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We analyze the storage capacity of the Hopfield models on classes of random graphs. While such a setup
has been analyzed for the case that the underlying random graph model is an Erdös–Renyi graph, other
architectures, including those investigated in the recent neuroscience literature, have not been studied yet.
We develop a notion of storage capacity that highlights the influence of the graph topology and give results
on the storage capacity for not too irregular random graph models. The class of models investigated includes
the popular power law graphs for some parameter values.
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1. Introduction

Thirty years ago, in 1982, Hopfield introduced a toy model for a brain that renewed the interest
in neural networks and has nowadays become popular under the name Hopfield model [18].
This model in its easiest version assumes that the neurons are fully connected and have Ising-
type activities, that is, they take the values +1, if a neuron is firing and −1, if it is not, and is
based on the principles of statistical mechanics. Since Hopfield’s ground-breaking work, it has
stimulated a large number of researchers from the areas of computer science, theoretical physics
and mathematics.

In the latter field, the Hopfield model is particularly challenging, since it also can be consid-
ered as a spin glass model and spin glasses are notoriously difficult to study. A survey over the
mathematical results in this area can be found in either [4] or [37]. It is worth mentioning that
even in the parameter region where no spin glass phase is expected, the Hopfield model still has
to offer surprising phenomena such as in [17].

When being considered as a neural network, one of the aspects that have been discussed most
intensively is its so-called storage capacity. Here, one tries to store information, so-called patterns
in the model, and the question is, how many patterns can be successfully retrieved by the network
dynamics, that is, how much information can be stored in a model of N neurons. One of the early
mathematical results states that if the patterns are independent and identically distributed (i.i.d.
for short) and consist of i.i.d. spins and if their number M is bounded by 1

2N/ logN , the patterns
can be recalled (see [31]) with probability converging to one as N → ∞ and that the constant 1

2 is
optimal (see [3]). Similar results hold true, if one starts with a corrupted input – if more than fifty
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percent of the input spins are correct, one still is able to restore the originally “learned” patterns.
However, if one also allows for small errors in the retrieval of the patterns one obtains a storage
capacity of M = αN for some value of α smaller than 0.14 (see [24,32,36]). This latter result
is in agreement with both, computer simulations as well as the predictions of the non-rigorous
replica method from statistical physics (see [1]).

The setup of the Hopfield model has been generalized in various aspects, for example, the
condition of the independence has been relaxed (see [25,27]), patterns with more than two spins
values have been considered (see [15,26,27]), and Hopfield models on Erdös–Renyi graphs were
studied [5,6,29,36]. The present paper starts with the observation that even though being more
general than the complete graph, also Erdös–Renyi graphs do not seem to be the favorite architec-
tures for a brain for scientists working in neurobiology. There, the standard paradigm currently
is rather to model the brain as a small world graph (see [2,35]). We will focus on the question,
how many patterns can be stored in a Hopfield model on a random graph, if this graph is no
longer necessarily an Erdös–Renyi graph. The classical notion of storage capacity requires that
the patterns are fixed points of the retrieval dynamics, that is, local minima of the energy land-
scape of the Hopfield model (or, in [24,32,36], not too far apart from such minima). It turns out
that this notion is already sensitive to the architecture of the network [29]. So it is conceivable
that there is a major influence of the underlying graph structure on the model’s capability to
retrieve corrupted information. Associativity of a network can be described as the potential to
repair corrupted information. We will therefore work with a notion of storage capacity that takes
this ability into account. Moreover, the relationship between network connectivity and the per-
formance of associative memory models has already been investigated in computer simulations
(see, e.g., [8]). Therefore, the goal of the present note is to establish rigorous bounds on the stor-
age capacity of the Hopfield model on a wide class of random graph models, where we interpret
“storage” as the ability to retrieve corrupted information. Similar questions have been addressed
for the complete graph by Burshtein [7].

We organize the paper in the following way: Section 2 introduces the basic model we will be
working with in the present paper. It also addresses the question, what exactly we mean when
talking about the storage of patterns. Section 3 contains the main result of this paper. The number
of patterns one is able to store in the sense, that a number of errors that is proportional to N can be
repaired by O(logN)) steps of the retrieval dynamics is of order const.(λ1)

2/(m logN), where
λ1 is the largest eigenvalue of the adjacency matrix of the graph and m its maximal degree.
A main ingredient of the proof is thus to analyze the spectrum of the adjacency matrix of the
graph that serves as a model of the network architecture. This analysis is provided in Section 4.
Eventually, Section 5 contains the proof of the main result. An Appendix will contain estimates
on the minimum and maximum degree of an Erdös–Rényi graph. These are needed to apply our
main result to the setting of such random graphs and may also be of independent interest.

2. The model

The Hopfield model is a spin model on N ∈N spins. σ ∈ �N := {−1,+1}N describes the neural
activities of N neurons. The information to be stored in the model are patterns ξ1, . . . , ξM ∈
{−1,+1}N . As usual, we will assume that these patterns are i.i.d. and consist of i.i.d. spins (ξ

μ
i )



1886 M. Löwe and F. Vermet

with

P
(
ξ

μ
i = ±1

) = 1
2 .

Note that M may and in the interesting cases will be a function of N . The architecture of the Hop-
field model is an undirected graph G = (V ,E), where V = 1, . . . ,N . With the help of the pat-
terns and the graph, one defines the sequential dynamics S = TN ◦TN−1 ◦ · · · ◦T1 and the parallel
dynamics T = (Ti) on �N . By definition Ti only changes the ith coordinate of a configuration σ

and

S(σ ) = TN ◦ TN−1 ◦ · · · ◦ T1(σ ), T (σ ) = (
T1(σ ), . . . , TN(σ )

)
,

with Ti(σ ) = sgn

(
N∑

j=1

σjaij

M∑
μ=1

ξ
μ
i ξ

μ
j

)

(with the convention that sgn(0) = 1, e.g.). Here, aij = aji = 1 if the edge between i and j is in
E and aij = aji = 0 otherwise. The dynamics can be thought of as governing the evolution of the
system from an input toward the nearest learned pattern. ξμ being a fixed point of S (or T ) can
thus be interpreted as recognizing a learned pattern. However, this is not really what one would
call an associative memory. An important feature of the standard Hopfield model (the one where
G = KN , the complete graph on N vertices) is thus also that under certain restrictions on M

(and the number of corrupted neurons), with high probability, a corrupted version of ξμ, say ξ̃ μ

converges to ξμ when being evolved under the dynamics. This observation is also crucial for the
present paper.

We can associate Hamiltonians (or energy functions) to these dynamics by

HS
N(σ) = −Const.(N)

N∑
i,j=1

σiσjaij

M∑
μ=1

ξ
μ
i ξ

μ
j

and

HT
N (σ) = −Const.(N)

N∑
i=1

∣∣∣∣∣
N∑

j=1

σjaij

M∑
μ=1

ξ
μ
i ξ

μ
j

∣∣∣∣∣,
such that the energy will decrease along each trajectory of the dynamics:

HS
N

(
S(σ )

) ≤ HS
N

(
(σ )

)
and HT

N

(
T (σ )

) ≤ HT
N

(
(σ )

)
.

