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We study a fragmentation of the p-trees of Camarri and Pitman. We give exact correspondences between the
p-trees and trees which encode the fragmentation. We then use these results to study the fragmentation of the
inhomogeneous continuum random trees (scaling limits of p-trees) and give distributional correspondences
between the initial tree and the tree encoding the fragmentation. The theorems for the inhomogeneous
continuum random tree extend previous results by Bertoin and Miermont about the cut tree of the Brownian
continuum random tree.
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1. Introduction

The study of random cutting of trees has been initiated by Meir and Moon [45] in the following
form: given a rooted (graph theoretic) tree, one can proceed to chop the tree into pieces by
iterating the following process: choose a uniform random edge; removing it disconnects the tree
into two pieces; discard the part which does not contain the root and keep chopping the portion
containing the root until it is reduced to a single node. In the present document, we consider the
related version where the vertices are chosen at random and removed (until one is left with an
empty tree); each such pick is referred to as a cut. We will see that this version is actually much
more adapted to the problems we consider here, than the edge cutting procedure presented above.

The main focus in [45] and in most of the subsequential papers has been put on the study of
some parameters of this cutting down process, and in particular on how many cuts are necessary
for the process to finish. This has been studied for a number of different models of deterministic
and random trees such as complete binary trees of a given height, random trees arising from the
divide-and-conquer paradigm [25,35–37], and the family trees of finite-variance critical Galton–
Watson processes conditioned on the total progeny [31,39,47]. The latter model of random trees
turns out to be far more interesting, and it provides an a posteriori motivation for the cutting down
process. As we will see shortly, the cutting down process provides an interesting way to investi-
gate some of the structural properties of random trees by partial destruction and recombination,
or equivalently as partially resampling the tree.

Let us now be more specific: if Ln denotes the number of cuts required to completely cut down
a uniform labelled rooted tree (random Cayley tree, or equivalently conditioned Galton–Watson
tree with Poisson offspring distribution) on n nodes, then n−1/2Ln converges in distribution to a
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Rayleigh distribution which has density xe−x2/2 on R+. Janson [39] proved that a similar result
holds for any Galton–Watson tree with a finite-variance offspring distribution conditioned on
the total progeny to be n. This is the parameter point of view. Addario-Berry et al. [3] have
shown that for the random Cayley trees, Ln actually has the same distribution as the number of
nodes on the path between two uniform random nodes. Their argument relies on the following
construction, which amounts to a partial resampling of the Cayley tree. If one considers the
sequence of subtrees which are discarded as the cutting process goes on, and adds a path linking
their roots, then the resulting tree is a uniform Cayley tree, and the two extremities of the path
are independent uniform random nodes. So the properties of the parameter Ln follow from a
stronger correspondence between the combinatorial objects themselves.

This strong connection between the discrete objects can be carried to the level of their scal-
ing limit, namely Aldous’ Brownian continuum random tree (CRT) [4] (see also Le Gall [40]),
which is, roughly speaking, a “tree-like” (random) metric space; see Section 2 for a proper def-
inition. Without being too precise for now, the natural cutting procedure on the Brownian CRT
involves a Poisson rain of cuts sampled according to the length measure. (However, not all the
cuts contribute to the isolation of the root.) As in the partial resampling of the discrete setting,
we glue the sequence of discarded subtrees along an interval, thereby obtaining a new metric
space. If the length of the interval is well-chosen (as a function of the cutting process), the tree
obtained is distributed like the Brownian CRT and the two ends of the interval are independently
random leaves. This identifies in distribution the discarded subtrees from the cutting procedure
as the components of the forest that one obtains from a spinal decomposition of the Brownian
CRT. The distribution of the latter is provided by the classical path decomposition of a Brownian
excursion due to Bismut [17] (see also [26]). Note that a similar identity is proven by Abraham
and Delmas [2] for general Lévy trees without using a discrete approximation. A related example
is that of the subtree prune and re-graft dynamics of Evans et al. [29] (See also [27,30]), which
truly resamples the object rather than giving a “recursive” decomposition.

The aim of this paper is two-fold. First, we prove exact identities and give reversible trans-
formations of p-trees that are similar to the ones for Cayley trees developed in [3]. The model
of p-trees generalizes Cayley trees in allowing “weights” on the vertices. In particular, this ad-
ditional structure of weights introduces some inhomogeneity in the vertex degrees. We then lift
these results to the scaling limits, the inhomogeneous continuum random trees (ICRT) of Aldous
and Pitman [10], which are closely related to the general additive coalescent [10,13]. Unlike the
Brownian CRT or the stable trees (special cases of the Lévy trees [41]), a general ICRT is not
self-similar, nor does it enjoy a “branching property” as the Lévy trees do. This lack of “recur-
sivity” ruins the natural approaches such as the one used in Abraham and Delmas [1,2] or the
ones in Bertoin and Miermont [15] and Dieuleveut [23], which argue by comparing two frag-
mentations with the same dislocation measure but different indices of self-similarity [14]. This is
one of the reasons why we believe that studying these transformations at the level of the ICRT is
interesting. Furthermore, a conjecture of Aldous et al. [6], page 185, suggests that the results for
ICRTs actually explain the one of Abraham and Delmas [2] for Lévy trees by providing a result
“conditional on the degree distribution”.

Second, rather than only focusing on the isolation of the root we also consider a cutting proce-
dure which eventually isolates almost all the points: looking at the evolution in time of the masses
of the connected components induced by the cuts yields a fragmentation process with an initial
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unit mass. When the initial tree is the Brownian CRT, the induced fragmentation process is the
one considered in Aldous and Pitman [8]. For a general ICRT, however, it differs from the one
in Aldous and Pitman [10], simply because it is non Markovian. Following the idea in the recent
works of Bertoin and Miermont [15] and Dieuleveut [23] on Galton–Watson trees, we construct
the genealogical tree for the fragmentation that will be called the cut tree. We then generalize
the results concerning the distribution of the cut tree that Bertoin and Miermont [15] obtained
in the case of Brownian CRT. The results of the present document are also used in a companion
paper [19], where we prove that the transformation from the Brownian CRT to its genealogical
tree is reversible.

Plan of the paper. In the next section, we introduce the necessary notation and relevant back-
ground. We then present more formally the discrete (p-trees) and continuous (ICRT) models we
are considering, and in which sense the inhomogeneous continuum random trees are the scaling
limit of p-trees. In Section 3 we introduce the cutting down procedures and state our main results.
The study of cutting down procedure for p-trees is the topic of Section 4. The results are lifted
to the level of the scaling limits in Section 5.

2. Notation, models and preliminaries

Before we can present our results, we need some notation. This section may safely be skipped
by the impatient reader and referred to later on.

2.1. Aldous–Broder algorithm and p-trees

The model of p-trees is well-known in combinatorics (see Pitman [48] and the references
therein), and is intimately related to the matrix tree theorem and the Aldous–Broder algorithm
for generating random trees [12,18]. It has been applied to the study of general birthday problem
by Camarri and Pitman [21], and this is why it is also known under the name birthday trees.
For more information about the Aldous–Broder algorithm, we refer the reader to Lyons and
Peres [44], Section 4.4.

For a general graph G, we denote by v(G) and e(G) its vertex set and edge set, respectively.
Let A be a finite set and p = (pu,u ∈ A) be a probability measure on A such that minu∈A pu > 0;
this ensures that A is indeed the support of p. Let TA denote the set of rooted trees labelled with
(all the) elements of A (connected acyclic graphs on A, with a distinguished vertex). For t ∈ TA,
we let r(t) denote its root vertex. For u,v ∈ A, we write {u,v} to mean that u and v are adjacent
in t . We sometimes write 〈u,v〉 to mean that {u,v} is an edge of t , and that u is on the path
between r and v (we think of the edges as pointing towards the root). For a tree t ∈ TA (rooted
at r , say) and a node v ∈ A, we let tv denote the tree re-rooted at v. In this discrete setting of
graphs, the natural metric on t ∈ TA is the graph distance and the edges might be thought as
having unit length.

We usually abuse notation, but we believe it does not affect the clarity or precision of our
statements. For instance, we refer to a node u in the vertex set v(t) of a tree t using u ∈ t .
Depending on the context, we sometimes write t \ {u} to denote the graph induced by t on the
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vertex set v(t) \ {u} (for a tree t , this is in general a forest). In particular, the edges with endpoint
u are not present in the graph t \ {u}. The (in-)degree Cu(t) of a vertex u ∈ A is the number of
edges of the form 〈u,v〉 with v ∈ A. For a rooted tree t , and a node u of t , we write Sub(t, u)

for the subtree of t rooted at u (above u). For t ∈ TA and V ⊆ A, we write Span(t;V) for the
smallest subtree of t (in the sense of vertex set inclusion) containing V and the root of r(t). So
Span(t;V) is the subtree induced by t on the set⋃

u∈V

[[
r(t), u

]]
,

where [[u,v]] denotes collection of nodes on the (unique) path between u and v in t . In the case
where V = {v1, v2, . . . , vk}, we usually write Span(t;v1, . . . , vk) instead of Span(t; {v1, . . . , vk}).
We also write

Span∗(t;V) := Span(t;V) \ {r(t)}
for the graph induced by t on the set V \ {r(t)}. (This is only used as a convenient way to denote
the collection of nodes, and the fact that it is in general not connected has no importance.)

As noticed by Aldous [12] and Broder [18], one can generate random trees on A by extracting
a tree from the trace of a random walk on A, where the sequence of steps is given by a sequence
of i.i.d. vertices sampled according to p.

Definition (Weighted version of Aldous–Broder algorithm). Let Y = (Yj , j ≥ 0) be a sequence
of independent variables with common distribution p. Let T (Y) be the graph rooted at Y0 with
the set of edges {〈Yj−1, Yj 〉 : Yj /∈ {Y0, . . . , Yj−1}, j ≥ 1

}
. (2.1)

The sequence Y defines a random walk on A, which eventually visits every element of A with
probability one, since A is the support of p. So the trace {〈Yj−1, Yj 〉 : j ≥ 1} of the random walk
on A is a connected graph on A, rooted at Y0. Aldous–Broder Algorithm extracts the tree T (Y)

from the trace of the random walk. To see that T (Y) is a tree, observe that the edge 〈Yj−1, Yj 〉
is added only if Yj has never appeared before in the sequence. It follows easily that T (Y) is a
connected graph without cycles, hence a tree on A. Let π denote the distribution of T (Y).

Lemma 2.1 ([12,18,21,28]). For t ∈ TA, we have

π(t) = π(p)(t) :=
∏
u∈A

pCu(t)
u . (2.2)

Note that π is indeed a probability distribution on TA, since by Cayley’s multinomial formula
[22,49], we have ∑

t∈TA

π(t) =
∑
t∈TA

∏
u∈A

pCu(t)
u =

(∑
u∈A

pu

)|A|−1

= 1. (2.3)
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Definition (p-tree). A random tree on the set A with the distribution π as specified by (2.2) is
called a p-tree on A.

When talking of a p-tree, we often omit the mention of A as it appears to be the support of p.
Observe that when p is the uniform distribution on {1,2, . . . , n}, the p-tree is a uniform random
rooted tree with n vertices (the Cayley tree of size n). So the results we are about to present
generalize the exact distributional results in [3]. However, we believe that the point of view we
adopt here is a little cleaner, since it permits to make the transformation exactly reversible without
any extra anchoring nodes (which prevent any kind of duality at the discrete level).

From now on, we consider n ≥ 1 and let [n] denote the set {1,2, . . . , n}. We write Tn as a
shorthand for T[n], the set of the rooted trees on [n]. Let also p = (pi,1 ≤ i ≤ n) be a probability
measure on [n] satisfying mini∈[n] pi > 0. For a subset A ⊆ [n] such that p(A) > 0, we let
p|A(·) = p(· ∩ A)/p(A) denote p conditioned on A, and write π |A := π(p|A). For a probability
distribution μ, we write X ∼ μ to mean that μ is the distribution of the random variable X.
Recall the notation tv for the re-rooting of a tree t at node v. The following claim can be easily
verified from (2.2).

Lemma 2.2. Let T be a p-tree on [n]. If V is an independent vertex of distribution p, then
T V ∼ π .

2.2. Measured metric spaces and the Gromov–Prokhorov topology

Standard references on measured metric spaces and Gromov–Prokhorov topology are Gro-
mov [33], Chapter 3 1

2 , Greven et al. [32]. See also Bertoin and Miermont [15], Section 1.4,
for the pointed topology.

If (X,d) is a metric space endowed with the Borel σ -algebra, we denote by Mf (X) the set of
finite measures on X and by M1(X) the subset of probability measures on X. If m ∈Mf (X), we
denote by supp(m) the support of m on X, that is the smallest closed set A such that m(Ac) = 0.
If f : X → Y is a measurable map between two metric spaces, and if m ∈ Mf (X), then the
push-forward of m is an element of Mf (Y ), denoted by f∗m ∈ Mf (Y ), and is defined by
(f∗m)(A) = m(f −1(A)) for each Borel set A of Y . If m ∈ Mf (X) and A ⊆ X, we denote by
m �A the restriction of m to A: m �A (B) = m(A ∩ B) for any Borel set B . This should not
be confused with the measure conditioned on A, which remains a probability measure and is
denoted by m|A.

We say a triple (X,d,μ) is a measured metric space (or sometimes a metric measure space) if
(X,d) is a Polish space (separable and complete) and μ ∈ M1(X). Two measured metric spaces
(X,d,μ) and (X′, d ′,μ′) are said to be weakly isometric if there exists an isometry φ between
the supports of μ on X and of μ′ on X′ such that φ∗μ = μ′. This defines an equivalence relation
between the measured metric spaces, and we denote by M the set of equivalence classes. Note
that if (X,d,μ) and (X′, d ′,μ′) are weakly isometric, the metric spaces (X,d) and (X′, d ′) may
not be isometric.

We can define a metric on M by adapting Prokhorov’s distance. Consider a metric space (X,d)

and for ε > 0, let Aε := {x ∈ X : d(x,A) < ε} denote the ε-neighborhood of A. Recall that given
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two (Borel) probability measures μ,ν ∈ M1(X), the Prokhorov distance dP between μ and ν is
defined by

dP (μ, ν) := inf
{
ε > 0 : μ(A) ≤ ν

(
Aε

)+ ε and ν(A) ≤ μ
(
Aε

)+ ε, for all Borel sets A
}
. (2.4)

Note that the definition of the Prokhorov distance (2.4) can be easily extended to a pair of finite
(Borel) measures on X. Then, for two measured metric spaces (X,d,μ) and (X′, d ′,μ′) the
Gromov–Prokhorov (GP) distance between them is defined to be

dGP
(
(X,d,μ),

(
X′, d ′,μ′))= inf

φ,ψ
dP

(
φ∗μ,ψ∗μ′), (2.5)

where the infimum is taken over all isometric embeddings φ and ψ from supp(μ) and supp(μ′)
into a common metric space Z. It is clear that dGP depends only on the equivalence classes
containing (X,d,μ) and (X′, d ′,μ′). Moreover, the Gromov–Prokhorov distance turns M into a
Polish space ([32], Theorem 1).

There is another more convenient characterization of the GP topology (the topology induced by
dGP) that relies on convergence of distance matrices between random points. Let X = (X,d,μ)

be a measured metric space and let (ξi, i ≥ 1) be a sequence of i.i.d. points of common distribu-
tion μ. We write ρX = (d(ξi, ξj ),1 ≤ i, j < ∞) for the distance matrix associated with this se-
quence. One easily verifies that the distribution of ρX does not depend on the particular element
of an equivalent class of M. Moreover, by Gromov’s reconstruction theorem [33], Section 3 1

2 .5,
the distribution of ρX characterizes X as an element of M. In this work, we are interested in
random variables taking values in M. If X = (X,d,μ) is such a random variable, we insist on
the fact that, by an i.i.d. sequence of μ-distributed points, we mean that we first condition on
X then sample an i.i.d. sequence according to μ. We have the following characterization for the
convergence in distribution for random variables in M.

Proposition 2.3 (Corollary 8 of [42]). If X is some random element taking values in M and for
each n ≥ 1, Xn is a random element taking values in M, then Xn converges to X in distribution
as n → ∞ if and only if ρXn converges to ρX in the sense of finite-dimensional distributions.

Pointed Gromov–Prokhorov topology. The above characterization by distance matrices turns
out to be quite handy when we want to keep track of marked points. Let k ∈ N. If (X,d,μ) is
a measured metric space and x = (x1, x2, . . . , xk) ∈ Xk is a k-tuple, then we say (X,d,μ,x) is
a k-pointed measured metric space, or simply a pointed measured metric space. Two pointed
metric measure spaces (X,d,μ,x) and (X′, d ′,μ′,x′) are said to be weakly isometric if there
exists an isometric bijection

φ : supp(μ) ∪ {x1, x2, . . . , xk} → supp
(
μ′)∪ {

x′
1, x

′
2, . . . , x

′
k

}
such that φ∗μ = μ′ and φ(xi) = x′

i , 1 ≤ i ≤ k, where x = (x1, x2, . . . , xk) and x′ = (x′
1, x

′
2, . . . ,

x′
k). We denote by M

∗
k the space of weak isometry equivalence classes of k-pointed measured

metric spaces. Again, we emphasize the fact that the underlying metric spaces (X,d) and (X′, d ′)
do not have to be isometric.
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A sequence (Xn, dn,μn,xn)n≥1 of k-pointed measured metric spaces is said to converge to
some pointed measured metric space (X,d,μ,x) in the k-pointed Gromov–Prokhorov (pGP)
topology if for any m ≥ 1,(

dn

(
ξ∗
n,i , ξ

∗
n,j

)
,1 ≤ i, j ≤ m

) n→∞−→
d

(
d
(
ξ∗
i , ξ∗

j

)
,1 ≤ i, j ≤ m

)
,

where for each n ≥ 1 and 1 ≤ i ≤ k, ξ∗
n,i = xn,i if xn = (xn,1, xn,2, . . . , xn,k) and (ξ∗

n,i , i ≥ k + 1)

is a sequence of i.i.d. μn-distributed points in Xn. Similarly, ξ∗
i = xi for 1 ≤ i ≤ k and (ξ∗

i , i ≥
k + 1) is a sequence of i.i.d. μ-distributed points in X. The k-pointed Gromov–Prokhorov topol-
ogy is also metrizable: it suffices to modify the definition (2.5) by taking into account the marked
points. Then the proof of [32], Theorem 1, can be easily adapted to show that M∗

k is a Polish
space. It is also straightforward to get an analog of Proposition 2.3 for M∗

k .

