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For each probability distribution on a countable alphabet, a sequence of positive functionals are developed
as tail indices. By and only by the asymptotic behavior of these indices, domains of attraction for all prob-
ability distributions on the alphabet are defined. The three main domains of attraction are shown to contain
distributions with thick tails, thin tails and no tails respectively, resembling in parallel the three main do-
mains of attraction, Fréchet, Gumbel and Weibull families, for continuous random variables on the real
line. In addition to the probabilistic merits associated with the domains, the tail indices are partially moti-
vated by the fact that there exists an unbiased estimator for every index in the sequence, which is therefore
statistically observable, provided that the sample is sufficiently large.
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1. Introduction and summary

Consider an alphabet with countably many letters X = {�k; k ≥ 1} and an associated probability
distribution P = {pk; k ≥ 1} ∈ P where P is the class of all probability distributions on X .
Let X1, . . . ,Xn be a sample of independently and identically distributed (i.i.d.) random elements
from X under P . Let {p̂k; k ≥ 1} be the relative letter frequencies in the sample.

Before proceeding further, let us first give a little thought to possible notions of an “extreme
value” and a “tail” of a distribution in the current setting, as domains of attraction are commonly
discussed in association with such notions. While such notions are not required in the mathemat-
ics of this paper, it is nevertheless comforting to have them at least on an intuitive level. Unlike
a sample of i.i.d. random variables on the real line where the values are numerically ordered and
therefore an extreme value is naturally defined, the letters in an alphabet do not assume numer-
ical values nor do they necessarily admit natural ordering. If we insist on having a notion of an
extreme value associated with a sample, then perhaps such a value should be based on its rarity
or unusualness with respect to the observed values in the sample. The rarest values in the sample
are those with frequency one and there are most commonly many more than one such observed
value in a sample. If we entertain a rarer value, it has to be one of those with frequency zero,
that is, the letters in the alphabet that are not represented in the sample, which, though not in
the sample, are nevertheless associated with and specified by the sample. If we anticipate that
another independent observation, say Xn+1, is to be taken from X , it would be reasonable then
to consider the value of Xn+1 to be extreme if Xn+1 takes a letter that is not observed in the
original sample of size n. To fix the idea, we will subsequently use the term “an extreme value”
to mean a letter of the alphabet that is not represented in the sample of size n. Similarly we can
also entertain what a notation of a tail should be on an alphabet. Whenever there is no risk of
ambiguity, let us loosely refer to a subset of X with low probability letters as a “tail” in the
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subsequent text. In this sense, a subset of X with very low probability letters may be referred to
as a “distant tail”, and a distribution on a finite alphabet has essentially “no tail”. Furthermore we
note that, though there is no natural ordering among the letters in X , there is one on the index
set {k; k ≥ 1}. There therefore exists a natural notion of a distribution P = {pk} having a thinner
tail than that of another distribution Q = {qk}, in the sense of pk ≤ qk for all k ≥ k0 for some
integer k0 ≥ 1, when P and Q share a same alphabet and are enumerated by a same index set. In
such a case, we will subsequently say that P has a thinner tail than Q in the usual sense. Finally,
we note that the discussion of domains of attraction for continuous random variables very much
hinges on a well-defined extreme value, which is lacking on alphabets, and the differentiability of
its cumulative distribution function, which is completely non-existent due to the discrete nature
of alphabets. As a result of these characteristics, let us adopt the notation of an out-of-sample ex-
treme value as described above. We may then entertain the probability of Xn+1 being an extreme
value, i.e., P(

⋂n
i=1{Xn+1 �= Xi}), which is, after a few algebraic steps,

ζ1,n =
∑
k≥1

pk(1 − pk)
n.

Remark 1. ζ1,n is a member of the family of the generalized Simpson’s indices ζu,v discussed by
Zhang and Zhou [11] which plays an important role in characterizing the underlying distribution
{pk} (up to a permutation on the index set) and in giving alternative representations to Shannon’s
entropy and Rényi’s entropy, which are well-known tail indices on an alphabet, as discussed in
Zhang [9].

Clearly, ζ1,n → 0 as n → ∞ for any probability distribution {pk} on X . A multiplicatively
adjusted version of ζ1,n is defined below and will subsequently be referred to as the tail index.

τn = nζ1,n =
∑
k≥1

npk(1 − pk)
n. (1)

Remark 2. Suppose there are two independent samples of i.i.d. random variables of the same
size n. The tail index τn in (1) may also be interpreted as the expected number of observations in
one sample that are not found in the other sample.

On an intuitive level, τn is reflective of tail characteristics (or tail-relevant) since ζ1,n is tail-
relevant. To see that ζ1,n is tail-relevant, let us first consider π0 = ∑

k≥1 pk1[p̂k = 0]. 1 − π0 is
often referred to as the sample coverage of a population in the literature. Since the letters not
represented in a large sample are likely those with low probabilities, it is reasonable to think that
π0 is a tail-relevant quantity for a large n; and yet ζ1,n = E(π0). Intuitively one would expect
π0 to take a smaller (larger) value under a more (less) concentrated probability distribution, and
therefore to expect ζ1,n, and hence τn, to be a reasonable measure to characterize the tail of a
distribution on an alphabet. Also to be noted is that, for any given integer k0 ≥ 1, the first k0
terms in the re-expression of τn below converges to zero exponentially fast as n → ∞

τn =
∑
k≤k0

npk(1 − pk)
n +

∑
k>k0

npk(1 − pk)
n,
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and therefore the asymptotic behavior of τn has essentially nothing to do with how the probabili-
ties are distributed over any fixed and finite subset of X , further noting that τn is invariant under
any permutation on the index set {k}.

Domains of attraction for distributions of continuous random variables are a long-standing
focal point of the extreme value theory. The large volume of research on this topic in the existing
literature goes back to Fréchet [3] and Fisher and Tippett [2], and includes full analyses by
Gnedenko [5] and Smirnov [8]. There the three main domains of attraction are defined along the
lines of Fréchet family (thick tails), Gumbel family (thin tails) and Weibull family (no tails). For
a comprehensive review on the topic, readers may wish to refer to de Haan and Ferreira [1]. The
main objective of this paper is to similarly characterize many distributions on alphabets by the
indices {τn, n ≥ 1} into three domains, Domain 0 (no tails), Domain 1 (thin tails), and Domain 2
(thick tails).

Definition 1. A distribution P = {pk} on X is said to belong to:

1. Domain 0 if limn→∞ τn = 0,
2. Domain 1 if lim supn→∞ τn = cP for some constant cP > 0,
3. Domain 2 if limn→∞ τn = ∞, and
4. Domain T , or Domain Transient, if it does not belong to Domains 0, 1, or 2.