The constant is chosen in such a way that the mean free energy of the model is finite and not
constantly equal to zero.

One can easily prove that the sequential dynamics will converge to a fixed point of S and
that every fixed point of S is a local minimum of HS

N . In the parallel case, the dynamics T will
converge to a fixed point or a 2-cycle of T .

The idea of this setup is that the patterns (as well as their negatives −(ξμ),μ = 1, . . . ,M) are
hopefully possible limits of the dynamics. For instance, this is easily checked, if M ≡ 1 and G is
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the complete graph, that ξ1 is a local minimum of HS
N , since then

HS
N(σ) = −Const.(N)

(
N∑

i=1

σiξ
1
i

)2

+ Const.1(N)

and hoped to be inherited by the more general model, as long as M is small enough. Indeed, for
M = 1, the stored pattern ξ1 is still a local minimum of HS

N , if G is only connected. In this case,
one obtains that

HS
N(σ) = −Const.(N)

N∑
i,j=1

σiσjaij ξ
1
i ξ1

j = −Const.(N)XtAX

with X = (σiξ
1
i ) and A = (aij ). From here, the assertion is immediate (we are grateful to an

anonymous referee for this remark).
When considering the stability of a random pattern ξμ under S or T in the above setting, we

need to check whether Ti(ξ
μ) = ξ

μ
i holds for any i. Now

Ti

(
ξμ

) = sgn

(
N∑

j=1

aij

M∑
ν=1

ξν
i ξ ν

j ξ
μ
j

)
= sgn

(
N∑

j=1

aij ξ
μ
i +

N∑
j=1

aij

∑
ν �=μ

ξν
i ξ ν

j ξ
μ
j

)
.

That is, we have a signal term of strength d(i), the degree of vertex i (given by the first summand
on the right-hand side of the above equation) and a random noise term. The first observation is
that the network topology enters via the degrees of the nodes. Indeed in such a simple setup – the
stability of stored information – the minimum degree of the vertices is clearly decisive to compute
the models’s storage capacity: in the case where a vertex i has a small degree, the noise term will
exceed the signal term, except for a very small number of stored patterns. However, it seems to be
obvious that also global aspects, for example, whether or not the graph is connected, must play a
role. This is confirmed if we are setting up a Hopfield model on graph G consisting of a complete
graph Km (on the vertices 1, . . . ,m) and the graph KN−m on the vertices m + 1, . . . ,N with
logN 	 m 	 N and if we assume that these two subgraphs are disconnected or just connected
by one arc. Each of the vertices thus has at least degree m and it can be computed along the
lines of [31] or [33] that at least m

2 logN
patterns can be stored as fixed points of the dynamics.

However, if we try to store one pattern, for example, ξ1 with ξ1
i = 1 for all i = 1, . . . ,N , and

start with a corrupted input ξ̃1 with

ξ̃1
i =

{−1, i ≤ m,

1, m + 1 ≤ i ≤ N ,

we see that

Ti

(
ξ̃1) = ξ̃1

i .

Hence, ξ̃1 is a fixed point implying that the retrieval dynamics is not able to correct m 	 N

errors, even if we just want to store one pattern. So, if we insist that a neural network should
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also exhibit some associative abilities (and this has always been a central argument for the use of
neural networks), we have to take the graph topology into account.

This topology is encoded in the so called adjacency matrix A of G. Here, A = (aij ) and
aij = 1, if ei,j ∈ E and aij = 0 otherwise. If G is sufficiently regular, the connectivity of G

(which played an important role in the above counterexample) can be characterized in terms of
the spectral gap. To define it, let λ1 ≥ λ2 ≥ · · · ≥ λN be the (necessarily real) eigenvalues of A

in decreasing order. Define κ to be the second largest modulus of the eigenvalues, that is,

κ := max
i≥2

|λi | = max
{
λ2, |λN |}.

Then the spectral gap is the difference between the largest eigenvalue and κ , that is, λ1 − κ .
However, also the degrees of the vertices are important. Hence, let di = ∑

j aij be the degree of
vertex i. We will denote by

δ := min
i

di and m := max
i

di

the minimum and maximum degree of G, respectively.
In this paper, we will concentrate on the parallel dynamics, which is easier to handle when we

iterate the dynamics.

3. Results

We will now state the main result of the present paper.
In order to formulate it, let us define the usual Hamming distance on the space of configura-

tions �N ,

dH

(
σ,σ ′) = 1

2

[
N − (

σ,σ ′)],
where (σ,σ ′) is the standard inner product of σ and σ ′. In other words, dH counts the number
of indices where σ and σ ′ disagree. For any σ ∈ �N and 
 ∈ [0,1], let S(σ,
N) the sphere of
radius 
N centered at σ , that is,

S(σ,
N) = {
σ ′: dH

(
σ,σ ′) = [
N ]},

where [
N ] denotes the integer part of 
N .
For the rest of the paper, we will suppose that the following hypothesis is true:

(H1) There exists c1 ∈]0,1[, such that δ > c1λ1 (recall that δ is the minimum degree of the
graph G, and λ1 is the largest eigenvalue of its adjacency matrix).

Remark 3.1. Condition (H1) seems to be new. To understand it, recall that for a regular graph
with degree d the largest eigenvalue of A equals d and so does its minimum degree δ. Condi-
tion (H1) can thus be interpreted as the requirement that G is sufficiently regular. Indeed, it turns
out that, for example, for a Erdös–Rényi graph G(N,p) is fulfilled, if and only if p � logN

N
, that

is, when the graph is fully connected. Hence, for Erdös–Rényi graphs condition (H1) rules out
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the sparse case, when the graph is not only disconnected asymptotically almost surely, but also
very irregular, in the sense that the degree distribution is a Poisson distribution and the relative
fluctuations of the degrees are large. Moreover, it will turn out that also certain power law graphs
satisfy condition (H1).

We will need a second condition that keeps track on how well the graph is connected.

(H2) We say that a graph satisfies (H2), if the following relation holds between the largest
eigenvalue λ1 of the adjacency matrix and the modulus of its second largest eigen-
value κ :

λ1 ≥ c log(N)κ (3.1)

for some c > 0 large enough.

Remark 3.2. Roughly speaking, condition (3.1) reveals connectivity properties of the underlying
graph. Clearly, it holds for the complete graph KN , where λ1 = N − 1 and all the other eigenval-
ues are equal to −1. Also, as pointed out below, condition (3.1) is fulfilled for an Erdös–Rényi
random graph, if p is large enough, since the spectral gap, that is, the difference between the
largest and the second largest modulus of an eigenvalue is of order Np(1 − 1/

√
Np).

To understand, that indeed (3.1) can be interpreted as a measure for the connectivity of the
graph, assume for a moment that the graph were d-regular. Then λ1 = d . If the graph is discon-
nected, there is (at least) one more eigenvalue equal to one, and hence (3.1) cannot hold. More
generally, for a regular graph, the spectrum of the adjacency matrix can be computed from the
spectrum of the Laplacian. On the other hand, the spectral gap of the Laplacian can be estimated
by Poincaré or Cheeger type inequalities (see [12]), which roughly state that the spectral gap of
the Laplacian is small, if there are vertex sets of large volume, but small surface, or if the graph
has small bottlenecks. Both quantities are a measure for how well the graph is connected.