2.3. Compact metric spaces and the Gromov–Hausdorff metric

We follow Burago et al. [20] for the definition of Gromov–Hausdorff metric and Miermont [46]
for Gromov–Hausdorff–Prokhorov metric and the pointed metric. See also Evans [27], Evans et
al. [29], Evans and Winter [30], Villani [50].

Gromov–Hausdorff metric. Let (X,d) be a metric space. Recall the notation Aε for the
ε-neighborhood of A ⊂ X. Two compact subsets A and B are compared using the Hausdorff
distance dH defined by

dH (A,B) := inf
{
ε > 0 : A ⊆ Bε and B ⊆ Aε

}
.

To compare two compact metric spaces (X,d) and (X′, d ′), we define their Gromov–Hausdorff
(GH) distance dGH by

dGH
(
(X,d),

(
X′, d ′)) := inf

φ,ψ
dH

(
φ(X),ψ

(
X′)),

where the infimum ranges over all choices of isometric embeddings φ and ψ from X and X′ into
a common metric space Z. Note that, as opposed to the case of the GP topology, two compact
metric spaces that are at GH distance zero are isometric.

Gromov–Hausdorff–Prokhorov metric. If (X,d) and (X′, d ′) are two compact metric spaces
and if μ ∈ Mf (X) and μ′ ∈ Mf (X′), one way to compare simultaneously the metric spaces
and the measures is to define

dGHP
(
(X,d,μ),

(
X′, d ′,μ′)) := inf

φ,ψ

{
dH

(
φ(X),ψ

(
X′))∨ dP

(
φ∗μ,ψ∗μ′)},

where the infimum ranges over all choices of isometric embeddings φ and ψ from X and X′
into a common metric space Z. If we denote by Mc the set of equivalence classes of compact
measured metric spaces under measure-preserving isometries, then Mc is Polish when endowed
with dGHP ([30], Theorem 2.5, [46], Proposition 8).
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Pointed Gromov–Hausdorff metric. We fix some k ∈ N. Given two compact metric spaces
(X,dX) and (Y, dY ), let x = (x1, x2, . . . , xk) ∈ Xk and y = (y1, y2, . . . , yk) ∈ Y k . Then the
pointed Gromov–Hausdorff metric between (X,dX,x) and (Y, dY ,y) is defined to be

dpGH
(
(X,dX,x), (Y, dY ,y)

) := inf
φ,ψ

{
dH

(
φ(X),ψ(Y )

)∨ max
1≤i≤k

dZ

(
φ(xi),ψ(yi)

)}
,

where the infimum ranges over all choices of isometric embeddings φ and ψ from X and X′
into a common metric space (Z,dZ). Let Mk

c denote the isometry-equivalence classes of those
compact metric spaces with k marked points. It is a Polish space when endowed with dpGH ([46],
Proposition 9).

2.4. Real trees

The notion of real tree (also known as R-tree) existed for quite some time (see, for example,
Dress et al. [24]) before it was introduced in probability for the study of random trees by Evans
et al. [29]. More precisely, a metric space (X,d, r) is called a (rooted) real tree if r ∈ X and

• for any two points x, y ∈ X, there exists an isometry φxy from [0, d(x, y)] into X such that
φxy(0) = x and φxy(d(x, y)) = y. In this case, the image of φxy is denoted by [[x, y]];

• if q : [0,1] → X is a continuous injective map such that q(0) = x and q(1) = y, then
q([0,1]) = [[x, y]].

As for discrete trees, when it is clear from context which metric we are talking about, we refer to
metric spaces by the sets. For instance, (T , d) is often referred to as T .

A measured (rooted) real tree is a real tree (X,d, r) equipped with a finite (Borel) measure
μ ∈ Mf (X). We always assume that the metric space (X,d) is complete and separable. We
denote by Tw the set of the weak isometry equivalence classes of measured rooted real trees,
equipped with the pointed Gromov–Prokhorov topology. Also, let Tc

w be the set of the measure-
preserving isometry equivalence classes of those measured rooted real trees (X,d, r,μ) such
that (X,d) is compact. We endow T

c
w with the pointed Gromov–Hausdorff–Prokhorov distance.

Then both Tw and T
c
w are Polish spaces ([29], Theorem 1, [30], Theorem 2.5). However in our

proofs, we do not always distinguish between an equivalence class and the elements it contains.
Let (T , d, r) be a real tree. For u ∈ T , the degree of u in T , denoted by deg(u,T ), is the

number of connected components of T \ {u}. We also denote by

Lf(T ) = {
u ∈ T : deg(u,T ) = 1

}
and Br(T ) = {

u ∈ T : deg(u,T ) ≥ 3
}

the set of leaves and the set of branch points of T , respectively. The skeleton of T is the com-
plementary set of Lf(T ) in T , denoted by Sk(T ). For two points u,v ∈ T , we denote by u ∧ v

the closest common ancestor of u and v, that is, the unique point w of [[r, u]] ∩ [[r, v]] such that
d(u, v) = d(u,w) + d(w,v).

For a rooted real tree (T , d, r), if x ∈ T then the subtree of T above x, denoted by Sub(T , x),
is defined to be

Sub(T , x) := {
u ∈ T : x ∈ [[r, u]]}.
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Spanning subtree. Let (T , d, r) be a real tree and let x = (x1, . . . , xk) be k points of T for some
k ≥ 1. We denote by Span(T ;x) the smallest connected set of T which contains the root r and x,
that is, Span(T ;x) =⋃

1≤i≤k[[r, xi]]. We consider Span(T ;x) as a real tree rooted at r and refer
to it as a spanning subtree or a reduced tree of T .

If (T , d, r) is a real tree and there exists some x = (x1, x2, . . . , xk) ∈ T k for some k ≥ 1 such
that T = Span(T ;x), then the metric aspect of T is rather simple to visualize. More precisely,
if we write x0 = r and let ρx = (d(xi, xj ),0 ≤ i, j ≤ k), then ρx determines (T , d, r) up to an
isometry.

Gluing. If (Ti, di), i = 1,2 are two real trees with some distinguished points xi ∈ Ti , i = 1,2,
the result of the gluing of T1 and T2 at (x1, x2) is the metric space (T , δ), where T = T1 ∪T2 \{x2},
δ coincides with d1 on T1 × T1 and

δ(u, v) =
⎧⎨⎩

d1(u, x1) + d2(v, x2), if u ∈ T1, v ∈ T2 \ {x2};
d2(u, x2) + d1(v, x1), if u ∈ T2 \ {x2}, v ∈ T1;
d2(u, v), if u,v ∈ T2 \ {x2}.

It is easy to verify that (T , δ) is a real tree obtained by identifying x1 and x2 as one point. We use
the notation T1 �x1=x2 T2 := (T , δ) in the following. Moreover, if T1 is rooted at some point r ,
we make the convention that T1 �x1=x2 T2 is also rooted at r .

2.5. Inhomogeneous continuum random trees

The class of inhomogeneous continuum random tree (ICRT) is introduced in [21] and [10]. See
also [6,7,9] for more information about the ICRT and related problems.

Let � be the set of sequences θ = (θ0, θ1, θ2, . . .) ∈R
∞+ such that θ1 ≥ θ2 ≥ θ3 · · · ≥ 0, θ0 ≥ 0,∑

i≥0 θ2
i = 1, and either θ0 > 0 or

∑
i≥1 θi = ∞.

One way to obtain an ICRT relies on Poisson point processes, and is explained below. This
construction, which appears in [21] and [10], is the natural extension of Aldous’ stick-breaking
construction for the Brownian CRT [4].

Poisson point process construction. For each θ ∈ �, we define a real tree T in the following
way.

• If θ0 > 0, let P0 = {(uj , vj ), j ≥ 1} be a Poisson point process on the first octant {(x, y) :
0 ≤ y ≤ x} of intensity measure θ2

0 dx dy, ordered in such a way that u1 < u2 < u3 < · · ·.
• For every i ≥ 1 such that θi > 0, let Pi = {ξi,j , j ≥ 1} be a homogeneous Poisson process

on R+ of intensity θi under P, such that ξi,1 < ξi,2 < ξi,3 < · · ·.
All these Poisson processes are supposed to be mutually independent and defined on some com-
mon probability space (�,F,P). We consider the points of all these processes as marks on the
half line R+, among which we distinguish two kinds: the cutpoints and the joinpoints. The cut-
points are all those uj , j ≥ 1 and all the ξi,j , j ≥ 2, i ≥ 1 for which θi > 0. For each cutpoint x,
we associate a joinpoint x∗ as follows: x∗ = vj if x = uj for some j ≥ 1 and x∗ = ξi,1 if x = ξi,j

for some i ≥ 1 and j ≥ 2. One easily verifies that the hypotheses on θ imply that the set of cut-
points is a.s. finite on each compact set of R+, while the joinpoints are dense a.s. everywhere.
(See, for example, [10] for a proof.) In particular, we can arrange the cutpoints in increasing order
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as 0 < η1 < η2 < η3 < · · ·. This splits R+ into countably many intervals that we now reassemble
into a tree. We write η∗

k for the joinpoint associated to the kth cutpoint ηk . Define R1 to be the
metric space [0, η1] rooted at 0. For k ≥ 1, let

Rk+1 := Rk �
η∗
k=ηk

[ηk, ηk+1].

In words, we graft the intervals [ηk, ηk+1] by gluing the left end at the joinpoint η∗
k . Note that

we have η∗
k < ηk a.s., thus η∗

k ∈ Rk and the above gluing operation is well-defined almost surely.
It is not difficult to see that Rk has the shape of a k-leafed discrete (rooted) tree. Moreover,
it follows from this Poisson construction that (Rk)k≥1 a consistent family of trees which also
verifies the “leaf-tight” condition in the sense of Aldous [5]. Therefore by [5], Theorem 3, the
complete metric space T := ⋃

k≥1 Rk is a real tree and 1
k

∑
1≤i≤k δηi

, the empirical measure
on the leaves of Rk , converges almost surely as k → ∞ to a probability measure μ, called the
mass measure of T . This measure μ is non atomic and concentrated on the set of leaves of T .
Moreover, if conditional on T , (Vk, k ≥ 1) is a sequence of i.i.d. points of common law μ,
then for each k ≥ 1, the spanning tree Span(T ;V1,V2, . . . , Vk) has the same distribution as Rk .
The distribution of (T ,μ) is said to be the distribution of an ICRT of parameter θ , which is
a probability distribution on Tw . The push-forward of the Lebesgue measure on R+ defines a
σ -finite measure � on T , which is concentrated on Sk(T ) and called the length measure of T .
Furthermore, direct computation shows that the distribution of �(R1) is given by

P
(
�(R1) > r

)= P(η1 > r) = e−(1/2)θ2
0 r2 ∏

i≥1

(1 + θir)e
−θi r , r > 0. (2.6)

(Note that, since θ ∈ �, the infinite product on the right-hand side converges absolutely.)
In the important special case when θ = (1,0,0, . . .), the above construction coincides with the

line-breaking construction of the Brownian CRT in [4], Algorithm 3, that is, T is the Brownian
CRT. This case will be referred to as the Brownian case in the sequel. We notice that whenever
there is an index i ≥ 1 such that θi > 0, the point, denoted by βi , which corresponds to the
joinpoint ξi,1 is a branch point of infinite degree. According to [6], Theorem 2, θi is a measurable
function of (T , βi), and we refer to it as the local time of βi in what follows.

ICRTs as scaling limits of p-trees. Let pn = (pn1,pn2, . . . , pnn) be a probability measure on
[n] such that pn1 ≥ pn2 ≥ · · · ≥ pnn > 0. Define σn ≥ 0 by σ 2

n = ∑n
i=1 p2

ni and denote by T n

the corresponding pn-tree. We also denote by dTn the graph distance of Tn, that is, the distance
between two nodes is the number of edges on the unique path between them. Suppose that the
sequence (pn, n ≥ 1) verifies the following hypothesis: there exists some θ = (θi, i ≥ 0) ∈ �

such that

lim
n→∞σn = 0 and lim

n→∞
pni

σn

= θi for every i ≥ 1. (H)

Then, writing σnT
n for the rescaled metric space ([n], σndT n), Camarri and Pitman [21] have

shown that (
σnT

n,pn

) n→∞−→
d,GP

(T ,μ), (2.7)
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where →d,GP denotes the convergence in distribution with respect to the Gromov–Prokhorov
topology.

3. Main results

3.1. Cutting down procedures for p-trees and ICRT

Consider a p-tree T on [n]. We perform a cutting procedure on T by picking each time a vertex
according to p conditioned on the remaining part; however, it is more convenient for us to retain
the portion of the tree that contains a random node V of distribution p rather than the root.
Thanks to Lemma 2.2, we know that isolating a random point is equivalent (in distribution) to
isolating the root. We denote by L(T ) the number of cuts until V is finally picked, and let Xi ,
1 ≤ i ≤ L(T ), be the sequence of nodes chosen. The following identity in distribution has been
already shown in [3] in the special case of the uniform Cayley tree:

L(T )
d= Card{vertices on the path from the root to V }. (3.1)

Actually, (3.1) is a consequence of Lemma 4.1 below, which in words can be described as
follows. In the cutting procedure described above, we connect the rejected parts, which are
subtrees above Xi just before the cutting,1 by drawing an edge between Xi and Xi+1, i =
1,2, . . . ,L(T ) − 1 (see Figure 1 in Section 4). We obtain another tree on the same vertex set,
which contains a path from the first cut X1 to the node V . We denote by cut(T ,V ) this tree which
(partially) encodes the isolating process of V and we let X1 be its root. We prove in Lemma 4.1
that we have (

cut(T ,V ),V
) d= (T ,V ). (3.2)

Note that by construction, L(T ) equals the number of vertices in the path of cut(T ,V ) from the
root to V . Thus (3.2) easily entails (3.1). This identity between the pairs of trees contains a lot
of information about the distributional structure of the p-trees, and our aim is to obtain results
similar to (3.2) for ICRTs. The method we use relies on the discrete approximation of ICRT by
p-trees, and a first step consists in defining the appropriate cutting procedure for ICRT.

In the case of p-trees, one may also pick the nodes of T in the order in which they appear
in a Poisson random measure. We do not develop it here but one should keep in mind that the
cutting procedure may be obtained using a Poisson point process on R+ × T with intensity
measure dt ⊗ p. In particular, this measure has a natural counterpart in the case of ICRTs, and it
is according to this measure that the points should be sampled in the continuous case.

So consider now an ICRT T . Recall that for θ �= (1,0, . . .), for each θi > 0 with i ≥ 1, there
exists a unique point, denoted by βi , which has infinite degree and local time θi . Let L be the
measure on T defined by

L(dx) := θ2
0 �(dx) +

∑
i≥1

θiδβi
(dx), (3.3)

1V is considered as the new root.
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which is almost surely σ -finite (Lemma 5.1). Proving that L is indeed the relevant cutting mea-
sure (in a sense made precise in Proposition 5.2) is the topic of Section 7. Conditional on T ,
let P be a Poisson point process on R+ × T of intensity measure dt ⊗ L(dx) and let V be a
μ-distributed point in T . We consider the elements of P as the successive cuts on T which try
to isolate the random point V . For each t ≥ 0, define

Pt = {
x ∈ T : ∃s ≤ t such that (s, x) ∈ P

}
,

and let Tt = {u ∈ T : [[u,V ]] ∩ Pt = ∅}. Note that Tt is the connected component of T \ Pt

containing V . Clearly, Tt ′ ⊂ Tt if t ′ ≥ t . Let Tt− := ⋂
s<t Ts for t > 0. We set C := {t > 0 :

μ(Tt−) > μ(Tt )}. Those are the arrival times of the cuts which contribute to the isolation of V .
Moreover, with probability one, for each t ∈ C there exists a unique xt ∈ T such that (t, xt ) ∈P .
Observe then that xt ∈ Tt−.

3.2. Tracking one node and the one-node cut tree

We construct a tree which encodes this cutting process in a similar way that the tree H =
cut(T ,V ) encodes the cutting procedure for discrete trees. First we construct the “backbone”,
which is the equivalent of the path we add in the discrete case. For t ≥ 0, we define

Lt :=
∫ t

0
μ(Ts) ds,

and L∞ the limit as t → ∞ (which might be infinite). Now consider the interval [0,L∞], to-
gether with its Euclidean metric, that we view as a real tree rooted at 0. For t ∈ C, recall the
notation xt from above. Then, we graft Tt− \ Tt , the portion of the tree discarded at time t , on
[0,L∞] by identifying xt with the point Lt (in the sense of the gluing introduced in Section 2.5).
This creates a rooted real tree and we denote by cut(T ,V ) its completion. Moreover, we can
endow cut(T ,V ) with a (possibly defective probability) measure μ̂ by taking the push-forward
of μ under the canonical injection φ from

⋃
t∈C(Tt− \ Tt ) to cut(T ,V ). We denote by U the

endpoint L∞ of the interval [0,L∞]. We show in Section 5 the following theorem.

Theorem 3.1. We have L∞ < ∞ almost surely. Moreover, under (H) we have(
σn cut

(
T n,V n

)
,pn,V

n
) n→∞−→

d,pGP

(
cut(T ,V ), μ̂,U

)
,

jointly with the convergence in (2.7).

Combining this with (3.2), we show in Section 5 the following theorem.

Theorem 3.2. Conditional on T , U has distribution μ̂, and the unconditional distribution of
(cut(T ,V ), μ̂) is the same as that of (T ,μ).

Theorems 3.1 and 3.2 immediately entail the following.
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Corollary 3.3. Suppose that (H) holds. Then

σnL
(
T n

) n→∞−→
d

L∞,

jointly with the convergence in (2.7). Moreover, the unconditional distribution of L∞ is the same
as that of the distance in T between the root and a μ-distributed point V , as given in (2.6).

3.3. The complete cutting procedure

In the procedure of the previous section, the fragmentation only takes place on the portions of
the tree which contain the random point V . Following Bertoin and Miermont [15], we consider a
more general cutting procedure which keeps splitting all the connected components. The aim here
is to describe the genealogy of the fragmentation that this cutting procedure produces. For each
t ≥ 0, Pt induces an equivalence relation ∼t on T : for x, y ∈ T we write x ∼t y if [[x, y]]∩Pt =
∅. We denote by Tx(t) the equivalence class containing x. In particular, we have TV (t) = Tt . Let
(Vi)i≥1 be a sequence of i.i.d. μ-distributed points in T . For each t ≥ 0, define μi(t) = μ(TVi

(t)).
We write μ↓(t) for the sequence (μi(t), i ≥ 1) rearranged in decreasing order. In the case where
T is the Brownian CRT, the process (μ↓(t))t≥0 is the fragmentation dual to the standard additive
coalescent [10]. In the other cases, however, it is not Markov because of the presence of those
branch points βi with fixed local times θi .