The four domains so defined above form a partition of P . The primary results established in
this paper include:

1. Domain 0 does and only does include probability distributions with positive probabilities
on a finite subset of X .

2. Domain 1 includes distributions with thin tails such as pk ∝ a−λk , pk ∝ a−λk2
, and pk ∝

kra−λk where a > 1, λ > 0 and r ∈ (−∞,∞).
3. Domain 2 includes distributions with thick tails such as pk ∝ k−λ and pk ∝ (k lnλ k)−1

where λ > 1.
4. A relative regularity condition between two distributions (one dominates the other) is de-

fined. Under this condition, all distributions on a countably infinite alphabet, that are dominated
by a Domain 1 distribution, must also belong to Domain 1.

5. Domain T is not empty.

The secondary results established in this paper include:

1. In Domain 0, τn → 0 exponentially fast for every distribution.
2. The tail index τn of a distribution with tail pk ∝ e−λk where λ > 0 in Domain 1 perpetually

oscillates between two positive constants and does not have a limit as n → ∞.
3. There is a uniform positive lower bound for lim supn→∞ τn for all distributions with posi-

tive probabilities on infinitely many letters of X .

All above mentioned results are given in Section 2. Section 3 includes several constructed
examples, each of which illustrates a point of interest. Section 4 includes a brief discussion on
the statistical implication of the established results, along with several other remarks. The paper
ends with the Appendix where several lengthy proofs are found.
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2. Main results

Let K be the effective cardinality, or simply the cardinality when there is no ambiguity, of X ,
i.e., K = ∑

k 1[pk > 0].
Lemma 1. If K = ∞, then there exist a constant c > 0 and a subsequence {nk; k ≥ 1} in N,
satisfying nk → ∞ as k → ∞, such that τnk

> c for all sufficiently large k.

A proof of Lemma 1 is given in the Appendix.

Theorem 1. K < ∞ if and only if

lim
n→∞ τn = 0. (2)

Proof. Assuming that P = {pk;1 ≤ k ≤ K} where K is finite and pk > 0 for all k, 1 ≤ k ≤ K ,
and denoting p0 = min{pk;1 ≤ k ≤ K} > 0, the necessity of (2) follows the fact that as n → ∞

τn = n

K∑
k

pk(1 − pk)
n ≤ n

K∑
k

pk(1 − p0)
n = n(1 − p0)

n → 0.

The sufficiency of (2) follows the fact that, if K = ∞, then Lemma 1 would provide a contradic-
tion to (2). �

In fact the proof of Theorem 1 also establishes the following corollary.

Corollary 1. K < ∞ if and only if τn ≤O(nqn
0 ) where q0 is a constant in (0,1).

Theorem 1 and Corollary 1 firmly characterize Domain 0 as a family of distributions on finite
alphabets. All distributions outside of Domain 0 must have positive probabilities on infinitely
many letters of X . The entire class of such distributions is denoted as P+. In fact in the sub-
sequent text when there is no ambiguity P+ will denote the entire class of distributions with
a positive probability on every �k in X . For all distributions in P+, a natural group would be
those for which limn τn = ∞ and so Domain 2 is defined.

The following three lemmas are useful in the proof of Theorem 2 below which puts dis-
tributions with a power decaying or a slower tail in Domain 2. Lemma 2 is a version of the
well-known Euler–Maclaurin formula and therefore is referred to as the Euler–Maclaurin lemma
subsequently.

Lemma 2 (Euler–Maclaurin). Let fn(x) be a continuous function of x on [x0,∞) where x0
is a positive integer. Suppose fn(x) is increasing on [x0, x(n)] and decreasing on [x(n),∞). If
fn(x0) → 0 and fn(x(n)) → 0 as n → ∞, then

lim
n→∞

∑
k≥x0

fn(k) = lim
n→∞

∫ ∞

x0

fn(x) dx.
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A proof of Lemma 2 is given in the Appendix.
The next lemma includes three trivial but useful facts.

Lemma 3. 1. For any real number p ∈ [0,1), 1 − p ≥ exp(− p
1−p

).

2. For any real number p ∈ (0,1/2), 1
1−p

< 1 + 2p.
3. For any real number p ∈ [0,1], the function fn(p) = np(1 − p)n increases in p over the

interval [0,1/(n + 1)], attains its maximum value of [1 − 1/(n + 1)]n+1 at p = 1/(n + 1), and
decreases over the interval [1/(n + 1),1].

A proof of Lemma 3 is given in the Appendix.

Lemma 4. For any given probability distribution P = {pk; k ≥ 1}, as n → ∞,

n1−δ
∑
k≥1

pk(1 − pk)
n → c > 0

for some constants c > 0 and δ ∈ (0,1), if and only if

n1−δ
∑
k≥1

pke
−npk → c > 0.

A proof of Lemma 4 is given in the Appendix.

Theorem 2. For any given probability distribution P = {pk; k ≥ 1}, if there exists constants
λ > 1, c > 0 and integer k0 ≥ 1 such that for all k ≥ k0

pk ≥ ck−λ, (3)

then limn→∞ τn = ∞.

A proof of Theorem 2 is given in the Appendix.
Theorem 2 puts distributions with power decaying tails, for example pk = cλk

−λ, and those
with slower decaying tails, for example pk = cλ(k lnλ k)−1, where λ > 1 and cλ > 0 is a constant
which may depend on λ, in Domain 2.

In view of Lemma 1, and Theorems 1 and 2, Domain 1 has a more intuitive definition as given
in the following lemma, the proof of which is trivial.

Lemma 5. A distribution P on X belongs to Domain 1 if and only if (1) the effective cardinality
of X is K = ∞, and (2) τn ≤ uP for all n and some constant uP > 0 which may depend on P .

The next lemma identifies an important member of Domain 1. An outline of its proof was
provided by Professor Stanislav A. Molchanov of the University of North Carolina at Charlotte.

Lemma 6. For any P = {pk} ∈ P+, if there exists an integer k0 ≥ 1 such that pk = c0e
−k for

all k ≥ k0 where c0 > 0 is a constant, then:
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1. τn ≤ u for some upper bound u > 0; and
2. limn→∞ τn does not exist.

A proof of Lemma 6 is given in the Appendix.
A similar proof to that of Lemma 6 immediately gives Theorem 3 below with a slightly more

general statement.

Theorem 3. For any given probability distribution P = {pk; k ≥ 1}, if there exists constants
a > 1 and integer k0 ≥ 1 such that for all k ≥ k0

pk = ca−k, (4)

then

1. τn ≤ ua for some upper bound ua > 0 which may depend on a; and
2. limn→∞ τn does not exist.

Theorem 3 puts distributions with tails of geometric progression, for examples pk = cλe
−λk

where λ > 0 and cλ > 0 are constants and pk = 2−k , in Domain 1.
Next, we develop a notion of relative dominance of one probability distribution over another

on a countable alphabet within P+. Let #A denote the cardinality of a set A.