Under the above conditions, we will prove, that we can store a number M of patterns depend-
ing on λ1 and the spectral gap of A – even in the sense that the dynamics T repairs a corrupted
input. Mathematically speaking, we show the following.

Theorem 3.3. With the notation introduced in Section 2, if (H1) and (H2) are satisfied, then
there exists αc > 0 and 
1 ∈]0,1/2[ such that if

M = α
λ2

1

m logN
− κλ1

m
,

for some α < αc, then that for all 
 ∈]0, 
1] we obtain

P
[∀μ = 1, . . . ,M,∀x s.t. dH

(
x, ξμ

) ≤ 
N : T k(x) = ξμ
] → 1 as N → ∞,

for any k ≥ C(max{log logN,
log(N)

log(λ1/(κ log(N)))
}) for a sufficiently large constant C.

Here, T k is defined as the kth iterate of the map T .
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In other words, Theorem 3.3 states that we are able to store the given number of patterns in
such a way that a number of errors that is proportional to N can be repaired by a modest (at most
O(logN)) number of iterations of the retrieval dynamics. The number of patterns depends on
the largest eigenvalue and the spectral gap of the adjacency matrix and is larger for large spectral
gaps.

Before advancing to the proof, we will apply this result to some classical models of random
and non-random graphs.

Corollary 3.4. If G = KN , that is, in the case of the classical Hopfield model, the storage capac-
ity in the sense of Theorem 3.3 is M = α N

logN
for some constant α. The number of steps needed

to repair a corrupted input is of order O(log logN).

Proof. The complete graph is regular, hence condition (H1) is satisfied. From Theorem 3.3,
we obtain the numerical values for M and the number of steps by observing that in the case
of the complete graph the eigenvalues of A are N − 1 and −1 (the latter being an N − 1-fold
eigenvalue). �

Remark 3.5. It should be remarked that similar results were obtained by Komlos and Paturi [21].
In [22], even the case of regular graphs is treated. The results of these two authors were proba-
bly inspired by the results in [31], where the maximum number of patterns that are (with high
probability) fixed points of the retrieval dynamics is determined. A similar result to [21] for the
Hopfield model on the complete graph is due to Burshtein [7], who shows that the capacity of
the Hopfield model obtained in [31] does not change, if one starts with corrupted patterns and
allows for several reconstruction steps. Also, a bound for the number of necessary steps is given.
These results are closely related to our result, and actually Burshtein is able to determine our α in
the case of the Hopfield model on the complete graph. However, while he is working only with
a random corrupted input, we consider a worst case scenario since we require that all vectors
at distance [
N ] from the originally stored pattern are attracted to this pattern by the retrieval
dynamics. A similar result for a Hopfield model with q > 2 different states was proven in [28].

These results are to be contrasted to the findings in [24,32] or [36]. There, one is satisfied
with a corrupted input being attracted to some point “close” to the stored pattern. Naturally, the
resulting capacities are larger. Also, a bound on the number of iterations until this point is reached
is not given.

We mainly want to apply our results to some random architectures, that is, G will be the
realization of some random graph. The most popular model of a random graph is the Erdös–
Renyi graph G(N,p). Here, all the possible

(
N
2

)
edges occur with equal probability p = p(N)

independently of each other. Hopfield models on G(N,p) have already been discussed in [5,36]
or [29].

Here, we obtain the following corollary.

Corollary 3.6. If G is chosen randomly according to the model G(N,p), then if p ≥ c0
(logN)2

N

for some c0 > 0, for a set of realizations of G the probability of which converges to one as N →
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∞, the capacity (in the above sense) of the Hopfield model is cpN/ log(N) for some constant
c > 0.

Proof. For the eigenvalues of an Erdös–Rényi graph, it is well known that with probability con-
verging to 1, as N → ∞ (such a statement in random graph theory is said to hold asymptotically
almost surely), λ1 = (1 + o(1))Np and κ ≤ c

√
Np (see, e.g., [14,16,23] and these facts were

also used in [29]). Moreover, we can control the minimum and maximum degree in G(N,p).
Indeed, for our values of p we have m = (1 + o(1))Np and δ = (1 + o(1))Np asymptotically
almost surely. Surprisingly, we could not find this result in the literature, and thus proved it in the
Appendix.

Hence, (H1) is satisfied. �

Remark 3.7. As mentioned above, the Hopfield model on an Erdös–Rényi graph has already
been discussed in [5,36] or [29]. The first two of these papers treat the case of rather dense

graphs, more precisely the regime of p ≥ const.
√

logN
N

. This regime seems to be a bit artificial,

since a realization of G(N,p) is already connected, once p is larger than logN
N

. The regime of

const.1
logN

N
≤ p ≤ const.2

√
logN

N
was analyzed in [29]. However, in all of these papers the no-

tion of storage capacity is the one, where we just require stored patterns to be close to minima
of the energy function, that is, fixed points of the retrieval dynamics. As motivated above, this
notion is unable to reflect the different reconstruction abilities for various network architectures.
Corollary 3.6 deals with the notion of storage capacity introduced in Section 2; one might nat-

urally wonder, whether the restriction p ≥ c0
(logN)2

N
could be weakened or whether this is the

optimal condition, when we consider this notion of storage capacity. However, by now we do
not have an answer to this question, especially since the reverse bound on the storage capacity is
usually much harder to obtain.

The next example is one of the central results of the present paper: We analyze the Hopfield
model on an architecture that comes closer to the models used in neuroscience, the so-called
power law graphs. To introduce it, let us give a general construction of random graph models,
which is standard in graph theory (see, e.g., [10] or [9]) and nowadays referred to as the Inho-
mogeneous Random Graph (see, e.g., the very recommendable lecture notes [38]). To this end,
let i0 and N positive integers and L = {i0, i0 + 1, i0 + N − 1}. For a sequence w = (wi)i∈L, we
consider random graphs G(w) in which edges are assigned independently to each pair of vertices
(i, j) with probability

pij = 
wiwj ,

where 
 = 1/
∑

k∈L wk . We assume that

max
i

w2
i <

∑
k∈L

wk

so that pij ≤ 1 for all i and j . It is easy to see that the expected degree of i is wi . This allows
for a very general construction of random graphs. Note in particular that for wi = pN for all
i = 1, . . . ,N , one recovers the Erdös–Rényi graph.
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For notational convenience, let

d =
∑
i∈L

wi/N

be the expected average degree, m the expected maximum degree and

d̃ =
∑
i∈L

w2
i

/∑
i∈L

wi

be the so-called second-order average degree of the graph G(w). From these definitions, the
advantage of this kind of construction of a random graph becomes transparent: We are able to
construct random graphs, with expected degrees that are up to our own choice.