As in [15], we can define a genealogical tree for this fragmentation process. For each i ≥ 1
and t ≥ 0, let

Li
t :=

∫ t

0
μi(s) ds,

and let Li∞ ∈ [0,∞] be the limit as t → ∞. For each pair (i, j) ∈ N
2, let τ(i, j) = τ(j, i) :=

inf{t > 0 : [[Vi,Vj ]] ∩Pt �= ∅}, which is almost surely finite by the properties of T and P . Note

that Li
t = L

j
t for all t ≤ τ(i, j). Then we can construct a sequence of increasing metric spaces

S1 ⊂ S2 ⊂ · · · such that for each k ≥ 1, Sk =⋃
1≤i≤k[[ρ∗,Ui]], and for which we have

d(ρ∗,Ui) = Li∞, d(Ui,Uj ) = Li∞ + L
j∞ − 2Li

τ(i,j), 1 ≤ i < j ≤ k, (3.4)

where d denotes the common metric of (Sk, k ≥ 1). It is not difficult to see that such a sequence
of metric spaces exists and is uniquely determined (in the sense of isometry equivalence classes)
by (3.4): intuitively, Li∞ is the distance between ρ∗ and the leaf Ui , and Li

τ(i,j) = L
j

τ(i,j) is the
distance between ρ∗ and the point where the two segments [[ρ∗,Ui]] and [[ρ∗,Uj ]] split. More
precisely, let S1 = [[ρ∗,U1]] be a segment of length L1∞; then for k ≥ 2, let ik = arg max{τ(i, k) :
1 ≤ i ≤ k − 1} and bk be the point of [[ρ∗,Uik ]] ⊂ Sk−1 at distance Lk

τ(ik,k) = L
ik
τ(ik,k) from ρ∗.

Then, Sk is obtained by grafting a segment of length Lk∞ − Lk
τ(ik,k) on Sk−1 by identifying one

of its extremities with bk , and calling Uk the other extremity. It follows that, for every k ≥ 1, Sk \
Sk−1 =]]bk,Uk]] is a segment of length Lk∞ − Lk

τ(ik,k). One easily verifies that Sk satisfies (3.4).
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We let ρ∗ be the common root of all the Sk , k ≥ 1. Define

cut(T ) :=
⋃
k≥1

Sk,

the completion of the metric space (
⋃

k Sk, d), which is still a real tree, seen as rooted at ρ∗. In
the case where T is the Brownian CRT, the above definition of cut(T ) coincides with the tree
defined by Bertoin and Miermont [15].

Similarly, for each pn-tree T n, we can define a complete cutting procedure on T n by first gen-
erating a random permutation (Xn1,Xn2, . . . ,Xnn) on the vertex set [n] and then removing the
Xnis one after the other. Here the permutation (Xn1,Xn2, . . . ,Xnn) is constructed by sampling,
for i ≥ 1, Xni according to pn conditioned on [n] \ {Xnj , j < i}. We define a new genealogy on
[n] by making Xni an ancestor of Xnj if i < j and Xnj and Xni are in the same connected com-
ponent when Xni is removed. (See Section 4.3 below for more details.) If we denote by cut(T n)

the corresponding genealogical tree, then the number of vertices in the path of cut(T n) between
the root Xn1 and an arbitrary vertex v is precisely equal to the number of cuts necessary to isolate
this vertex v. We have

Theorem 3.4. Suppose that (H) holds. Let ν be the weak limit of the empirical measures
1
k

∑k
i=1 δUi

, which exists almost surely conditional on T . Then, we have(
σn cut

(
T n

)
,pn

) n→∞−→
d,GP

(
cut(T ), ν

)
,

jointly with the convergence in (2.7).

From this, we show the following theorem.

Theorem 3.5. Conditionally on T , (Ui, i ≥ 1) has the same distribution as a sequence of i.i.d.
points of common law ν. Furthermore, the pairs (cut(T ), ν) and (T ,μ) have the same uncondi-
tional distribution.

In general, the convergence of the pn-trees to the ICRT in (2.7) cannot be improved to
Gromov–Hausdorff (GH) topology, see, for instance, [11], Example 28. However, when the se-
quence (pn)n≥1 is suitably well-behaved, one does have this stronger convergence. (This is the
case for example, when pn is the uniform distribution on [n], which gives rise to the Brownian
CRT, see also [6], Section 4.2.) In such cases, we can reinforce accordingly the above conver-
gences of the cut trees in the Gromov–Hausdorff topology. Note however that a “reasonable”
condition on p that would ensure the Gromov–Hausdorff convergence seems hard to find. Let
us mention a related open question in [6], Section 7, which is to determine a practical criterion
for the compactness of a general ICRT. Writing →d,GHP for the convergence in distribution with
respect to the Gromov–Hausdorff–Prokhorov topology (see Section 2), we have the following.

Theorem 3.6. Suppose that T is almost surely compact and suppose also as n → ∞,(
σnT

n,pn

) n→∞−→
d,GHP

(T ,μ). (3.5)
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Then, jointly with the convergence in (3.5), we have(
σn cut

(
T n,V n

)
,pn

) n→∞−→
d,GHP

(
cut(T ,V ), μ̂

)
,

(
σn cut

(
T n

)
,pn

) n→∞−→
d,GHP

(cut(T ), ν).

3.4. Reversing the cutting procedure

We also consider the transformation that “reverses” the construction of the trees cut(T ,V ) de-
fined above. Here, by “reversing”, we mean that, for an ICRT (H, dH, μ̂) and a random point U

sampled according to its mass measure μ̂, we should construct a tree shuff(H,U) such that(
T , cut(T ,V )

) d= (
shuff(H,U),H

)
. (3.6)

This reverse transformation is the one described in [3] for the Brownian CRT. For H rooted at
r(H), the path between [[r(H),U ]] decomposes H into countably many subtrees

Fx = {y ∈H : U ∧ y = x},
where U ∧ y = arg max{d(u, r(H)) : u ∈ [[r(H),U ]] ∩ [[r(H), y]]} denotes the closest common
ancestor of U and y. Informally, the tree shuff(H,U) is the metric space one obtains from H by
attaching each Fx at a random point Ax , which is sampled proportionally to μ̂ in the union of
the Fy for which dH(U,y) < dH(U,x). We postpone the precise definition of shuff(H,U) until
Section 6.

The question of reversing the complete cut tree cut(T ) is more delicate and is the subject of
the companion paper [19]. There we restrict ourselves to the case of a Brownian CRT: for T and
G Brownian CRT we construct a tree shuff(G) such that(

T , cut(T )
) d= (

shuff(G),G
)
.

We believe that the construction there is also valid for more general ICRTs, but the arguments
we use there strongly rely on the self-similarity of the Brownian CRT.

Remarks. i. Theorem 3.2 generalizes Theorem 1.5 in [3], which is about the Brownian CRT. The
special case of Theorem 3.1 concerning the convergence of uniform Cayley trees to the Brownian
CRT is also found there.

ii. When T is the Brownian CRT, Theorem 3.5 has been proven by Bertoin and Miermont [15].
Their proof relies on the self-similar property of the Aldous–Pitman’s fragmentation. They also
proved a convergence similar to the one in Theorem 3.4 for the conditioned Galton–Watson trees
with finite-variance offspring distributions. Let us point out that their definition of the discrete
cut trees differs from ours, and there is no “duality” at the discrete level for their definitions.
Very recently, a result related to Theorem 3.4 has been proved for the case of stable trees [23]
(with a different notion of discrete cut tree). Note also that the convergences of the cut trees



Cutting down p-trees and ICRTs 2395

proved in [15] and [23] are with respect to the Gromov–Prokhorov topology, so are weaker
than the convergences of the corresponding conditioned Galton–Watson trees, which hold in the
Gromov–Hausdorff–Prokhorov sense. In our case, the identities imply that the convergence of
the cut trees is as strong as that of the pn-trees (Theorem 3.6).

iii. Abraham and Delmas [2] have shown an analog of Theorem 3.2 for the Lévy tree, intro-
duced in [41]. In passing Aldous et al. [6] have conjectured that a Lévy tree is a mixture of
ICRTs where the parameters θ are chosen according to the distribution of the jumps in the bridge
process of the associated Lévy process. Then the similarity between Theorem 3.2 and the result
of Abraham and Delmas may be seen as a piece of evidence supporting this conjecture.

4. Cutting down and rearranging a p-tree

As we have mentioned in the Introduction, our approach to the theorems about continuum ran-
dom trees involves taking limits in the discrete world. In this section, we prove the discrete results
about the decomposition and the rearrangement of p-trees that will enable us to obtain similar
decomposition and rearrangement procedures for inhomogeneous continuum random trees.

4.1. Isolating one vertex

As a warm up, and in order to present many of the important ideas, we start by isolating a single
node. Let T be a p-tree and let V be an independent p-distributed node. We isolate the vertex V

by removing each time a random vertex of T and preserving only the component containing V

until the time when V is picked. Let us recall the notation v(G) and e(G) for the vertex set and
edge set of a graph G.

THE 1-CUTTING PROCEDURE AND THE 1-CUT TREE. Initially, we have T0 = T , and an
independent vertex V . Then, for i ≥ 1, we choose a node Xi according to p conditioned on
v(Ti−1). We define Ti to be the connected component of the forest induced by Ti−1 on v(Ti−1) \
{Xi} which contains V . If Ti = ∅, or equivalently Xi = V , the process stops and we set L =
L(T ) = i. Since at least one vertex is removed at every step, the process stops in time L ≤ n.

As we destruct the tree T to isolate V by iteratively pruning random nodes, we construct
a tree which records the history of the destruction, that we call the 1-cut tree. This 1-cut tree
will, in particular, give some information about the number of cuts which were needed to isolate
V . Moreover, we will prove that these two trees are dual in a sense that we will make precise
shortly.

By construction, (Ti,0 ≤ i < L) is a decreasing sequence of nonempty trees which all contain
V , and (Xi,1 ≤ i ≤ L) is a sequence of distinct vertices of T = T0. For 1 ≤ i ≤ L, we let
Fi = Ti−1 \Ti be the graph induced by Ti−1 on the vertex set v(Ti−1) \ v(Ti). It is not difficult to
see that Fi is a tree containing Xi , which we see as the root of Fi . Besides, for each 1 ≤ i < L,
Xi �= V and there is a neighbor Ui of Xi on the path between Xi and V in Ti−1. Then Ui ∈ Ti

and we see Ti as rooted at Ui .
When the procedure stops, we have a vector (Fi,1 ≤ i ≤ L) of subtrees of T which together

span all of [n]. We re-arrange them into a new tree by connecting their roots X1,X2, . . . ,XL into
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Figure 1. The reorganization of the tree in the one-cutting procedure: on the left the initial tree T , on the
right H and the marked nodes U1, . . . ,U4 where to reattach X1, . . . ,X4 in order to recover T .

a path (in this order). We denote by H the resulting tree, calling it the 1-cut tree. We also define
its root as the node X1. As we will shortly see, the path [[X1,V ]] plays a special role. Thus we
denote it by S and sometimes refer to it as the “backbone” of H .

Note that for i = 1, . . . ,L−1, we have Ui ∈ Ti . Equivalently, Ui lies in the subtree of H above
Xi+1. In general, for a tree t ∈ Tn and v ∈ [n], let x1, . . . , x� = v be the nodes of Span(t;v). We
define U(t, v) as the collection of nodes (u1, . . . , u�−1) such that ui ∈ Sub(t, xi+1), for 1 ≤ i < �.
Then by construction, for an h ∈ Tn, conditional on H = h and V = v, we have L equal to
the number of the nodes in Span(h;v) and (U1, . . . ,UL−1) ∈ U(h, v) with probability one. For
A ⊆ [n], we write p(A) :=∑

i∈A pi . Also recall the measure π from (2.2).

Lemma 4.1. Let T be a p-tree on [n], and V be an independent p-distributed node. Let h ∈ Tn,
and v ∈ [n] for which Span(h;v) is the path made of the nodes x1, x2, . . . , x�−1, x� = v. Let
(u1, . . . , u�−1) ∈U(h, v) and w ∈ [n]. Then we have

P
(
H = h;V = v; r(T ) = w;Ui = ui,1 ≤ i < �

)
= π(h) ·

∏
1≤i<�

pui

p(Sub(h, xi+1))
· pv · pw.

In particular, (H,V ) ∼ π ⊗ p.

As a direct consequence of our construction of H , L is the number of nodes in Span(H ;V ),
which we write # Span(H ;V ). So Lemma 4.1 entails immediately the following.



Cutting down p-trees and ICRTs 2397

Proposition 4.2. Let T be a p-tree and V be an independent p-distributed node. Then

L
d= # Span(T ;V ).

Proof of Lemma 4.1. By construction, we have

{H = h;V = v} ⊂ {X1 = x1, . . . ,X�−1 = x�−1,X� = v;L = �},
and the sequence (Fi,1 ≤ i ≤ �) is (fi), that are obtained when one removes the edges {xi, xi+1},
1 ≤ i < � (the edges of the subgraph Span(h;v)). Furthermore, given that L = � and Xi = xi ,
1 ≤ i < �, in order to recover the initial tree T it suffices to identify the vertices Ui , 1 ≤ i < �,
for which there used to be an edge {Xi,Ui} (which yields the correct adjacencies) and the root
of T . Note that Ui is a node of Ti , 1 ≤ i < �. However, by construction, given that H = h and
V = v, the set of nodes of Ti is precisely the set of nodes of Sub(h, xi+1).

For u = (u1, . . . , u�−1) ∈ U(h, v), define τ(h, v;u) as the tree obtained from h by removing
the edges of Span(h;v), and reconnecting the pieces by adding the edges {xi, ui}. (In particular,
the number of edges is unchanged.) We regard τ(h, v;u) as a tree rooted at r = x1, the root of h.
The tree T may be recovered by characterizing T r , the tree T rerooted at r , and the initial root
r(T ). We have: {

H = h;V = v; r(T ) = w;Ui = ui,1 ≤ i < �
}

= {
T r = τ(h, v;u); r(T ) = w;Xi = xi,1 ≤ i ≤ �

}
.

It follows that, for any nodes u1, u2, . . . , u�−1 as above, we have

P
(
H = h;V = v; r(T ) = w;Ui = ui,1 ≤ i < �

)
= P

(
T = τ(h, v;u)w;V = v;Xi = xi;1 ≤ i ≤ �

)
= π

(
τ(h, v;u)w

) · pv ·
∏

1≤i≤�

pxi

p(Sub(h, xi))
.

Now, by definition, the only nodes that get their (in-)degree modified in the transformation from
h to τ(h, v;u) are ui , xi+1, 1 ≤ i < �: every such xi+1 gets one less in-edge while ui gets one
more. The re-rooting at w then only modifies the in-degrees of the extremities of the path that is
reversed, namely x1 = r and w. It follows that

π
(
τ(h, v;u)w

)= π(h) ·
∏

1≤i<�

pui

pxi+1

· pw

px1

.

Since p(Sub(h, x1)) = 1, we have

P
(
H = h;V = v; r(T ) = w;Ui = ui,1 ≤ i < �

)
= π(h) ·

∏
1≤i<�

pui

p(Sub(h, xi+1))
· pv · pw,



2398 N. Broutin and M. Wang

which proves the first claim. Summing over all the choices for u = (u1, u2, . . . , u�−1) ∈U(h, v),
and w ∈ [n], we obtain

P(H = h;V = v) =
∑

w∈[n]

∑
u∈U(h,v)

π(h) ·
∏

1≤i<�

pui

p(Sub(h, xi+1))
· pv · pw

= π(h) · pv ·
∑

u=(u1,...,u�−1):
ui∈Sub(h,xi+1),1≤i<�

pu1

p(Sub(h, x2))
· · · pu�−1

p(Sub(h, x�))

= π(h) · pv,

which completes the proof. �

THE REVERSE 1-CUTTING PROCEDURE. We have transformed the tree T into the tree H ,
by somewhat “knitting” a path between the first picked random p-distributed node X1 and the
distinguished node V . This transform is reversible. Indeed, it is possible to “unknit” the path
between V and the root of H , and reshuffle the subtrees thereby created in order to obtain a
new tree T̃ , distributed as T and in which V is an independent p-distributed node. Knowing the
(Ui), one could do this exactly, and recover the adjacencies of T (recovering T also requires the
information about the root r(T ) which has been lost). Defining a reverse transformation reduces
to finding the joint distribution of (Ui) and r(T ), which is precisely the statement of Lemma 4.1,
so that the following reverse construction is now straightforward.

Let h ∈ Tn, rooted at r and let v be a node in [n]. We think of h as cut(T , v) for some initial
tree T . Suppose that Span(h;v) consists of the vertices r = x1, x2, . . . , x� = v. Removing the
edges of Span(h;v) from h disconnects it into � connected components which we see as rooted
at xi , 1 ≤ i ≤ �. For w ∈ Span∗(h;v) = Span(h;v) \ {r}, sample a node Uw according to the
p conditioned on Sub(h,w). Let U = (Uw,w ∈ Span∗(h;v)) be the obtained vector. Then U ∈
U(h, v). We then define shuff(h, v) to be the rooted tree which has the adjacencies of τ(h, v;U),
but that is re-rooted at an independent p-distributed node.

It should now be clear that the 1-cutting procedure and the reshuffling operation we have just
defined are dual in the following sense.

Proposition 4.3 (1-cutting duality). Let T be p-tree on [n] and V be an independent p-
distributed node. Then, (

shuff(T ,V ), T ,V
) d= (

T , cut(T ,V ),V
)
.

In particular, (shuff(T ,V ),V ) ∼ π ⊗ p.

Note that for the joint distribution in Proposition 4.3, it is necessary to re-root at another
independent p-distributed node in order to have the claimed equality. Indeed, T and τ(T ,V ;U)

share the same root, while T and cut(T ,V ) do not (they only have the same root with probability∑
i≥1 p2

i < 1).
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Proof of Proposition 4.3. Let H = cut(T ,V ) be the tree resulting from the cutting procedure.
Let L = # Span(H ;V ). Recall that Ui denotes a node which used to be a neighbor of Xi in T

(see the paragraphs above Lemma 4.1). For w ∈ Span∗(H ;V ), we let Uw = Ui if w = Xi+1, and
let U be the corresponding vector. Then writing r̂ = r(T ), with probability one, we have

T = τ(H,V ;U)r̂ .