Definition 2. Let Q∗ ∈ P+ and P ∈ P+ be two distributions on X , and let Q = {qk} be a
non-increasingly ordered version of Q∗. Q∗ is said to dominate P if

#
{
i;pi ∈ (qk+1, qk], i ≥ 1

} ≤ M < ∞
for every k ≥ 1, where M is a finite positive integer.

It is easy to see that the notion of dominance by Definition 2 is a tail property, and that it
is transitive, i.e., if P1 dominates P2 and P2 dominates P3 then P1 dominates P3. It says in
essence that, if P is dominated by Q, then the pis do not get overly congregated locally into
some intervals defined by the qks.

The following examples shed a bit of intuitive light on the notion of dominance by Definition 2.

Example 1. Let pk = c1e
−k2

and qk = c2e
−k for all k ≥ k0 for some integer k0 ≥ 1 and other two

constants c1 > 0 and c2 > 0. For every sufficiently large k, suppose pj = c1e
−j2 ≤ qk = c2e

−k ,
then −j2 ≤ ln(c2/c1) − k and j + 1 ≥ [k + ln(c1/c2)]1/2 + 1. It follows that

pj+1 = c1e
−(j+1)2 ≤ c1e

−(
√

k+ln(c1/c2)+1)2 = c1e
−(k+ln(c1/c2)+1)−2

√
k+ln(c1/c2)

= c2e
−(k+1)−2

√
k+ln(c1/c2) = c2e

−(k+1)e−2
√

k+ln(c1/c2) ≤ c2e
−(k+1) = qk+1.

This means that if pj ∈ (qk+1, qk] then necessarily pj+1 /∈ (qk+1, qk], which implies that each
interval (qk+1, qk] can contain only one pj at most for a sufficiently large k, that is, k ≥ k00 :=
max{k0, ln(c2/c1)}. Since there are only finite pj s covered by

⋃
1≤k<k00

(qk, qk+1], Q = {qk}
dominates P = {pi}.
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Example 2. Let pk = c1a
−k and qk = c2b

−k for all k ≥ k0 for some integer k0 ≥ 1 and other
two constants a > b > 1. For every sufficiently large k, suppose pj = c1a

−j ≤ qk = c2b
−k , then

−j lna ≤ ln(c2/c1) − k lnb and j + 1 ≥ k(lnb/ lna) + 1 + ln(c1/c2)/ lna. It follows that

pj+1 = c1a
−(k(lnb/lna)+1+(ln(c1/c2)/lna)) = c1a

−(k loga b+1+(ln(c1/c2)/lna))

= c1b
−ka−1a−(ln(c1/c2)/lna) ≤ c1b

−(k+1)a− loga(c1/c2) = c2b
−(k+1) = qk+1.

By a similar argument as that in Example 1, Q = {qk} dominates P = {pi}.

Example 3. Let pk = c1k
−re−λk for some integer k0 ≥ 1 and constants λ > 0 and r > 0, and

qk = c2e
−λk for all k ≥ k0. Suppose for a k ≥ k0 there is a j such that pj = c1j

−re−λj ∈ (qk+1 =
c2e

−λ(k+1), qk = c2e
−λk], then

pj+1 = c1(j + 1)−re−λ(j+1) = c1(j + 1)−re−λj e−λ ≤ c1j
−re−λj e−λ

≤ c2e
−λke−λ = qk+1,

which implies that there is at most one pj in (qk+1, qk] for every sufficiently large k. Therefore
Q = {qk} dominates P = {pi}.

Example 4. Let pk = c1k
re−λk for some integer k0 ≥ 1 and constants λ > 0 and r > 0, and

qk = c2e
−(λ/2)k for all k ≥ k0. Suppose for any sufficiently large j , j ≥ j0 := [eλ/(2r) − 1]−1,

we have pj = c1j
re−λj ∈ (qk+1 = c2e

−(λ/2)(k+1), qk = c2e
−(λ/2)k] for some sufficiently large

k ≥ k0, then

pj+1 = c1(j + 1)re−λ(j+1) = c1(j + 1)re−λj e−λ = c1j
re−λj e−λ (j + 1)r

j r

≤ c2e
−(λ/2)ke−λ

(
j + 1

j

)r

= c2e
−(λ/2)(k+1)e−λ/2

(
j + 1

j

)r

≤ qk+1e
−λ/2

(
j0 + 1

j0

)r

= qk+1,

which implies that there is at most one pj in (qk+1, qk] for every sufficiently large k. Therefore,
Q = {qk} dominates P = {pi}.

Example 5. Let pk = qk for all k ≥ 1. Q = {qk} and P = {pk} dominate each other.

While in each of Examples 1 through 4, the dominating distribution Q has a thicker tail
than P in the usual sense, the dominance of Definition 2 in general is not implied by such
a thinner/thicker tail relationship. This is so because a distribution P ∈ P+, satisfying pk ≤
qk for all sufficiently large k, could exist yet congregate irregularly to have an unbounded
supk≥1 #{pi;pi ∈ (qk+1, qk], i ≥ 1}. One such example is given in Section 3 below. In this re-
gard, the dominance of Definition 2 is more appropriately considered as a regularity condition.
However, it may be interesting to note that the said regularity is a relative one in the sense that
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the behavior of P is regulated by a reference distribution Q. This relative regularity gives an
umbrella structure in Domain 1 as demonstrated by the theorem below.

Theorem 4. If two distributions P and Q in P+ on a same countably infinite alphabet X are
such that Q is in Domain 1 and P is dominated by Q, then P belongs to Domain 1.

Proof. Without loss of generality, it may be assumed that Q is non-increasingly ordered. For
every n, there exists a kn such that 1

n+1 ∈ (qkn+1, qkn]. Noting part 3 of Lemma 3, consider

τn(P ) =
∑
k≥1

npk(1 − pk)
n

=
∑

k;pk≤qkn+1

npk(1 − pk)
n +

∑
k;qkn+1<pk≤qkn

npk(1 − pk)
n +

∑
k;pk>qkn

npk(1 − pk)
n

≤ M
∑

k≥kn+1

nqk(1 − qk)
n +

∑
k;qkn+1<pk≤qkn

e−1 + M
∑

1≤k≤kn

nqk(1 − qk)
n

= M
∑
k≥1

nqk(1 − qk)
n +

∑
k;qkn+1<pk≤qkn

e−1

≤ Mτn(Q) + Me−1 < ∞.

The desired result immediately follows. �

Corollary 2. Any distribution P on a countably infinite alphabet X satisfying pk = ae−λk ,
pk = be−λk2

, or pk = ckre−λk for all k ≥ k0, where k0 ≥ 1, λ > 0, r ∈ (−∞,+∞), a > 0, b > 0
and c > 0 are constants, is in Domain 1.