We now turn to a subclass of random graphs that have recently become very popular, power
law graphs [13]. Power law random graphs are random graphs in which the number of ver-
tices of degree k is proportional to 1/kβ for some fixed exponent β . It has been realized that
this “power law”-behavior is prevalent in realistic graphs arising in various areas. Graphs with
power law degree distribution are ubiquitously encountered, for example, in the internet, the
telecommunications graphs, the neural networks and many biological applications [20,34,39].
The common feature of such networks is that they are large, have small diameter, but have small
average degree. This behavior can be achieved by hubs, a few vertices with a much larger degree
than others. A possible choice would be a power law graph, where the degrees obey a power
law distribution. Keeping in mind that the G(w) model allows to build a graph model with a
given expected degree sequence, it is plausible that this model can be used to model the net-
works of the given examples. Indeed, using the G(w) model, we can build random power law
graphs in the following way. Given a power law exponent β , a maximum expected degree m,
and an average degree d , we take wi = ci−1/(β−1) for each i ∈ {i0, . . . , i0 + 1, i0 + N − 1},
with

c = β − 2

β − 1
dN1/(β−1)

and

i0 = N

(
d(β − 2)

m(β − 1)

)β−1

.

For such power law graphs, we obtain the following.

Corollary 3.8. If G is chosen randomly according to a power law graph with β > 3, then if

m � d > c
√

m
(
log(N)

)3/2

or

m � d > c
√

m
(
log(N)

)
and m � (logN)4,
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for some constant c > 0 for a set of realizations of G the probability of which converges to one as

N → ∞, the capacity (in the above sense) of the Hopfield model is C(β) d2

m log(N)
for a constant

C that only depends on β .

Remark 3.9.

• One might indeed wonder, whether the restriction of β > 3 is an artefact of our proof be-
low or whether there is some intrinsic reason, why storing become much more difficult for
β < 3. A recent paper by Jacob and Mörters [19] may shed some light on this question.
There a spatial preferential attachment graph is constructed (for details, see the construction
in [19]). It turns out that the graphs have powerlaw behavior for the degree distribution. The
parameter β depends on the parameters of the model. For their model, the authors are able
to show that for β > 3 the models exhibits clustering, that is, many triangles occur, while for
β < 3 there is no clustering. On the other hand, the storage of patterns in a Hopfield is ba-
sically a collective phenomenon for which a strong interaction of the neurons is necessary.
Clustering is a measure for such a strong interaction.

• The second condition in Corollary 3.8 basically states that we assume that there are so-called
hubs, that is, vertices with a much larger degree than the average one, but that the graph may
not be too irregular, for example, for a star graph (one vertex connected to all other vertices
that are not connected otherwise), this condition would be violated, and indeed we would
not be able to repair corrupted patterns on such a graph.

Proof of Corollary 3.8. By definition, if d 	 m, then the minimum expected degree wmin =
c(i0 + N − 1)−1/(β−1) satisfies wmin = β−2

β−1d(1 + o(1)).
From [9], we learn about the second-order average degree that

d̃ = (
1 + o(1)

) (β − 2)2

(β − 1)(β − 3)
d,

if β > 3.
On the other hand, Chung and Radcliffe prove in [11] the following: if the maximum expected

degree m satisfies m > 8
9 log(

√
2N), then with probability at least 1 − 1

N
, we have

λ1
(
G(w)

) = (
1 + o(1)

)
d̃ and κ

(
G(w)

) ≤
√

8m log(
√

2N).

We will now use the following exponential bound due to Chung and Lu. As shown by these
authors in [10], we have the following estimate, using Chernoff inequalities: for all c > 0, there
exist two constants c0, c1 > 0 such that

P
[∃i ∈ L: |di − wi | > cwi

] ≤
∑
i∈L

exp(−c0wi) ≤ exp(−c1d + logN), (3.2)

since wmin = O(d). Applying this with, for example, c = 1/2, we see (applying the Borel–
Cantelli lemma) that for almost all realizations of the random graphs, we have that for all i ∈ L,

di >
1

2
wi ≥ 1

2
wmin = 1

2

β − 2

β − 1
d
(
1 + o(1)

) = 1

2

β − 3

β − 2
λ1

(
1 + o(1)

)
,
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and thus

δ >
1

2

β − 3

β − 2

(
1 + o(1)

)
λ1,

which is (H1).
To apply Theorem 3.3, we also need to compare m to the maximum degree m of a graph G,

chosen randomly according to a power law graph with β > 3. We again use (3.2).
Under our assumption that d � logN , we deduce from this estimate that m = Cm(1 + o(1)),

for some C > 0, and we finally obtain that the capacity of the Hopfield model on power law
graphs (for a sequence of sets of graphs with probability converging to one) is at least

const.
λ2

1

m log(N)
− κλ1

m
= C(β)

d2

m log(N)
,

if, β > 3, and κ < c2
λ1

log(N)
for some c2 > 0 small enough. This is true in particular, if

√
8m log(

√
2N) < c3

d

log(N)

for some c3 small enough, that is,

d > c
√

m
(
log(N)

)3/2
.

In fact, this condition on d can be slightly weakened, if we consider the slightly stronger
condition on the maximum expected degree: m � (logN)4. Indeed, in a recent paper [30], Lu
and Peng prove that under this condition on m, we have

λ1
(
G(w)

) = (
1 + o(1)

)
d̃ and κ

(
G(w)

) ≤ 2
√

m
(
1 + o(1)

)
,

a.s., if d̃ � √
m. Finally, we get as previously a capacity of order

C(β)
d2

m log(N)
,

if m � d > c
√

m(log(N)) and m � (logN)4. �

4. Technical preparations on random graphs

We first present the results we will use in the proof of our theorem. Let G be a simple graph with
N vertices and l edges. Recall that for such a graph

λ1 ≥ · · · ≥ λN

are the (real) eigenvalues of its adjacency matrix and κ = max{λ2, |λN |}.
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We begin with an estimate of the moment generating function of a sum of i.i.d. random vari-
ables, related to G. We assign i.i.d. random variables Xi to the vertices of G, taking values ±1
with equal probability. Let us define the “quadratic form” over G

S =
∑

{i,j}∈E

XiXj .

The following theorem due to Komlos and Paturi [22] gives an upper bound on the moment
generating function of S, which appears naturally when we use an exponential Markov inequality
for an upper bound.

Theorem 4.1 ([22]). The moment generating function of S can be bounded as

E
[
e−tS

] ≤ E
[
etS

] ≤ exp

(
lt2

2(1 − λ1t)

)
,

for 0 ≤ t < 1/λ1.

Remark 4.2. The attentive reader may wonder, whether the above theorem is really difficult to
prove, as the random variables XiXj are Bernoulli random variables. However, note that they
are not independent, which is the basic difficulty in this estimate.

Not unexpectedly, a bound on the moment generating function implies a concentration of
measure result.

Corollary 4.3. For any y > 0, we have

P [S > y] ≤ exp

(
− y2

2(l + λ1y)

)
.

