn) ×L2((Hn)d1)), by iteration we obtain for any j ∈ N
+,

E sup
t∈[0,T −εj ]

∥∥u(t)
∥∥2

m+(j−1)η
+ E

∫ T −εj

0

(∥∥u(t)
∥∥2

m+jη
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m+(j−1)η

)
dt

(20)

≤ C2j (T 2 + 1)

ε
E

∫ T −εj−1

0

(∥∥f (s)
∥∥2

m+(j−1)η
+ ∥∥g(s)

∥∥2
m+(j−1)η

+ ∥∥u(s)
∥∥2

m+(j−1)η

)
ds,

which, together with estimate (15), implies by iteration that

E sup
t∈[0,T −εj ]

∥∥u(t)
∥∥2

m+(j−1)η
+ E

∫ T −εj

0

(∥∥u(t)
∥∥2

m+jη
+ ∥∥v(t) + Du(t)θ(t)

∥∥2
m+(j−1)η

)
dt

≤ Cj

{
E‖G‖2

m + E

∫ T

0

(∥∥f (s)
∥∥2

m+(j−1)η
+ ∥∥g(s)

∥∥2
m+(j−1)η

)
ds

}
.

Hence, we have

(u, v) ∈
⋂
n∈R

L2(�;C([0, T − ε];Hn
))× L2(�;L2(0, T − ε;Hn−1)) ∀ε ∈ (0, T ),

and there holds estimate (16). In particular, by Sobolev embedding theorem, the random field
u(t, x) is almost surely infinitely differentiable with respect to x and each derivative is a contin-
uous function on [0, T ) ×R

d . �
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At the end of this section, we would show the connection between the conditional expecta-
tion (2) and the solution of BSPDE (3).

Proposition 4.4. For the coefficients G,f,σ, θ, b, we assume the same hypothesis of Theo-
rem 4.1. Suppose further that G ∈ Lp(�,FT ;Cb). Let (u, v) ∈ S2(Hm) × L2(Hm−1) be the
solution of BSPDE (3). Then, we have for all x ∈R

d ,

u
(
t,X

s,x
t

)= EF̄t

[
G
(
X

s,x
T

)+ ∫ T

t

f
(
r,Xs,x

r

)
dr

]
a.s., for all 0 ≤ s ≤ t ≤ T . (21)

Proof. In view of the continuity of X
s,x
r with respect to (s, x, r), we first check that all the

terms involved in relation (21) make sense in view of the Hörmander-type theorem 4.1. Let
ρ ∈ C∞

c (Rd) be a nonnegative function with the support in the unit ball centered at the origin
such that

∫
Rd ρ(y) dy = 1. Define the convolution:

GN(x) =
∫
Rd

G(x − y)ρ(Ny)Nd dy for N ∈N
+.

In view of the smooth approximation of identity, we have GN ∈ ⋂n∈R L2(�,FT ;Hn) for
each N ∈ N

+, and GN converges to G in space L2(�,FT ;Hm). Obviously, it holds that
limN→∞ E|GN(X

s,x
T )−G(X

s,x
T )|2 = 0 for every x ∈R

d . For each N , let (uN, vN) be the unique
solution of BSPDE (3) with G replaced by GN . For each t ∈ [0, T ), by Theorem 4.1, we have
for any ε ∈ [0, T − t),

(uN, vN), (u, v) ∈
⋂
n∈R

L2(�;C([0, t + ε];Hn
))× L2(�;L2(0, t + ε;Hn−1))

and

‖uN − u‖2
L2(�;C([0,t+ε];Hn))

≤ C(n)E‖GN − G‖2
m → 0 as N → ∞,∀n ∈R,

and in particular, since Hd+2 is embedded into Cb , there holds

E sup
r∈[s,t+ε]

∥∥(uN − u)
(
r,Xs,·

r

)∥∥2
∞ ≤ C‖uN − u‖2

L2(�;C([0,t+ε];Hd+2))
→ 0 as N → ∞.

On the other hand, by the Itô–Kunita formula we have for each N and 0 ≤ s ≤ t ,

uN

(
t,X

s,x
t

) = GN

(
X

s,x
T

)+ ∫ T

t

f
(
r,Xs,x

r

)
dr −

∫ T

t

(vN + DuNθ)
(
r,Xs,x

r

)
dWr

(22)

−
∫ T

t

DuNσ
(
r,Xs,x

r

)
dBr a.s.,∀x ∈ R

d .

Taking conditional expectations on both sides, we get for every x ∈R
d

uN

(
t,X

s,x
t

)= EF̄t

[
GN

(
X

s,x
T

)+ ∫ T

t

f
(
r,Xs,x

r

)
dr

]
a.s., for all 0 ≤ s ≤ t ≤ T . (23)
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Letting N go to infinity, we prove (21). �

Remark 4.1. In Proposition 4.4, we assume G ∈ L2(�,FT ;Cb) to make sense of the compo-
sition G(X

t,x
T ). We would also remark that by taking s = t in relation (21), the function u(t, x)

defined by (2) is just Ft -measurable and thus that the conditional expectation in (2) is equivalent
to the one with respect to the sub-filtration {Ft }t≥0, that is,

u(t, x) = EFt

[∫ T

t

f
(
r,Xt,x

r

)
dr + G

(
X

t,x
T

)]
, (t, x) ∈ [0, T ] ×R

d .
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