Proof. The result is immediate following Theorem 4 and Examples 1 through 4. �

3. Constructed examples

The first constructed example shows that the notion of thinner tail, in the sense of pk ≤ qk for
k ≥ k0 where k0 ≥ 1 is some fixed integer and P = {pk} and Q = {qk} are two distributions, does
not imply a dominance of Q over P .

Example 6. Consider any strictly decreasing distribution Q = {qk; k ≥ 1} ∈ P+ and the follow-
ing grouping of the index set {k; k ≥ 1}.
G1 = {1}, G2 = {2,3}, . . . , Gm = {

m(m − 1)/2 + 1, . . . ,m(m − 1)/2 + m
}
, . . . .

{Gm;m ≥ 1} is a partition of the index set {k; k ≥ 1} and each group Gm contains m consecutive
indices. A new distribution P = {pk} is constructed according to the following steps:
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1. For each m ≥ 2, let pk = qm(m−1)/2+m for all k ∈ Gm.
2. p1 = 1 − ∑

k≥2 pk .

In the first step, m(m − 1)/2 + m = m(m + 1)/2 is the largest index in Gm and therefore
qm(m+1)/2 is the smallest qk with index k ∈ Gm. Since

0 ≤
∑
k≥2

pk =
∑
m≥2

mqm(m+1)/2 <
∑
k≥2

qk ≤ 1,

p1 so assigned is a probability. The distribution P = {pk} satisfies pk ≤ qk for every k ≥ 2 = k0.
However the number of terms of pi in the interval (qm(m+1)/2+1, qm(m+1)/2] is at least m and it
increases indefinitely as m → ∞; and hence Q does not dominate P .

The second constructed example shows that the notion of the dominance of Q = {qk} over
P = {pk}, as defined in Definition 2, does not imply that P has thinner tail than Q, in the sense
of pk ≤ qk for k ≥ k0 where k0 ≥ 1 is some fixed integer.

Example 7. Consider any strictly decreasing distribution Q = {qk; k ≥ 1} ∈ P+ and the follow-
ing grouping of the index set {k; k ≥ 1}

G1 = {1,2}, G2 = {3,4}, . . . , Gm = {2m − 1,2m}, . . . .
{Gm;m ≥ 1} is a partition of the index set {k; k ≥ 1} and each group Gm contains 2 consecutive
indices, the first one odd and the second one even. The construction of a new distribution P =
{pk} is as follows: for each group Gm with its two indices k = 2m − 1 and k + 1 = 2m, let
pk = pk+1 = (qk + qk+1)/2. With the new distribution P = {pk} so defined, we have p2m < q2m

and p2m−1 > q2m−1 for all m ≥ 1. Clearly Q dominates P (P dominates Q as well), but P does
not have a thinner tail in the usual sense.

At this point, it becomes clear that the notation of dominance of Definition 2 and the notation
of thinner/thicker tail in the usual sense are two independent notions.

The next constructed example below shows that there exists a distribution such that the asso-
ciated τn approaches infinity along one subsequence of n and is bounded above along another
subsequence of n, hence belonging to Domain T . Domain T is not empty.

Example 8. Consider the probability sequence qj = 2−j , for j = 1,2, . . . , along with a diffusion
sequence di = 2i , for i = 1,2, . . . . A probability sequence {pk}, for k = 1,2, . . . , is constructed
by the following steps:

1st: (a) Take the first value of di , d1 = 21, and assign the first 2d1 = 22 = 4 terms of qj ,
q1 = 2−1, q2 = 2−2, q3 = 2−3, q4 = 2−4, to the first 4 terms of pk , p1 = 2−1,p2 =
2−2,p3 = 2−3,p4 = 2−4.

(b) Take the next unassigned term in qj , q5 = 2−5, and diffuse it into d1 = 2 equal terms,
2−6 and 2−6.
(i) Starting at q5 in the sequence {qj }, look forwardly (j > 5) for terms greater or

equal to 2−6, if any, continue to assign them to pk . In this case, there is only one
such term q6 = 2−6 and it is assigned to p5 = 2−6.
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(ii) Take the d1 = 2 diffused terms and assign them to p6 = 2−6 and p7 = 2−6. At
this point, the first few terms of the partially assigned sequence {pk} are

p1 = 2−1, p2 = 2−2, p3 = 2−3,

p4 = 2−4, p5 = 2−6, p6 = 2−6, p7 = 2−6.

2nd: (a) Take the next value of di , d2 = 22, and assign the next 2d2 = 23 = 8 unused terms of
qj , q7 = 2−7, . . . , q14 = 2−14, to the next 8 terms of pk , p8 = 2−7, . . . , p15 = 2−14.

(b) Take the next unassigned term in qj , q15 = 2−15, and diffuse it into d2 = 4 equal
terms of 2−17 each.
(i) Starting at q15 in the sequence of {qj }, look forwardly (j > 15) for terms greater

or equal to 2−17, if any, continue to assign them to pk . In this case, there are 2
such terms q16 = 2−16 and q17 = 2−17, and they are assigned to p16 = 2−16 and
p17 = 2−17.

(ii) Take the d2 = 22 = 4 diffused terms and assign them to p18 = 2−17, . . . , p21 =
2−17. At this point, the first few terms of the partially assigned sequence {pk}
are

p1 = 2−1, p2 = 2−2, p3 = 2−3, p4 = 2−4,

p5 = 2−6, p6 = 2−6, p7 = 2−6,

p8 = 2−7, p9 = 2−8, . . . , p15 = 2−14, p16 = 2−16,

p17 = 2−17, p18 = 2−17, . . . , p21 = 2−17.

ith: (a) In general, take the next value of di , say di = 2i , and assign the next 2di = 2i+1

unused terms of qj , say qj0 = 2−j0, . . . , qj0+2i+1−1 = 2−(j0+2i+1−1), to the next

2di = 2i+1 terms of pk , say pk0 = 2−j0, . . . , pk0+2i+1−1 = 2−(j0+2i+1−1).

(b) Take the next unassigned term in qj , qj0+2i+1 = 2−(j0+2i+1), and diffuse it into di =
2i equal terms, 2−(j0+i+2i+1) each.
(i) Starting at qj0+2i+1 in the sequence of {qj }, look forwardly (j > j0 + 2i+1) for

terms greater or equal to 2−(j0+i+2i+1), if any, continue to assign them to pk .
Denote the last assigned pk as pk0 .

(ii) Take the di = 2i diffused terms and assign them to pk0+1 = 2−(j0+i+2i+1), . . . ,

pk0+2i = 2−(j0+i+2i+1).