Proof. Apply the exponential Markov inequality together with Theorem 4.1 to see that

P [S > y] ≤ e−tyE
[
etS

] ≤ exp

(
−ty + lt2

2(1 − λ1t)

)
,

for 0 ≤ t < 1/λ1. The desired estimate is obtained by the choice of t = y
l+λ1y

which is smaller
than 1/λ1. �

As we will apply this result for subgraphs in the proof of our main result, we need also an
estimate of the largest eigenvalue λ1(H) of particular subgraphs H of G. To this end, we will
quote another result by Komlos and Paturi [22].

Lemma 4.4 ([22]). Let G be a simple graph with N vertices. If I and J are two subsets of the
vertex set of G with |I | = 
N and |J | = 
′N , where 
,
′ ∈ (0,1), the number of edges e(J ; I )

going from J to I is at most

e(J, I ) ≤ [


′λ1(G) + √



′κ(G)
]
N.
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Moreover, the largest eigenvalue (of the adjacency matrix) of the graph H determined by the
edges from I to J is bounded as

λ1(H) ≤ 2
[√



′λ1(G) + (
1 − √



′)κ(G)
]
.

The proof of this lemma basically involves estimating quadratic forms by their eigenvalues
together with Cauchy’s interlacing theorem for eigenvalues of matrices. However, it is not trivial
(see the proof in [22]).

5. Proof of the main result

We are now ready to begin with the proof of Theorem 3.3. We first present an important lemma
that determines the behavior of the system for one step of the synchronous dynamics, more
precisely it controls, how many errors are corrected by one step of the dynamics.

Lemma 5.1. Recall that m denotes the maximum degree of the random graph G in question and
let


0 = exp

(
−c2

λ1

κ + Mm/λ1

)
,

for some constant c2 > 0. If M ≤ cλ1 for some constant c > 0, there exists 
1 ∈ (0, 1
2 ) and a

constant c1 > 0, such that for all 
 ∈ [
0, 
1] we have

P
[∀μ ∈ {1, . . . ,M},∀x ∈ S

(
ξμ,
N

)
: dH

(
T (x), ξμ

) ≤ f (
)N
] ≥ 1 − εN ,

where

f (
) = max

{
c1


(
κ

λ1

)2

, c1
h(
), c1
κ

λ1
h(
), c1


(
Mκ

(λ1)2
log

(
1




))2/3

, 
0

}
≤ 
,

εN ≥ 0, εN → 0 as N → +∞ and

h(
) = −
 log
 − (1 − 
) log(1 − 
)

is the entropy function.

Proof. This lemma is of central importance for our main result. However, its proof is rather
technical. Let us therefore first describe its basic idea.

To this end, recall that it suffices to prove that

M∑
μ=1

P
[∃x ∈ S

(
ξμ,
N

)
: dH

(
T (x), ξμ

)
> f (
)N

] ≤ εN . (5.1)

To simplify notation, we can assume that the fundamental memory in question is ξ1.
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Now assume that we start with a corrupted input (i.e., a corrupted pattern) x ∈ {−1,1}N such
that dH (ξ1, x) = 
N . Let I be the set of coordinates in which x and ξ1 differ. Let T (x) be the
vector resulting after one step of the parallel dynamics, and J be the set of coordinates in which
T (x) and ξ1 differ. Now define the weight matrix W as W = (wij ) and

wij = aij

M∑
ν=1

ξν
i ξ ν

j .

Then, since ξ1 is not properly reconstructed for the coordinates j ∈ J , for all j ∈ J , we have
ξ1
j (Wx)j ≤ 0, which implies

∑
j∈J ξ1

j (Wx)j ≤ 0.

The idea is now to analyze the contributions to
∑

j∈J ξ1
j (Wx)j . Similar to what we said in the

analysis of the dynamics Ti in Section 2, there is a “signal term” stemming from the closeness
of x to ξ1 and there are noise terms from the influence of the other patterns. We will first show
that the signal term grows at least linearly in |J |. On the other hand, we are also able to give
an upper bound on the influence of the random noise terms that are also controlled by the size
of I and J . While all these computations are relatively straight forward in the Hopfield model
on the complete graph, the estimates become much more involved on a general graph. The key
observation is that we are able to control the probability to find sets I and J with the above
properties with the help of the spectrum of the adjacency matrix (using the results of the previous
section). Technically to this end, we have to split up the noise terms according to where the
vertices i in

∑
j∈J

∑
I ξ1

j aij ξ
μ
i ξ

μ
j come from. The bottom line is, that if |J | is too large, the

probability to find sets I , with |I | = 
N and J (such that ξ1 is not reconstructed correctly on J

when starting with an x differing from ξ1 in the coordinates I ) converges to 0 – even when being
multiplied by the number of patterns M , if M is of the given size (cf. equation (5.3) below).

Let us now carry out this idea.
For later use, set

Sμ(J, I ) =
∑
j∈J

N∑
k=1

ajkξ
1
j ξ

μ
j ξ

μ
k xk

and

S(J, I ) =
M∑

μ=1

Sμ(J, I ) =:
∑
j∈J

ξ1
j (Wx)j .

Observe that, if the patterns are chosen i.i.d. with i.i.d. coordinates their typical distance is
N/2 ± const.

√
N . This in turn implies that, if 
 < 1/2 and dH (x, ξ1) = 
N , then x tends to be

closer to ξ1 than to any other pattern, and S1(J, I ) will be the dominating term in S(J, I ). We
will first give a lower bound for S1(J, I ). We can rewrite S1(J, I ) as

S1(J, I ) =
∑
j∈J

N∑
k=1

ajkξ
1
k xk =

∑
j∈J

(
e(j, Ī ) − e(j, I )

) = e(J,V ) − 2e(J, I ),
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where again we use the notation e(J, I ) and e(j, I ), to denote the number edges going from
the set J to the set I , or, respectively, from the vertex j to the set I . Moreover, Ī denotes the
complement of the set I in V .

Under the assumption of hypothesis (H1) and with the help of Lemma 4.4, we have for all I

and J ,

S1(J, I ) ≥ c1λ1|J | − 2

(
|I ||J |λ1

N
+ √|I ||J |κ

)

= λ1|J |
(

c1 − 2
 − 2
√





′
κ

λ1

)
,

where 
′ = |J |
N

. If we assume that 
′ ≥ c2
( κ
λ1

)2 for some c2 > 0 large enough, and 
 < 
1 for
some 
1 ∈ (0,1/2) small enough, we get

S1(J, I ) ≥ C1λ1|J |, (5.2)

for some constant C1 ∈ (0,1).
For μ ≥ 2, we compute

Sμ(J, I ) =
∑

(j,k)∈E(J,Ī )

u
μ
j u

μ
k −

∑
(j,k)∈E(J,I )

u
μ
j u

μ
k

=
∑

(j,k)∈E(J,V )

u
μ
j u

μ
k − 2

∑
(j,k)∈E(J,I )

u
μ
j u

μ
k ,

where u
μ
i = ξ1

i ξ
μ
i , for all i = 1, . . . ,N and μ = 1, . . . ,M . To apply the results for the moment

generating function of quadratic forms introduced in Theorem 4.1 and Corollary 4.3, we need to
rewrite these sums over ordered pairs of vertices as sums over unordered pairs. We have

E(J,V ) = E(J,J ) + E(J, J̄ ) = 2E{J,J } + E{J, J̄ } = E{J,V } + E{J,J },
where for K,L ⊂ V E(K,L) is the edges set of the directed graph between the sets K and L

induced by our original graph. Likewise, E{K,L} denotes the corresponding set of undirected
edges. In the same way, we obtain

E(J, I ) = E(J ∩ Ī , J ∩ I ) + E(J ∩ I, J ∩ I ) + E(J, I ∩ J̄ )

= E{J ∩ Ī , J ∩ I } + 2E{J ∩ I, J ∩ I } + E{J, I ∩ J̄ }
= E{J, I } + E{J ∩ I, J ∩ I }.