By Lemma 4.1, U ∈U(H,V ) and conditional on H and V , Uw , w ∈ Span∗(H,V ) and r̂ = r(T )

are independent and distributed according to the p conditioned on Sub(H,w) and p, respectively.
So this coupling indeed gives that T = τ(H,V ;U)r̂ is distributed as shuff(H,V ), conditional on

H . Since in this coupling (shuff(H,V ),H,V ) is equal to (T ,H,V ) and we have (H,V )
d=

(T ,V ), the proof is complete. �

Remark. Note that the shuffle procedure would allow us to obtain the original tree T exactly if
we were to use some information that might be gathered as the cutting procedure goes on. In this
discrete case, this is rather clear that one could do this, since the shuffle construction only consists
in replacing some edges with others but the vertex set remains the same. This observation will be
used in Section 6 to prove a similar statement for the ICRT. There it is much less clear and the
result is slightly weaker: it is possible to couple the shuffle in such a way that the tree obtained
is measure-isometric to the original one.

4.2. Isolating multiple vertices

We define a cutting procedure analogous to the one described in Section 4.1, but which continues
until multiple nodes have been isolated. Again, we let T be a p-tree and, for some k ≥ 1, let
V1,V2, . . . , Vk be k independent vertices chosen according to p (so not necessarily distinct).

THE k-CUTTING PROCEDURE AND THE k-CUT TREE. We start with �0 = T . Later on, �i is
meant to be the forest induced by T on the nodes that are left. For each time i ≥ 1, we pick a ran-
dom vertex Xi according to p conditioned on v(�i−1) and remove it. Then among the connected
components of T \ {X1, . . . ,Xi}, we only keep those containing at least one of V1, . . . , Vk . We
stop at the first time when all k vertices V1, . . . , Vk have been chosen, that is at time

Lk := inf
{
i ≥ 1 : {V1, . . . , Vk} ⊆ {X1, . . . ,Xi}

}
.

For 1 ≤ � ≤ k and for i ≥ 0, we denote by T �
i the connected component of T \ {X1,X2, . . . ,Xi}

containing V� at time i, or T �
i = ∅ if V� ∈ {X1, . . . ,Xi}. Then �i :=⋃

1≤�≤k T �
i is the graph on

[n] \ {X1, . . . ,Xi} with the edge set e(�i) =⋃
1≤�≤k e(T

�
i ).

Suppose that at time i ≥ 1, we have Xi ∈ T �
i−1 for some � ∈ {1,2, . . . , k}. If Xi = V�, then

T �
i = ∅ and we define Fi = T �

i−1, re-rooted at Xi = V�. Otherwise, let Fi = �i−1 \ �i be the
graph induced by �i−1 on the vertex set v(�i−1) \ v(�i), rooted at Xi . Moreover, in this case for
each � ∈ [k] such that Xi ∈ T �

i−1, there exists a neighbor U�
i of Xi on the path [[Xi,Vi]] in T �

i−1.
Then U�

i ∈ T �
i and we set it to be the root of T �

i . It is not difficult to see (Figure 2) that Fi is the
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Figure 2. The decomposition of the tree when removing the point Xi from the connected component of �i

which contains V1,V2 and V3.

component containing Xi once we have removed the edges {Xi,U
�
i } from �i−1 (whenever such

an edge exists).
Consider the set of effective cuts which affect the size of T �

i :

Ek
� = {

x ∈ [n] : there exists i ≥ 1, such that Xi = x ∈ T �
i−1

}
,

and note that Ek
1 ∪ Ek

2 ∪ · · · ∪ Ek
k = {Xi : 1 ≤ i ≤ Lk}. Let Sk , the k-cutting skeleton, be a tree

on Ek
1 ∪ · · · ∪ Ek

k that is rooted at X1, and such that the vertices on the path from X1 to V� in
Sk are precisely the nodes of Ek

� , in the order given by the indices of the cuts. So if we view Sk

as a genealogical tree, then in particular, for 1 ≤ j, � ≤ k, the common ancestors of Vj and V�

are exactly the ones in Ek
j ∩ Ek

� . The tree Sk constitutes the backbone of a tree on [n] which we
now define. For every x ∈ Sk , there is a unique i = i(x) ≥ 1 such that x = Xi . Recall the tree Fi

which contains Xi = x. We append Fi to Sk at x. Formally, we consider the tree on [n] whose
edge set is

e(Sk) ∪
⋃

1≤i≤Lk

e(Fi).

Furthermore, the tree is considered as rooted at X1. Then this tree is completely deter-
mined by T , V1, . . . , Vk , and the sequence X := (Xi, i = 1, . . . ,Lk), and we denote this tree
by κ(T ;V1, . . . , Vk;X) when we want to emphasize the dependence in X, or more simply
cut(T ,V1, . . . , Vk) when no confusion is likely to arise. Clearly, if Hk = cut(T ,V1, . . . , Vk), then
Sk = Span(Hk;V1, . . . , Vk).

It is convenient to define a canonical (total) order � on the vertices of Sk . It will be needed
later on in order to define the reverse procedure. For two nodes u,v in Sk , we say that u � v

if either u ∈ [[X1, v]], or if there exists � ∈ {1, . . . , k} such that u ∈ Span(Sk;V1, . . . , V�) but
v /∈ Span(Sk;V1, . . . , V�).
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A USEFUL COUPLING. It is useful to see all the trees cut(T ;V1, . . . , Vk), k ≥ 1, on the same
probability space. Let Vi , i ≥ 1, be a sequence of i.i.d. p-distributed nodes. Sample another
independent i.i.d. sequence Yi , i ≥ 1, of common law p. For each k ≥ 1, we define an increas-
ing sequence σk = (σk(j)) as follows. Let σk(1) = 1. Suppose that we have already defined
Xk

1, . . . ,X
k
i−1. Let �k

i−1 be the collection of connected components of T \ {Xk
1, . . . ,X

k
i−1} which

contain at least one of V1, . . . , Vk . Let

σk(i) = inf
{
j > σk(i − 1) : Yj ∈ �k

i−1

}
,

and define Xk
i = Yσk(i). Then, for every k, Xk

i , 1 ≤ i ≤ Lk = inf{i : �k
i−1 = ∅}, is a sequence of

nodes sampled according to p conditioned on v(�k
i−1), so that Xk := (Xk

i ,1 ≤ i ≤ Lk) can be
used for the above k-cutting procedure. Set for k ≥ 1,

Hk := cut(T ,V1, . . . , Vk) = κ
(
T ,V1, . . . , Vk;Xk

)
.

By convention let H0 = T and Span(T ;∅) =∅.

Lemma 4.4. Let Sk = Span(Hk;V1, . . . , Vk). Then, Sk ⊆ Sk+1 and

Sk = Span(Sk+1;V1, . . . , Vk).

Proof. Let T �
i be the connected component of �k

i which contains V�. Let T̂ �
j be the connected

component of T \ {Y1, Y2, . . . , Yj } which contains V�. Then, for � ≤ k, we have

Ek
� = {

x : ∃i ≥ 1, x = Xk
i ∈ T �

i−1

}= {
y : ∃j ≥ 1, y = Yj ∈ T̂ �

j−1

}
,

so that Ek
� does not depend on k. Then Sk is the tree on Ek

1 ∪ · · · ∪ Ek
k such that the nodes on the

path Span(Sk;V�) are precisely the nodes of Ek
� , in the order given by the sequence Xk . It follows

that Sk ⊆ Sk+1 and more precisely that Sk = Span(Sk+1;V1, . . . , Vk). �

Remark. The coupling we have just defined justifies an ordered cutting procedure which is very
similar to the one defined in [3]. Suppose that, for some j, � ∈ {1, . . . , k} we have x ∈ Ek

j \Ek
� and

y ∈ Ek
� \ Ek

j . Write (X̃i, i ≥ 1) for the sequence in which we have exchanged the positions of x

and y. Then the trees T k
i , i ≥ max{m : Xm = x or y} are unaffected if we replace (Xi, i ≥ 1) by

(X̃i, i ≥ 1) in the cutting procedure. In particular, if we are only interested in the final tree Hk ,
we can always suppose that there exist numbers 0 = m0 < m1 < m2 < · · · < mk ≤ n such that,
for 1 ≤ � ≤ k, and if V� /∈ {V1, . . . , Vj }, we have

Ek
� \

⋃
1≤j<�

Ek
j = {Xi : m�−1 < i ≤ m�}.

However, we prefer the coupling over the reordering of the sequence since it does not involve
any modification of the distribution of the cutting sequences.



2402 N. Broutin and M. Wang

Figure 3. In order to obtain cut(T ,V1, . . . , Vk) from cut(T ,V1, . . . , Vk−1), it suffices to transform the
subtree T̃k of cut(T ,V1, . . . , Vk−1) \ Sk−1 which contains Vk .

Let T̃k be the subtree of Hk−1 \ Span(Hk−1;V1, . . . , Vk−1) = Hk−1 \ Sk−1 which contains Vk ;
we agree that T̃k =∅ if Vk ∈ Span(Hk−1;V1, . . . , Vk−1).

Lemma 4.5. Let T be a p-tree and let Vk , k ≥ 1, be a sequence of i.i.d. p-distributed nodes.
Then, for each k ≥ 1, the following statements hold.

i. Let V ⊆ [n] with V �=∅, then conditional on V� ∈ v(T̃k) = V, the pair (T̃k,V�) is distributed
as π |V ⊗ p|V, and is independent of (Hk−1 \ V,V1, . . . , Vk−1).

ii. The joint distribution of (Hk,V1, . . . , Vk) is given by π ⊗ p⊗k .

Proof. We proceed by induction on k ≥ 1. Let R̃k denote the tree induced by Hk on the vertex
set [n] \ v(T̃k). For the base case k = 1, the first claim is trivial since T̃1 = T , and the second is
exactly the statement of Lemma 4.1.

Given the two subtrees T̃k and R̃k , it suffices to identify where the tree T̃k is grafted on R̃k in
order to recover the tree Hk−1; see Figure 3. By construction, the edge connecting T̃k and R̃k in
Hk−1 binds the root of T̃k to a node of Span(R̃k;V1, . . . , Vk−1). Let t ∈ TV, r ∈ T[n]\V, vk ∈ V
and vi ∈ [n] \ V for 1 ≤ i < k. Write vk−1 = {v1, . . . , vk−1}. For a given node x ∈ Span(r;vk−1),
let jx(r, t) (the joint of r and t at x) be the tree obtained from t and r by adding an edge between
x and the root of t . By the induction hypothesis, (Hk−1,V1, . . . , Vk−1) is distributed like a p-
tree together with k − 1 independent p-distributed nodes. Furthermore Vk is independent of
(Hk−1,V1, . . . , Vk−1). It follows that

P(T̃k = t; R̃k = r;Vi = vi,1 ≤ i ≤ k)

=
∑

x∈Span(r;vk−1)

P
(
Hk−1 = jx(r, t);Vi = vi,1 ≤ i ≤ k

)
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=
∑

x∈Span(r;vk−1)

∏
i∈V

p
Ci(t)
i ·

∏
j∈[n]\V

p
Cj (r)

j · px ·
∏

1≤i≤k

pvi

=
∏
i∈V

p
Ci(t)
i · pvk

·
∏

j∈[n]\V

p
Cj (r)

j · p
(
Span(r;vk−1)

) ·
∏

1≤i<k

pvi
.

By summing over t and r and applying Cayley’s multinomial formula, we deduce that conditional
on v(T̃k) = V �= ∅, (T̃k,Vk) is independent of (R̃k,V1, . . . , Vk−1) and distributed according to
π |V ⊗ p|V, which establishes the first claim for k.

Now, conditional on the event {Vk ∈ Sk−1}, the vertex Vk is distributed according to the p
conditioned on Sk−1. In this case, Hk = Hk−1 so that by the induction hypothesis

on {Vk ∈ Sk−1}, (Hk,V1, . . . , Vk) ∼ π ⊗ pk−1 ⊗ p|Sk−1 . (4.1)

On the other hand, if Vk /∈ Sk−1, then v(T̃k) �= ∅ and conditional on v(T̃k) = V, we have
(T̃k,Vk) ∼ π |V ⊗ p|V. In that case, Hk is obtained from Hk−1 by replacing T̃k by cut(T̃k,Vk).
We have already proved that, in this case, (T̃k,Vk) is independent of R̃k , and Lemma 4.1 ensures
that the replacement does not alter the distribution. In other words,

on {Vk /∈ Sk−1}, (Hk,V1, . . . , Vk) ∼ π ⊗ pk−1 ⊗ p|[n]\Sk−1 . (4.2)

Since Vk ∼ p is independent of everything else, conditional on Sk−1, the event {Vk ∈ Sk−1}
occurs precisely with probability p(Sk−1), so that putting (4.1) and (4.2) together completes the
proof of the induction step. �

Corollary 4.6. Suppose that T is a p-tree and that V1, . . . , Vk are k independent p-distributed
nodes, also independent of T . Then,

Sk
d= Span(T ;V1, . . . , Vk).

In particular, the total number of cuts needed to isolate V1, . . . , Vk in T is distributed as the
number of nodes in Span(T ;V1, . . . , Vk).

REVERSE k-CUTTING AND DUALITY. As when we were isolating a single node V in Sec-
tion 4.1, the transformation that yields Hk = cut(T ,V1, . . . , Vk) is reversible. To reverse the 1-
cutting procedure, we “unknitted” the path between X1 and V . Similarly, to reverse the k-cutting
procedure, we “unknit” the backbone Sk and by doing this obtain a collection of subtrees; then
we re-attach these pendant subtrees at random nodes, which are chosen in suitable subtrees in
order to obtain a tree distributed like the initial tree T .

For every i, the subtree Fi , rooted at Xi , was initially attached to the set of nodes

Ui := {
U

j
i : 1 ≤ j ≤ k such that T

j

i−1 � Xi

}
.

The corresponding edges have been replaced by some edges which now lie in the backbone
Sk ; see Figure 4 for an illustration. So, to reverse the cutting procedure knowing the sets Ui , it
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Figure 4. The 3-cut tree and the marked points U1
3 , U3

3 corresponding to the cut node X3. The backbone
is represented by the subtree in thick blue.

suffices to remove all the edges of Sk , and to re-attach Xi to every node in Ui . In other words,
defining a reverse k-cutting transformation knowing only the tree Hk and the distinguished nodes
V1, . . . , Vk reduces to characterizing the distribution of the sets Ui .

Consider a tree h ∈ Tn, and k nodes v1, v2, . . . , vk not necessarily distinct. Removing the edges
of Span(h;v1, . . . , vk) from h disconnects it into connected components fx , each containing a
single vertex x of Span(h;v1, . . . , vk). For a given edge 〈x,w〉 of Span(h;v1, . . . , vk), let uw be
a node in Sub(h,w). Let u be the vector of the uw , sorted according to the canonical order of w

on Span(h;v1, . . . , vk) (see page 2400). For a given tree h and v1, . . . , vk , we let U(h, v1, . . . , vk)

be the set of such vectors u. For u ∈U(h, v1, . . . , vk), define τ(h, v1, . . . , vk;u) as the graph ob-
tained from h by removing every edge 〈x,w〉 of Span(h;v1, . . . , vk) and replacing it by {x,uw}.
We regard τ(h, v1, . . . , vk;u) as rooted at the root of h.

Lemma 4.7. Suppose that h ∈ Tn, and that v1, v2, . . . , vk are k nodes of [n], not necessarily
distinct. Then for every u ∈ U(h, v1, . . . , vk), τ(h, v1, . . . , vk;u) is a tree on [n].

Proof. Write t := τ(h, v1, . . . , vk;u). We proceed by induction on n ≥ 1. For n = 1, t = h is
reduced to a single node; so t is a tree.

Suppose now that for any tree t ′ of size at most n − 1, any k ≥ 1, any nodes v1, v2, . . . , vk ∈
v(t ′), and any u′ ∈ U(t ′, v1, . . . , vk), the graph τ(t ′, v1, . . . , vk;u′) is a tree. Let N be the set
of neighbors of the root x1 of h. For y ∈ N , define vy the subset of {v1, . . . , vk} containing the
vertices which lie in Sub(h, y). If vy �= ∅, let also uy ∈ U(Sub(h, y),vy) be obtained from u by
keeping only the vertices uw for w ∈ Span∗(Sub(h, y);vy), still in the canonical order. Then, by
construction, the subtrees Sub(h, y), with y ∈ N such that vy �= ∅ are transformed regardless
of one another, and the others, for which vy = ∅, are left untouched. So the graph induced by
τ(h, v1, . . . , vk;u) on [n] \ {x1} consists precisely of τ(Sub(h, y),vy;uy), y ∈ N . By the induc-
tion hypothesis, these subgraphs are actually trees. Then τ(h, v1, . . . , vk;u) is simply obtained
by adding the node x1 together with the edges {x1, uy}, for y ∈ N , where uy ∈ Sub(h, y). In other
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words, each such edge connects x1 to a different tree τ(Sub(h, y),vy;uy) so that the resulting
graph is also a tree. �

For a given tree h and v1, . . . , vk ∈ [n] let U ∈ U(h, v1, . . . , vk) be obtained by sampling Uw

according to p conditioned on Sub(h,w), for every w ∈ Span∗(h;v1, . . . , vk). Finally, we define
the k-shuffled tree shuff(h, v1, . . . , vk) to be the tree τ(h, v1, . . . , vk;U) re-rooted at an indepen-
dent p-distributed node.

We have the following result, which expresses the fact that the k-cutting and k-shuffling pro-
cedures are truly reverses of one another.

Proposition 4.8 (k-cutting duality). Let T be a p-tree and let V1, . . . , Vk be k independent
p-distributed nodes, also independent of T . Then, we have the following duality(

shuff(T ,V1, . . . , Vk), T ,V1, . . . , Vk

) d= (
T , cut(T ,V1, . . . , Vk),V1, . . . , Vk

)
.

In particular, (shuff(T ,V1, . . . , Vk),V1, . . . , Vk) ∼ π ⊗ p⊗k .

Proof. We consider the coupling we have defined on page 2401: let Hk = cut(T ,V1, . . . , Vk)

for a p-tree T rooted at r̂ = r(T ), and for every edge 〈x,w〉 of Span(Hk;V1, . . . , Vk) we let
Uw be the unique node of Sub(Hk,w) which used to be connected to x in the initial tree T .
This defines the vector U = (Uw,w ∈ Span∗(Hk;V1, . . . , Vk)). We show by induction on k ≥ 1
that τ(Hk,V1, . . . , Vk;U)r̂ = T and that the joint distribution of (Hk, r̂, V1, . . . , Vk,U) is that
required by the construction above, so that(

τ(Hk,V1, . . . , Vk;U)r̂ ,Hk,V1, . . . , Vk

) d= (
shuff(Hk,V1, . . . , Vk),Hk,V1, . . . , Vk

)
.