In essence, the sequence {pk} is generated based on the sequence {qj } with infinitely many
selected j ’s at each of which qj is diffused into increasingly many equal probability terms ac-
cording a diffusion sequence {di}. The diffused sequence is then rearranged in a non-increasing
order. By construction, it is clear that the sequence {pk; k ≥ 1}, satisfies the following properties:

A1: {pk} is a probability sequence in a non-increasing order.
A2: As k increases, {pk} is a string of segments alternating between two different types:

(1) a strictly decreasing segment and (2) a segment (a run) of equal probabilities.
A3: As k increases, the length of the last run increases and approaches infinity.
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A4: In each run, there are exactly di + 1 equal terms, di of which are diffused terms and 1 of
which belongs to the original sequence qj .

A5: Between two consecutive runs (with lengths di +1 and di+1 +1 respectively), the strictly
decreasing segment in the middle has at least 2di+1 = 4di = di + 3di > di + di+1 terms.

A6: For any k, 1/pk is a positive integer.

Next, we want to show that there is a subsequence {ni} ∈ N such that τni
defined with {pk}

approaches infinity. Toward that end, consider the subsequence {pki
; i ≥ 1} of {pk} where the

index ki is such that pki
is first term in the ith run segment. Let {ni} = {1/pki

} which by A6 is a
subsequence of N. By A3 and A4,

τni
= ni

∑
k≥1

pk(1 − pk)
ni

> ni(di + 1)pki
(1 − pki

)ni

= (di + 1)

(
1 − 1

ni

)ni

→ ∞.

Consider next the subsequence {pki−(di+1); i ≥ 1} of {pk} where the index ki is such that pki

is first term in the ith run segment, and therefore pki−(di+1) is the (di + 1)th term counting
backwards from pki−1, into the preceding segment of at least 2di strictly decreasing terms. Let
{mi} = {1/pki−(di+1) − 1} (so pki−(di+1) = (mi + 1)−1) which by A6 is a subsequence of N

τmi
= mi

∑
k≥1

pk(1 − pk)
mi

= mi

∑
k≤ki−(di+1)

pk(1 − pk)
mi + mi

∑
k≥ki−di

pk(1 − pk)
mi := tmi ,1 + tmi ,2.

Before proceeding further, let us note several detailed facts. First, part 3 of Lemma 3. Sec-
ond, since pki−(di+1) = (mi + 1)−1, by A1 each summand in τmi,1 is bounded above by
mipki−(di+1)(1 − pki−(di+1))

mi and each summand in τmi,2 is bounded above by mipki−di
(1 −

pki−di
)mi . Third, by A4 and A5, for each diffused term of pk′ with k′ ≤ ki − (di + 1) in a

run there is a different non-diffused term pk′′ with k′′ ≤ ki − (di + 1) such that pk′ > pk′′ and
therefore mipk′(1 − pk′)mi ≤ mipk′′(1 − pk′′)mi ; and similarly, for each diffused term of pk′
with k′ ≥ ki − di in a run there is a different non-diffused term pk′′ with k′′ ≥ ki − di such that
pk′ < pk′′ and therefore mipk′(1 − pk′)mi ≤ mipk′′(1 − pk′′)mi . These facts imply that

τmi
= τmi,1 + τmi,2

= mi

∑
k≤ki−(di+1)

pk(1 − pk)
mi + mi

∑
k≥ki−di

pk(1 − pk)
mi

≤ 2mi

∑
j≥1

qj (1 − qj )
mi < ∞

and the last inequality above is due to Corollary 2.
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4. Concluding remarks

While the domains of attraction on alphabets have probabilistic merits, the statistical implication
is also quite significant. Zhang and Zhou [11] showed that ζ1,v is estimable (there exists at least
one unbiased estimator of ζ1,v), and established an unbiased estimator of ζ1,v for every v ≤ n−1.
Their estimator is

Z1,v = n1+v[n − (1 + v)]!
n!

∑
k≥1

[
p̂k

v−1∏
j=0

(
1 − p̂k − j

n

)]
. (5)

Therefore there readily exists an unbiased estimator of τv for every v ≤ n − 1 namely

tv = vZ1,v. (6)

Zhang and Zhou [11] also established several useful statistical properties of tv , including the
asymptotic normality and that tv is the uniformly minimum variance unbiased estimator (umvue)
when K < ∞.

The availability of tv gives much added value to the discussion of the domains of attraction
on alphabets as presented in this paper. Specifically the fact that the asymptotic behavior of τn

characterizes the tail probability of the underlying P and the fact that the trajectory of τv up to
v = n − 1 is estimable suggest that much could be revealed by a sufficiently large sample.

The three main domains of attraction identified in this paper bear a strong parallelism to
Fréchet, Gumbel and Weibull families, for continuous random variables. However the theory
in this paper is about general random elements on alphabets. While the theory can be applied to
sets of discrete and countable points on the real line as special cases, where the parallelism to
Fréchet, Gumbel and Weibull families materializes, they are only special cases. In this broader
perspective, it would not seem entirely suitable to identify the three main domains (D2,D1,D0)
as Fréchet, Gumbel and Weibull families.

The work reported in this paper is inspired by a long line of researchers going back to as far
as Gini [4] and Simpson [7]. The well-known Gini–Simpson diversity index,

ζ1,1 =
∑
k≥1

pk(1 − pk),

clearly bears resemblance to the tail index τn. In fact, when n = 1, τn = ζ1,1. Inspired by Turing’s
formula introduced by Good [6] (therefore also known as the Good–Turing formula), a weighted
version of ζ1,1, in the form of ζu,v = ∑

k≥1 pu
k (1 − pk)

v for any positive integer u and non-
negative integer v was introduced by Zhang and Zhou [11]. Zhang and Grabchak [10] showed
that {ζ1,v;v ≥ 1} and {pk; k ≥ 1} uniquely determine each other up to a permutation on the index
set, {k; k ≥ 1}. This paper shows that, along the sequence {τv = vζ1,v;v ≥ 1}, the distributions
of X splinter into domains of attraction. The term “a domain of attraction on alphabet” was
first used by Professor Stanislav A. Molchanov in a private conversation with the author after a
seminar on asymptotic normal laws for Turing’s formula given by the author in 2008. Professor
Molchanov pointed out that the normal law condition on {pk} for Turing’s formula constituted a
domain of attraction. In retrospect, that was the origin of the idea that grew into this paper.
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To honor the great minds of mathematics whose works marked the trail leading to this paper,
the author wishes to have the three domains of attraction defined in this paper to be identified
as the Gini–Simpson family (for Domain 0), the Molchanov family (for Domain 1), and the
Turing–Good family (for Domain 2).