Eventually,

E(J,V ) − 2E(J, I ) = E{J,V } − 2E{J, I } + E{J,J } − 2E{J ∩ I, J ∩ I }.
We want to prove that for 
′ larger than f (
) we have that

MP
[∃I, |I | = 
N,∃J, |J | = 
′N,S(J, I ) < 0

] −→ 0, (5.3)
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as N → +∞.
To this end, set

S
μ
1 (J ) =

∑
(j,k)∈E{J,V }

u
μ
j u

μ
k , S

μ
2 (J, I ) =

∑
(j,k)∈E{J,I }

u
μ
j u

μ
k ,

S
μ
3 (J ) =

∑
(j,k)∈E{J,J }

u
μ
j u

μ
k and S

μ
4 (J, I ) =

∑
(j,k)∈E{J∩I,J∩I }

u
μ
j u

μ
k .

Then

S(J, I ) = S1(J, I ) +
M∑

μ=2

S
μ
1 (J ) − 2

M∑
μ=2

S
μ
2 (J, I ) +

M∑
μ=2

S
μ
3 (J ) −

M∑
μ=2

S
μ
4 (J, I ).

Let γ1, γ2, γ3, γ4 ≥ 0, such that γ1 + 2γ2 + γ3 + γ4 = 1.
We will consider the four sums separately. First, using (5.2), we have

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
1 (J ) < −γ1S

1(J, I )

]

≤
∑

J : |J |=
′N
P

[
M∑

μ=2

S
μ
1 (J ) < −γ1C1λ1|J |

]
.

Given the vector ξ1 = (ξ1
i )i=1,...,N , the random variables (u

μ
i )

μ=2,...,M
i=1,...,N are conditionally inde-

pendent and uniformly distributed on {−1,+1}. As the estimates we will get for the conditional
probabilities and the moment generating function will not depend on the choice of ξ1, they will
be true also for the unconditional probabilities.

Given the vector ξ1, the random variables S
μ
1 (J ),μ = 2, . . . ,M , are independent. Similar to

the estimate of Corollary 4.3, we obtain

P

[
M∑

μ=2

S
μ
1 (J ) < −γ1C1λ1|J |

]
≤ exp

(
−1

2

γ1C1λ1|J |
λJ + Me{J,V }/(γ1C1λ1|J |)

)
,

where λJ = λ1(E{J,V }) is the largest eigenvalue of the graph determined by the undirected
edges in E{J,V }. Using Lemma 4.4, we have

λJ ≤ 2
[√


′λ1 + (
1 − √


′)κ]
,

and moreover, e{J,V } ≤ e(J,V ) ≤ m|J | is trivially true. We deduce that

P

[
M∑

μ=2

S
μ
1 (J ) < −γ1C1λ1|J |

]
≤ exp

(
−γ1C1

2


′N
2
√


′ + 2κ/λ1 + Mm/(γ1C1(λ1)2)

)
.
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Now there are
(

N
|J |

)
ways to choose the set J , and by Stirling’s formula

(
N

|J |
)

≤ exp
(
h
(

′)N)

,

where

h(x) = −x logx − (1 − x) log(1 − x)

is the entropy function introduced above.
Using h(
′) ≤ −2
′ log(
′), we obtain that

∑
J : |J |=
′N

P

[
M∑

μ=2

S
μ
1 (J ) < −γ1C1λ1|J |

]

≤ exp

(
−2
′N

(
γ1C1

4

1

2
√


′ + 2κ/λ1 + Mm/(γ1C1(λ1)2)
+ log

(

′)))

.

The exponent is negative, if

γ1C1

4

1

2
√


′ + 2κ/λ1 + Mm/(γ1C1(λ1)2)
+ log

(

′) > 0,

which is true if

γ1C1

8

1

2
√


′ + log
(

′) > 0, (5.4)

as well as

γ1C1

8

λ1

2κ + Mm/(γ1C1λ1)
+ log

(

′) > 0. (5.5)

This gives a first bound on f (
) in the sense, that if 
′ is so large, then we will have small
probabilities to find the corresponding sets I and J .

Now, there exists a 
1 ∈ (0,0.1), such that the first condition (5.4) is true if 
′ < 
1. The
second condition (5.5) is true if


′ > exp

(
−c

λ1

2κ + Mm/(γ1C1λ1)

)
,

where c = γ1C1
8 . This implies that, if there exists a constant c2 > 0 such that


′ ≥ 
0 := exp

(
−c2

λ1

κ + Mm/λ1

)
,

then (5.5) is true.
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For the second term, we have

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
2 (J, I ) > γ2S

1(J, I )

]

≤
∑

I : |I |=
N

∑
J : |J |=
′N

P

[
M∑

μ=2

S
μ
2 (J, I ) > γ2C1λ1|J |

]

≤
∑

I : |I |=
N

∑
J : |J |=
′N

exp

(
−1

2

γ2C1λ1|J |
λ{J,I } + Me{J, I }/(γ2C1λ1|J |)

)
,

where λ{J,I } = λ1(E{J, I }) is the largest eigenvalue of the graph determined by the undirected
edges in E{J, I }. Using Lemma 4.4, we get

λ{J,I } ≤ 2
[√



′λ1 + κ
]

and

e{J, I } ≤ (


′λ1 + √



′κ
)
N,

which implies

P

[
M∑

μ=2

S
μ
2 (J ) > γ2C1λ1|J |

]

≤ exp

(
−γ2C1

2


′N
2
√



′ + 2κ/λ1 + M
/(γ2C1λ1) + (Mκ/(γ2C1(λ1)2))
√


/
′

)
.

There are
(
N
|I |

)(
N
|J |

)
ways to choose the sets I and J and

(
N

|I |
)(

N

|J |
)

≤ exp(
(
h(
) + h

(

′)N) ≤ exp

(
2h(
)n

)
,

as we assume that 
′ ≤ 
 ≤ 1/2. These considerations yield that

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
2 (J, I ) > γ2S

1(J, I )

]

becomes small, once the condition

γ2C1

2


′

2
√



′ + 2κ/λ1 + M
/(γ2C1λ1) + (Mκ/(γ2C1(λ1)2))
√


/
′ > 2h(
),
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is satisfied. This is true if

γ2C1

′

4
√



′ > 8h(
), γ2C1

′

4κ/λ1
> 8h(
),

γ2C1

2


′

M
/(γ2C1λ1)
> 8h(
)

and

γ2C1

2


′

(Mκ/(γ2C1(λ1)2))
√


/
′ > 16
 log

(
1




)
≥ 8h(
).