Since (Hk,V1, . . . , Vk)
d= (T ,V1, . . . , Vk) by Lemma 4.5ii, this would complete the proof.

For k = 1, the statement corresponds precisely to the construction of the proof of Propo-
sition 4.3. As before, for � ≤ k, we let S� = Span(Hk;V1, . . . , V�). If k ≥ 2, let R̃k be the
connected component of Hk \ Sk−1 which contains Vk , or R̃k = ∅ if Vk ∈ Sk−1. In the latter
case, T = τ(Hk,V1, . . . , Vk−1,U)r̂ and the joint distribution of (Hk, r̂, V1, . . . , Vk−1,U) is cor-
rect by the induction hypothesis. Otherwise, let Uk denote the sub-vector of U consisting of the
components Uw for w ∈ Span∗(R̃k,Vk), and let U1,k−1 = (Uw,w ∈ Span∗(Hk;V1, . . . , Vk−1)).
If θ ∈ Sk \ Sk−1 is the unique point such that R̃k = Sub(Hk, θ) (that is, θ is the root of
R̃k), then removing R̃k from Hk and replacing it by τ(R̃k,Vk;Uk)

Uθ yields precisely the tree
Hk−1 := cut(T ,V1, . . . , Vk−1). Also, the distribution of (R̃k,Uθ ,Vk,Uk) is correct, since con-
ditional on the vertex set R̃k is distributed as π |

v(R̃k)
(Lemma 4.5i). Note that this trans-

formation does not modify the distribution of U1,k−1. By the induction hypothesis, T =
τ(Hk−1,V1, . . . , Vk−1;U1,k−1)

r̂ . Since conditionally on Sk−1 = Span(Hk;V1, . . . , Vk−1) we
have Vk ∈ Sk−1 with probability p(Sk−1), the proof is complete. �

4.3. The complete cutting and the cut tree

For n a natural number, we may also easily apply the previous procedure until all n nodes have
been chosen. In this case, the cutting procedure continues recursively in all the connected com-
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ponents. The (total) number of cuts is now completely irrelevant (it is a.s. equal to n), and we
define the forward transform as follows. Let T be a p-tree and let (Xi, i ≥ 1) be a sequence of
elements of [n] such that Xi is sampled according to p conditioned on [n] \ {X1, . . . ,Xi−1}. Let
�i = T \ {X1, . . . ,Xi}; we stop precisely at time n, when {X1, . . . ,Xn} = [n] and �n =∅.

For every k ∈ [n], define T
〈k〉
i as the connected component of �i which contains the vertex k,

or T
〈k〉
i = ∅ if k ∈ {X1, . . . ,Xi}. For each i = 1, . . . , n, let Ui denote the set of neighbors of Xi

in �i−1. Then we can write Ui = {U 〈k〉
i : 1 ≤ k ≤ n such that T

〈k〉
i−1 � Xi} where U

〈k〉
i is the unique

element of Ui which lies in T
〈k〉
i . In other words, U

〈k〉
i is the neighbor of Xi on the path [[Xi,Vk]].

The cuts which affect the connected component containing k are

E〈k〉 := {
x ∈ [n] : ∃i ≥ 1,Xi = x ∈ T

〈k〉
i−1

}
.

We claim that there exists a tree G such that for every k ∈ [n], the path [[X1, k]] in G

is precisely made of the nodes in E〈k〉, in the order in which they appear in the sequence
(X1,X2, . . . ,Xn). In the following, we write cut(T ) := G. The following proposition justifies
the claim.

Proposition 4.9. Let T be a p-tree, and let Vk , k ≥ 1, be i.i.d. p-distributed nodes, independent
of T . Then, there exists a random tree cut(T ) on [n] that does not depend on the sequence
(Vk)k≥1, such that, for the coupling of Section 4.2, we have, almost surely as k → ∞,

cut(T ,V1, . . . , Vk) → cut(T ).

Proof. Since, for k ≥ 1, we have V1, . . . , Vk ∈ Sk and Sk ⊆ Sk+1, the tree Sk converges al-
most surely to a tree on [n], so that limk→∞ cut(T ;V1, . . . , Vk) indeed exists with probabil-
ity one. In particular, although cut(T ,V1, . . . , Vk) certainly depends on V1, . . . , Vk , the limit
only depends on the sequence (Xi, i ≥ 1). Indeed, K := inf{k ≥ 1 : [n] = {V1, . . . , Vk}} is a.s.
finite, and for every k ≥ K , one has cut(T ,V1, . . . , Vk) = cut(T ,X1, . . . ,Xn). We then write
cut(T ) := cut(T ,X1, . . . ,Xn). �

Theorem 4.10 (Cut tree). Let T be a p-tree on [n]. Then, we have cut(T ) ∼ π .

Proof. By Lemma 4.5ii, Hk = cut(T ,V1, . . . , Vk) is a π -distributed tree on [n], for every k ≥ 1.
Hence, the claim is straightforward from Proposition 4.9. �

SHUFFLING TREES AND THE REVERSE TRANSFORMATION. Given a tree g ∈ Tn that we
know is cut(t) for some tree t ∈ Tn, and the collections of sets Ux , x ∈ [n], we cannot recover
the initial tree t exactly, for the information about the root has been lost. However, the structure
of t as an unrooted tree is easily (in this case, trivially) recovered by connecting every node x to
all the nodes in Ux . We now define the reverse operation by sampling the sets Ux with the correct
distribution conditional on g.

Consider a tree g ∈ Tn, rooted at r ∈ [n]. For each edge 〈x,w〉 of the tree g, let Uw be a random
element sampled according to p conditioned on Sub(g,w). Let U ∈ U(g) := U(g,1,2, . . . , n) be
the vector of the Uw , sorted using the canonical order on g with distinguished nodes 1,2, . . . , n.



Cutting down p-trees and ICRTs 2407

Let τ(g, [n];U) denote the graph on [n] whose edges are {x,Uw}, for which 〈x,w〉 are edges
of g. Then, τ(g, [n];U) is a tree (Lemma 4.7) and we write shuff(g) for the random rerooting of
τ(g, [n];U) at an independent p-distributed node.

Proposition 4.11. Let G be a p-tree, and (Vk, k ≥ 1) a sequence of i.i.d. p-distributed nodes.
Then, there exists a random tree shuff(G) on [n] that does not depend on the sequence (Vk)k≥1,
such that, for the coupling of Section 4.2, we have, almost surely as k → ∞,

shuff(G,V1, . . . , Vk) → shuff(G).

Proof. For k ≥ 1, we let Uk be the subset of U containing the Uw for which w ∈ Span∗(G;V1,

. . . , Vk), in the canonical order on Span∗(G;V1, . . . , Vk). Then for k ≥ 1, Uk ∈ U(G,V1, . . . , Vk)

and since Span(G;V1, . . . , Vk) increases to G, the number of edges of τ(G;V1, . . . , Vk;Uk)

which are constrained by the choices in Uk increases until the edges are all constrained. It follows
that

τ(G,V1, . . . , Vk;Uk) → τ(G,1,2, . . . , n;U)

almost surely, as k → ∞. Rerooting all the trees at the same random p-distributed node proves
the claim. �

We can now state the duality for the complete cutting procedure. It follows readily from the
distributional identity in Proposition 4.8(

T , cut(T ,V1, . . . , Vk)
) d= (

shuff(T ,V1, . . . , Vk), T
)

and the fact that cut(T ,V1, . . . , Vk) → cut(T ) and shuff(T ,V1, . . . , Vk) → shuff(T ) in distribu-
tion as k → ∞ (Propositions 4.9 and 4.11).

Proposition 4.12 (Cutting duality). Let T be a p-tree. Then, we have the following duality in
distribution (

T , cut(T )
) d= (

shuff(T ), T
)
.

In particular, shuff(T ) ∼ π .

5. Cutting down an inhomogeneous continuum random tree

Let us recall the notation of Section 2.5. From now on, we fix some θ = (θ0, θ1, θ2, . . .) ∈ �. We
denote by I = {i ≥ 1 : θi > 0} the index set of those θi with nonzero values. Let T be the ICRT
of parameter θ obtained from the Poisson point process construction there. We denote by μ and
� its respective mass and length measures. Recall the measure L defined by

L(dx) = θ2
0 �(dx) +

∑
i∈I

θiδβi
(dx),
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where βi is the branch point of local time θi for i ∈ I . The hypotheses on θ entail that L has
infinite total mass. On the other hand, we have

Lemma 5.1. Almost surely, L is a σ -finite measure concentrated on the skeleton of T . More
precisely, if (Vi, i ≥ 1) is a sequence of independent points sampled according to μ by first
conditioning on T , then for each k ≥ 1, we have P- almost surely

L
(
Span(T ;V1,V2, . . . , Vk)

)
< ∞.

Proof. We consider first the case k = 1. Recall the Poisson processes (Pj , j ≥ 0) in the Sec-
tion 2.5 and the notations there. We have seen that Span(T ;V1) and R1 have the same distribu-
tion. Then we have

L
(
Span(T ;V1)

) d= θ2
0 η1 +

∑
i≥1

θiδξi,1

([0, η1]
)
.

By construction, η1 is either ξj,2 for some j ≥ 1 or u1. This entails that on the event {η1 ∈ Pj },
we have η1 < ξi,2 for all i ∈ N \ {j}. Then,

E

[∑
i≥1

θiδξi,1

([0, η1]
)]=

∑
j≥1

E

[∑
i≥1

θi · 1{ξi,1≤η1}1{η1=ξj,2}
]

+E

[∑
i≥1

θi · 1{ξi,1<η1}1{η1=u1}
]
.

Note that the event {ξj,1 ≤ η1} ∩ {η1 = ξj,2} always occurs. By breaking the first sum on i into
θj +∑

i �=j θi1{ξi,1<η1<ξi,2} and resumming over j , we obtain

E

[∑
i≥1

θiδξi,1

([0, η1]
)] =

∑
j≥1

θjP(η1 ∈ Pj ) +
∑
j≥0

E

[ ∑
i≥1,i �=j

θi · 1{ξi,1<η1<ξi,2}1{η1∈Pj }
]

=
∑
j≥1

θjP(η1 ∈ Pj ) +
∑
j≥0

∑
i �=j

E
[
θ2
i η1e

−θiη11{η1∈Pj }
]

≤ 1 +
∑
i≥1

θ2
i ·E[η1],

where we have used the independence of (Pj , j ≥ 0) in the second equality. The distribution
of η1 is given by (2.6). If θ0 > 0, we have P(η1 > r) ≤ exp(−θ2

0 r2/2); otherwise, we have
P(η1 > r) ≤ (1 + θ1r)e

−θ1r . In either case, we are able to show that E[η1] < ∞. Therefore,

E
[
L
(
Span(T ;V1)

)]= θ2
0E[η1] +E

[∑
i≥1

θiδξi,1

([0, η1]
)]

< ∞.

In general, the variables V1,V2, . . . , Vk are exchangeable. Therefore

E
[
L
(
Span(T ;V1,V2, . . . , Vk)

)]≤ kE
[
L
(
Span(T ;V1)

)]
< ∞,
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which proves that L is almost surely finite on the trees spanning finitely many random leaves.
Finally, with probability one, (Vi, i ≥ 1) is dense in T . Thus Sk(T ) =⋃

k≥1]]r(T ),Vi[[ (see for
example [5], Lemma 5). This concludes the proof. �

We recall the Poisson point process P of intensity measure dt ⊗L(dx), whose points we have
used to define both the one-node-isolation procedure and the complete cutting procedure. As a
direct consequence of Lemma 5.1, P has finitely many atoms on [0, t]×Span(T ;V1,V2, . . . , Vk)

for all t > 0 and k ≥ 1, almost surely. This fact will be implicitly used in the sequel.

5.1. An overview of the proof

Recall the hypothesis (H) on the sequence of the probability measures (pn, n ≥ 1):

σn =
(

n∑
i=1

p2
ni

)1/2
n→∞−→ 0 and lim

n→∞
pni

σn

= θi for every i ≥ 1. (H)

Recall the notation T n for a pn-tree, which, from now on, we consider as a measured metric
space, equipped with the graph distance and the probability measure pn. The main results in [21]
entail that under hypothesis (H), (

σnT
n,pn

) n→∞−→
d,GP

(T ,μ). (5.1)

In fact, Camarri and Pitman have shown in [21] a result slightly stronger than (5.1). Let us
explain this. For each n ≥ 1, let (ξn

k )k≥2 be a sequence of i.i.d. pn-distributed points. Then for
k ≥ 2, write Rn

k = Span(T n; ξn
2 , . . . , ξn

k ) for the spanning tree of T n on the points {ξn
2 , . . . , ξn

k }.
Similarly, let (ξk)k≥2 be an i.i.d. sequence of points with common law μ conditional on T and
let Rk = Span(T ; ξ2, . . . , ξk) for k ≥ 2. Note that with probability 1, Rk has the shape of a k-
leafed tree. Following the terminology in [10] and [21], Rk can be identified with a “(graph) tree
with edge-length”. More precisely, let Tm,k be the set of trees such that: (1) there are exactly k

leaves; (2) there may be extra internal nodes labelled by {1,2, . . . ,m}; (3) there may be unlabeled
internal nodes; (4) each edge has a strictly positive length. Recall that for i ≥ 1, βi denotes the
branch point in T of local time θi . By assigning to βi a label i for 1 ≤ i ≤ m, we view Rk as a
random variable taking values in Tm,k . We treat Rn

k in a similar way: we only retain the labels of
those vertices i for 1 ≤ i ≤ m. Then by Corollary 15 of [21], for each k ≥ 1 and m ≥ 0,

σnR
n
k

n→∞−→
d

Rk on Tm,k. (5.2)

From this, we easily deduce (5.1) using Proposition 2.3. On the other hand, note that (5.2) also
implies that (

σnR
n
k ,
(
ξn

1 , ξn
2 , . . . , ξn

k

)) n→∞−→
d

(
Rk, (ξ1, ξ2, . . . , ξk)

)
, (5.3)
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with respect to the pointed Gromov–Hausdorff topology. However, even if the trees converge, for
the cut trees to converge, one expects that the measures which are used to sample the cuts also
converge in a reasonable sense. Recall that the vertex i in T n has weight pni . Let

Ln =
∑
i∈[n]

pni

σn

· δi = σ−1
n pn. (5.4)

Recall the notation m�A for the (non-rescaled) restriction of a measure to a subset A. Then (5.2)
also allows us to prove the following convergence of the cut-measures.

Proposition 5.2. Under hypothesis (H), we have(
σnR

n
k ,Ln�Rn

k

) n→∞−→
d

(Rk,L�Rk
) ∀k ≥ 1, (5.5)

with respect to the Gromov–Hausdorff–Prokhorov topology.

The proof uses the techniques developed in [6,21] and is postponed until Section 7. We prove
in the following subsections that the convergence in Proposition 5.2 is sufficient to entail conver-
gence of the cut trees. To be more precise, we denote by V n a pn-distributed node independent
of the pn-tree T n, and recall that in the construction of Hn := cut(T n,V n), the node V n ends
up at the extremity of the path upon which we graft the discarded subtrees. Recall from the con-
struction of H := cut(T ,V ) in Section 3 that there is a point U , which is at distance L∞ from
the root. In Section 5.2, we prove Theorem 3.1, that is: if (H) holds, then(

σnH
n,pn,V

n
) n→∞−→

d,pGP
(H, μ̂,U), (5.6)

jointly with the convergence in (5.5). From there, the proof of Theorem 3.2 is relatively short,
and we provide it immediately (taking Theorem 3.1 or equivalently (5.6) for granted).

Proof of Theorem 3.2. Recall that (ξn
i )i≥2 is a sequence of i.i.d. pn-distributed points. Also let

ξn
1 = V n. Let (ξ̂i )i≥2 be a sequence of i.i.d. points of common law μ̂ (by first conditional on H),

and let ξ̂1 = U . We let

ρn = (
σndHn

(
ξn
i , ξn

j

))
i,j≥1 and ρ∗

n = (
σndHn

(
ξn
i , ξn

j

))
i,j≥2

the distance matrices in σnH
n = σn cut(T n,Vn) associated with the sequences (ξn

i )i≥1 and
(ξn

i )i≥2, respectively. According to Lemma 4.1, the distribution of ξn
1 = V n is pn. Therefore,

ρn is distributed as ρ∗
n . Write similarly

ρ = (
dH(ξ̂i , ξ̂j )

)
i,j≥1 and ρ∗ = (

dH(ξ̂i , ξ̂j )
)
i,j≥2,

where dH denotes the distance of H = cut(T ,V ). Note that (5.6) entails ρn → ρ in the sense
of finite-dimensional distributions. Combined with the previous argument, we deduce that ρ and
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ρ∗ have the same distribution. However, ρ∗ is the distance matrix for an i.i.d. sequence of law μ̂

on H. And the distribution of ρ determines that of U . As a consequence, the law of U is μ̂.
For the unconditional distribution of (H, μ̂), it suffices to apply the second part of Lemma 4.1,

which says that (Hn,pn) is distributed like (T n,pn). Then comparing (5.6) with (5.1) shows that
the unconditional distribution of (H, μ̂) is that of (T ,μ). �

In order to prove Theorem 3.4, the construction of the limit metric space G = cut(T ) first
needs to be justified by resorting to Aldous’ theory of continuum random trees [5]. The first step
consists in proving that the backbones of Gn = cut(T n) converge. For each n ≥ 1, let (V n

i , i ≥ 1)

be a sequence of i.i.d. points of law pn. Recall that we defined cut(T ) using an increasing family
(Sk)k≥1, defined in (3.4). We show in Section 5.3 the following.

Lemma 5.3. Suppose that (H) holds. Then, we have(
σndGn

(
V n

i ,V n
j

))
i,j≥1

n→∞−→
d

(
dG(Ui,Uj )

)
i,j≥1 (5.7)

in the sense of finite dimensional distributions, jointly with the convergence in (5.1).

Combining this with the identities for the discrete trees in Section 4, we can now prove Theo-
rems 3.4 and 3.5.