Appendix

Proof of Lemma 1. Let us assume without loss of generality that pk > 0 for all k ≥ 1. Since
ζ1,n is invariant with respect to any permutation on the index set {k; k ≥ 1}, it can be assumed
without loss of generality that {pk} is non-increasing in k. For every k, let nk = �1/pk
. With
nk so defined, we have 1/(nk + 1) < pk ≤ 1/nk for every k and limk→∞ nk = ∞ though {nk}
may not necessarily be strictly increasing. By construction, the following are true about the nk ,
k ≥ 1:

1. {nk; k ≥ 1} is an infinite subset of N.
2. Every pk is covered by the interval (1/(nk + 1),1/nk].
3. Every interval (1/(nk + 1),1/nk] covers at least one pk and at most finitely many pks.

Let fn(x) = nx(1 − x)n for x ∈ [0,1]. fn(x) attains its maximum at x = (n + 1)−1 with value

fn

(
1

n + 1

)
= n

n + 1

(
1 − 1

n + 1

)n

=
(

n

n + 1

)n+1

→ e−1.

Also we have

fn

(
1

n

)
=

(
1 − 1

n

)n

→ e−1.

Furthermore since f ′
n(x) < 0 for (n + 1)−1 < x < 1, we have

fn

(
1

n

)
< fn(x) < fn

(
1

n + 1

)
for

1

n + 1
< x <

1

n
.

For a small but fixed ε > 0, let c = e−1 − ε. Since fn(1/n) → e−1 and fn(1/(n + 1)) → e−1,
there exists a positive Nε such that for any n > Nε , fn(1/(n + 1)) > fn(1/n) > c.

Since limk→∞ nk = ∞ and {nk} is non-decreasing, there exists an integer Kε > 0 such that
nk > Nε for all k > Kε . Consider the sub-sequence {τnk

; k ≥ 1}. For any k > Kε ,

τnk
=

∞∑
i=1

nkpi(1 − pi)
nk > fnk

(pk).

Since pk ∈ (1/(nk + 1),1/nk] and fnk
(x) is decreasing on the interval (1/(nk + 1),1/nk], we

have

fnk
(pk) > fnk

(
1

nk

)
≥ c = e−1 − ε,
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and hence τnk
> fnk

(pk) ≥ c for all k > Kε . �

Proof of Lemma 2. It can be verified that

∑
x0≤k≤x(n)

fn(k) − fn

(
x(n)

) ≤
∫ x(n)

x0

fn(x) dx ≤
∑

x0+1≤k<x(n)

fn(k) + fn

(
x(n)

)
and

∑
k>x(n)

fn(k) − fn

(
x(n)

) ≤
∫ ∞

x(n)

fn(x) dx ≤
∑

k≥x(n)

fn(k) + fn

(
x(n)

)
.

Adding the corresponding parts of the two expressions above and taking limits give

lim
n→∞

∞∑
k=x0

fn(k) − 2 lim
n→∞fn

(
x(n)

) ≤ lim
n→∞

∫ ∞

x0

fn(x) dx

≤ lim
n→∞

∞∑
k=x0

fn(k) − lim
n→∞fn(x0) + 2 lim

n→∞fn

(
x(n)

)
.

The desired result follows the conditions of the lemma. �

Proof of Lemma 3. For part 1, the function y = 1
1+t

et is strictly increasing over [0,∞), and has

value 1 at t = 0. Therefore, 1
1+t

et ≥ 1 for t ∈ [0,∞). The desired inequality follows the change
of variable p = t/(1 + t). For parts 2 and 3, the proofs are trivial. �

Proof of Lemma 4. Let δ∗ = δ/8. Consider the partition of the index set {k; k ≥ 1} = I ∪ II
where

I = {
k;pk ≤ 1/n1−δ∗}

and II = {
k;pk > 1/n1−δ∗}

.

Since pe−np has a negative derivative with respect to p on interval (1/n,1] and hence on
(1/n1−δ∗

,1] for large n, pke
−npk attains its maximum at pk = 1/n1−δ∗

for every k ∈ II. There-
fore noting that there are at most n1−δ∗

indices in II,

0 ≤ n1−δ
∑

II

pk(1 − pk)
n ≤ n1−δ

∑
II

pke
−npk

≤ n1−δ
∑

II

(
1

n1−δ∗ e−n/n1−δ∗
)

≤ n1−δn1−δ∗
(

1

n1−δ∗ e−n/n1−δ∗
)

= n1−δe−nδ∗ → 0.

Thus

lim
n→∞n1−δ

∑
k

pk(1 − pk)
n = lim

n→∞n1−δ
∑
I

pk(1 − pk)
n (7)
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and

lim
n→∞n1−δ

∑
k

pke
−npk = lim

n→∞n1−δ
∑
I

pke
−npk . (8)

On the other hand, since 1 − p ≤ e−p for all p ∈ [0,1],
n1−δ

∑
I

pk(1 − pk)
n ≤ n1−δ

∑
I

pke
−npk .

Furthermore, applying parts 1 and 2 of Lemma 3 in the first and the third steps below respec-
tively leads to

n1−δ
∑
I

pk(1 − pk)
n ≥ n1−δ

∑
I

pk exp

(
− npk

1 − pk

)

≥ n1−δ
∑
I

pk exp

(
− npk

1 − supI pk

)

≥ n1−δ
∑
I

exp
(
−2n

(
sup
I

pk

)2)
pke

−npk .

Noting the fact that limn→∞ exp(−2n(supI pk)
2) = 1 uniformly by the definition of I ,

lim
n→∞n1−δ

∑
I

pk(1 − pk)
n = lim

n→∞n1−δ
∑
I

pke
−npk ,

and hence, by (7) and (8), the lemma follows. �

Proof of Theorem 2. For clarity, the proof is given in two cases respectively:

1. pk = ck−λ for all k ≥ k0 for some k0 > 1, and
2. pk ≥ ck−λ for all k ≥ k0 for some k0 > 1.

Case 1: Assuming pk = ck−λ for all k ≥ k0, it suffices to consider the partial series∑
k≥k0

npk(1 − pk)
n. First consider

n1−1/λ
∞∑

k=k0

pke
−npk = n1−1/λ

∞∑
k=k0

ck−λe−nck−λ =
∞∑

k=k0

fn(k),

where fn(x) = n1−1/λcx−λe−ncx−λ
. Since it is easily verified that

f ′
n(x) = −λcn1−1/λx−(λ+1)

(
1 − ncx−λ

)
e−ncx−λ

,

it can be seen that, fn(x) increases over [1, (nc)1/λ] and decreases over [(nc)1/λ,∞). Let x0 = k0
and x(n) = (nc)1/λ. It is clear that fn(x0) → 0 and

fn

(
x(n)

) = n1−1/λc(nc)−1e−nc(nc)−1 = n1−1/λc(nc)−1e−1 = 1

en1/λ
→ 0.
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Invoking the Euler–Maclaurin lemma, we have, with changes of variable t = x−λ and then s =
nct ,

n1−1/λ
∞∑

k=k0

pke
−npk ∼

∫ ∞

x0

n1−1/λcx−λe−ncx−λ

dx

= c

λ

∫ x−λ
0

0
n1−1/λt−1/λe−nct dt

= c

λ
n1−1/λ

∫ x−λ
0

0
(nct)−1/λ(nc)−1+1/λe−nct d(nct)

= c

λ
n1−1/λ(nc)−1+1/λ

∫ ncx−λ
0

0
s−1/λe−s ds

= c1/λ

λ
n0

∫ ncx−λ
0

0
s−1/λe−s ds = c1/λ

λ

∫ ncx−λ
0

0
s(1−1/λ)−1e−s ds

= c1/λ

λ
	

(
1 − 1

λ

)[
1

	(1 − 1/λ)

∫ ncx−λ
0

0
s(1−1/λ)−1e−s ds

]

→ c1/λ

λ
	

(
1 − 1

λ

)
> 0.