From here, we obtain the four conditions


′ > C2
h(
)2, 
′ > C
κ

λ1
h(
), 
′ > C′ M

λ1

h(
)

and


′ ≥ 


(
2

C′
Mκ

(λ1)2
log

(
1




))2/3

,

where C = 32
γ2C1

and C′ = 16
(γ2C1)

2 .
For the third term, we have

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
3 (J, J ) < −γ3S

1(J, I )

]

≤
∑

J : |J |=
′N
P

[
M∑

μ=2

S
μ
3 (J, J ) < −γ3C1λ1|J |

]

≤
∑

J : |J |=
′N
exp

(
−1

2

γ3C1λ1|J |
λ{J,J } + Me{J,J }/(γ3C1λ1|J |)

)
,

where λ{J,J } = λ1(E{J,J }) is the largest eigenvalue of the graph determined by the undirected
edges in E{J,J }. Using Lemma 4.4, we have

λ{J,J } ≤ 2
′λ1 + 2κ

and e{J,J } ≤ (
′λ1 + κ)
′N , and we obtain as for the previous terms

exp

(
−1

2

γ3C1λ1|J |
λ{J,J } + Me{J,J }/(γ3C1λ1|J |)

)

≤ exp

(
−γ3C1

2


′N
(2 + M/(γ3C1λ1))
′ + (κ/λ1)(2 + M/(γ3C1λ1))

)
.
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There are
(

N
|J |

)
ways to choose the set J . From this, we see that

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
3 (J, J ) < −γ3S

1(J, I )

]

becomes small, if the condition

γ3C1

2(2 + M/(γ3C1λ1))

1

1 + κ/(λ1
′)
> h

(

′),

is fulfilled, which is true if

h
(

′) < C and h

(

′) < C
′ λ1

κ
where C = γ3C1

4(2 + M/(γ3C1λ1))
. (5.6)

As we assume that M ≤ cλ1, there exists a 
2(γ3,C1) ∈ (0,0.1), such that the first inequality
in (5.6) is true if 
′ < 
2.

Using the bound h(
′) ≤ −2
′ log(
′) again, we get that there exists c > 0 such that the second
condition in (5.6) is true if


′ > exp

(
−c

λ1

κ

)
.

For the fourth term, we have

P

[
∃I, |I | = 
N,∃J, |J | = 
′N,

M∑
μ=2

S
μ
4 (J, I ) > γ4S

1(J, I )

]

≤
∑

I : |I |=
N

∑
J : |J |=
′N

P

[
M∑

μ=2

S
μ
4 (J, I ) > γ4C1λ1|J |

]

≤
∑

I : |I |=
N

∑
J : |J |=
′N

exp

(
−1

2

γ4C1λ1|J |
λJ∩I + Me{J ∩ I, J ∩ I }/(γ4C1λ1|J |)

)
,

where λJ∩I = λ1(E{J ∩ I, J ∩ I }) is the largest eigenvalue of the graph determined by the
undirected edges in E{J ∩ I, J ∩ I }.

Using Lemma 4.4 and assuming that 
′ ≤ 
, we have λJ∩I ≤ 2
′λ1 +2κ and e{J ∩I, J ∩I } ≤
(
′λ1 + κ)
′N , which are the same bounds as for the third term. There are

(
N
|I |

)(
N
|J |

)
ways to

choose the sets I and J and using again(
N

|I |
)(

N

|J |
)

≤ exp(
(
h(
) + h

(

′)N) ≤ exp

(
2h(
)N

)
,

we finally arrive at the same conditions as for the third term, with possibly a different constant C.
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Finally, the various conditions can be summarized as


′ ≥ c2


(
κ

λ1

)2

, 
1 ≥ 
 ≥ 
′ ≥ 
0, 
′ > C2
h(
)2,


′ > C
κ

λ1
h(
), 
′ > C′ M

λ1

h(
) and 
′ ≥ 


(
2

C′
Mκ

(λ1)2
log

(
1




))2/3

.

Finally, taking into account all the conditions, we get that (5.1) is true if we choose

f (
) = max

{
c1


(
κ

λ1

)2

, c1
h(
), c1
κ

λ1
h(
), c1


(
Mκ

(λ1)2
log

(
1




))2/3

, 
0

}

for some c1 > 0 large enough and we see that f (
) ≤ 
 if 
 ∈ (
0, 
1) with 
1 small enough. �

In order to prove the Theorem 3.3, we will apply Lemma 5.1 repeatedly until the system attains
an original pattern. Using


0 = exp

(
−c2

λ1

κ + Mm/λ1

)
,

we get that the system can attain an original pattern, that is, 
0N < 1, only if

κ + Mm

λ1
< c2λ1/ log(N)

(which follows from the choice of M made in Theorem 3.3).
To determine the maximal number of steps the synchronous dynamics needs to converge, we

analyze the following sequences.

Lemma 5.2. Let (wn)n∈N, (xn)n∈N, (yn)n∈N and (zn)n∈N such that

w0 = x0 = y0 = z0 = 
 ∈
[

exp

(
− 1

2c

λ1

κ

)
,1/e

]

and

wn+1 = cwn

(
κ

λ1

)2

, xn+1 = cxnh(xn),

yn+1 = c
κ

λ1
h(yn) and

zn+1 = czn

(
Mκ

(λ1)2
log

(
1

zn

))2/3

,

for n ∈ N and c > 0. Let us assume that λ1
κ

> C1 logN for some C1 > 1 large enough and that
M ≤ C2λ1 for some C2 > 0. Then the sequences (wn), (xn), (yn) and (zn) are decreasing and
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there exists C3 > 0 and

n0 ≥ C3 max

{
log logN,

log(N)

log(λ1/(κ logN))

}

such that max{wn0, xn0, yn0 , zn0} < 1/N .

Proof. Let us first consider the sequence (wn). Iterating wn+1 = awn, with a = c( κ
λ1

)2, we get

trivially wn = anw0 from which we deduce that wn < 1
N

as soon as n > c1
log(N)

log(λ1/κ)
for some

c1 > 0.
For the sequence (xn), using h(x) ≤ −2x log(x) ≤ 2

√
x for x ∈ [0,1/2], we have xn+1 ≤

(Cxn)
3/2 for some constant C > 0. Iterating, we get xn ≤ (C3x0)

(3/2)n , from which we deduce
that xn < 1

N
if n ≥ c2 log logN for some c2 > 0, if x0 is small enough.

For the sequence (yn), using again h(x) ≤ −2x log(x), we have to iterate the relation yn+1 =
ayn log( 1

yn
), with a = 2c κ

λ1
. If we consider y0 ∈ [exp(−1/a), exp(−1)], the inductively defined

sequence yn+1 = g(yn) is decreasing and converges to exp(−1/a) since the function g(x) =
−ax log(x) is increasing on the interval [exp(−1/a), exp(−1)], y1 ≤ y0 and exp(−1/a) is the
single fixed point of g. Moreover, we have

yn+2 = a2yn log

(
1

yn

)(
log

(
1

yn

)
+ log

(
1

a

)
+ log

(
1

log(1/yn)

))

≤ a2yn log

(
1

yn

)(
log

(
1

yn

)
+ log

(
1

a

))
,

if yn ≤ 1/e. By iteration, if we set b = log( 1
min{
,a} ), we get similarly for all n ∈N,

yn ≤ any0

n−1∏
i=0

[
log

(
1

y0

)
+ i log

(
1

a

)]

≤ (ab)ny0n!