Proof of Theorem 3.4. The idea here closely follows the one in [15]. By Theorem 4.10,
(cut(T n),pn) and (T n,pn) have the same distribution for each n ≥ 1. Recall the notation Rn

k

for the spanning tree of T n. Then it follows from Theorem 4.10 that for each k ≥ 1,

Sn
k := Span

(
cut

(
T n

);V n
1 , . . . , V n

k

) d= Rn
k .

Now comparing (5.7) with (5.3), we deduce that, for each k ≥ 1,

Sk = Span
(
cut(T );U1, . . . ,Uk

) d= Rk.

In particular the family (Sk)k≥1 is consistent and leaf-tight in the sense of Aldous [5]. This
even holds true almost surely conditional on T and the Poisson point process P . According to
Theorem 3 and Lemma 9 of [5], this entails that conditionally on T and cut(T ), the empirical
measure 1

k

∑k
i=1 δUi

converges weakly to some probability measure ν on cut(T ). Moreover,
given T and cut(T ), (Ui)i≥1 is distributed as an i.i.d. sequence of common law ν.

Now, for the joint convergence, by Lemma 5.3, and using Skorohod’s representation theo-
rem, we can find a probability space on which we have almost sure convergence of (σnT

n,pn)

in the Gromov–Prokhorov topology, and of the distance matrix (σndGn(V
n
i ,V n

j ))1≤i,j≤k to
(dG(Ui,Uj ))1≤i,j≤k , for every k ≥ 1. Since (V n

i )i≥1 is a sequence of i.i.d. pn-distributed points,
and by the argument above for the convergence to ν, (Ui)i≥1 is an i.i.d. sequence of ν-distributed
points in G = cut(T ) conditional on T and cut(T ), Proposition 2.3 implies that (Gn,pn)

converges in distribution to (G, ν) in the Gromov–Prokhorov topology, which completes the
proof. �
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Proof of Theorem 3.5. According to Theorem 3 of [5] the distribution of (cut(T ), ν) is charac-
terized by the family (Sk)k≥1. Since Sk and Rk have the same distribution for k ≥ 1, it follows
that (cut(T ), ν) is distributed like (T ,μ). �

5.2. Convergence of the cut-trees cut(T n,V n): Proof of Theorem 3.1

In this part, we prove Theorem 3.1 taking Proposition 5.2 for granted. Let us first reformulate
(5.6) in the terms of the distance matrices, which is what we actually show in the following. For
each n ∈ N, recall that (ξn

i , i ≥ 2) is a sequence of random points of T n sampled independently
according to the mass measure pn.

We set ξn
1 = V n and let ξn

0 be the root of Hn = cut(T n,V n). Similarly, let (ξi, i ≥ 2) be a
sequence of i.i.d. μ-distributed points and let ξ1 = V . Recall that the mass measure μ̂ of H =
cut(T ,V ) is defined to be the push-forward of μ by the canonical injection φ. We set ξ̂i = φ(ξi)

for i ≥ 2, ξ̂1 = U and ξ̂0 to be the root of H.
Then the convergence in (5.6) is equivalent to the following:(

σndHn

(
ξn
i , ξn

j

)
,0 ≤ i < j < ∞) n→∞−→

d

(
dH(̂ξi , ξ̂j ),0 ≤ i < j < ∞)

, (5.8)

jointly with (
σndT n

(
ξn
i , ξn

j

)
,2 ≤ i < j < ∞) n→∞−→

d

(
dT (ξi, ξj ),2 ≤ i < j < ∞)

, (5.9)

in the sense of finite-dimensional distributions. Notice that (5.9) is a direct consequence of (5.1).
In order to express the terms in (5.8) with functionals of the cutting process, we introduce the
following notations. For n ∈ N, let Pn be a Poisson point process on R+ × T n with intensity
measure dt ⊗Ln, where Ln = pn/σn. For u,v ∈ T n, recall that [[u,v]] denotes the collection of
nodes on the path between u and v. For t ≥ 0, we denote by T n

t the set of nodes still connected
to V n at time t :

T n
t := {

x ∈ v
(
T n

) : [0, t] × [[
V n, x

]]∩Pn =∅
}
.

Recall that the subtree Tt = {x ∈ T : [[V,x]] ∩Pt = ∅} is the remaining part of T at time t . We
then define

Ln
t := Card

{
s ≤ t : pn

(
T n

s

)
< pn

(
T n

s−
)}= Card

{
(s, x) ∈ Pn : s ≤ t, x ∈ T n

s−
}
. (5.10)

This is the number of cuts that affect the connected component containing V n before time t . In
particular, Ln∞ := limt→∞ Ln

t has the same distribution as L(T n) in the notation of Section 4.
Indeed, this follows from the coupling on page 2401 and the fact that if Pn = {(ti , xi) : i ≥ 1}
such that t1 ≤ t2 ≤ · · · then (xi) is an i.i.d. pn-sequence. Let us recall that Lt , the continuous
analogue of Ln

t , is defined by Lt = ∫ t

0 μ(Ts) ds in Section 3. For n ∈ N and x ∈ T n, we define
the pair (τn(x), ςn(x)) to be the element of Pn separating x from V n, that is,

τn(x) := inf
{
t > 0 : [0, t] × [[

V n, x
]]∩Pn �=∅

}
,
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with the convention that inf∅ = ∞. In words, ςn(x) is the first cut that appeared on [[V n, x]]. For
x ∈ T , (τ (x), ς(x)) is defined similarly. We notice that almost surely τ(ξj ) < ∞ for each j ≥ 2,
since τ(ξj ) is an exponential variable with rate L([[V, ξj ]]), which is positive almost surely.
Furthermore, it follows from our construction of Hn = cut(T n,V n) that for n ∈ N and i, j ≥ 2,

dHn

(
ξn

0 , ξn
1

) = Ln∞ − 1,

dHn

(
ξn

0 , ξn
j

) = Ln
τn(ξn

j )
− 1 + dT n

(
ξn
j , ςn

(
ξn
j

))
,

dHn

(
ξn

1 , ξn
j

) = Ln∞ − Ln
τn(ξn

j )
+ dT n

(
ξn
j , ςn

(
ξn
j

))
,

while for H and i, j ≥ 2,

dH(̂ξ0, ξ̂1) = L∞,

dH(̂ξ0, ξ̂j ) = Lτ(ξj ) + dT
(
ξj , ς(ξj )

)
,

dH(̂ξ1, ξ̂j ) = L∞ − Lτ(ξj ) + dT
(
ξj , ς(ξj )

)
.

For n ∈ N and i, j ≥ 2, if we define the event

An(i, j) := {
τn

(
ξn
i

)= τn

(
ξn
j

)} a.s.= {
ςn

(
ξn
i

)= ςn

(
ξn
j

)}
, (5.11)

and Ac
n(i, j) its complement, then on the event An(i, j), we have dHn(ξn

i , ξn
j ) = dT n(ξn

i , ξn
j ).

Similarly, we define A(i, j) := {τ(ξi) = τ(ξj )}, and note that A(i, j) = {ς(ξi) = ς(ξj )} almost
surely. Recall that (5.1) implies that σndT n(ξn

i , ξn
j ) → dT (ξi, ξj ). Now, on the event Ac

n(i, j),
we have

dHn

(
ξn
i , ξn

j

)= ∣∣Ln
τn(ξn

j )
− Ln

τn(ξn
i )

∣∣+ dT n

(
ξn
j , ςn

(
ξn
j

))+ dT n

(
ξn
i , ςn

(
ξn
i

))
,

if n ∈N, and

dH(̂ξi , ξ̂j ) = ∣∣Lτ(ξj ) − Lτ(ξi )

∣∣+ dT
(
ξj , ς(ξj )

)+ dT
(
ξi, ς(ξi)

)
,

for the limit case. Therefore in order to prove (5.8), it suffices to show the joint convergence of
the vector (

1An(i,j), τn

(
ξn
i

)
, σndT n

(
ξn
j , ςn

(
ξn
j

))
,
(
σnL

n
t , t ∈R+ ∪ {∞}))

to the corresponding quantities for T , for each i, j ≥ 2. We begin with a lemma.

Lemma 5.4. Under (H), we have the following joint convergences as n → ∞:(
pn

(
T n

t

))
t≥0

d−→ (
μ(Tt )

)
t≥0, (5.12)

in Skorokhod J1-topology, along with

(1An(i,j),2 ≤ i, j ≤ k)
d−→ (1A(i,j),2 ≤ i, j ≤ k), (5.13)
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τn

(
ξn
j

)
,2 ≤ j ≤ k

) d−→ (
τ(ξj ),2 ≤ j ≤ k

)
and (5.14)(

σndT n

(
ξn
j , ςn

(
ξn
j

))
,2 ≤ j ≤ k

) d−→ (
dT

(
ξj , ς(ξj )

)
,2 ≤ j ≤ k

)
, (5.15)

for each k ≥ 2, and jointly with the convergence in (5.1).

Proof. Recall Proposition 5.2, which says that, for each k ≥ 2,(
σnR

n
k ,Ln�Rn

k

) n→∞−→
d

(Rk,L�Rk
),

in Gromov–Hausdorff–Prokhorov topology. For t ≥ 0, let {xn
1 , xn

2 , . . . , xn
mn

} be the marks of
Pn on Rn

k before time t , sorted in increasing order of their arrival times. Accordingly, let
{x1, x2, . . . , xm∞} be the restriction of Pt on Rk . Then it follows from Proposition 5.2 and the
properties of Poisson point processes that

(
σnR

n
k ,
{
xn

1 , xn
2 , . . . , xn

mn

}) d−→ (
Rk, {x1, x2, . . . , xm∞}), (5.16)

in the pointed Gromov–Hausdorff topology, jointly with the convergence in (5.5). In particular,
the convergence of (5.16) implies that mn = m∞ for n large enough. For each n ∈ N, the pair
(τn(ξ

n
i ), ςn(ξ

n
i )) corresponds to the first jump of the point process Pn restricted to [[V n

1 , ξn
i ]].

We notice that for each pair (i, j) such that 2 ≤ i, j ≤ k, the event An(i, j) occurs if and only
if τn(ξ

n
i ∧ ξn

j ) ≤ min{τn(ξ
n
i ), τn(ξ

n
j )}. Similarly, (τ (ξi), ς(ξi)) is the first point of P on R ×

[[V1, ξi]], and A(i, j) occurs if and only if τ(ξi ∧ ξj ) ≤ min{τ(ξi), τ (ξj )}. Therefore, the joint
convergences in (5.13), (5.14) and (5.15) follow from (5.16). On the other hand, we have

1{ξn
i ∈T n

t } = 1{t<τn(ξn
i )}, t ≥ 0, n ≥ 1.

For each fixed t ≥ 0, this sequence of random variables converges to 1{t<τ(ξi )} = 1{ξi∈Tt } by
(5.16). By the law of large numbers, k−1 ∑

1≤i≤k 1{t<τ(ξj )} → μ(Tt ) almost surely. Following
the arguments in [8], Section 2.3 and applying (5.14), we can find a sequence kn → ∞ slowly
enough such that

1

kn

kn∑
i=1

1{t<τn(ξn
i )}

d→ μ(Tt ).

This entails that, for each t fixed, as n → ∞,

pn

(
T n

t

) d−→ μ(Tt ). (5.17)

Using (5.17) for a sequence of times (tm,m ≥ 1) dense in R+ and combining with the fact that
t �→ μ(Tt ) is decreasing, we obtain the convergence in (5.12), jointly with (5.13), (5.14), (5.15)
and (5.1). �
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Lemma 5.5. Jointly with (5.13), (5.14), (5.15) and (5.1), we have for any m ≥ 1 and (ti ,1 ≤ i ≤
m) ∈R

m+, (∫ ti

0
pn

(
T n

s

)
ds,1 ≤ i ≤ m

)
n→∞−→

d

(∫ ti

0
μ(Ts) ds,1 ≤ i ≤ m

)
.

Proof. This is a direct consequence of Lemma 5.4. �

Lemma 5.6. If we let

Mn
t := σnL

n
t −

∫ t

0
pn

(
T n

s

)
ds, n ≥ 1,

then under the hypothesis that σn → 0 as n → ∞, the sequence of variables (Mn
t , n ≥ 1) con-

verges to 0 in L2 as n → ∞. Moreover, this convergence is uniform on compacts.

Proof. Let Nn
t = Card{(s, x) ∈ Pn : s ≤ t} be the counting process of Pn. Then (Nn

t , t ≥ 0) is a
Poisson process of rate 1/σn. We write dNn for the Stieltjes measure associated with t �→ Nn

t .
For t ≥ 0, let

M n
t := Ln

t −
∫

[0,t]
pn

(
T n

s−
)
dNn

s and N n
t := σn

∫
[0,t]

pn

(
T n

s−
)
dNn

s −
∫ t

0
pn

(
T n

s

)
ds.

We notice that, by the definition of Ln
t ,

M n
t =

∑
(s,x)∈Pn:s≤t

(
1{x∈T n

s−} − pn

(
T n

s−
))

.

Since σ−1
n pn = Ln, conditionally on T n

s−, 1{x∈T n
s−} is a Bernoulli random variable of mean

pn(T
n
s−). Therefore, we have

E
[
M n

t |(Nn
s

)
s≤t

]= 0. (5.18)

From this, we can readily show that M n is a martingale with respect to the natural filtration
of (Nn

t )t≥0. On the other hand, classical results on the Poisson process entail that N n is also a
martingale with respect to the same filtration. Once combined, we see that Mn = σnM n + N n

itself is a martingale. Therefore, by Doob’s maximal inequality for the L2-norms of martingales,
we obtain for any t ≥ 0,

E

[
sup
s≤t

(
Mn

s

)2
]

≤ 4E
[(

Mn
t

)2]= 4E
[(

σnM
n
t

)2]+ 4E
[(

N n
t

)2]
,

as a result of (5.18). Direct computation shows that

E
[(

M n
t

)2]= E

[
1

σn

∫ t

0

(
pn

(
T n

s

)− p2
n

(
T n

s

))
ds

]
and E

[(
N n

t

)2]= E

[
σn

∫ t

0
p2

n

(
T n

s

)
ds

]
.
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As a consequence, for any fixed t ,

E

[
sup
s≤t

(
Mn

s

)2
]

≤ 4σnE

[∫ t

0
pn

(
T n

s

)
ds

]
≤ 4σnt → 0,

as n → ∞. �

In particular, Lemmas 5.5 and 5.6 combined entail that for any fixed t ≥ 0, σnL
n
t → Lt in

distribution. However, to obtain the convergence of σnL
n∞ to L∞ in distribution we need a tight-

ness condition. For this, we begin with the following observation. For each n ∈ N and s ≥ 0,
let ζ n(s) := inf{t > 0 : Ln

t ≥ �s�} be the right-continuous inverse of Ln
t . Recall that from the

construction of Hn = cut(T n,V n), there is a correspondence between the vertex sets of the re-
maining tree at step � − 1 and the subtree above X� in H . Then it follows from Lemma 4.1
that (

v
(
T n

ζn(s)

)
,0 ≤ s < Ln∞

) d= (
v
(
Sub

(
T n, xn

s

))
,0 ≤ s < 1 + dT n

(
r
(
T n

)
,V n

))
,

where xn
s is the point on the path [[r(T n),V n]] at distance �s� from r(T n). In particular, this

entails(
pn

(
T n

ζn(s)

)
,0 ≤ s < Ln∞

) d= (
pn

(
Sub

(
T n, xn

s

))
,0 ≤ s < 1 + dT n

(
r
(
T n

)
,V n

))
. (5.19)

The limit of the right-hand side can be identified using the convergence of p-trees in (5.1). For
this, let V be a random point of T of distribution μ. For 0 ≤ s ≤ dT (r(T ),V ), let xs be the point
in [[r(T ),V ]] at distance s from r(T ), or xs = V if s > dT (r(T ),V ). Similarly, we set xn

s = V n

if s ≥ 1 + dT n(r(T n),V n).

Lemma 5.7. Under (H), we have(
σnL

n∞,
(
pn

(
T n

ζn(s/σn)

))
s≥0

) n→∞−→
d

(
dT

(
r(T ),V

)
,
(
μ
(
Sub(T , xs)

))
s≥0

)
,

where the convergence of the second coordinates is with respect to the Skorokhod J1-topology.

Proof. Because of (5.19) and the fact σn → 0, it suffices to prove that(
pn

(
Sub

(
T n, xn

s/σn

))
, s ≥ 0

) n→∞−→
d

(
μ
(
Sub(T , xs)

)
, s ≥ 0

)
,

with respect to the Skorokhod J1-topology, jointly with σndT n(r(T n),V n) → dT (r(T ),V ) in
distribution. Recall that (ξn

i , i ≥ 2) is a sequence of i.i.d. points of common law pn and that we
have set ξn

0 = r(T n), ξn
1 = V n, for n ∈ N. Note that (ξn

i , i ≥ 0) is still an i.i.d. sequence. Then it
follows from (5.1) that(

σndT n

(
ξn
i , ξn

j

)
, i, j ≥ 0

) d−→ (
dT (ξi, ξj ), i, j ≥ 0

)
in the sense of finite-dimensional distributions. Taking i = 0 and j = 1, we get the convergence

σndT n

(
V n, r

(
T n

)) d−→ dT
(
V, r(T )

)
.
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On the other hand, for i ≥ 1, ξn
i ∈ Sub(T n, xn

s ) if and only if dT n(ξn
i ∧ V n, r(T n)) ≥ s. Since

for any rooted tree (T , d, r) and u,v ∈ T we have 2d(r,u ∧ v) = d(r,u) + d(r, v) − d(u, v), we
deduce that for any k,m ≥ 1 and (sj ,1 ≤ j ≤ m) ∈R

m+,

(1{ξn
i ∈Sub(T n,xn

sj /σn
)},1 ≤ i ≤ k,1 ≤ j ≤ m)

d−→ (1{ξi∈Sub(T ,xsj
)},1 ≤ i ≤ k,1 ≤ j ≤ m),

jointly with σndT n(V n, r(T n))
d−→ dT (V , r(T )). Then the argument used to establish (5.17)

shows the convergence of (pn(Sub(T n, xn
s/σn

)), n ≥ 1) in the sense of finite-dimensional dis-
tributions. The convergence in the Skorokhod topology follows from the monotonicity of the
mapping s �→ pn(Sub(T n, xn

s )). �

Combining (5.19) and Lemma 5.7 with a time-change argument, we are able to show the
following tightness condition.