Hence by Lemma 4, n1−1/λ
∑∞

k=1 pk(1 − pk)
n → c1/λλ−1	(1 − 1/λ) > 0 and therefore τn →

∞.
Case 2: Assuming pk ≥ ck−λ =: qk for all k ≥ k0 for some k0 ≥ 1, we observe

n1−1/λ
∑

k≥[(n+1)c]1/λ

ck−λe−nck−λ =
∑
k≥1

{
n1−1/λck−λe−nck−λ

1
[
k ≥ [

(n + 1)c
]1/λ]}

=:
∑
k≥1

fn(k).

Further let us note the following three facts: first the function f ∗
n (x) = n1−1/λcx−λe−ncx−λ

for x ∈ (1,∞) increases as x increases from 1 to reach its maximized at x∗(n) = (nc)1/λ and
then decreases as x increases to ∞; second x∗(n) = (nc)

1
λ < [(n + 1)c]1/λ = x(n); and third

f ∗
n (x) ≥ fn(x) where fn(x) = f ∗

n (x)1[x ≥ [(n + 1)c]1/λ] is a truncated version of f ∗
n (x). The

fact f ∗
n (x∗(n)) → 0 implies f ∗

n (x(n)) → 0, which in turn implies fn(x(n)) → 0. Since fn(x)

maximizes at x(n), the condition of Euler–MacLaurin lemma is satisfied. We then have

n1−1/λ
∑

k≥[(n+1)c]1/λ

ck−λe−nck−λ

= c

∫ ∞

1
n1−1/λx−λe−ncx−λ

1
[
x ≥ [

(n + 1)c
]1/λ]

dx
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= c

∫ ∞

[(n+1)c]1/λ

n1−1/λx−λe−ncx−λ

dx (9)

= c1/λλ−1	

(
1 − 1

λ

)∫ n(n+1)c2

0

1

	(1 − 1/λ)
s(1−1/λ)−1e−s ds

→ c1/λλ−1	

(
1 − 1

λ

)
> 0.

On the other hand, for sufficiently large n, let I ∗ = {k;pk ≤ 1
n+1 } ⊆ {k; k ≥ k0}. By parts 1 and

2 of Lemma 3 at steps 2 and 4 below and (9) at step 7, we have

n1−1/λ
∑
k∈I∗

pk(1 − pk)
n ≥ n1−1/λ

∑
k∈I∗

qk(1 − qk)
n

≥ n1−1/λ
∑
k∈I∗

qk exp

(
− nqk

1 − qk

)

≥ n1−1/λ
∑
k∈I∗

qk exp

(
− nqk

1 − supI∗ qk

)

≥ n1−1/λ
∑
k∈I∗

exp
(
−2n

(
sup
I∗

qk

)2)
qke

−nqk

≥ n1−1/λ
∑
k∈I∗

exp(−2/n)qke
−nqk

= exp(−2/n)n1−1/λ
∑
k∈I∗

ck−λe−nck−λ

→ c1/λλ−1	

(
1 − 1

λ

)
> 0.

Finally, τn = n
∑

k pk(1 − pk)
n ≥ n1/λn1−1/λ

∑
k∈I∗ pk(1 − pk)

n → ∞ as n → ∞. �

Proof of Lemma 6. For clarity, the proof of Lemma 6 is given in three parts: Part 1: Preliminar-
ies; Part 2: Part 1 of Lemma 6; and Part 3: Part 2 of Lemma 6.

Part 1: Preliminaries. Noting that the first finite terms of τn vanishes exponentially fast for
any distribution, we may assume, without loss of generality, that k0 = 1. For any given n, define
k∗ = k∗(n) by

pk∗+1 <
1

n + 1
≤ pk∗ . (10)

Noting

c0e
−(k∗+1) <

1

n + 1
≤ c0e

−k∗
,
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e−(k∗+1) <
1

c0(n + 1)
≤ e−k∗

,

−(
k∗ + 1

)
< − ln

(
c0(n + 1)

) ≤ −k∗ and

k∗ + 1 > ln
(
c0(n + 1)

) ≥ k∗,

we may write

k∗ = ⌊
ln

(
c0(n + 1)

)⌋
for each n. That is to say that, although k∗ is uniquely defined by any given n, each k∗ may
correspond to several consecutive integer values of n. For a given integer value k∗, let the said
consecutive integer values of n be denoted by

{nk∗ , nk∗ + 1, . . . , nk∗+1 − 1}, (11)

specifically noting (1) that nk∗ is the smallest integer value of n corresponding to k∗ by (10),
that is, k∗ = �ln(c0(n + 1))
; (2) nk∗+1 is the smallest integer value of n that satisfies k∗ + 1 =
�ln(c0(n + 1))
; and (3) nk∗+1 − 1 is the greatest integer value of n that shares the same value of
k∗ with nk∗ .

Since k∗ = k∗(n) depends on n, we may express pk∗ as, and define c(n) by,

pk∗ = c(n)

n
. (12)

At this point, let us observe the following fact: for each given k∗,

pk∗ = c(nk∗)

nk∗
= c(nk∗ + 1)

nk∗ + 1
= · · · = c(nk∗+1 − 1)

nk∗+1 − 1
. (13)

There are two main consequences of the expression in (12). The first is that τn defined in (1)
may be expressed by (15) below; and the second is that the sequence c(n) perpetually oscillates
between 1 and e. Both facts are demonstrated below.

Noting part 3 of Lemma 3, we have for any n

fn(pk) ≤ fn(pk∗), k ≤ k∗,
(14)

fn(pk) < fn(pk∗), k ≥ k∗ + 1.