≤ c3

(
ab

n

e

)n√
n

= c3 exp

(
n
(
log(a) + log(b) + log(n) − 1

) + 1

2
log(n)

)

≤ c3 exp
(−c4 logN

(
1 + o(1)

))
,

for some c3 > 0, if n = c4 log(N)/(− loga− log logN). In particular, this justifies the hypothesis
λ1
κ

> c5 logN for some c5 > 1 large enough. We therefore see that there exists some c6 > 0 such

that e−1/a ≤ yn < 1
N

for n = c6
log(N)

log(λ1/(κ logN))
.
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The third sequence can be rewritten as zn+1 = azn(log 1
zn

)2/3, with a = c(M
λ1

κ
λ1

)2/3. With the

same technique as for yn, we get that the sequence (zn) converges to exp(−1/a3/2) and zn < 1/N

if

n ≥ c7log(N)
/

log

(
(λ1)

2

Mκ log(N)

)
.

This proves the lemma. �

The combination of the previous considerations and Lemma 5.2 then yields the Theorem 3.3.

Appendix: On the degrees of the Erdös–Renyi graph

To prove the Corollary 3.6, we need to estimate the minimum and the maximum degrees of a
typical Erdös–Renyi graph G(N,p). The following result could not be found in the literature.
We prove in this appendix the following.

Lemma A.1. If G be is chosen randomly according to the model G(N,p), then if p � logN
N

,
for a set of realizations of G the probability of which converges to one as N → ∞, we have
m = (1 + o(1))Np and δ = (1 + o(1))Np.

Proof. Let G chosen randomly according to the model G(N,p). The law of the degree di of
an arbitrary vertex i of G is the binomial distribution B(N,p). Hence, using the exponential
Markov inequality, we arrive at the following bound: for p < a < 1 and N ≥ 1,

P [di ≥ aN ] ≤ exp
(−NH(a,p)

)
,

where H is the relative entropy or Kullback–Leibler information

H(a,p) = a log

(
a

p

)
+ (1 − a) log

(
1 − a

1 − p

)
.

If we now set m = maxi di as above, we obtain

P [m ≥ aN ] ≤
N∑

i=1

P [di ≥ aN ] ≤ N exp
(−NH(a,p)

)
.

If we choose a = (1 + ε)p, for some ε > 0 such that a < 1, we therefore get

P
[
m ≥ (1+ε)pN

] ≤ N exp

(
−N

(
p(1+ε) log(1+ε)+(

1− (1+ε)p
)

log

(
1 − (1 + ε)p

1 − p

)))
.

Moreover, we have (1 − (1 + ε)p) log(
1−(1+ε)p

1−p
) ≥ −pε.
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Indeed, if we set q = 1 − p and u = 1 − (1 + ε)p = q − εp, the last inequality is equivalent to
log(q/u) ≤ q/u − 1 which is true since q/u > 1. Thus,

P
[
m ≥ (1 + ε)pN

] ≤ N exp
(−Np

(
(1 + ε) log(1 + ε) − ε

))
≤ N exp

(
−Np

ε2

2

(
1 + o(1)

))
,

if we suppose that ε = o(1) as N → ∞. Choosing ε = 2
√

logN
pN

, we have ε = o(1) for p � logN
N

,
and

P
[
m ≥ (1 + ε)pN

] → 0 as N → ∞.

Moreover, we have m ≥ λ1 and λ1 = (1 + o(1))pN (with probability converging to 1 as N →
∞), which gives the result for m.

Now, if we set δ := mini di , we want to prove that P [δ ≥ (1 + ε′)pN ] → 1, as N → ∞, for
some ε′ = o(1). We consider the complementary graph, that is, the random graph G, such that
exactly those edges are missing in a realization of G, that occur in the corresponding realization
of the original random graph G. Now the maximum degree m of G and the minimum degree δ

of G are linked via the relation δ = N − 1 − m.
As G is chosen randomly according to the model G(N,1 − p), we have

P
[
m ≥ (1 + ε)(1 − p)N

] ≤ N exp
(−NH

(
(1 + ε)(1 − p),1 − p

))
,

for all ε > 0 such that (1 + ε)(1 − p) < 1. Now

H
(
(1 + ε)(1 − p),1 − p

) = (1 + ε)(1 − p) log(1 + ε) + (p − ε + pε) log

(
1 − ε(1 − p)

p

)
.

If we suppose that ε = o(1) and ε 	 p, using the inequality log(1 − x) ≥ −x − x2/2 − x3 for
x ∈ (0,1/2) to bound the last term, we obtain the estimate

H
(
(1 + ε)(1 − p),1 − p

) ≥ ε2

2p

(
(1 − p) − C

(
ε + ε

p

)
+O

(
pε2)),

for some C > 0 and

P
[
m ≥ (1 + ε)(1 − p)N

] ≤ exp

(
−N

ε2

2p

(
(1 − p) − C

(
ε + ε

p

)
+O

(
pε2)) + log(N)

)
.

There exists some c > 0 such that if we choose ε =
√

4p
c(1−p)

log(N)
N

, we get

P
[
m ≥ (1 + ε)(1 − p)N

] ≤ exp

(
−cN

ε2

2p
(1 − p) + log(N)

)
→ 0,

under the conditions p � logN
N

and 1 − p � (
logN

N
)1/3.
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Finally, we get δ ≥ N − 1 − (1 + ε)(1 − p)N = (1 + o(1))Np, which is the result under these
two conditions.

Eventually, we will extend this result for all p such that p → 1, as N → +∞. As previously,
using the exponential Markov inequality, we get the following bound: for 0 < b < p < 1, and
N ≥ 1,

P [di ≤ bN] ≤ exp
(−NH(b,p)

)
.

We set p = 1 − aN and b = 1 − bN , for some strictly positive sequences (aN) and (bN) such that
aN + bN → 0, as N → ∞, aN 	 bN , and we can restrict to the case aN < (c

logN
N

)1/3 for some
c > 0. We get

P [δ ≤ bN] ≤ N exp

(
−N

(
(1 − bN) log

(
1 − bN

1 − aN

)
+ bN log

(
bN

aN

)))

≤ exp

(
−N

(
bN log

(
bN

aN

)
− 2bN

)
+ log(N)

)
.

So, we need to choose bN such that

bN log

(
bN

aN

)
>

log(N)

N
.

We have

bN log

(
bN

aN

)
> bN log

(
bN

(
N

c log(N)

)1/3)
>

log(N)

N
,

if we choose for instance bN = (
logN

N
)γ with γ ∈ (0,1/3).

Finally, we get for all p → 1 that δ ≥ (1−bN)N = (1+o(1))Np, with probability converging
to 1 as N → ∞. �
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