Lemma 5.8. Under (H), for every δ > 0,

lim
t→∞ lim sup

n→∞
P
(
σn

(
Ln∞ − Ln

t

)≥ δ
)= 0, (5.20)

Proof. Let us begin with a simple observation on the Skorokhod J1-topology. Let D↑ be the
set of those functions x : R+ → [0,1] which are nondecreasing and càdlàg. We endow D

↑ with
the Skorokhod J1-topology. Taking ε > 0 and x ∈ D

↑, we denote by κε(x) = inf{t > 0 : x(t) >

ε}. The following is a well-known fact. A proof can be found in [38], Chapter VI, page 304,
Lemma 2.10.

FACT. If xn → x in D
↑, n → ∞ and t �→ x(t) is strictly increasing, then κε(xn) → κε(x) as

n → ∞.
If x = (x(t), t ≥ 0) is a process with càdlàg paths and t0 ∈ R+, we denote by Rt0[x] the

reversed process of x at t0:

Rt0 [x](t) = x
(
(t0 − t)−)

if t < t0 and Rt0[x](t) = x(0) otherwise. For each n ≥ 1, let xn(t) = pn(T
n
ζn(t)), t ≥ 0 and denote

by �n = RLn∞[xn] the reversed process at Ln∞. Similarly, let y(t) = μ(Sub(T , xt )), t ≥ 0 and
denote by � = RD[y] for D = dT (V , r(T )). Then almost surely �n ∈ D

↑ for n ∈ N and � ∈ D
↑.

Moreover, Lemma 5.7 says that(
�n(t/σn), t ≥ 0

) n→∞−→
d

(
�(t), t ≥ 0

)
(5.21)

in D
↑. From the construction of the ICRT in Section 2.5 it is not difficult to show that t �→ �(t)

is strictly increasing. Then by the above FACT, we have σnκε(�n) → κε(�) in distribution, for
each ε > 0. In particular, we have for any fixed δ > 0,

lim
ε→0

lim sup
n→∞

P
(
σnκε(�n) ≥ δ

)≤ lim
ε→0

P
(
κε(�) ≥ δ

)= 0, (5.22)

since almost surely �(t) > 0 for any t > 0.
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By Lemma 5.4, the sequence ((pn(T
n
t ))t≥0, n ≥ 1) is tight in the Skorokhod topology. Com-

bined with the fact that, for each fixed n, pn(T
n
t ) ↘ 0 as t → ∞ almost surely, this entails that

for any fixed ε > 0,

lim
t0→∞ lim sup

n→∞
P

(
sup
t≥t0

pn

(
T n

t

)≥ ε
)

= 0. (5.23)

Now note that if Ln
t = k ∈ N, then T n

t = T n
ζn(k) a.s. since no change occurs until the time of the

next cut. In particular we have

pn

(
T n

t

)= pn

(
T n

ζn(Ln
t )

)
a.s.,

from which we deduce that{
pn

(
T n

t0

)
< ε

}⊆ {
κε(�n) ≥ Ln∞ − Ln

t0

}
a.s.

Then we have{
σn

(
Ln∞ − Ln

t0

)≥ δ
}∩

{
sup
t≥t0

pn

(
T n

t

)
< ε

}
⊆ {

σnκε(�n) ≥ δ
}

a.s.

Therefore,

lim sup
n→∞

P
(
σn

(
Ln∞ − Ln

t0

)≥ δ
)

≤ lim sup
n→∞

P

(
sup
t≥t0

pn

(
T n

t

)≥ ε
)

+ lim sup
n→∞

P

(
σn

(
Ln∞ − Ln

t0

)≥ δ and sup
t≥t0

pn

(
T n

t

)
< ε

)
≤ lim sup

n→∞
P

(
sup
t≥t0

pn

(
T n

t

)≥ ε
)

+ lim sup
n→∞

P
(
σnκε(�n) ≥ δ

)
.

In above, if we let first t0 → ∞ and then ε → 0, we obtain (5.20) as a combined consequence of
(5.22) and (5.23). �

Proposition 5.9. Under (H), we have(
σnL

n
t , t ≥ 0

) n→∞−→
d

(Lt , t ≥ 0) (5.24)

with respect to the uniform topology, and jointly with the convergences in (5.13), (5.14), (5.15)
and (5.1). In particular, this entails that L∞ < ∞ almost surely. Moreover, we have

L∞
d= dT

(
r(T ),V

)
, (5.25)

where V is a random point of distribution μ. The distribution of dT (r(T ),V ) is given in (2.6).

Proof. We fix a sequence of (tm,m ≥ 1), which is dense in R+. Combining Lemmas 5.5 and
5.6, we obtain, for all k ≥ 1,(

σnL
n
tm

,1 ≤ m ≤ k
) n→∞−→

d
(Ltm,1 ≤ m ≤ k), (5.26)



Cutting down p-trees and ICRTs 2419

jointly with the convergences in (5.13), (5.14), (5.15) and (5.1). We deduce from this and
Lemma 5.8 that L∞ < ∞ a.s. and

σnL
n∞

n→∞−→
d

L∞, (5.27)

jointly with (5.13), (5.14), (5.15) and (5.5), by Theorem 4.2 of [16], Chapter 1. Combined with
the fact that t �→ Lt is continuous and increasing, this entails the uniform convergence in (5.24).
Finally, the distributional identity (5.25) is a direct consequence of Lemma 5.7 and (5.27). �

Proof of Theorem 3.1. We have seen that L∞ < ∞ almost surely. Therefore the cut tree
(cut(T ,V ), μ̂) is well defined almost surely. Comparing the expressions of dHn(ξn

i , ξn
j ) given

at the beginning of this subsection with those of dH(ξi, ξj ), we obtain from Lemma 5.4 and
Proposition 5.9 the convergence in (5.8). This concludes the proof. �

Remark. Before concluding this section, let us say a few more words on the proof of Proposi-
tion 5.9. The convergence of (σnL

n
t , t ≥ 0) to (Lt , t ≥ 0) on any finite interval follows mainly

from the convergence in Proposition 5.2. The proof here can be easily adapted to the other mod-
els of random trees, see [15,43]. On the other hand, our proof of the tightness condition (5.20)
depends on the specific cuttings on the birthday trees, which has allowed us to deduce the distri-
butional identity (5.19). In general, the convergence of Ln∞ may indeed fail. An obvious example
is the classical record problem (see Example 1.4 in [39]), where we have Ln

t → Lt for any fixed
t , while E(Ln∞) ∼ lnn and therefore is not tight in R.

5.3. Convergence of the cut-trees cut(T n): Proof of Lemma 5.3

Let us recall the settings of the complete cutting down procedure for T : (Vi, i ≥ 1) is an i.i.d.
sequence of common law μ; TVi

(t) is the equivalence class of ∼t containing Vi , whose mass is
denoted by μi(t); and Li

t = ∫ t

0 μi(s) ds. The complete cut-tree cut(T ) is defined as the complete

and separable metric space
⋃

k Sk . We introduce some corresponding notations for the discrete
cuttings on T n. For each n ≥ 1, we sample a sequence of i.i.d. points (V n

i , i ≥ 1) on T n of
distribution pn. Recall Pn the Poisson point process on R+ ×T n of intensity dt ⊗Ln. We define

μn,i(t) := pn

({
u ∈ T n : [0, t] × [[

u,V n
i

]]∩Pn =∅
})

,

L
n,i
t := Card

{
s ≤ t : μn,i(s) < μn,i(s−)

}
, t ≥ 0, i ≥ 1,

τn(i, j) := inf
{
t ≥ 0 : [0, t] × [[

V n
i ,V n

j

]]∩Pn �=∅
}
, 1 ≤ i, j < ∞.

By the construction of Gn = cut(T n), we have

dGn

(
V n

i , r
(
Gn

)) = Ln,i∞ − 1,
(5.28)

dGn

(
V n

i ,V n
j

) = Ln,i∞ + L
n,j∞ − 2L

n,i
τn(i,j), 1 ≤ i, j < ∞,
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where L
n,i∞ := limt→∞ L

n,i
t is the number of cuts necessary to isolate V n

i . The proof of
Lemma 5.3 is quite similar to that of Theorem 3.1. We outline the main steps but leave out
the details.

Sketch of proof of Lemma 5.3. First, we can show with essentially the same proof of
Lemma 5.4 that we have the following joint convergences: for each k ≥ 1,((

μn,i(t),1 ≤ i ≤ k
)
, t ≥ 0

) n→∞−→
d

((
μi(t),1 ≤ i ≤ k

)
, t ≥ 0

)
, (5.29)

with respect to Skorokhod J1-topology, jointly with(
τn(i, j),1 ≤ i, j ≤ k

) n→∞−→
d

(
τ(i, j),1 ≤ i, j ≤ k

)
, (5.30)

jointly with the convergence in (5.1). Then we can proceed, with the same argument as in the
proof of Lemma 5.6, to show that for any k,m ≥ 1 and (tj ,1 ≤ j ≤ m) ∈ R

m+,(∫ ti

0
μn,i(s) ds,1 ≤ j ≤ m,1 ≤ i ≤ k

)
n→∞−→

d

(∫ ti

0
μi(s) ds,1 ≤ j ≤ m,1 ≤ i ≤ k

)
.

Since the V n
i , i ≥ 1 are i.i.d. pn-distributed nodes on T n, each process (L

n,i
t )t≥0 has the same

distribution as (Ln
t )t≥0 defined in (5.10). Then Lemmas 5.6 and 5.8 hold true for each Ln,i , i ≥ 1.

We are able to show (
σnL

n,i
t ,1 ≤ i ≤ k

)
t≥0

n→∞−→
d

(
Li

t ,1 ≤ i ≤ k
)
t≥0, (5.31)

with respect to the uniform topology, jointly with the convergences (5.30) and (5.1). Comparing
(5.28) with (3.4), we can easily conclude. �

In general, the convergence in (5.1) does not hold in the Gromov–Hausdorff topology. How-
ever, in the case where T is a.s. compact and the convergence (5.1) does hold in the Gromov–
Hausdorff sense, then we are able to show that one indeed has GHP convergence as claimed in
Theorem 3.6. In the following proof, we only deal with the case of convergence of cut(T n). The
result for cut(T n,V n) can be obtained using similar arguments and we omit the details.

Proof of Theorem 3.6. We have already shown in Lemma 5.3 the joint convergence of the
spanning subtrees: for each k ≥ 1,(

σnR
n
k , σnS

n
k

) n→∞−→
d,GH

(Rk, Sk). (5.32)

We now show that for each ε > 0,

lim
k→∞ lim sup

n→∞
P
(
max

{
dGH

(
Rn

k ,T n
)
,dGH

(
Sn

k , cut
(
T n

))}≥ ε/σn

)= 0. (5.33)
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Since the couples (Sn
k , cut(T n)) and (Rn

k , T n) have the same distribution, it is enough to prove
that for each ε > 0,

lim
k→∞ lim sup

n→∞
P
(
σndGH

(
Rn

k ,T n
)≥ ε

)= 0. (5.34)

Let us explain why this is true when (σnT
n,pn) → (T ,μ) in distribution in the sense of GHP.

Recall the space M
k
c of equivalence classes of k-pointed compact metric spaces, equipped with

the k-pointed Gromov–Hausdorff metric. For each k ≥ 1 and ε > 0, we set

A(k, ε) := {
(T , d,x) ∈M

k
c : dGH

(
T ,Span(T ;x)

)≥ ε
}
.

It is not difficult to check that A(k, ε) is a closed set of Mk
c . Let Mc be the set of equivalence

classes of compact measured metric spaces, equipped with the Gromov–Hausdorff–Prokhorov
metric and for (T ,μ) ∈Mc, set

mk

(
T ,A(k, ε)

) :=
∫

T k

μ⊗k(dx)1{[T ,x]∈A(k,ε)}.

Then according to the proof of Lemma 13 of [46], the mapping from Mc to M
k
c : (T ,μ) �→

mk(T ,A(k, ε)) is upper-semicontinuous. Applying the Portmanteau theorem for upper-
semicontinuous mappings [16], page 17, Problem 7, we obtain

lim sup
n→∞

E
[
mk

((
σnT

n,pn

)
,A(k, ε)

)]≤ E
[
mk

(
(T ,μ),A(k, ε)

)]
,

or, in other words,

lim sup
n→∞

P
(
σndGH

(
T n,Rn

k

)≥ ε
)≤ P

(
dGH(T ,Rk) ≥ ε

) −→
k→∞ 0,

since dGH(Rk,T ) → 0 almost surely for T is compact (see for example [5]). This proves (5.34)
and thus (5.33). By [16], Chapter 1, Theorem 4.5, (5.32) combined with (5.33) entails the
joint convergence in distribution of (σnT

n, σn cut(T n)) to (T , cut(T )) in the Gromov–Hausdorff
topology. To strengthen to the Gromov–Hausdorff–Prokhorov convergence, one can adopt the
arguments in Section 4.4 of [34] and we omit the details. �

6. Reversing the one-cutting transformation

In this section, we justify the heuristic construction of shuff(H,U) given in Section 3 for an ICRT
H and a uniform leaf U . The objective is to define formally the shuffle operation in such a way
that the identity (3.6) hold. We rely on weak convergence arguments to justify the construction
of shuff(H,U) by showing it is the limit of the discrete construction in Section 4.1.

Let (H, dH,μH) be an ICRT rooted at r(H), and let U be a random point in H of distribution
μH. Then H is the disjoint union of the following subsets:

H =
⋃

x∈[[r(H),U ]]
Fx where Fx := {

u ∈H : [[r(H), u
]]∩ [[

r(H),U
]]= [[r, x]]}.
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It is easy to see that Fx is a subtree of H. It is nonempty (x ∈ Fx ), but possibly trivial (Fx = {x}).
Let B := {x ∈ [[r(H),U ]] : μH(Fx) > 0}∪{U}, and for x ∈ B, let Sx := Sub(H, x)\Fx , which is
the union of those Fy such that dH(U,y) < dH(U,x). Then for each x ∈ B \ {U}, we associate
with x an attachment point Ax , which is independent and sampled according to μH|Sx , μH
conditioned on Sx . We also set AU = U .

Now let (ξi, i ≥ 1) be a sequence of i.i.d. points of common law μH. The set F :=⋃
x∈B Fx

has full mass with probability one. Thus almost surely ξi ∈ F for each i ≥ 0. We will use (ξi)i≥1

to span the tree shuff(H,U) and the point ξ1 is the future root of shuff(H,U). For each ξi , we
define inductively two sequences xi := (xi(0), xi(1), . . .) ∈ B and ai := (ai(0), ai(1), . . .): we set
ai(0) = ξi , and, for l ≥ 0,

xi(l) = ai(l) ∧ U and ai(l + 1) = Axi(l).

By definition of (Ax, x ∈ B), the distance dH(r(H), xi(k)) is increasing in k ≥ 1. For each i, j ≥
1, we define the merging time

mg(i, j) := inf
{
k ≥ 0 : ∃l ≤ k and xi(l) = xj (k − l)

}
,

with the convention inf∅ = ∞. Another way to present mg(i, j) is to consider the graph on B
with the edges {x,Ax ∧U}, x ∈ B, then mg(i, j) is the graph distance between ξi ∧U and ξj ∧U .
On the event {mg(i, j) < ∞}, there is a path in this graph that has only finitely many edges, and
the two walks xi and xj first meet at a point y(i, j) ∈ B (where by first, we mean with minimum
distance to the root r(H)). In particular, if we set I (i, j),I (j, i) to be the respective indices of
the element y(i, j) appearing in xi and xj , that is,

I (i, j) = inf
{
k ≥ 0 : xi(k) = y(i, j)

}
and I (j, i) = inf

{
k ≥ 0 : xj (k) = y(i, j)

}
,

with the convention that I (i, j) = I (j, i) = ∞ if mg(i, j) = ∞, then mg(i, j) = I (i, j) +
I (j, i). Write Ht(u) = d(u,u ∧ U) for the height of u in the Fx which contains it. On the event
{mg(i, j) < ∞} we define γ (i, j) which is meant to be the new distance between ξi and ξj as
follows:

γ (i, j) :=
I (i,j)−1∑

k=0

Ht
(
ai(k)

)

+
I (j,i)−1∑

k=0

Ht
(
aj (k)

)+ dH
(
ai

(
I (i, j)

)
, aj

(
I (j, i)

))
,

with the convention if k ranges from 0 to −1, the sum equals zero. See Figure 5 for an example.
The justification of the definition for shuff(H,U) relies on weak convergence arguments. To

this end, let pn, n ≥ 1, be a sequence of probability measures such that (H) holds with θ the
parameter of H. Let Hn be a pn-tree and Un a pn-distributed node. Let (ξn

i )i≥1 be a sequence
of i.i.d. pn-distributed points. Then, the quantities Sn

x , Bn, xn, an, and mgn(i, j) are defined
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Figure 5. An example with I (1,2) = 3, I (2,1) = 1 and mg(1,2) = 4. The dashed lines indicate the
identifications where the root of the relevant subtrees are sent to. The blue lines represent the location of
the path between ξ1 and ξ2 before the transformation.

for Hn in the same way as Sx , B, x, a, and mg(i, j) have been defined for H. Let dHn de-
note the graph distance on Hn. There is only a slight difference in the definition of the dis-
tances

γ n(i, j) :=
I n(i,j)−1∑

k=0

(
Ht
(
an
i (k)

)+ 1
)

+
I n(j,i)−1∑

k=0

(
Ht
(
an
j (k)

)+ 1
)+ dHn

(
ai

(
I n(i, j)

)
, an

j

(
I n(j, i)

))
,

to take into account the length of the edges {x,An
x}, for x ∈ Bn. In that case, the sequence xn

(resp. an) is eventually constant and equal to Un so that mgn(i, j) < ∞ with probability one.
Furthermore, the unique tree defined by the distance matrix (γ n(i, j) : i, j ≥ 1) is easily seen
to have the same distribution as the one defined in Section 4.1, since the attaching points are
sampled with the same distributions and (γ n(i, j) : i, j ≥ 1) coincides with the tree distance af-
ter attaching. Recall that we have rerooted shuff(Hn,Un) at a random point of law pn. We may
suppose this point is ξn

1 . Therefore, we have(
shuff

(
Hn,Un

)
,Hn

) d= (
Hn, cut

(
Hn,Un

))
, (6.1)

by Lemma 4.1 and Proposition 4.3.
In the case of the ICRT H, it is a priori not clear that P(mg(i, j) < ∞) = 1. We prove the

following theorem.

Theorem 6.1. For any ICRT (H,μH) and a μH-distributed point U , we have the following
assertions:

(a) almost surely for each i, j ≥ 1, mg(i, j) is stochastically dominated by a Poisson ran-
dom variable with parameter dH(ξi, ξj )E(i, j), where E(i, j) is an exponential variable of rate
dH(U, ξi ∧ ξj ); in consequence, we have mg(i, j) < ∞;
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(b) almost surely the distance matrix (γ (i, j),1 ≤ i, j < ∞) defines a CRT, denoted by
shuff(H,U);

(c) (shuff(H,U),H) and (H, cut(H,V )) have the same distribution.