For a given n, let us rewrite each pk in terms of pk∗ , and therefore in terms of n and c(n)

pk∗+i = e−i c(n)

n
and pk∗−j = ej c(n)

n

for all appropriate positive integers i and j . Therefore,

fn(pk∗+i ) = ne−i c(n)

n

(
1 − e−i c(n)

n

)n

= c(n)

ei

(
1 − c(n)

nei

)n

,

fn(pk∗−j ) = nej c(n)

n

(
1 − ej c(n)

n

)n

= c(n)ej

(
1 − c(n)ej

n

)n
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and

τn =
∑

k≤k∗−1

fn(pk) + fn(pk∗) +
∑

k≥k∗+1

fn(pk)

(15)

= c(n)

k∗−1∑
j=1

ej

(
1 − c(n)ej

n

)n

+ c(n)

(
1 − c(n)

n

)n

+ c(n)

∞∑
i=1

e−i

(
1 − c(n)

nei

)n

.

Next, we want to show that c(n) oscillates perpetually over the interval (n/(n + 1), e) which
approaches [1, e) as n increases indefinitely. This is so because, since k∗ is defined by (10), we
have

c(n)

n
e−1 ≤ 1

n + 1
≤ c(n)

n

or

e−1 <
n

n + 1
≤ c(n) ≤ n

n + 1
e < e. (16)

At this point, the fact c(n) ∈ [1, e) is established. What remains to be shown is that c(n)

oscillates perpetually in n. Toward that end, let us consider k∗(n) as a mapping, which maps
every positive integer value of n ∈ N to a positive integer value of k∗ ∈ N. The inverse of k∗(n)

maps every integer value k∗ ∈N to a set as in (11). Let

N= ∪{nk∗, nk∗ + 1, . . . , nk∗+1 − 1}, (17)

where the union is over all possible integer values of k∗. (In fact, the smallest k∗ possible is k∗ = 1
for nk∗ = 1. For this case, p1 = 1 − e−1 ≈ 0.6321, p2 = p1e

−1 ≈ 0.2325, and (1 + 1)−1 = 0.5,
therefore k∗ = 1 and n1 = 1.)

Let us make the following three observations:

1. We have c(nk∗) < c(nk∗ + 1) < · · · < c(nk∗+1 − 1). This is so because of (13): all of them
sharing the same k∗ and therefore the same pk∗ . Furthermore, the increments of increase are all
identical, namely, pk∗ .

2. Consider {nk∗; k∗ ≥ 1} where nk∗ is the smallest integer value in each partitioning set
of (17). We have c(nk∗) = nk∗pk∗ → 1. This is so because 1/nk∗ > pk∗ ≥ 1/(nk∗ + 1) or

1 − pk∗ ≤ nk∗pk∗ < 1, (18)

which implies that, nk∗pk∗ for all sufficiently large k∗ (or equivalently sufficiently large nk∗ or
sufficiently large n),

c(nk∗) = nk∗pk∗ ∈ (1 − ε,1), (19)

where ε > 0 is an arbitrarily small real value.
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3. Consider {nk∗+1 − 1; k∗ ≥ 1} where nk∗+1 − 1 is the greatest integer value in each parti-
tioning set of (17). We have c(nk∗+1 − 1) = (nk∗+1 − 1)pk∗ → e. This is so because

pk∗ = pk∗+1e = nk∗+1 − 1

nk∗+1 − 1
pk∗+1e = 1

nk∗+1 − 1

(
nk∗+1 − 1

nk∗+1

)
(nk∗+1pk∗+1)e

and therefore by (18)

c(nk∗+1 − 1) =
(

nk∗+1 − 1

nk∗+1

)
(nk∗+1pk∗+1)e → e.

At this point, it has been established that the range of c(n) for n ≥ n0, where n0 is any positive
integer, covers the entire interval [1, e).

Part 2: Part 1 of Lemma 6. Noting that e−1 ≤ c(n) ≤ e (see (16)) and that 1 − p ≤ e−p for all
p ∈ [0,1], the desired result follows the argument below

τn = c(n)

k∗−1∑
j=1

ej

(
1 − c(n)ej

n

)n

+ c(n)

(
1 − c(n)

n

)n

+ c(n)

∞∑
j=1

e−j

(
1 − c(n)

nej

)n

≤ e

k∗−1∑
j=1

ej

(
1 − ej−1

n

)n

+ e

(
1 − e−1

n

)n

+ e

∞∑
j=1

e−j

(
1 − 1

nej+1

)n

≤ e

k∗−1∑
j=1

ej e−ej−1 + e

∞∑
j=0

e−j e−e−(j+1)

≤ e2
k∗−1∑
j=1

ej−1e−ej−1 + e2
∞∑

j=0

e−(j+1)e−e−(j+1)

< e2
∞∑

j=0

ej e−ej + e2
∞∑

j=1

e−j e−e−j := u.

Part 3: Part 2 of Lemma 6. Consider, for any fixed c > 0,

τ ∗
n = c

k∗−1∑
j=1

ej

(
1 − cej

n

)n

+ c

(
1 − c

n

)n

+ c

∞∑
j=1

e−j

(
1 − c

nej

)n

.

By Dominated Convergence theorem,

τ(c) := lim
n→∞ τ ∗

n = c

∞∑
j=0

ej e−cej + c

∞∑
j=1

e−j e−ce−j

,

and τ(c) is a non-constant function in c on [1, e].
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Noting that, as k∗ increases (or equivalently nk∗ increases or n increases),

1 ← c(nk∗) < c(nk∗ + 1) < · · · < c(nk∗+1 − 1) → e

and that the increment between two consecutive terms pk∗ → 0, c(n) visits any arbitrarily small
closed interval [a, b] ⊂ [1, e] infinitely often, and therefore there exists for each such interval a
subsequence {nl; l ≥ 1} of N such that c(nl) converges, that is, c(nl) → θ for some θ ∈ [a, b].
Since τ(c) is a non-constant function on [1, e], there exist two non-overlapping closed intervals,
[a1, b1] and [a2, b2] in [1, e], satisfying

max
a1≤c≤b1

τ(c) < min
a2≤c≤b2

τ(c),

such that there exist two sub-sequences of N, said {nl; l ≥ 1} and {nm;m ≥ 1}, such that c(nl) →
θ1 for some θ1 ∈ [a1, b1] and c(nm) → θ2 for some θ2 ∈ [a2, b2].

Consider the limit of τn along {nl; l ≥ 1}, again by Dominated Convergence theorem,

lim
nl→∞ τnl

= lim
nl→∞

[
c(nl)

k∗−1∑
j=0

ej

(
1 − c(nl)e

j

n

)n

+ c(nl)

∞∑
j=1

e−j

(
1 − c(nl)

nej

)n
]

= θ1

∞∑
j=0

ej e−θ1e
j + θ1

∞∑
j=1

e−j e−θ1e
−j = τ(θ1).

A similar argument gives limnm→∞ τnm = τ(θ2), but τ(θ1) �= τ(θ2) by construction, and hence
limn→∞ τn does not exist. �
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