The main ingredient in the proof of Theorem 6.1 is the following lemma.

Lemma 6.2. Under (H), for each j, l ≥ 1, we have the following convergences(
σndHn

(
r
(
Hn

)
,xn

i (k)
)
,1 ≤ i ≤ j,0 ≤ k ≤ l

)
(6.2)

n→∞−→
d

(
dH

(
r(H),xi (k)

)
,1 ≤ i ≤ j,0 ≤ k ≤ l

)
,(

pn

(
Sn

xn
i (k)

)
,1 ≤ i ≤ j,0 ≤ k ≤ l

)
(6.3)

n→∞−→
d

(
μH(Sxi(k)),1 ≤ i ≤ j,0 ≤ k ≤ l

)
and (

σnH
n,
(
an
i (k),1 ≤ i ≤ j,0 ≤ k ≤ l

)) n→∞−→
d

(
H,

(
ai(k),1 ≤ i ≤ j,0 ≤ k ≤ l

))
, (6.4)

in the weak convergence of the pointed Gromov–Prokhorov topology.

Proof. Fix some j, l ≥ 1. We argue by induction on k. For k = 0, we note that an
i (0) = ξn

i and
xn
i (0) = ξn

i ∧Un. Then the convergences in (6.4) and (6.2) for k = 0 follows easily from (5.1). On
the other hand, we can prove (6.3) with the same arguments as employed in Lemma 5.7. Suppose
now (6.2), (6.3) and (6.4) hold true for some k ≥ 0. We notice that an

i (k + 1) is independently
sampled according to pn conditioned on Sxn

i (k), we deduce (6.4) for k + 1 from (5.1). Then the
convergence in (6.2) also follows for k + 1, since xn

i (k + 1) = an
i (k + 1) ∧ Un. Finally, the very

same arguments used in the proof of Lemma 5.7 show that (6.3) holds for k + 1. �

Proof of Theorem 6.1. Proof of (a). By construction, shuff(Hn,Un) is the reverse transfor-
mation of the one from Hn to cut(Hn,Un) in the sense that each attaching “undoes” a cut. In
consequence, since mgn(i, j) is the number of cuts to undo in order to get ξn

i and ξn
j in the

same connected component, mgn(i, j) has the same distribution as the number of the cuts that
fell on the path [[ξn

i , ξn
j ]]. But the latter is stochastically bounded by a Poisson variable Nn(i, j)

of mean dHn(ξn
i , ξn

j ) · En(i, j), where En(i, j) is an independent exponential variable of rate
dHn(Un, ξn

i ∧ ξn
j ). Indeed, each cut is a point of the Poisson point process Pn and no more cuts

fall on [[ξn
i , ξn

j ]] after the time of the first cut on [[Un, ξn
i ∧ ξn

j ]]. But the time of the first cut
on [[Un, ξn

i ∧ ξn
j ]] has the same distribution as En(i, j) and is independent of Pn restricted on

[[ξn
i , ξn

j ]]. The above argument shows that

mgn(i, j) = I n(i, j) + I n(j, i) ≤st Nn(i, j), i, j ≥ 1, n ≥ 1, (6.5)

where ≤st denotes the stochastic domination order. It follows from (5.1) that, jointly with the
convergence in (5.1), we have Nn(i, j) → N(i, j) in distribution, as n → ∞, where N(i, j) is
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a Poisson variable with parameter dH(ξi, ξj ) · E(i, j). Thus the sequence (mgn(i, j), n ≥ 1) is
tight in R+.

On the other hand, observe that for x ∈ B, P(Ax ∈ Fy) = μH(Fy)/μH(Sx) if y ∈ B and
dH(U,y) < dH(U,x). In particular, for two distinct points x, x′ ∈ B,

P(∃y ∈ B such that Ax ∈ Fy,Ax′ ∈ Fy) =
∑
y

μ2
H(Fy)

μH(Sx)μH(Sx′)
,

where the sum is over those y ∈ B such that dH(U,y) < min{dH(U,x), dH(U,x′)}. Similarly,
for n ≥ 1,

P
(∃y ∈ Bn such that An

x ∈ Fn
y ,An

x′ ∈ Fn
y

)=
∑
y

p2
n(F

n
y )

pn(Sn
x )pn(S

n
x′)

.

Then it follows from (6.2) and the convergence of the masses in Lemma 5.7 that

P
(
I n(i, j) = 1;I n(j, i) = 1

) = P
(∃y ∈ Bn such that An

xi(0) ∈ Fn
y ,An

xj (0) ∈ Fn
y

)
n→∞−→ P

(
I (i, j) = 1;I (j, i) = 1

)
.

By induction and Lemma 6.2, this can be extended to the following: for any natural numbers
k, l ≥ 0, we have

P
(
I n(i, j) = k;I n(j, i) = l

) n→∞−→ P
(
I (i, j) = k;I (j, i) = l

)
.

Combined with the tightness of (mgn(i, j), n ≥ 1) = (I n(i, j) + I n(j, i), n ≥ 1), this entails
that (

I n(i, j),I n(j, i)
) n→∞−→

d

(
I (i, j),I (j, i)

)
, i, j ≥ 1, (6.6)

jointly with (6.2) and (6.4), using the usual subsequence arguments. In particular, I (i, j) +
I (j, i) ≤st N(i, j) < ∞ almost surely, which entails that mg(i, j) < ∞ almost surely, for each
pair (i, j) ∈N×N.

Proof of (b). It follows from (6.4), (6.6) and the expression of γ (i, j) that(
σnγ

n(i, j), i, j ≥ 1
) n→∞−→

d

(
γ (i, j), i, j ≥ 1

)
, (6.7)

in the sense of finite-dimensional distributions, jointly with the Gromov–Prokhorov convergence
of σnH

n to H in (5.1). However by (6.1), the distribution of shuff(Hn,Un) is identical to Hn.
Hence, the unconditional distribution of (γ (i, j),1 ≤ i, j < ∞) is that of the distance matrix of
the ICRT H. We can apply Aldous’ CRT theory [5] to conclude that for almost every realization
of H, the distance matrix (γ (i, j), i, j ≥ 1) defines a CRT, denoted by shuff(H,U). Moreover,
there exists a mass measure μ̃, such that if (ξ̃i )i≥1 is an i.i.d. sequence of law μ̃, then(

dshuff(H,U)(ξ̃i , ξ̃j ),1 ≤ i, j < ∞) d= (
γ (i, j),1 ≤ i, j < ∞)

.
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Therefore, we can rewrite (6.7) as(
σn shuff

(
Hn,Un

)
, σnH

n
) n→∞−→

d

(
shuff(H,U),H

)
, (6.8)

with respect to the Gromov–Prokhorov topology.
Proof of (c). This is an easy consequence of (6.1) and (6.8). Let f,g be two arbitrary bounded

functions continuous in the Gromov–Prokhorov topology. Then (6.8) and the continuity of f,g

entail that

E
[
f
(
shuff(H,U)

) · g(H)
] = lim

n→∞E
[
f
(
σn shuff

(
Hn,Un

)) · g(σnH
n
)]

= lim
n→∞E

[
f
(
σnH

n
) · g(σn cut

(
Hn,Un

))]
= E

[
f (H) · g(cut(H,U)

)]
,

where we have used (6.1) in the second equality and Theorem 3.1 in the third. Thus, we obtain
the identity in distribution in (c). �

7. Convergence of the cutting measures: Proof of Proposition
5.2

Recall the setting at the beginning of Section 5.1. We need to show that for each k ≥ 1,(
σnR

n
k ,Ln�Rn

k

) n→∞−→
d

(
Rk(T ),L�Rk

)
(7.1)

in Gromov–Hausdorff–Prokhorov topology. Observe that the Gromov–Hausdorff convergence is
clear from (5.2), so that it remains to prove the convergence of the measures.

Case 1. We first prove the claim assuming that θi > 0 for every i ≥ 0. In this case, define

mn := min

{
j :

j∑
i=1

(
pni

σn

)2

≥
∑
i≥1

θ2
i

}
,

and observe that mn < ∞ since
∑

i≤n(pni/σn)
2 = 1 ≥ ∑

i≥1 θ2
i . Note also that mn → ∞. In-

deed, for every integer k ≥ 1, since pni/σn → θi , for i ≥ 1, and θk+1 > 0, we have, for all n large
enough,

k∑
i=1

(
pni

σn

)2

<
∑
i≥1

θ2
i ,

so that mn > k for all n large enough. Furthermore limj→∞ θj = 0, and (H) implies that

lim
n→∞

pnmn

σn

= 0. (7.2)
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Combining this with the definition of mn, it follows that, as n → ∞,

∑
i≤mn

(
pni

σn

)2

→
∑
i≥1

θ2
i . (7.3)

If n, k,M ≥ 1, we set

L∗
n =

∑
mn<i≤n

pni

σn

δi and �(n, k,M) =
∑

M<i≤mn

pni

σn

1{i∈Rn
k }.

Let �n denote the (discrete) length measure on T n, which is induced by the graph distance.
Clearly, σn�n is the length measure of the rescaled tree σnT

n. Recall that dP stands for the
Prokhorov distance.

Lemma 7.1. Suppose that (H) holds. Then, for each k ≥ 1, we have the following assertions:

(a) as n → ∞, in probability

dP

(
L∗

n�Rn
k
, θ2

0 σn�n�Rn
k

)→ 0; (7.4)

(b) for each ε > 0, there exists M = M(k, ε) ∈N such that

lim sup
n→∞

P
(
�(n, k,M) ≥ ε

)≤ ε; (7.5)

Before proving Lemma 7.1, let us first explain why this entails Proposition 5.2.

Proof of Proposition 5.2 in the case 1. By Skorokhod representation theorem and a diagonal
argument, we can assume that the convergence in (5.2) holds almost surely for all m ≥ 1. Since
the length measure �n (resp. �) depends continuously on the metric of T n (resp. the metric of T ),
according to Proposition 2.23 of [43] this implies that, for each k ≥ 1,(

σnR
n
k , θ2

0 σn�n�Rn
k

)→ (
Rk, θ

2
0 ��Rk

)
, (7.6)

almost surely in the Gromov–Hausdorff–Prokhorov topology. On the other hand, we easily de-
duce from (5.2) and (H) that, for each fixed m ≥ 1,(

σnR
n
k ,

m∑
i=1

pni

σn

δi �Rn
k

)
→

(
Rk,

m∑
i=1

θiδBi
�Rk

)
, (7.7)

almost surely in the Gromov–Hausdorff–Prokhorov topology. In the following, we write dn,k
P

(resp. dk
P) for the Prokhorov distance on the finite measures on the set Rn

k (resp. Rk). In particular,
since the measures below are all restricted to either Rn

k or Rk , we omit the notations �Rn
k
, �Rk

when the meaning is clear from context. We write

Ktm(L) := θ2
0 � +

m∑
i=1

θiδBi
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for the cut-off measure of L at level m. By Lemma 5.1, the restriction of L to Rn
k is a finite

measure. Therefore, Ktm(L) → L almost surely in dk
P as m → ∞.

Now fix some ε > 0. By Lemma 7.1 we can choose some M = M(k, ε) such that (7.5) holds,
as well as

P
(
dk

P

(
KtM(L),L

)≥ ε
)≤ ε. (7.8)

Define now the approximation

ϑn,M := θ2
0 σn�n +

∑
i≤M

pni

σn

δi .

Then recalling the definition of Ln in (5.4), and using (7.5) and (7.4), we obtain

lim sup
n→∞

P
(
dn,k

P (ϑn,M,Ln) ≥ ε
)≤ ε. (7.9)

We notice that (
σnR

n
k ,ϑn,M

)→ (
Rk,KtM(L)

)
(7.10)

almost surely in the Gromov–Hausdorff–Prokhorov topology as a combined consequence of (7.6)
and (7.7). Finally, by the triangular inequality, we deduce from (7.8), (7.9) and (7.10) that

lim sup
n→∞

P
(
dGHP

((
σnR

n
k ,Ln

)
, (Rk,L)

)≥ 2ε
)≤ 2ε,

for any ε > 0, which concludes the proof. �

Proof of Lemma 7.1. We first consider the case k = 1. Define

Dn := dT n

(
r
(
T n

)
,V n

1

)
and FL

n (l) := L∗
n

(
B
(
r
(
T n

)
, l
)∩ Rn

1

)
, (7.11)

where B(x, l) denotes the ball in T n centered at x and with radius l. Then the function FL
n

determines the measure L∗
n �Rn

1
in the same way a distributional function determines a finite

measure of R+. Let (Xn
j , j ≥ 0) be a sequence of i.i.d. random variables of distribution pn. We

define Rn
0 = 0, and for m ≥ 1,

Rn
m = inf

{
j >Rn

m−1 : Xn
j ∈ {

Xn
1 ,Xn

2 , . . . ,Xn
j−1

}}
the mth repeat time of the sequence. For l ≥ 0, we set

Fn(l) :=
l∧(Rn

1−1)∑
j=0

∑
i>mn

pni

σn

1{Xn
j =i}.

According to the construction of the birthday tree in [21] and Corollary 3 there, we have(
Dn,F

L
n (·)) d= (

Rn
1 − 1,Fn(·)

)
. (7.12)
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Let qn ≥ 0 be defined by q2
n =∑

i>mn
p2

ni . Then (7.3) entails limn→∞ qn/σn = θ0. For l ≥ 0, we
set

Zn(l) :=
∣∣∣∣Fn(l) − q2

n

σn

(
(l + 1) ∧Rn

1

)∣∣∣∣.
We claim that supl≥0 Zn(l) → 0 in probability as n → ∞. To see this, observe first that

Zn(l) =
∣∣∣∣∣
l∧(Rn

1−1)∑
j=0

(∑
i>mn

pni

σn

1{Xn
j =i} − q2

n

σn

)∣∣∣∣∣,
where the terms in the parenthesis are independent, centered, and of variance χn :=
σ−2

n

∑
i>mn

p3
ni − σ−2

n q4
n ≤ σ−2

n q2
npnmn . Therefore, Doob’s maximal inequality entails that for

any fixed number N > 0,

E

[(
sup
l≥0

Zn(l)1{Rn
1≤N/σn}

)2] ≤ E

[(
sup

l<�N/σn�

l∑
j=0

(∑
i>mn

pni

σn

1{Xn
j =i} − q2

n

σn

))2]

≤ 4Nσ−1
n χn

≤ 4N
q2
n

σ 2
n

pnmn

σn

→ 0,

by (7.2) and the fact that qn/σn → θ0. In particular, it follows that

sup
l≥0

Zn(l)1{Rn
1≤N/σn} → 0, (7.13)

in probability as n → ∞. On the other hand, the convergence of the pn-trees in (5.1) implies that
the family of distributions of (σnDn,n ≥ 1) is tight. By (7.12), this entails that

lim
N→∞ lim sup

n→∞
P
(
Rn

1 > N/σn

)= 0. (7.14)

Combining this with (7.13) proves the claim.
The generalized distribution function as in (7.11) for the discrete length measure �n is l �→

l ∧ Dn. Thus, since supl Zn(l) → 0 in probability, the identity in (7.12) and qn/σn → θ0 imply
that

dP

(
L∗

n�Rn
1
, θ2

0 σn�n�Rn
1

)→ 0

in probability as n → ∞. This is exactly (7.4) for k = 1.
In the general case where k ≥ 1, we set

Dn,1 := Dn, Dn,m := dT n

(
bn(m),V n

m

)
, m ≥ 2,
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where bn(m) denotes the branch point of T n between V n
m and Rn

m−1, i.e., bn(m) ∈ Rn
m−1 such

that [[r(T n),V n
m]] ∩ Rn

m−1 = [[r(T n), bn(m)]]. We also define

FL
n,1(l) := FL

n and FL
n,m(l) := L∗

n

(
B
(
bn(m), l

)∩ ]]
bn(m),V n

m

]])
, m ≥ 2.

Then conditional on Rn
k , the vector (FL

n,1(·), . . . ,FL
n,k(·)) determines the measure L∗

n �Rn
k

for the
same reason as before. If we set

Fn,1(l) := Fn(l) and Fn,m(l) :=
l∧(Rn

m−1)∑
j=Rn

m−1+1

∑
i>mn

pni

σn

1{Xn
j =i}, m ≥ 2,

then Corollary 3 of [21] entails the equality in distribution((
Dn,m,FL

n,m(·)),1 ≤ m ≤ k
) d= ((

Rn
m −Rn

m−1 − 1,Fn,m(·)),1 ≤ m ≤ k
)
.

Then by the same arguments as before we can show that

max
1≤m≤k

sup
l≥0

∣∣∣∣Fn,m(l) − q2
n

σn

(
l ∧ (

Rn
m −Rn

m−1 − 1
))∣∣∣∣→ 0

in probability as n → ∞. This then implies (7.4) by the same type of argument as before.
Now let us consider (7.5). The idea is quite similar. For each M ≥ 1, we set

Z̃n,M :=
Rn

1−1∑
j=0

∑
M<i≤mn

pni

σn

1{Xn
j =i}.

Then

E[Z̃n,M1{Rn
1≤N/σn}] ≤ N

( ∑
M<i≤mn

p2
ni

σ 2
n

)
.

Using (7.3), (H) and the fact that
∑

i θ
2
i < ∞, we can easily check that for any fixed N ,

lim
M→∞ lim sup

n→∞
E[Z̃n,M1{Rn

1≤N/σn}] = 0. (7.15)

By Markov’s inequality, we have

P(Z̃n,M > ε) ≤ ε−1
E[Z̃n,M1{Rn

1≤N/σn}] + P
(
Rn

1 > N/σn

)
.

According to (7.14) and (7.15), we can first choose some N = N(ε) then some M =
M(N(ε), ε) = M(ε) such that lim supn P(Z̃n,M > ε) < ε. On the other hand, Corollary 3 of
[21] says that �(n,1,M) is distributed like Z̃n,M . Then we have shown (7.5) for k = 1. The
general case can be treated in the same way, and we omit the details. �
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So far we have completed the proof of Proposition 5.2 in the case where θ has all strictly
positive entries. The other cases are even simpler:

Case 2. Suppose that θ0 = 0, we take mn = n and the same argument follows.
Case 3. Suppose that θ has a finite length I , then it suffices to take mn = I . We can proceed

as before.
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